1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_sb.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 void *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return -EIO; 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return -EIO; 381 382 XFS_STATS_INC(mp, xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 __uint8_t client, 438 bool permanent) 439 { 440 struct xlog *log = mp->m_log; 441 struct xlog_ticket *tic; 442 int need_bytes; 443 int error = 0; 444 445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 446 447 if (XLOG_FORCED_SHUTDOWN(log)) 448 return -EIO; 449 450 XFS_STATS_INC(mp, xs_try_logspace); 451 452 ASSERT(*ticp == NULL); 453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 454 KM_SLEEP | KM_MAYFAIL); 455 if (!tic) 456 return -ENOMEM; 457 458 *ticp = tic; 459 460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 461 : tic->t_unit_res); 462 463 trace_xfs_log_reserve(log, tic); 464 465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 466 &need_bytes); 467 if (error) 468 goto out_error; 469 470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 472 trace_xfs_log_reserve_exit(log, tic); 473 xlog_verify_grant_tail(log); 474 return 0; 475 476 out_error: 477 /* 478 * If we are failing, make sure the ticket doesn't have any current 479 * reservations. We don't want to add this back when the ticket/ 480 * transaction gets cancelled. 481 */ 482 tic->t_curr_res = 0; 483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 484 return error; 485 } 486 487 488 /* 489 * NOTES: 490 * 491 * 1. currblock field gets updated at startup and after in-core logs 492 * marked as with WANT_SYNC. 493 */ 494 495 /* 496 * This routine is called when a user of a log manager ticket is done with 497 * the reservation. If the ticket was ever used, then a commit record for 498 * the associated transaction is written out as a log operation header with 499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 500 * a given ticket. If the ticket was one with a permanent reservation, then 501 * a few operations are done differently. Permanent reservation tickets by 502 * default don't release the reservation. They just commit the current 503 * transaction with the belief that the reservation is still needed. A flag 504 * must be passed in before permanent reservations are actually released. 505 * When these type of tickets are not released, they need to be set into 506 * the inited state again. By doing this, a start record will be written 507 * out when the next write occurs. 508 */ 509 xfs_lsn_t 510 xfs_log_done( 511 struct xfs_mount *mp, 512 struct xlog_ticket *ticket, 513 struct xlog_in_core **iclog, 514 bool regrant) 515 { 516 struct xlog *log = mp->m_log; 517 xfs_lsn_t lsn = 0; 518 519 if (XLOG_FORCED_SHUTDOWN(log) || 520 /* 521 * If nothing was ever written, don't write out commit record. 522 * If we get an error, just continue and give back the log ticket. 523 */ 524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 525 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 526 lsn = (xfs_lsn_t) -1; 527 regrant = false; 528 } 529 530 531 if (!regrant) { 532 trace_xfs_log_done_nonperm(log, ticket); 533 534 /* 535 * Release ticket if not permanent reservation or a specific 536 * request has been made to release a permanent reservation. 537 */ 538 xlog_ungrant_log_space(log, ticket); 539 } else { 540 trace_xfs_log_done_perm(log, ticket); 541 542 xlog_regrant_reserve_log_space(log, ticket); 543 /* If this ticket was a permanent reservation and we aren't 544 * trying to release it, reset the inited flags; so next time 545 * we write, a start record will be written out. 546 */ 547 ticket->t_flags |= XLOG_TIC_INITED; 548 } 549 550 xfs_log_ticket_put(ticket); 551 return lsn; 552 } 553 554 /* 555 * Attaches a new iclog I/O completion callback routine during 556 * transaction commit. If the log is in error state, a non-zero 557 * return code is handed back and the caller is responsible for 558 * executing the callback at an appropriate time. 559 */ 560 int 561 xfs_log_notify( 562 struct xfs_mount *mp, 563 struct xlog_in_core *iclog, 564 xfs_log_callback_t *cb) 565 { 566 int abortflg; 567 568 spin_lock(&iclog->ic_callback_lock); 569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 570 if (!abortflg) { 571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 572 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 573 cb->cb_next = NULL; 574 *(iclog->ic_callback_tail) = cb; 575 iclog->ic_callback_tail = &(cb->cb_next); 576 } 577 spin_unlock(&iclog->ic_callback_lock); 578 return abortflg; 579 } 580 581 int 582 xfs_log_release_iclog( 583 struct xfs_mount *mp, 584 struct xlog_in_core *iclog) 585 { 586 if (xlog_state_release_iclog(mp->m_log, iclog)) { 587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 588 return -EIO; 589 } 590 591 return 0; 592 } 593 594 /* 595 * Mount a log filesystem 596 * 597 * mp - ubiquitous xfs mount point structure 598 * log_target - buftarg of on-disk log device 599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 600 * num_bblocks - Number of BBSIZE blocks in on-disk log 601 * 602 * Return error or zero. 603 */ 604 int 605 xfs_log_mount( 606 xfs_mount_t *mp, 607 xfs_buftarg_t *log_target, 608 xfs_daddr_t blk_offset, 609 int num_bblks) 610 { 611 int error = 0; 612 int min_logfsbs; 613 614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 615 xfs_notice(mp, "Mounting V%d Filesystem", 616 XFS_SB_VERSION_NUM(&mp->m_sb)); 617 } else { 618 xfs_notice(mp, 619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 620 XFS_SB_VERSION_NUM(&mp->m_sb)); 621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 622 } 623 624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 625 if (IS_ERR(mp->m_log)) { 626 error = PTR_ERR(mp->m_log); 627 goto out; 628 } 629 630 /* 631 * Validate the given log space and drop a critical message via syslog 632 * if the log size is too small that would lead to some unexpected 633 * situations in transaction log space reservation stage. 634 * 635 * Note: we can't just reject the mount if the validation fails. This 636 * would mean that people would have to downgrade their kernel just to 637 * remedy the situation as there is no way to grow the log (short of 638 * black magic surgery with xfs_db). 639 * 640 * We can, however, reject mounts for CRC format filesystems, as the 641 * mkfs binary being used to make the filesystem should never create a 642 * filesystem with a log that is too small. 643 */ 644 min_logfsbs = xfs_log_calc_minimum_size(mp); 645 646 if (mp->m_sb.sb_logblocks < min_logfsbs) { 647 xfs_warn(mp, 648 "Log size %d blocks too small, minimum size is %d blocks", 649 mp->m_sb.sb_logblocks, min_logfsbs); 650 error = -EINVAL; 651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 652 xfs_warn(mp, 653 "Log size %d blocks too large, maximum size is %lld blocks", 654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 655 error = -EINVAL; 656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 657 xfs_warn(mp, 658 "log size %lld bytes too large, maximum size is %lld bytes", 659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 660 XFS_MAX_LOG_BYTES); 661 error = -EINVAL; 662 } 663 if (error) { 664 if (xfs_sb_version_hascrc(&mp->m_sb)) { 665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 666 ASSERT(0); 667 goto out_free_log; 668 } 669 xfs_crit(mp, "Log size out of supported range."); 670 xfs_crit(mp, 671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 672 } 673 674 /* 675 * Initialize the AIL now we have a log. 676 */ 677 error = xfs_trans_ail_init(mp); 678 if (error) { 679 xfs_warn(mp, "AIL initialisation failed: error %d", error); 680 goto out_free_log; 681 } 682 mp->m_log->l_ailp = mp->m_ail; 683 684 /* 685 * skip log recovery on a norecovery mount. pretend it all 686 * just worked. 687 */ 688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 690 691 if (readonly) 692 mp->m_flags &= ~XFS_MOUNT_RDONLY; 693 694 error = xlog_recover(mp->m_log); 695 696 if (readonly) 697 mp->m_flags |= XFS_MOUNT_RDONLY; 698 if (error) { 699 xfs_warn(mp, "log mount/recovery failed: error %d", 700 error); 701 xlog_recover_cancel(mp->m_log); 702 goto out_destroy_ail; 703 } 704 } 705 706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 707 "log"); 708 if (error) 709 goto out_destroy_ail; 710 711 /* Normal transactions can now occur */ 712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 713 714 /* 715 * Now the log has been fully initialised and we know were our 716 * space grant counters are, we can initialise the permanent ticket 717 * needed for delayed logging to work. 718 */ 719 xlog_cil_init_post_recovery(mp->m_log); 720 721 return 0; 722 723 out_destroy_ail: 724 xfs_trans_ail_destroy(mp); 725 out_free_log: 726 xlog_dealloc_log(mp->m_log); 727 out: 728 return error; 729 } 730 731 /* 732 * Finish the recovery of the file system. This is separate from the 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 735 * here. 736 * 737 * If we finish recovery successfully, start the background log work. If we are 738 * not doing recovery, then we have a RO filesystem and we don't need to start 739 * it. 740 */ 741 int 742 xfs_log_mount_finish( 743 struct xfs_mount *mp) 744 { 745 int error = 0; 746 747 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 749 return 0; 750 } 751 752 error = xlog_recover_finish(mp->m_log); 753 if (!error) 754 xfs_log_work_queue(mp); 755 756 return error; 757 } 758 759 /* 760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 761 * the log. 762 */ 763 int 764 xfs_log_mount_cancel( 765 struct xfs_mount *mp) 766 { 767 int error; 768 769 error = xlog_recover_cancel(mp->m_log); 770 xfs_log_unmount(mp); 771 772 return error; 773 } 774 775 /* 776 * Final log writes as part of unmount. 777 * 778 * Mark the filesystem clean as unmount happens. Note that during relocation 779 * this routine needs to be executed as part of source-bag while the 780 * deallocation must not be done until source-end. 781 */ 782 783 /* 784 * Unmount record used to have a string "Unmount filesystem--" in the 785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 786 * We just write the magic number now since that particular field isn't 787 * currently architecture converted and "Unmount" is a bit foo. 788 * As far as I know, there weren't any dependencies on the old behaviour. 789 */ 790 791 int 792 xfs_log_unmount_write(xfs_mount_t *mp) 793 { 794 struct xlog *log = mp->m_log; 795 xlog_in_core_t *iclog; 796 #ifdef DEBUG 797 xlog_in_core_t *first_iclog; 798 #endif 799 xlog_ticket_t *tic = NULL; 800 xfs_lsn_t lsn; 801 int error; 802 803 /* 804 * Don't write out unmount record on read-only mounts. 805 * Or, if we are doing a forced umount (typically because of IO errors). 806 */ 807 if (mp->m_flags & XFS_MOUNT_RDONLY) 808 return 0; 809 810 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 811 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 812 813 #ifdef DEBUG 814 first_iclog = iclog = log->l_iclog; 815 do { 816 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 817 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 818 ASSERT(iclog->ic_offset == 0); 819 } 820 iclog = iclog->ic_next; 821 } while (iclog != first_iclog); 822 #endif 823 if (! (XLOG_FORCED_SHUTDOWN(log))) { 824 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 825 if (!error) { 826 /* the data section must be 32 bit size aligned */ 827 struct { 828 __uint16_t magic; 829 __uint16_t pad1; 830 __uint32_t pad2; /* may as well make it 64 bits */ 831 } magic = { 832 .magic = XLOG_UNMOUNT_TYPE, 833 }; 834 struct xfs_log_iovec reg = { 835 .i_addr = &magic, 836 .i_len = sizeof(magic), 837 .i_type = XLOG_REG_TYPE_UNMOUNT, 838 }; 839 struct xfs_log_vec vec = { 840 .lv_niovecs = 1, 841 .lv_iovecp = ®, 842 }; 843 844 /* remove inited flag, and account for space used */ 845 tic->t_flags = 0; 846 tic->t_curr_res -= sizeof(magic); 847 error = xlog_write(log, &vec, tic, &lsn, 848 NULL, XLOG_UNMOUNT_TRANS); 849 /* 850 * At this point, we're umounting anyway, 851 * so there's no point in transitioning log state 852 * to IOERROR. Just continue... 853 */ 854 } 855 856 if (error) 857 xfs_alert(mp, "%s: unmount record failed", __func__); 858 859 860 spin_lock(&log->l_icloglock); 861 iclog = log->l_iclog; 862 atomic_inc(&iclog->ic_refcnt); 863 xlog_state_want_sync(log, iclog); 864 spin_unlock(&log->l_icloglock); 865 error = xlog_state_release_iclog(log, iclog); 866 867 spin_lock(&log->l_icloglock); 868 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 869 iclog->ic_state == XLOG_STATE_DIRTY)) { 870 if (!XLOG_FORCED_SHUTDOWN(log)) { 871 xlog_wait(&iclog->ic_force_wait, 872 &log->l_icloglock); 873 } else { 874 spin_unlock(&log->l_icloglock); 875 } 876 } else { 877 spin_unlock(&log->l_icloglock); 878 } 879 if (tic) { 880 trace_xfs_log_umount_write(log, tic); 881 xlog_ungrant_log_space(log, tic); 882 xfs_log_ticket_put(tic); 883 } 884 } else { 885 /* 886 * We're already in forced_shutdown mode, couldn't 887 * even attempt to write out the unmount transaction. 888 * 889 * Go through the motions of sync'ing and releasing 890 * the iclog, even though no I/O will actually happen, 891 * we need to wait for other log I/Os that may already 892 * be in progress. Do this as a separate section of 893 * code so we'll know if we ever get stuck here that 894 * we're in this odd situation of trying to unmount 895 * a file system that went into forced_shutdown as 896 * the result of an unmount.. 897 */ 898 spin_lock(&log->l_icloglock); 899 iclog = log->l_iclog; 900 atomic_inc(&iclog->ic_refcnt); 901 902 xlog_state_want_sync(log, iclog); 903 spin_unlock(&log->l_icloglock); 904 error = xlog_state_release_iclog(log, iclog); 905 906 spin_lock(&log->l_icloglock); 907 908 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 909 || iclog->ic_state == XLOG_STATE_DIRTY 910 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 911 912 xlog_wait(&iclog->ic_force_wait, 913 &log->l_icloglock); 914 } else { 915 spin_unlock(&log->l_icloglock); 916 } 917 } 918 919 return error; 920 } /* xfs_log_unmount_write */ 921 922 /* 923 * Empty the log for unmount/freeze. 924 * 925 * To do this, we first need to shut down the background log work so it is not 926 * trying to cover the log as we clean up. We then need to unpin all objects in 927 * the log so we can then flush them out. Once they have completed their IO and 928 * run the callbacks removing themselves from the AIL, we can write the unmount 929 * record. 930 */ 931 void 932 xfs_log_quiesce( 933 struct xfs_mount *mp) 934 { 935 cancel_delayed_work_sync(&mp->m_log->l_work); 936 xfs_log_force(mp, XFS_LOG_SYNC); 937 938 /* 939 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 940 * will push it, xfs_wait_buftarg() will not wait for it. Further, 941 * xfs_buf_iowait() cannot be used because it was pushed with the 942 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 943 * the IO to complete. 944 */ 945 xfs_ail_push_all_sync(mp->m_ail); 946 xfs_wait_buftarg(mp->m_ddev_targp); 947 xfs_buf_lock(mp->m_sb_bp); 948 xfs_buf_unlock(mp->m_sb_bp); 949 950 xfs_log_unmount_write(mp); 951 } 952 953 /* 954 * Shut down and release the AIL and Log. 955 * 956 * During unmount, we need to ensure we flush all the dirty metadata objects 957 * from the AIL so that the log is empty before we write the unmount record to 958 * the log. Once this is done, we can tear down the AIL and the log. 959 */ 960 void 961 xfs_log_unmount( 962 struct xfs_mount *mp) 963 { 964 xfs_log_quiesce(mp); 965 966 xfs_trans_ail_destroy(mp); 967 968 xfs_sysfs_del(&mp->m_log->l_kobj); 969 970 xlog_dealloc_log(mp->m_log); 971 } 972 973 void 974 xfs_log_item_init( 975 struct xfs_mount *mp, 976 struct xfs_log_item *item, 977 int type, 978 const struct xfs_item_ops *ops) 979 { 980 item->li_mountp = mp; 981 item->li_ailp = mp->m_ail; 982 item->li_type = type; 983 item->li_ops = ops; 984 item->li_lv = NULL; 985 986 INIT_LIST_HEAD(&item->li_ail); 987 INIT_LIST_HEAD(&item->li_cil); 988 } 989 990 /* 991 * Wake up processes waiting for log space after we have moved the log tail. 992 */ 993 void 994 xfs_log_space_wake( 995 struct xfs_mount *mp) 996 { 997 struct xlog *log = mp->m_log; 998 int free_bytes; 999 1000 if (XLOG_FORCED_SHUTDOWN(log)) 1001 return; 1002 1003 if (!list_empty_careful(&log->l_write_head.waiters)) { 1004 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1005 1006 spin_lock(&log->l_write_head.lock); 1007 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1008 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1009 spin_unlock(&log->l_write_head.lock); 1010 } 1011 1012 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1013 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1014 1015 spin_lock(&log->l_reserve_head.lock); 1016 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1017 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1018 spin_unlock(&log->l_reserve_head.lock); 1019 } 1020 } 1021 1022 /* 1023 * Determine if we have a transaction that has gone to disk that needs to be 1024 * covered. To begin the transition to the idle state firstly the log needs to 1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1026 * we start attempting to cover the log. 1027 * 1028 * Only if we are then in a state where covering is needed, the caller is 1029 * informed that dummy transactions are required to move the log into the idle 1030 * state. 1031 * 1032 * If there are any items in the AIl or CIL, then we do not want to attempt to 1033 * cover the log as we may be in a situation where there isn't log space 1034 * available to run a dummy transaction and this can lead to deadlocks when the 1035 * tail of the log is pinned by an item that is modified in the CIL. Hence 1036 * there's no point in running a dummy transaction at this point because we 1037 * can't start trying to idle the log until both the CIL and AIL are empty. 1038 */ 1039 int 1040 xfs_log_need_covered(xfs_mount_t *mp) 1041 { 1042 struct xlog *log = mp->m_log; 1043 int needed = 0; 1044 1045 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1046 return 0; 1047 1048 if (!xlog_cil_empty(log)) 1049 return 0; 1050 1051 spin_lock(&log->l_icloglock); 1052 switch (log->l_covered_state) { 1053 case XLOG_STATE_COVER_DONE: 1054 case XLOG_STATE_COVER_DONE2: 1055 case XLOG_STATE_COVER_IDLE: 1056 break; 1057 case XLOG_STATE_COVER_NEED: 1058 case XLOG_STATE_COVER_NEED2: 1059 if (xfs_ail_min_lsn(log->l_ailp)) 1060 break; 1061 if (!xlog_iclogs_empty(log)) 1062 break; 1063 1064 needed = 1; 1065 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1066 log->l_covered_state = XLOG_STATE_COVER_DONE; 1067 else 1068 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1069 break; 1070 default: 1071 needed = 1; 1072 break; 1073 } 1074 spin_unlock(&log->l_icloglock); 1075 return needed; 1076 } 1077 1078 /* 1079 * We may be holding the log iclog lock upon entering this routine. 1080 */ 1081 xfs_lsn_t 1082 xlog_assign_tail_lsn_locked( 1083 struct xfs_mount *mp) 1084 { 1085 struct xlog *log = mp->m_log; 1086 struct xfs_log_item *lip; 1087 xfs_lsn_t tail_lsn; 1088 1089 assert_spin_locked(&mp->m_ail->xa_lock); 1090 1091 /* 1092 * To make sure we always have a valid LSN for the log tail we keep 1093 * track of the last LSN which was committed in log->l_last_sync_lsn, 1094 * and use that when the AIL was empty. 1095 */ 1096 lip = xfs_ail_min(mp->m_ail); 1097 if (lip) 1098 tail_lsn = lip->li_lsn; 1099 else 1100 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1101 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1102 atomic64_set(&log->l_tail_lsn, tail_lsn); 1103 return tail_lsn; 1104 } 1105 1106 xfs_lsn_t 1107 xlog_assign_tail_lsn( 1108 struct xfs_mount *mp) 1109 { 1110 xfs_lsn_t tail_lsn; 1111 1112 spin_lock(&mp->m_ail->xa_lock); 1113 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1114 spin_unlock(&mp->m_ail->xa_lock); 1115 1116 return tail_lsn; 1117 } 1118 1119 /* 1120 * Return the space in the log between the tail and the head. The head 1121 * is passed in the cycle/bytes formal parms. In the special case where 1122 * the reserve head has wrapped passed the tail, this calculation is no 1123 * longer valid. In this case, just return 0 which means there is no space 1124 * in the log. This works for all places where this function is called 1125 * with the reserve head. Of course, if the write head were to ever 1126 * wrap the tail, we should blow up. Rather than catch this case here, 1127 * we depend on other ASSERTions in other parts of the code. XXXmiken 1128 * 1129 * This code also handles the case where the reservation head is behind 1130 * the tail. The details of this case are described below, but the end 1131 * result is that we return the size of the log as the amount of space left. 1132 */ 1133 STATIC int 1134 xlog_space_left( 1135 struct xlog *log, 1136 atomic64_t *head) 1137 { 1138 int free_bytes; 1139 int tail_bytes; 1140 int tail_cycle; 1141 int head_cycle; 1142 int head_bytes; 1143 1144 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1145 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1146 tail_bytes = BBTOB(tail_bytes); 1147 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1148 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1149 else if (tail_cycle + 1 < head_cycle) 1150 return 0; 1151 else if (tail_cycle < head_cycle) { 1152 ASSERT(tail_cycle == (head_cycle - 1)); 1153 free_bytes = tail_bytes - head_bytes; 1154 } else { 1155 /* 1156 * The reservation head is behind the tail. 1157 * In this case we just want to return the size of the 1158 * log as the amount of space left. 1159 */ 1160 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1161 xfs_alert(log->l_mp, 1162 " tail_cycle = %d, tail_bytes = %d", 1163 tail_cycle, tail_bytes); 1164 xfs_alert(log->l_mp, 1165 " GH cycle = %d, GH bytes = %d", 1166 head_cycle, head_bytes); 1167 ASSERT(0); 1168 free_bytes = log->l_logsize; 1169 } 1170 return free_bytes; 1171 } 1172 1173 1174 /* 1175 * Log function which is called when an io completes. 1176 * 1177 * The log manager needs its own routine, in order to control what 1178 * happens with the buffer after the write completes. 1179 */ 1180 void 1181 xlog_iodone(xfs_buf_t *bp) 1182 { 1183 struct xlog_in_core *iclog = bp->b_fspriv; 1184 struct xlog *l = iclog->ic_log; 1185 int aborted = 0; 1186 1187 /* 1188 * Race to shutdown the filesystem if we see an error or the iclog is in 1189 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1190 * CRC errors into log recovery. 1191 */ 1192 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR, 1193 XFS_RANDOM_IODONE_IOERR) || 1194 iclog->ic_state & XLOG_STATE_IOABORT) { 1195 if (iclog->ic_state & XLOG_STATE_IOABORT) 1196 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1197 1198 xfs_buf_ioerror_alert(bp, __func__); 1199 xfs_buf_stale(bp); 1200 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1201 /* 1202 * This flag will be propagated to the trans-committed 1203 * callback routines to let them know that the log-commit 1204 * didn't succeed. 1205 */ 1206 aborted = XFS_LI_ABORTED; 1207 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1208 aborted = XFS_LI_ABORTED; 1209 } 1210 1211 /* log I/O is always issued ASYNC */ 1212 ASSERT(bp->b_flags & XBF_ASYNC); 1213 xlog_state_done_syncing(iclog, aborted); 1214 1215 /* 1216 * drop the buffer lock now that we are done. Nothing references 1217 * the buffer after this, so an unmount waiting on this lock can now 1218 * tear it down safely. As such, it is unsafe to reference the buffer 1219 * (bp) after the unlock as we could race with it being freed. 1220 */ 1221 xfs_buf_unlock(bp); 1222 } 1223 1224 /* 1225 * Return size of each in-core log record buffer. 1226 * 1227 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1228 * 1229 * If the filesystem blocksize is too large, we may need to choose a 1230 * larger size since the directory code currently logs entire blocks. 1231 */ 1232 1233 STATIC void 1234 xlog_get_iclog_buffer_size( 1235 struct xfs_mount *mp, 1236 struct xlog *log) 1237 { 1238 int size; 1239 int xhdrs; 1240 1241 if (mp->m_logbufs <= 0) 1242 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1243 else 1244 log->l_iclog_bufs = mp->m_logbufs; 1245 1246 /* 1247 * Buffer size passed in from mount system call. 1248 */ 1249 if (mp->m_logbsize > 0) { 1250 size = log->l_iclog_size = mp->m_logbsize; 1251 log->l_iclog_size_log = 0; 1252 while (size != 1) { 1253 log->l_iclog_size_log++; 1254 size >>= 1; 1255 } 1256 1257 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1258 /* # headers = size / 32k 1259 * one header holds cycles from 32k of data 1260 */ 1261 1262 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1263 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1264 xhdrs++; 1265 log->l_iclog_hsize = xhdrs << BBSHIFT; 1266 log->l_iclog_heads = xhdrs; 1267 } else { 1268 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1269 log->l_iclog_hsize = BBSIZE; 1270 log->l_iclog_heads = 1; 1271 } 1272 goto done; 1273 } 1274 1275 /* All machines use 32kB buffers by default. */ 1276 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1277 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1278 1279 /* the default log size is 16k or 32k which is one header sector */ 1280 log->l_iclog_hsize = BBSIZE; 1281 log->l_iclog_heads = 1; 1282 1283 done: 1284 /* are we being asked to make the sizes selected above visible? */ 1285 if (mp->m_logbufs == 0) 1286 mp->m_logbufs = log->l_iclog_bufs; 1287 if (mp->m_logbsize == 0) 1288 mp->m_logbsize = log->l_iclog_size; 1289 } /* xlog_get_iclog_buffer_size */ 1290 1291 1292 void 1293 xfs_log_work_queue( 1294 struct xfs_mount *mp) 1295 { 1296 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1297 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1298 } 1299 1300 /* 1301 * Every sync period we need to unpin all items in the AIL and push them to 1302 * disk. If there is nothing dirty, then we might need to cover the log to 1303 * indicate that the filesystem is idle. 1304 */ 1305 void 1306 xfs_log_worker( 1307 struct work_struct *work) 1308 { 1309 struct xlog *log = container_of(to_delayed_work(work), 1310 struct xlog, l_work); 1311 struct xfs_mount *mp = log->l_mp; 1312 1313 /* dgc: errors ignored - not fatal and nowhere to report them */ 1314 if (xfs_log_need_covered(mp)) { 1315 /* 1316 * Dump a transaction into the log that contains no real change. 1317 * This is needed to stamp the current tail LSN into the log 1318 * during the covering operation. 1319 * 1320 * We cannot use an inode here for this - that will push dirty 1321 * state back up into the VFS and then periodic inode flushing 1322 * will prevent log covering from making progress. Hence we 1323 * synchronously log the superblock instead to ensure the 1324 * superblock is immediately unpinned and can be written back. 1325 */ 1326 xfs_sync_sb(mp, true); 1327 } else 1328 xfs_log_force(mp, 0); 1329 1330 /* start pushing all the metadata that is currently dirty */ 1331 xfs_ail_push_all(mp->m_ail); 1332 1333 /* queue us up again */ 1334 xfs_log_work_queue(mp); 1335 } 1336 1337 /* 1338 * This routine initializes some of the log structure for a given mount point. 1339 * Its primary purpose is to fill in enough, so recovery can occur. However, 1340 * some other stuff may be filled in too. 1341 */ 1342 STATIC struct xlog * 1343 xlog_alloc_log( 1344 struct xfs_mount *mp, 1345 struct xfs_buftarg *log_target, 1346 xfs_daddr_t blk_offset, 1347 int num_bblks) 1348 { 1349 struct xlog *log; 1350 xlog_rec_header_t *head; 1351 xlog_in_core_t **iclogp; 1352 xlog_in_core_t *iclog, *prev_iclog=NULL; 1353 xfs_buf_t *bp; 1354 int i; 1355 int error = -ENOMEM; 1356 uint log2_size = 0; 1357 1358 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1359 if (!log) { 1360 xfs_warn(mp, "Log allocation failed: No memory!"); 1361 goto out; 1362 } 1363 1364 log->l_mp = mp; 1365 log->l_targ = log_target; 1366 log->l_logsize = BBTOB(num_bblks); 1367 log->l_logBBstart = blk_offset; 1368 log->l_logBBsize = num_bblks; 1369 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1370 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1371 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1372 1373 log->l_prev_block = -1; 1374 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1375 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1376 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1377 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1378 1379 xlog_grant_head_init(&log->l_reserve_head); 1380 xlog_grant_head_init(&log->l_write_head); 1381 1382 error = -EFSCORRUPTED; 1383 if (xfs_sb_version_hassector(&mp->m_sb)) { 1384 log2_size = mp->m_sb.sb_logsectlog; 1385 if (log2_size < BBSHIFT) { 1386 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1387 log2_size, BBSHIFT); 1388 goto out_free_log; 1389 } 1390 1391 log2_size -= BBSHIFT; 1392 if (log2_size > mp->m_sectbb_log) { 1393 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1394 log2_size, mp->m_sectbb_log); 1395 goto out_free_log; 1396 } 1397 1398 /* for larger sector sizes, must have v2 or external log */ 1399 if (log2_size && log->l_logBBstart > 0 && 1400 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1401 xfs_warn(mp, 1402 "log sector size (0x%x) invalid for configuration.", 1403 log2_size); 1404 goto out_free_log; 1405 } 1406 } 1407 log->l_sectBBsize = 1 << log2_size; 1408 1409 xlog_get_iclog_buffer_size(mp, log); 1410 1411 /* 1412 * Use a NULL block for the extra log buffer used during splits so that 1413 * it will trigger errors if we ever try to do IO on it without first 1414 * having set it up properly. 1415 */ 1416 error = -ENOMEM; 1417 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1418 BTOBB(log->l_iclog_size), 0); 1419 if (!bp) 1420 goto out_free_log; 1421 1422 /* 1423 * The iclogbuf buffer locks are held over IO but we are not going to do 1424 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1425 * when appropriately. 1426 */ 1427 ASSERT(xfs_buf_islocked(bp)); 1428 xfs_buf_unlock(bp); 1429 1430 /* use high priority wq for log I/O completion */ 1431 bp->b_ioend_wq = mp->m_log_workqueue; 1432 bp->b_iodone = xlog_iodone; 1433 log->l_xbuf = bp; 1434 1435 spin_lock_init(&log->l_icloglock); 1436 init_waitqueue_head(&log->l_flush_wait); 1437 1438 iclogp = &log->l_iclog; 1439 /* 1440 * The amount of memory to allocate for the iclog structure is 1441 * rather funky due to the way the structure is defined. It is 1442 * done this way so that we can use different sizes for machines 1443 * with different amounts of memory. See the definition of 1444 * xlog_in_core_t in xfs_log_priv.h for details. 1445 */ 1446 ASSERT(log->l_iclog_size >= 4096); 1447 for (i=0; i < log->l_iclog_bufs; i++) { 1448 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1449 if (!*iclogp) 1450 goto out_free_iclog; 1451 1452 iclog = *iclogp; 1453 iclog->ic_prev = prev_iclog; 1454 prev_iclog = iclog; 1455 1456 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1457 BTOBB(log->l_iclog_size), 0); 1458 if (!bp) 1459 goto out_free_iclog; 1460 1461 ASSERT(xfs_buf_islocked(bp)); 1462 xfs_buf_unlock(bp); 1463 1464 /* use high priority wq for log I/O completion */ 1465 bp->b_ioend_wq = mp->m_log_workqueue; 1466 bp->b_iodone = xlog_iodone; 1467 iclog->ic_bp = bp; 1468 iclog->ic_data = bp->b_addr; 1469 #ifdef DEBUG 1470 log->l_iclog_bak[i] = &iclog->ic_header; 1471 #endif 1472 head = &iclog->ic_header; 1473 memset(head, 0, sizeof(xlog_rec_header_t)); 1474 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1475 head->h_version = cpu_to_be32( 1476 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1477 head->h_size = cpu_to_be32(log->l_iclog_size); 1478 /* new fields */ 1479 head->h_fmt = cpu_to_be32(XLOG_FMT); 1480 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1481 1482 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1483 iclog->ic_state = XLOG_STATE_ACTIVE; 1484 iclog->ic_log = log; 1485 atomic_set(&iclog->ic_refcnt, 0); 1486 spin_lock_init(&iclog->ic_callback_lock); 1487 iclog->ic_callback_tail = &(iclog->ic_callback); 1488 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1489 1490 init_waitqueue_head(&iclog->ic_force_wait); 1491 init_waitqueue_head(&iclog->ic_write_wait); 1492 1493 iclogp = &iclog->ic_next; 1494 } 1495 *iclogp = log->l_iclog; /* complete ring */ 1496 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1497 1498 error = xlog_cil_init(log); 1499 if (error) 1500 goto out_free_iclog; 1501 return log; 1502 1503 out_free_iclog: 1504 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1505 prev_iclog = iclog->ic_next; 1506 if (iclog->ic_bp) 1507 xfs_buf_free(iclog->ic_bp); 1508 kmem_free(iclog); 1509 } 1510 spinlock_destroy(&log->l_icloglock); 1511 xfs_buf_free(log->l_xbuf); 1512 out_free_log: 1513 kmem_free(log); 1514 out: 1515 return ERR_PTR(error); 1516 } /* xlog_alloc_log */ 1517 1518 1519 /* 1520 * Write out the commit record of a transaction associated with the given 1521 * ticket. Return the lsn of the commit record. 1522 */ 1523 STATIC int 1524 xlog_commit_record( 1525 struct xlog *log, 1526 struct xlog_ticket *ticket, 1527 struct xlog_in_core **iclog, 1528 xfs_lsn_t *commitlsnp) 1529 { 1530 struct xfs_mount *mp = log->l_mp; 1531 int error; 1532 struct xfs_log_iovec reg = { 1533 .i_addr = NULL, 1534 .i_len = 0, 1535 .i_type = XLOG_REG_TYPE_COMMIT, 1536 }; 1537 struct xfs_log_vec vec = { 1538 .lv_niovecs = 1, 1539 .lv_iovecp = ®, 1540 }; 1541 1542 ASSERT_ALWAYS(iclog); 1543 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1544 XLOG_COMMIT_TRANS); 1545 if (error) 1546 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1547 return error; 1548 } 1549 1550 /* 1551 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1552 * log space. This code pushes on the lsn which would supposedly free up 1553 * the 25% which we want to leave free. We may need to adopt a policy which 1554 * pushes on an lsn which is further along in the log once we reach the high 1555 * water mark. In this manner, we would be creating a low water mark. 1556 */ 1557 STATIC void 1558 xlog_grant_push_ail( 1559 struct xlog *log, 1560 int need_bytes) 1561 { 1562 xfs_lsn_t threshold_lsn = 0; 1563 xfs_lsn_t last_sync_lsn; 1564 int free_blocks; 1565 int free_bytes; 1566 int threshold_block; 1567 int threshold_cycle; 1568 int free_threshold; 1569 1570 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1571 1572 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1573 free_blocks = BTOBBT(free_bytes); 1574 1575 /* 1576 * Set the threshold for the minimum number of free blocks in the 1577 * log to the maximum of what the caller needs, one quarter of the 1578 * log, and 256 blocks. 1579 */ 1580 free_threshold = BTOBB(need_bytes); 1581 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1582 free_threshold = MAX(free_threshold, 256); 1583 if (free_blocks >= free_threshold) 1584 return; 1585 1586 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1587 &threshold_block); 1588 threshold_block += free_threshold; 1589 if (threshold_block >= log->l_logBBsize) { 1590 threshold_block -= log->l_logBBsize; 1591 threshold_cycle += 1; 1592 } 1593 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1594 threshold_block); 1595 /* 1596 * Don't pass in an lsn greater than the lsn of the last 1597 * log record known to be on disk. Use a snapshot of the last sync lsn 1598 * so that it doesn't change between the compare and the set. 1599 */ 1600 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1601 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1602 threshold_lsn = last_sync_lsn; 1603 1604 /* 1605 * Get the transaction layer to kick the dirty buffers out to 1606 * disk asynchronously. No point in trying to do this if 1607 * the filesystem is shutting down. 1608 */ 1609 if (!XLOG_FORCED_SHUTDOWN(log)) 1610 xfs_ail_push(log->l_ailp, threshold_lsn); 1611 } 1612 1613 /* 1614 * Stamp cycle number in every block 1615 */ 1616 STATIC void 1617 xlog_pack_data( 1618 struct xlog *log, 1619 struct xlog_in_core *iclog, 1620 int roundoff) 1621 { 1622 int i, j, k; 1623 int size = iclog->ic_offset + roundoff; 1624 __be32 cycle_lsn; 1625 char *dp; 1626 1627 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1628 1629 dp = iclog->ic_datap; 1630 for (i = 0; i < BTOBB(size); i++) { 1631 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1632 break; 1633 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1634 *(__be32 *)dp = cycle_lsn; 1635 dp += BBSIZE; 1636 } 1637 1638 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1639 xlog_in_core_2_t *xhdr = iclog->ic_data; 1640 1641 for ( ; i < BTOBB(size); i++) { 1642 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1643 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1644 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1645 *(__be32 *)dp = cycle_lsn; 1646 dp += BBSIZE; 1647 } 1648 1649 for (i = 1; i < log->l_iclog_heads; i++) 1650 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1651 } 1652 } 1653 1654 /* 1655 * Calculate the checksum for a log buffer. 1656 * 1657 * This is a little more complicated than it should be because the various 1658 * headers and the actual data are non-contiguous. 1659 */ 1660 __le32 1661 xlog_cksum( 1662 struct xlog *log, 1663 struct xlog_rec_header *rhead, 1664 char *dp, 1665 int size) 1666 { 1667 __uint32_t crc; 1668 1669 /* first generate the crc for the record header ... */ 1670 crc = xfs_start_cksum((char *)rhead, 1671 sizeof(struct xlog_rec_header), 1672 offsetof(struct xlog_rec_header, h_crc)); 1673 1674 /* ... then for additional cycle data for v2 logs ... */ 1675 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1676 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1677 int i; 1678 int xheads; 1679 1680 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1681 if (size % XLOG_HEADER_CYCLE_SIZE) 1682 xheads++; 1683 1684 for (i = 1; i < xheads; i++) { 1685 crc = crc32c(crc, &xhdr[i].hic_xheader, 1686 sizeof(struct xlog_rec_ext_header)); 1687 } 1688 } 1689 1690 /* ... and finally for the payload */ 1691 crc = crc32c(crc, dp, size); 1692 1693 return xfs_end_cksum(crc); 1694 } 1695 1696 /* 1697 * The bdstrat callback function for log bufs. This gives us a central 1698 * place to trap bufs in case we get hit by a log I/O error and need to 1699 * shutdown. Actually, in practice, even when we didn't get a log error, 1700 * we transition the iclogs to IOERROR state *after* flushing all existing 1701 * iclogs to disk. This is because we don't want anymore new transactions to be 1702 * started or completed afterwards. 1703 * 1704 * We lock the iclogbufs here so that we can serialise against IO completion 1705 * during unmount. We might be processing a shutdown triggered during unmount, 1706 * and that can occur asynchronously to the unmount thread, and hence we need to 1707 * ensure that completes before tearing down the iclogbufs. Hence we need to 1708 * hold the buffer lock across the log IO to acheive that. 1709 */ 1710 STATIC int 1711 xlog_bdstrat( 1712 struct xfs_buf *bp) 1713 { 1714 struct xlog_in_core *iclog = bp->b_fspriv; 1715 1716 xfs_buf_lock(bp); 1717 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1718 xfs_buf_ioerror(bp, -EIO); 1719 xfs_buf_stale(bp); 1720 xfs_buf_ioend(bp); 1721 /* 1722 * It would seem logical to return EIO here, but we rely on 1723 * the log state machine to propagate I/O errors instead of 1724 * doing it here. Similarly, IO completion will unlock the 1725 * buffer, so we don't do it here. 1726 */ 1727 return 0; 1728 } 1729 1730 xfs_buf_submit(bp); 1731 return 0; 1732 } 1733 1734 /* 1735 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1736 * fashion. Previously, we should have moved the current iclog 1737 * ptr in the log to point to the next available iclog. This allows further 1738 * write to continue while this code syncs out an iclog ready to go. 1739 * Before an in-core log can be written out, the data section must be scanned 1740 * to save away the 1st word of each BBSIZE block into the header. We replace 1741 * it with the current cycle count. Each BBSIZE block is tagged with the 1742 * cycle count because there in an implicit assumption that drives will 1743 * guarantee that entire 512 byte blocks get written at once. In other words, 1744 * we can't have part of a 512 byte block written and part not written. By 1745 * tagging each block, we will know which blocks are valid when recovering 1746 * after an unclean shutdown. 1747 * 1748 * This routine is single threaded on the iclog. No other thread can be in 1749 * this routine with the same iclog. Changing contents of iclog can there- 1750 * fore be done without grabbing the state machine lock. Updating the global 1751 * log will require grabbing the lock though. 1752 * 1753 * The entire log manager uses a logical block numbering scheme. Only 1754 * log_sync (and then only bwrite()) know about the fact that the log may 1755 * not start with block zero on a given device. The log block start offset 1756 * is added immediately before calling bwrite(). 1757 */ 1758 1759 STATIC int 1760 xlog_sync( 1761 struct xlog *log, 1762 struct xlog_in_core *iclog) 1763 { 1764 xfs_buf_t *bp; 1765 int i; 1766 uint count; /* byte count of bwrite */ 1767 uint count_init; /* initial count before roundup */ 1768 int roundoff; /* roundoff to BB or stripe */ 1769 int split = 0; /* split write into two regions */ 1770 int error; 1771 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1772 int size; 1773 1774 XFS_STATS_INC(log->l_mp, xs_log_writes); 1775 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1776 1777 /* Add for LR header */ 1778 count_init = log->l_iclog_hsize + iclog->ic_offset; 1779 1780 /* Round out the log write size */ 1781 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1782 /* we have a v2 stripe unit to use */ 1783 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1784 } else { 1785 count = BBTOB(BTOBB(count_init)); 1786 } 1787 roundoff = count - count_init; 1788 ASSERT(roundoff >= 0); 1789 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1790 roundoff < log->l_mp->m_sb.sb_logsunit) 1791 || 1792 (log->l_mp->m_sb.sb_logsunit <= 1 && 1793 roundoff < BBTOB(1))); 1794 1795 /* move grant heads by roundoff in sync */ 1796 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1797 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1798 1799 /* put cycle number in every block */ 1800 xlog_pack_data(log, iclog, roundoff); 1801 1802 /* real byte length */ 1803 size = iclog->ic_offset; 1804 if (v2) 1805 size += roundoff; 1806 iclog->ic_header.h_len = cpu_to_be32(size); 1807 1808 bp = iclog->ic_bp; 1809 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1810 1811 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1812 1813 /* Do we need to split this write into 2 parts? */ 1814 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1815 char *dptr; 1816 1817 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1818 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1819 iclog->ic_bwritecnt = 2; 1820 1821 /* 1822 * Bump the cycle numbers at the start of each block in the 1823 * part of the iclog that ends up in the buffer that gets 1824 * written to the start of the log. 1825 * 1826 * Watch out for the header magic number case, though. 1827 */ 1828 dptr = (char *)&iclog->ic_header + count; 1829 for (i = 0; i < split; i += BBSIZE) { 1830 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1831 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1832 cycle++; 1833 *(__be32 *)dptr = cpu_to_be32(cycle); 1834 1835 dptr += BBSIZE; 1836 } 1837 } else { 1838 iclog->ic_bwritecnt = 1; 1839 } 1840 1841 /* calculcate the checksum */ 1842 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1843 iclog->ic_datap, size); 1844 #ifdef DEBUG 1845 /* 1846 * Intentionally corrupt the log record CRC based on the error injection 1847 * frequency, if defined. This facilitates testing log recovery in the 1848 * event of torn writes. Hence, set the IOABORT state to abort the log 1849 * write on I/O completion and shutdown the fs. The subsequent mount 1850 * detects the bad CRC and attempts to recover. 1851 */ 1852 if (log->l_badcrc_factor && 1853 (prandom_u32() % log->l_badcrc_factor == 0)) { 1854 iclog->ic_header.h_crc &= 0xAAAAAAAA; 1855 iclog->ic_state |= XLOG_STATE_IOABORT; 1856 xfs_warn(log->l_mp, 1857 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1858 be64_to_cpu(iclog->ic_header.h_lsn)); 1859 } 1860 #endif 1861 1862 bp->b_io_length = BTOBB(count); 1863 bp->b_fspriv = iclog; 1864 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH); 1865 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE); 1866 1867 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1868 bp->b_flags |= XBF_FUA; 1869 1870 /* 1871 * Flush the data device before flushing the log to make 1872 * sure all meta data written back from the AIL actually made 1873 * it to disk before stamping the new log tail LSN into the 1874 * log buffer. For an external log we need to issue the 1875 * flush explicitly, and unfortunately synchronously here; 1876 * for an internal log we can simply use the block layer 1877 * state machine for preflushes. 1878 */ 1879 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1880 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1881 else 1882 bp->b_flags |= XBF_FLUSH; 1883 } 1884 1885 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1886 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1887 1888 xlog_verify_iclog(log, iclog, count, true); 1889 1890 /* account for log which doesn't start at block #0 */ 1891 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1892 1893 /* 1894 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1895 * is shutting down. 1896 */ 1897 error = xlog_bdstrat(bp); 1898 if (error) { 1899 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1900 return error; 1901 } 1902 if (split) { 1903 bp = iclog->ic_log->l_xbuf; 1904 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1905 xfs_buf_associate_memory(bp, 1906 (char *)&iclog->ic_header + count, split); 1907 bp->b_fspriv = iclog; 1908 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH); 1909 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE); 1910 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1911 bp->b_flags |= XBF_FUA; 1912 1913 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1914 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1915 1916 /* account for internal log which doesn't start at block #0 */ 1917 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1918 error = xlog_bdstrat(bp); 1919 if (error) { 1920 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1921 return error; 1922 } 1923 } 1924 return 0; 1925 } /* xlog_sync */ 1926 1927 /* 1928 * Deallocate a log structure 1929 */ 1930 STATIC void 1931 xlog_dealloc_log( 1932 struct xlog *log) 1933 { 1934 xlog_in_core_t *iclog, *next_iclog; 1935 int i; 1936 1937 xlog_cil_destroy(log); 1938 1939 /* 1940 * Cycle all the iclogbuf locks to make sure all log IO completion 1941 * is done before we tear down these buffers. 1942 */ 1943 iclog = log->l_iclog; 1944 for (i = 0; i < log->l_iclog_bufs; i++) { 1945 xfs_buf_lock(iclog->ic_bp); 1946 xfs_buf_unlock(iclog->ic_bp); 1947 iclog = iclog->ic_next; 1948 } 1949 1950 /* 1951 * Always need to ensure that the extra buffer does not point to memory 1952 * owned by another log buffer before we free it. Also, cycle the lock 1953 * first to ensure we've completed IO on it. 1954 */ 1955 xfs_buf_lock(log->l_xbuf); 1956 xfs_buf_unlock(log->l_xbuf); 1957 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1958 xfs_buf_free(log->l_xbuf); 1959 1960 iclog = log->l_iclog; 1961 for (i = 0; i < log->l_iclog_bufs; i++) { 1962 xfs_buf_free(iclog->ic_bp); 1963 next_iclog = iclog->ic_next; 1964 kmem_free(iclog); 1965 iclog = next_iclog; 1966 } 1967 spinlock_destroy(&log->l_icloglock); 1968 1969 log->l_mp->m_log = NULL; 1970 kmem_free(log); 1971 } /* xlog_dealloc_log */ 1972 1973 /* 1974 * Update counters atomically now that memcpy is done. 1975 */ 1976 /* ARGSUSED */ 1977 static inline void 1978 xlog_state_finish_copy( 1979 struct xlog *log, 1980 struct xlog_in_core *iclog, 1981 int record_cnt, 1982 int copy_bytes) 1983 { 1984 spin_lock(&log->l_icloglock); 1985 1986 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1987 iclog->ic_offset += copy_bytes; 1988 1989 spin_unlock(&log->l_icloglock); 1990 } /* xlog_state_finish_copy */ 1991 1992 1993 1994 1995 /* 1996 * print out info relating to regions written which consume 1997 * the reservation 1998 */ 1999 void 2000 xlog_print_tic_res( 2001 struct xfs_mount *mp, 2002 struct xlog_ticket *ticket) 2003 { 2004 uint i; 2005 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2006 2007 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2008 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2009 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2010 REG_TYPE_STR(BFORMAT, "bformat"), 2011 REG_TYPE_STR(BCHUNK, "bchunk"), 2012 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2013 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2014 REG_TYPE_STR(IFORMAT, "iformat"), 2015 REG_TYPE_STR(ICORE, "icore"), 2016 REG_TYPE_STR(IEXT, "iext"), 2017 REG_TYPE_STR(IBROOT, "ibroot"), 2018 REG_TYPE_STR(ILOCAL, "ilocal"), 2019 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2020 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2021 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2022 REG_TYPE_STR(QFORMAT, "qformat"), 2023 REG_TYPE_STR(DQUOT, "dquot"), 2024 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2025 REG_TYPE_STR(LRHEADER, "LR header"), 2026 REG_TYPE_STR(UNMOUNT, "unmount"), 2027 REG_TYPE_STR(COMMIT, "commit"), 2028 REG_TYPE_STR(TRANSHDR, "trans header"), 2029 REG_TYPE_STR(ICREATE, "inode create") 2030 }; 2031 #undef REG_TYPE_STR 2032 2033 xfs_warn(mp, "xlog_write: reservation summary:"); 2034 xfs_warn(mp, " unit res = %d bytes", 2035 ticket->t_unit_res); 2036 xfs_warn(mp, " current res = %d bytes", 2037 ticket->t_curr_res); 2038 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2039 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2040 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2041 ticket->t_res_num_ophdrs, ophdr_spc); 2042 xfs_warn(mp, " ophdr + reg = %u bytes", 2043 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2044 xfs_warn(mp, " num regions = %u", 2045 ticket->t_res_num); 2046 2047 for (i = 0; i < ticket->t_res_num; i++) { 2048 uint r_type = ticket->t_res_arr[i].r_type; 2049 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2050 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2051 "bad-rtype" : res_type_str[r_type]), 2052 ticket->t_res_arr[i].r_len); 2053 } 2054 2055 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 2056 "xlog_write: reservation ran out. Need to up reservation"); 2057 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2058 } 2059 2060 /* 2061 * Calculate the potential space needed by the log vector. Each region gets 2062 * its own xlog_op_header_t and may need to be double word aligned. 2063 */ 2064 static int 2065 xlog_write_calc_vec_length( 2066 struct xlog_ticket *ticket, 2067 struct xfs_log_vec *log_vector) 2068 { 2069 struct xfs_log_vec *lv; 2070 int headers = 0; 2071 int len = 0; 2072 int i; 2073 2074 /* acct for start rec of xact */ 2075 if (ticket->t_flags & XLOG_TIC_INITED) 2076 headers++; 2077 2078 for (lv = log_vector; lv; lv = lv->lv_next) { 2079 /* we don't write ordered log vectors */ 2080 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2081 continue; 2082 2083 headers += lv->lv_niovecs; 2084 2085 for (i = 0; i < lv->lv_niovecs; i++) { 2086 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2087 2088 len += vecp->i_len; 2089 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2090 } 2091 } 2092 2093 ticket->t_res_num_ophdrs += headers; 2094 len += headers * sizeof(struct xlog_op_header); 2095 2096 return len; 2097 } 2098 2099 /* 2100 * If first write for transaction, insert start record We can't be trying to 2101 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2102 */ 2103 static int 2104 xlog_write_start_rec( 2105 struct xlog_op_header *ophdr, 2106 struct xlog_ticket *ticket) 2107 { 2108 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2109 return 0; 2110 2111 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2112 ophdr->oh_clientid = ticket->t_clientid; 2113 ophdr->oh_len = 0; 2114 ophdr->oh_flags = XLOG_START_TRANS; 2115 ophdr->oh_res2 = 0; 2116 2117 ticket->t_flags &= ~XLOG_TIC_INITED; 2118 2119 return sizeof(struct xlog_op_header); 2120 } 2121 2122 static xlog_op_header_t * 2123 xlog_write_setup_ophdr( 2124 struct xlog *log, 2125 struct xlog_op_header *ophdr, 2126 struct xlog_ticket *ticket, 2127 uint flags) 2128 { 2129 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2130 ophdr->oh_clientid = ticket->t_clientid; 2131 ophdr->oh_res2 = 0; 2132 2133 /* are we copying a commit or unmount record? */ 2134 ophdr->oh_flags = flags; 2135 2136 /* 2137 * We've seen logs corrupted with bad transaction client ids. This 2138 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2139 * and shut down the filesystem. 2140 */ 2141 switch (ophdr->oh_clientid) { 2142 case XFS_TRANSACTION: 2143 case XFS_VOLUME: 2144 case XFS_LOG: 2145 break; 2146 default: 2147 xfs_warn(log->l_mp, 2148 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2149 ophdr->oh_clientid, ticket); 2150 return NULL; 2151 } 2152 2153 return ophdr; 2154 } 2155 2156 /* 2157 * Set up the parameters of the region copy into the log. This has 2158 * to handle region write split across multiple log buffers - this 2159 * state is kept external to this function so that this code can 2160 * be written in an obvious, self documenting manner. 2161 */ 2162 static int 2163 xlog_write_setup_copy( 2164 struct xlog_ticket *ticket, 2165 struct xlog_op_header *ophdr, 2166 int space_available, 2167 int space_required, 2168 int *copy_off, 2169 int *copy_len, 2170 int *last_was_partial_copy, 2171 int *bytes_consumed) 2172 { 2173 int still_to_copy; 2174 2175 still_to_copy = space_required - *bytes_consumed; 2176 *copy_off = *bytes_consumed; 2177 2178 if (still_to_copy <= space_available) { 2179 /* write of region completes here */ 2180 *copy_len = still_to_copy; 2181 ophdr->oh_len = cpu_to_be32(*copy_len); 2182 if (*last_was_partial_copy) 2183 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2184 *last_was_partial_copy = 0; 2185 *bytes_consumed = 0; 2186 return 0; 2187 } 2188 2189 /* partial write of region, needs extra log op header reservation */ 2190 *copy_len = space_available; 2191 ophdr->oh_len = cpu_to_be32(*copy_len); 2192 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2193 if (*last_was_partial_copy) 2194 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2195 *bytes_consumed += *copy_len; 2196 (*last_was_partial_copy)++; 2197 2198 /* account for new log op header */ 2199 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2200 ticket->t_res_num_ophdrs++; 2201 2202 return sizeof(struct xlog_op_header); 2203 } 2204 2205 static int 2206 xlog_write_copy_finish( 2207 struct xlog *log, 2208 struct xlog_in_core *iclog, 2209 uint flags, 2210 int *record_cnt, 2211 int *data_cnt, 2212 int *partial_copy, 2213 int *partial_copy_len, 2214 int log_offset, 2215 struct xlog_in_core **commit_iclog) 2216 { 2217 if (*partial_copy) { 2218 /* 2219 * This iclog has already been marked WANT_SYNC by 2220 * xlog_state_get_iclog_space. 2221 */ 2222 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2223 *record_cnt = 0; 2224 *data_cnt = 0; 2225 return xlog_state_release_iclog(log, iclog); 2226 } 2227 2228 *partial_copy = 0; 2229 *partial_copy_len = 0; 2230 2231 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2232 /* no more space in this iclog - push it. */ 2233 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2234 *record_cnt = 0; 2235 *data_cnt = 0; 2236 2237 spin_lock(&log->l_icloglock); 2238 xlog_state_want_sync(log, iclog); 2239 spin_unlock(&log->l_icloglock); 2240 2241 if (!commit_iclog) 2242 return xlog_state_release_iclog(log, iclog); 2243 ASSERT(flags & XLOG_COMMIT_TRANS); 2244 *commit_iclog = iclog; 2245 } 2246 2247 return 0; 2248 } 2249 2250 /* 2251 * Write some region out to in-core log 2252 * 2253 * This will be called when writing externally provided regions or when 2254 * writing out a commit record for a given transaction. 2255 * 2256 * General algorithm: 2257 * 1. Find total length of this write. This may include adding to the 2258 * lengths passed in. 2259 * 2. Check whether we violate the tickets reservation. 2260 * 3. While writing to this iclog 2261 * A. Reserve as much space in this iclog as can get 2262 * B. If this is first write, save away start lsn 2263 * C. While writing this region: 2264 * 1. If first write of transaction, write start record 2265 * 2. Write log operation header (header per region) 2266 * 3. Find out if we can fit entire region into this iclog 2267 * 4. Potentially, verify destination memcpy ptr 2268 * 5. Memcpy (partial) region 2269 * 6. If partial copy, release iclog; otherwise, continue 2270 * copying more regions into current iclog 2271 * 4. Mark want sync bit (in simulation mode) 2272 * 5. Release iclog for potential flush to on-disk log. 2273 * 2274 * ERRORS: 2275 * 1. Panic if reservation is overrun. This should never happen since 2276 * reservation amounts are generated internal to the filesystem. 2277 * NOTES: 2278 * 1. Tickets are single threaded data structures. 2279 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2280 * syncing routine. When a single log_write region needs to span 2281 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2282 * on all log operation writes which don't contain the end of the 2283 * region. The XLOG_END_TRANS bit is used for the in-core log 2284 * operation which contains the end of the continued log_write region. 2285 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2286 * we don't really know exactly how much space will be used. As a result, 2287 * we don't update ic_offset until the end when we know exactly how many 2288 * bytes have been written out. 2289 */ 2290 int 2291 xlog_write( 2292 struct xlog *log, 2293 struct xfs_log_vec *log_vector, 2294 struct xlog_ticket *ticket, 2295 xfs_lsn_t *start_lsn, 2296 struct xlog_in_core **commit_iclog, 2297 uint flags) 2298 { 2299 struct xlog_in_core *iclog = NULL; 2300 struct xfs_log_iovec *vecp; 2301 struct xfs_log_vec *lv; 2302 int len; 2303 int index; 2304 int partial_copy = 0; 2305 int partial_copy_len = 0; 2306 int contwr = 0; 2307 int record_cnt = 0; 2308 int data_cnt = 0; 2309 int error; 2310 2311 *start_lsn = 0; 2312 2313 len = xlog_write_calc_vec_length(ticket, log_vector); 2314 2315 /* 2316 * Region headers and bytes are already accounted for. 2317 * We only need to take into account start records and 2318 * split regions in this function. 2319 */ 2320 if (ticket->t_flags & XLOG_TIC_INITED) 2321 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2322 2323 /* 2324 * Commit record headers need to be accounted for. These 2325 * come in as separate writes so are easy to detect. 2326 */ 2327 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2328 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2329 2330 if (ticket->t_curr_res < 0) 2331 xlog_print_tic_res(log->l_mp, ticket); 2332 2333 index = 0; 2334 lv = log_vector; 2335 vecp = lv->lv_iovecp; 2336 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2337 void *ptr; 2338 int log_offset; 2339 2340 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2341 &contwr, &log_offset); 2342 if (error) 2343 return error; 2344 2345 ASSERT(log_offset <= iclog->ic_size - 1); 2346 ptr = iclog->ic_datap + log_offset; 2347 2348 /* start_lsn is the first lsn written to. That's all we need. */ 2349 if (!*start_lsn) 2350 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2351 2352 /* 2353 * This loop writes out as many regions as can fit in the amount 2354 * of space which was allocated by xlog_state_get_iclog_space(). 2355 */ 2356 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2357 struct xfs_log_iovec *reg; 2358 struct xlog_op_header *ophdr; 2359 int start_rec_copy; 2360 int copy_len; 2361 int copy_off; 2362 bool ordered = false; 2363 2364 /* ordered log vectors have no regions to write */ 2365 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2366 ASSERT(lv->lv_niovecs == 0); 2367 ordered = true; 2368 goto next_lv; 2369 } 2370 2371 reg = &vecp[index]; 2372 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2373 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2374 2375 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2376 if (start_rec_copy) { 2377 record_cnt++; 2378 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2379 start_rec_copy); 2380 } 2381 2382 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2383 if (!ophdr) 2384 return -EIO; 2385 2386 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2387 sizeof(struct xlog_op_header)); 2388 2389 len += xlog_write_setup_copy(ticket, ophdr, 2390 iclog->ic_size-log_offset, 2391 reg->i_len, 2392 ©_off, ©_len, 2393 &partial_copy, 2394 &partial_copy_len); 2395 xlog_verify_dest_ptr(log, ptr); 2396 2397 /* 2398 * Copy region. 2399 * 2400 * Unmount records just log an opheader, so can have 2401 * empty payloads with no data region to copy. Hence we 2402 * only copy the payload if the vector says it has data 2403 * to copy. 2404 */ 2405 ASSERT(copy_len >= 0); 2406 if (copy_len > 0) { 2407 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2408 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2409 copy_len); 2410 } 2411 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2412 record_cnt++; 2413 data_cnt += contwr ? copy_len : 0; 2414 2415 error = xlog_write_copy_finish(log, iclog, flags, 2416 &record_cnt, &data_cnt, 2417 &partial_copy, 2418 &partial_copy_len, 2419 log_offset, 2420 commit_iclog); 2421 if (error) 2422 return error; 2423 2424 /* 2425 * if we had a partial copy, we need to get more iclog 2426 * space but we don't want to increment the region 2427 * index because there is still more is this region to 2428 * write. 2429 * 2430 * If we completed writing this region, and we flushed 2431 * the iclog (indicated by resetting of the record 2432 * count), then we also need to get more log space. If 2433 * this was the last record, though, we are done and 2434 * can just return. 2435 */ 2436 if (partial_copy) 2437 break; 2438 2439 if (++index == lv->lv_niovecs) { 2440 next_lv: 2441 lv = lv->lv_next; 2442 index = 0; 2443 if (lv) 2444 vecp = lv->lv_iovecp; 2445 } 2446 if (record_cnt == 0 && ordered == false) { 2447 if (!lv) 2448 return 0; 2449 break; 2450 } 2451 } 2452 } 2453 2454 ASSERT(len == 0); 2455 2456 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2457 if (!commit_iclog) 2458 return xlog_state_release_iclog(log, iclog); 2459 2460 ASSERT(flags & XLOG_COMMIT_TRANS); 2461 *commit_iclog = iclog; 2462 return 0; 2463 } 2464 2465 2466 /***************************************************************************** 2467 * 2468 * State Machine functions 2469 * 2470 ***************************************************************************** 2471 */ 2472 2473 /* Clean iclogs starting from the head. This ordering must be 2474 * maintained, so an iclog doesn't become ACTIVE beyond one that 2475 * is SYNCING. This is also required to maintain the notion that we use 2476 * a ordered wait queue to hold off would be writers to the log when every 2477 * iclog is trying to sync to disk. 2478 * 2479 * State Change: DIRTY -> ACTIVE 2480 */ 2481 STATIC void 2482 xlog_state_clean_log( 2483 struct xlog *log) 2484 { 2485 xlog_in_core_t *iclog; 2486 int changed = 0; 2487 2488 iclog = log->l_iclog; 2489 do { 2490 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2491 iclog->ic_state = XLOG_STATE_ACTIVE; 2492 iclog->ic_offset = 0; 2493 ASSERT(iclog->ic_callback == NULL); 2494 /* 2495 * If the number of ops in this iclog indicate it just 2496 * contains the dummy transaction, we can 2497 * change state into IDLE (the second time around). 2498 * Otherwise we should change the state into 2499 * NEED a dummy. 2500 * We don't need to cover the dummy. 2501 */ 2502 if (!changed && 2503 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2504 XLOG_COVER_OPS)) { 2505 changed = 1; 2506 } else { 2507 /* 2508 * We have two dirty iclogs so start over 2509 * This could also be num of ops indicates 2510 * this is not the dummy going out. 2511 */ 2512 changed = 2; 2513 } 2514 iclog->ic_header.h_num_logops = 0; 2515 memset(iclog->ic_header.h_cycle_data, 0, 2516 sizeof(iclog->ic_header.h_cycle_data)); 2517 iclog->ic_header.h_lsn = 0; 2518 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2519 /* do nothing */; 2520 else 2521 break; /* stop cleaning */ 2522 iclog = iclog->ic_next; 2523 } while (iclog != log->l_iclog); 2524 2525 /* log is locked when we are called */ 2526 /* 2527 * Change state for the dummy log recording. 2528 * We usually go to NEED. But we go to NEED2 if the changed indicates 2529 * we are done writing the dummy record. 2530 * If we are done with the second dummy recored (DONE2), then 2531 * we go to IDLE. 2532 */ 2533 if (changed) { 2534 switch (log->l_covered_state) { 2535 case XLOG_STATE_COVER_IDLE: 2536 case XLOG_STATE_COVER_NEED: 2537 case XLOG_STATE_COVER_NEED2: 2538 log->l_covered_state = XLOG_STATE_COVER_NEED; 2539 break; 2540 2541 case XLOG_STATE_COVER_DONE: 2542 if (changed == 1) 2543 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2544 else 2545 log->l_covered_state = XLOG_STATE_COVER_NEED; 2546 break; 2547 2548 case XLOG_STATE_COVER_DONE2: 2549 if (changed == 1) 2550 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2551 else 2552 log->l_covered_state = XLOG_STATE_COVER_NEED; 2553 break; 2554 2555 default: 2556 ASSERT(0); 2557 } 2558 } 2559 } /* xlog_state_clean_log */ 2560 2561 STATIC xfs_lsn_t 2562 xlog_get_lowest_lsn( 2563 struct xlog *log) 2564 { 2565 xlog_in_core_t *lsn_log; 2566 xfs_lsn_t lowest_lsn, lsn; 2567 2568 lsn_log = log->l_iclog; 2569 lowest_lsn = 0; 2570 do { 2571 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2572 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2573 if ((lsn && !lowest_lsn) || 2574 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2575 lowest_lsn = lsn; 2576 } 2577 } 2578 lsn_log = lsn_log->ic_next; 2579 } while (lsn_log != log->l_iclog); 2580 return lowest_lsn; 2581 } 2582 2583 2584 STATIC void 2585 xlog_state_do_callback( 2586 struct xlog *log, 2587 int aborted, 2588 struct xlog_in_core *ciclog) 2589 { 2590 xlog_in_core_t *iclog; 2591 xlog_in_core_t *first_iclog; /* used to know when we've 2592 * processed all iclogs once */ 2593 xfs_log_callback_t *cb, *cb_next; 2594 int flushcnt = 0; 2595 xfs_lsn_t lowest_lsn; 2596 int ioerrors; /* counter: iclogs with errors */ 2597 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2598 int funcdidcallbacks; /* flag: function did callbacks */ 2599 int repeats; /* for issuing console warnings if 2600 * looping too many times */ 2601 int wake = 0; 2602 2603 spin_lock(&log->l_icloglock); 2604 first_iclog = iclog = log->l_iclog; 2605 ioerrors = 0; 2606 funcdidcallbacks = 0; 2607 repeats = 0; 2608 2609 do { 2610 /* 2611 * Scan all iclogs starting with the one pointed to by the 2612 * log. Reset this starting point each time the log is 2613 * unlocked (during callbacks). 2614 * 2615 * Keep looping through iclogs until one full pass is made 2616 * without running any callbacks. 2617 */ 2618 first_iclog = log->l_iclog; 2619 iclog = log->l_iclog; 2620 loopdidcallbacks = 0; 2621 repeats++; 2622 2623 do { 2624 2625 /* skip all iclogs in the ACTIVE & DIRTY states */ 2626 if (iclog->ic_state & 2627 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2628 iclog = iclog->ic_next; 2629 continue; 2630 } 2631 2632 /* 2633 * Between marking a filesystem SHUTDOWN and stopping 2634 * the log, we do flush all iclogs to disk (if there 2635 * wasn't a log I/O error). So, we do want things to 2636 * go smoothly in case of just a SHUTDOWN w/o a 2637 * LOG_IO_ERROR. 2638 */ 2639 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2640 /* 2641 * Can only perform callbacks in order. Since 2642 * this iclog is not in the DONE_SYNC/ 2643 * DO_CALLBACK state, we skip the rest and 2644 * just try to clean up. If we set our iclog 2645 * to DO_CALLBACK, we will not process it when 2646 * we retry since a previous iclog is in the 2647 * CALLBACK and the state cannot change since 2648 * we are holding the l_icloglock. 2649 */ 2650 if (!(iclog->ic_state & 2651 (XLOG_STATE_DONE_SYNC | 2652 XLOG_STATE_DO_CALLBACK))) { 2653 if (ciclog && (ciclog->ic_state == 2654 XLOG_STATE_DONE_SYNC)) { 2655 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2656 } 2657 break; 2658 } 2659 /* 2660 * We now have an iclog that is in either the 2661 * DO_CALLBACK or DONE_SYNC states. The other 2662 * states (WANT_SYNC, SYNCING, or CALLBACK were 2663 * caught by the above if and are going to 2664 * clean (i.e. we aren't doing their callbacks) 2665 * see the above if. 2666 */ 2667 2668 /* 2669 * We will do one more check here to see if we 2670 * have chased our tail around. 2671 */ 2672 2673 lowest_lsn = xlog_get_lowest_lsn(log); 2674 if (lowest_lsn && 2675 XFS_LSN_CMP(lowest_lsn, 2676 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2677 iclog = iclog->ic_next; 2678 continue; /* Leave this iclog for 2679 * another thread */ 2680 } 2681 2682 iclog->ic_state = XLOG_STATE_CALLBACK; 2683 2684 2685 /* 2686 * Completion of a iclog IO does not imply that 2687 * a transaction has completed, as transactions 2688 * can be large enough to span many iclogs. We 2689 * cannot change the tail of the log half way 2690 * through a transaction as this may be the only 2691 * transaction in the log and moving th etail to 2692 * point to the middle of it will prevent 2693 * recovery from finding the start of the 2694 * transaction. Hence we should only update the 2695 * last_sync_lsn if this iclog contains 2696 * transaction completion callbacks on it. 2697 * 2698 * We have to do this before we drop the 2699 * icloglock to ensure we are the only one that 2700 * can update it. 2701 */ 2702 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2703 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2704 if (iclog->ic_callback) 2705 atomic64_set(&log->l_last_sync_lsn, 2706 be64_to_cpu(iclog->ic_header.h_lsn)); 2707 2708 } else 2709 ioerrors++; 2710 2711 spin_unlock(&log->l_icloglock); 2712 2713 /* 2714 * Keep processing entries in the callback list until 2715 * we come around and it is empty. We need to 2716 * atomically see that the list is empty and change the 2717 * state to DIRTY so that we don't miss any more 2718 * callbacks being added. 2719 */ 2720 spin_lock(&iclog->ic_callback_lock); 2721 cb = iclog->ic_callback; 2722 while (cb) { 2723 iclog->ic_callback_tail = &(iclog->ic_callback); 2724 iclog->ic_callback = NULL; 2725 spin_unlock(&iclog->ic_callback_lock); 2726 2727 /* perform callbacks in the order given */ 2728 for (; cb; cb = cb_next) { 2729 cb_next = cb->cb_next; 2730 cb->cb_func(cb->cb_arg, aborted); 2731 } 2732 spin_lock(&iclog->ic_callback_lock); 2733 cb = iclog->ic_callback; 2734 } 2735 2736 loopdidcallbacks++; 2737 funcdidcallbacks++; 2738 2739 spin_lock(&log->l_icloglock); 2740 ASSERT(iclog->ic_callback == NULL); 2741 spin_unlock(&iclog->ic_callback_lock); 2742 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2743 iclog->ic_state = XLOG_STATE_DIRTY; 2744 2745 /* 2746 * Transition from DIRTY to ACTIVE if applicable. 2747 * NOP if STATE_IOERROR. 2748 */ 2749 xlog_state_clean_log(log); 2750 2751 /* wake up threads waiting in xfs_log_force() */ 2752 wake_up_all(&iclog->ic_force_wait); 2753 2754 iclog = iclog->ic_next; 2755 } while (first_iclog != iclog); 2756 2757 if (repeats > 5000) { 2758 flushcnt += repeats; 2759 repeats = 0; 2760 xfs_warn(log->l_mp, 2761 "%s: possible infinite loop (%d iterations)", 2762 __func__, flushcnt); 2763 } 2764 } while (!ioerrors && loopdidcallbacks); 2765 2766 #ifdef DEBUG 2767 /* 2768 * Make one last gasp attempt to see if iclogs are being left in limbo. 2769 * If the above loop finds an iclog earlier than the current iclog and 2770 * in one of the syncing states, the current iclog is put into 2771 * DO_CALLBACK and the callbacks are deferred to the completion of the 2772 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2773 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2774 * states. 2775 * 2776 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2777 * for ic_state == SYNCING. 2778 */ 2779 if (funcdidcallbacks) { 2780 first_iclog = iclog = log->l_iclog; 2781 do { 2782 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2783 /* 2784 * Terminate the loop if iclogs are found in states 2785 * which will cause other threads to clean up iclogs. 2786 * 2787 * SYNCING - i/o completion will go through logs 2788 * DONE_SYNC - interrupt thread should be waiting for 2789 * l_icloglock 2790 * IOERROR - give up hope all ye who enter here 2791 */ 2792 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2793 iclog->ic_state & XLOG_STATE_SYNCING || 2794 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2795 iclog->ic_state == XLOG_STATE_IOERROR ) 2796 break; 2797 iclog = iclog->ic_next; 2798 } while (first_iclog != iclog); 2799 } 2800 #endif 2801 2802 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2803 wake = 1; 2804 spin_unlock(&log->l_icloglock); 2805 2806 if (wake) 2807 wake_up_all(&log->l_flush_wait); 2808 } 2809 2810 2811 /* 2812 * Finish transitioning this iclog to the dirty state. 2813 * 2814 * Make sure that we completely execute this routine only when this is 2815 * the last call to the iclog. There is a good chance that iclog flushes, 2816 * when we reach the end of the physical log, get turned into 2 separate 2817 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2818 * routine. By using the reference count bwritecnt, we guarantee that only 2819 * the second completion goes through. 2820 * 2821 * Callbacks could take time, so they are done outside the scope of the 2822 * global state machine log lock. 2823 */ 2824 STATIC void 2825 xlog_state_done_syncing( 2826 xlog_in_core_t *iclog, 2827 int aborted) 2828 { 2829 struct xlog *log = iclog->ic_log; 2830 2831 spin_lock(&log->l_icloglock); 2832 2833 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2834 iclog->ic_state == XLOG_STATE_IOERROR); 2835 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2836 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2837 2838 2839 /* 2840 * If we got an error, either on the first buffer, or in the case of 2841 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2842 * and none should ever be attempted to be written to disk 2843 * again. 2844 */ 2845 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2846 if (--iclog->ic_bwritecnt == 1) { 2847 spin_unlock(&log->l_icloglock); 2848 return; 2849 } 2850 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2851 } 2852 2853 /* 2854 * Someone could be sleeping prior to writing out the next 2855 * iclog buffer, we wake them all, one will get to do the 2856 * I/O, the others get to wait for the result. 2857 */ 2858 wake_up_all(&iclog->ic_write_wait); 2859 spin_unlock(&log->l_icloglock); 2860 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2861 } /* xlog_state_done_syncing */ 2862 2863 2864 /* 2865 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2866 * sleep. We wait on the flush queue on the head iclog as that should be 2867 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2868 * we will wait here and all new writes will sleep until a sync completes. 2869 * 2870 * The in-core logs are used in a circular fashion. They are not used 2871 * out-of-order even when an iclog past the head is free. 2872 * 2873 * return: 2874 * * log_offset where xlog_write() can start writing into the in-core 2875 * log's data space. 2876 * * in-core log pointer to which xlog_write() should write. 2877 * * boolean indicating this is a continued write to an in-core log. 2878 * If this is the last write, then the in-core log's offset field 2879 * needs to be incremented, depending on the amount of data which 2880 * is copied. 2881 */ 2882 STATIC int 2883 xlog_state_get_iclog_space( 2884 struct xlog *log, 2885 int len, 2886 struct xlog_in_core **iclogp, 2887 struct xlog_ticket *ticket, 2888 int *continued_write, 2889 int *logoffsetp) 2890 { 2891 int log_offset; 2892 xlog_rec_header_t *head; 2893 xlog_in_core_t *iclog; 2894 int error; 2895 2896 restart: 2897 spin_lock(&log->l_icloglock); 2898 if (XLOG_FORCED_SHUTDOWN(log)) { 2899 spin_unlock(&log->l_icloglock); 2900 return -EIO; 2901 } 2902 2903 iclog = log->l_iclog; 2904 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2905 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2906 2907 /* Wait for log writes to have flushed */ 2908 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2909 goto restart; 2910 } 2911 2912 head = &iclog->ic_header; 2913 2914 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2915 log_offset = iclog->ic_offset; 2916 2917 /* On the 1st write to an iclog, figure out lsn. This works 2918 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2919 * committing to. If the offset is set, that's how many blocks 2920 * must be written. 2921 */ 2922 if (log_offset == 0) { 2923 ticket->t_curr_res -= log->l_iclog_hsize; 2924 xlog_tic_add_region(ticket, 2925 log->l_iclog_hsize, 2926 XLOG_REG_TYPE_LRHEADER); 2927 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2928 head->h_lsn = cpu_to_be64( 2929 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2930 ASSERT(log->l_curr_block >= 0); 2931 } 2932 2933 /* If there is enough room to write everything, then do it. Otherwise, 2934 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2935 * bit is on, so this will get flushed out. Don't update ic_offset 2936 * until you know exactly how many bytes get copied. Therefore, wait 2937 * until later to update ic_offset. 2938 * 2939 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2940 * can fit into remaining data section. 2941 */ 2942 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2943 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2944 2945 /* 2946 * If I'm the only one writing to this iclog, sync it to disk. 2947 * We need to do an atomic compare and decrement here to avoid 2948 * racing with concurrent atomic_dec_and_lock() calls in 2949 * xlog_state_release_iclog() when there is more than one 2950 * reference to the iclog. 2951 */ 2952 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2953 /* we are the only one */ 2954 spin_unlock(&log->l_icloglock); 2955 error = xlog_state_release_iclog(log, iclog); 2956 if (error) 2957 return error; 2958 } else { 2959 spin_unlock(&log->l_icloglock); 2960 } 2961 goto restart; 2962 } 2963 2964 /* Do we have enough room to write the full amount in the remainder 2965 * of this iclog? Or must we continue a write on the next iclog and 2966 * mark this iclog as completely taken? In the case where we switch 2967 * iclogs (to mark it taken), this particular iclog will release/sync 2968 * to disk in xlog_write(). 2969 */ 2970 if (len <= iclog->ic_size - iclog->ic_offset) { 2971 *continued_write = 0; 2972 iclog->ic_offset += len; 2973 } else { 2974 *continued_write = 1; 2975 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2976 } 2977 *iclogp = iclog; 2978 2979 ASSERT(iclog->ic_offset <= iclog->ic_size); 2980 spin_unlock(&log->l_icloglock); 2981 2982 *logoffsetp = log_offset; 2983 return 0; 2984 } /* xlog_state_get_iclog_space */ 2985 2986 /* The first cnt-1 times through here we don't need to 2987 * move the grant write head because the permanent 2988 * reservation has reserved cnt times the unit amount. 2989 * Release part of current permanent unit reservation and 2990 * reset current reservation to be one units worth. Also 2991 * move grant reservation head forward. 2992 */ 2993 STATIC void 2994 xlog_regrant_reserve_log_space( 2995 struct xlog *log, 2996 struct xlog_ticket *ticket) 2997 { 2998 trace_xfs_log_regrant_reserve_enter(log, ticket); 2999 3000 if (ticket->t_cnt > 0) 3001 ticket->t_cnt--; 3002 3003 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3004 ticket->t_curr_res); 3005 xlog_grant_sub_space(log, &log->l_write_head.grant, 3006 ticket->t_curr_res); 3007 ticket->t_curr_res = ticket->t_unit_res; 3008 xlog_tic_reset_res(ticket); 3009 3010 trace_xfs_log_regrant_reserve_sub(log, ticket); 3011 3012 /* just return if we still have some of the pre-reserved space */ 3013 if (ticket->t_cnt > 0) 3014 return; 3015 3016 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3017 ticket->t_unit_res); 3018 3019 trace_xfs_log_regrant_reserve_exit(log, ticket); 3020 3021 ticket->t_curr_res = ticket->t_unit_res; 3022 xlog_tic_reset_res(ticket); 3023 } /* xlog_regrant_reserve_log_space */ 3024 3025 3026 /* 3027 * Give back the space left from a reservation. 3028 * 3029 * All the information we need to make a correct determination of space left 3030 * is present. For non-permanent reservations, things are quite easy. The 3031 * count should have been decremented to zero. We only need to deal with the 3032 * space remaining in the current reservation part of the ticket. If the 3033 * ticket contains a permanent reservation, there may be left over space which 3034 * needs to be released. A count of N means that N-1 refills of the current 3035 * reservation can be done before we need to ask for more space. The first 3036 * one goes to fill up the first current reservation. Once we run out of 3037 * space, the count will stay at zero and the only space remaining will be 3038 * in the current reservation field. 3039 */ 3040 STATIC void 3041 xlog_ungrant_log_space( 3042 struct xlog *log, 3043 struct xlog_ticket *ticket) 3044 { 3045 int bytes; 3046 3047 if (ticket->t_cnt > 0) 3048 ticket->t_cnt--; 3049 3050 trace_xfs_log_ungrant_enter(log, ticket); 3051 trace_xfs_log_ungrant_sub(log, ticket); 3052 3053 /* 3054 * If this is a permanent reservation ticket, we may be able to free 3055 * up more space based on the remaining count. 3056 */ 3057 bytes = ticket->t_curr_res; 3058 if (ticket->t_cnt > 0) { 3059 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3060 bytes += ticket->t_unit_res*ticket->t_cnt; 3061 } 3062 3063 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3064 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3065 3066 trace_xfs_log_ungrant_exit(log, ticket); 3067 3068 xfs_log_space_wake(log->l_mp); 3069 } 3070 3071 /* 3072 * Flush iclog to disk if this is the last reference to the given iclog and 3073 * the WANT_SYNC bit is set. 3074 * 3075 * When this function is entered, the iclog is not necessarily in the 3076 * WANT_SYNC state. It may be sitting around waiting to get filled. 3077 * 3078 * 3079 */ 3080 STATIC int 3081 xlog_state_release_iclog( 3082 struct xlog *log, 3083 struct xlog_in_core *iclog) 3084 { 3085 int sync = 0; /* do we sync? */ 3086 3087 if (iclog->ic_state & XLOG_STATE_IOERROR) 3088 return -EIO; 3089 3090 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3091 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3092 return 0; 3093 3094 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3095 spin_unlock(&log->l_icloglock); 3096 return -EIO; 3097 } 3098 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3099 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3100 3101 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3102 /* update tail before writing to iclog */ 3103 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3104 sync++; 3105 iclog->ic_state = XLOG_STATE_SYNCING; 3106 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3107 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3108 /* cycle incremented when incrementing curr_block */ 3109 } 3110 spin_unlock(&log->l_icloglock); 3111 3112 /* 3113 * We let the log lock go, so it's possible that we hit a log I/O 3114 * error or some other SHUTDOWN condition that marks the iclog 3115 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3116 * this iclog has consistent data, so we ignore IOERROR 3117 * flags after this point. 3118 */ 3119 if (sync) 3120 return xlog_sync(log, iclog); 3121 return 0; 3122 } /* xlog_state_release_iclog */ 3123 3124 3125 /* 3126 * This routine will mark the current iclog in the ring as WANT_SYNC 3127 * and move the current iclog pointer to the next iclog in the ring. 3128 * When this routine is called from xlog_state_get_iclog_space(), the 3129 * exact size of the iclog has not yet been determined. All we know is 3130 * that every data block. We have run out of space in this log record. 3131 */ 3132 STATIC void 3133 xlog_state_switch_iclogs( 3134 struct xlog *log, 3135 struct xlog_in_core *iclog, 3136 int eventual_size) 3137 { 3138 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3139 if (!eventual_size) 3140 eventual_size = iclog->ic_offset; 3141 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3142 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3143 log->l_prev_block = log->l_curr_block; 3144 log->l_prev_cycle = log->l_curr_cycle; 3145 3146 /* roll log?: ic_offset changed later */ 3147 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3148 3149 /* Round up to next log-sunit */ 3150 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3151 log->l_mp->m_sb.sb_logsunit > 1) { 3152 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3153 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3154 } 3155 3156 if (log->l_curr_block >= log->l_logBBsize) { 3157 /* 3158 * Rewind the current block before the cycle is bumped to make 3159 * sure that the combined LSN never transiently moves forward 3160 * when the log wraps to the next cycle. This is to support the 3161 * unlocked sample of these fields from xlog_valid_lsn(). Most 3162 * other cases should acquire l_icloglock. 3163 */ 3164 log->l_curr_block -= log->l_logBBsize; 3165 ASSERT(log->l_curr_block >= 0); 3166 smp_wmb(); 3167 log->l_curr_cycle++; 3168 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3169 log->l_curr_cycle++; 3170 } 3171 ASSERT(iclog == log->l_iclog); 3172 log->l_iclog = iclog->ic_next; 3173 } /* xlog_state_switch_iclogs */ 3174 3175 /* 3176 * Write out all data in the in-core log as of this exact moment in time. 3177 * 3178 * Data may be written to the in-core log during this call. However, 3179 * we don't guarantee this data will be written out. A change from past 3180 * implementation means this routine will *not* write out zero length LRs. 3181 * 3182 * Basically, we try and perform an intelligent scan of the in-core logs. 3183 * If we determine there is no flushable data, we just return. There is no 3184 * flushable data if: 3185 * 3186 * 1. the current iclog is active and has no data; the previous iclog 3187 * is in the active or dirty state. 3188 * 2. the current iclog is drity, and the previous iclog is in the 3189 * active or dirty state. 3190 * 3191 * We may sleep if: 3192 * 3193 * 1. the current iclog is not in the active nor dirty state. 3194 * 2. the current iclog dirty, and the previous iclog is not in the 3195 * active nor dirty state. 3196 * 3. the current iclog is active, and there is another thread writing 3197 * to this particular iclog. 3198 * 4. a) the current iclog is active and has no other writers 3199 * b) when we return from flushing out this iclog, it is still 3200 * not in the active nor dirty state. 3201 */ 3202 int 3203 _xfs_log_force( 3204 struct xfs_mount *mp, 3205 uint flags, 3206 int *log_flushed) 3207 { 3208 struct xlog *log = mp->m_log; 3209 struct xlog_in_core *iclog; 3210 xfs_lsn_t lsn; 3211 3212 XFS_STATS_INC(mp, xs_log_force); 3213 3214 xlog_cil_force(log); 3215 3216 spin_lock(&log->l_icloglock); 3217 3218 iclog = log->l_iclog; 3219 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3220 spin_unlock(&log->l_icloglock); 3221 return -EIO; 3222 } 3223 3224 /* If the head iclog is not active nor dirty, we just attach 3225 * ourselves to the head and go to sleep. 3226 */ 3227 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3228 iclog->ic_state == XLOG_STATE_DIRTY) { 3229 /* 3230 * If the head is dirty or (active and empty), then 3231 * we need to look at the previous iclog. If the previous 3232 * iclog is active or dirty we are done. There is nothing 3233 * to sync out. Otherwise, we attach ourselves to the 3234 * previous iclog and go to sleep. 3235 */ 3236 if (iclog->ic_state == XLOG_STATE_DIRTY || 3237 (atomic_read(&iclog->ic_refcnt) == 0 3238 && iclog->ic_offset == 0)) { 3239 iclog = iclog->ic_prev; 3240 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3241 iclog->ic_state == XLOG_STATE_DIRTY) 3242 goto no_sleep; 3243 else 3244 goto maybe_sleep; 3245 } else { 3246 if (atomic_read(&iclog->ic_refcnt) == 0) { 3247 /* We are the only one with access to this 3248 * iclog. Flush it out now. There should 3249 * be a roundoff of zero to show that someone 3250 * has already taken care of the roundoff from 3251 * the previous sync. 3252 */ 3253 atomic_inc(&iclog->ic_refcnt); 3254 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3255 xlog_state_switch_iclogs(log, iclog, 0); 3256 spin_unlock(&log->l_icloglock); 3257 3258 if (xlog_state_release_iclog(log, iclog)) 3259 return -EIO; 3260 3261 if (log_flushed) 3262 *log_flushed = 1; 3263 spin_lock(&log->l_icloglock); 3264 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3265 iclog->ic_state != XLOG_STATE_DIRTY) 3266 goto maybe_sleep; 3267 else 3268 goto no_sleep; 3269 } else { 3270 /* Someone else is writing to this iclog. 3271 * Use its call to flush out the data. However, 3272 * the other thread may not force out this LR, 3273 * so we mark it WANT_SYNC. 3274 */ 3275 xlog_state_switch_iclogs(log, iclog, 0); 3276 goto maybe_sleep; 3277 } 3278 } 3279 } 3280 3281 /* By the time we come around again, the iclog could've been filled 3282 * which would give it another lsn. If we have a new lsn, just 3283 * return because the relevant data has been flushed. 3284 */ 3285 maybe_sleep: 3286 if (flags & XFS_LOG_SYNC) { 3287 /* 3288 * We must check if we're shutting down here, before 3289 * we wait, while we're holding the l_icloglock. 3290 * Then we check again after waking up, in case our 3291 * sleep was disturbed by a bad news. 3292 */ 3293 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3294 spin_unlock(&log->l_icloglock); 3295 return -EIO; 3296 } 3297 XFS_STATS_INC(mp, xs_log_force_sleep); 3298 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3299 /* 3300 * No need to grab the log lock here since we're 3301 * only deciding whether or not to return EIO 3302 * and the memory read should be atomic. 3303 */ 3304 if (iclog->ic_state & XLOG_STATE_IOERROR) 3305 return -EIO; 3306 if (log_flushed) 3307 *log_flushed = 1; 3308 } else { 3309 3310 no_sleep: 3311 spin_unlock(&log->l_icloglock); 3312 } 3313 return 0; 3314 } 3315 3316 /* 3317 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3318 * about errors or whether the log was flushed or not. This is the normal 3319 * interface to use when trying to unpin items or move the log forward. 3320 */ 3321 void 3322 xfs_log_force( 3323 xfs_mount_t *mp, 3324 uint flags) 3325 { 3326 int error; 3327 3328 trace_xfs_log_force(mp, 0, _RET_IP_); 3329 error = _xfs_log_force(mp, flags, NULL); 3330 if (error) 3331 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3332 } 3333 3334 /* 3335 * Force the in-core log to disk for a specific LSN. 3336 * 3337 * Find in-core log with lsn. 3338 * If it is in the DIRTY state, just return. 3339 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3340 * state and go to sleep or return. 3341 * If it is in any other state, go to sleep or return. 3342 * 3343 * Synchronous forces are implemented with a signal variable. All callers 3344 * to force a given lsn to disk will wait on a the sv attached to the 3345 * specific in-core log. When given in-core log finally completes its 3346 * write to disk, that thread will wake up all threads waiting on the 3347 * sv. 3348 */ 3349 int 3350 _xfs_log_force_lsn( 3351 struct xfs_mount *mp, 3352 xfs_lsn_t lsn, 3353 uint flags, 3354 int *log_flushed) 3355 { 3356 struct xlog *log = mp->m_log; 3357 struct xlog_in_core *iclog; 3358 int already_slept = 0; 3359 3360 ASSERT(lsn != 0); 3361 3362 XFS_STATS_INC(mp, xs_log_force); 3363 3364 lsn = xlog_cil_force_lsn(log, lsn); 3365 if (lsn == NULLCOMMITLSN) 3366 return 0; 3367 3368 try_again: 3369 spin_lock(&log->l_icloglock); 3370 iclog = log->l_iclog; 3371 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3372 spin_unlock(&log->l_icloglock); 3373 return -EIO; 3374 } 3375 3376 do { 3377 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3378 iclog = iclog->ic_next; 3379 continue; 3380 } 3381 3382 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3383 spin_unlock(&log->l_icloglock); 3384 return 0; 3385 } 3386 3387 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3388 /* 3389 * We sleep here if we haven't already slept (e.g. 3390 * this is the first time we've looked at the correct 3391 * iclog buf) and the buffer before us is going to 3392 * be sync'ed. The reason for this is that if we 3393 * are doing sync transactions here, by waiting for 3394 * the previous I/O to complete, we can allow a few 3395 * more transactions into this iclog before we close 3396 * it down. 3397 * 3398 * Otherwise, we mark the buffer WANT_SYNC, and bump 3399 * up the refcnt so we can release the log (which 3400 * drops the ref count). The state switch keeps new 3401 * transaction commits from using this buffer. When 3402 * the current commits finish writing into the buffer, 3403 * the refcount will drop to zero and the buffer will 3404 * go out then. 3405 */ 3406 if (!already_slept && 3407 (iclog->ic_prev->ic_state & 3408 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3409 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3410 3411 XFS_STATS_INC(mp, xs_log_force_sleep); 3412 3413 xlog_wait(&iclog->ic_prev->ic_write_wait, 3414 &log->l_icloglock); 3415 if (log_flushed) 3416 *log_flushed = 1; 3417 already_slept = 1; 3418 goto try_again; 3419 } 3420 atomic_inc(&iclog->ic_refcnt); 3421 xlog_state_switch_iclogs(log, iclog, 0); 3422 spin_unlock(&log->l_icloglock); 3423 if (xlog_state_release_iclog(log, iclog)) 3424 return -EIO; 3425 if (log_flushed) 3426 *log_flushed = 1; 3427 spin_lock(&log->l_icloglock); 3428 } 3429 3430 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3431 !(iclog->ic_state & 3432 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3433 /* 3434 * Don't wait on completion if we know that we've 3435 * gotten a log write error. 3436 */ 3437 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3438 spin_unlock(&log->l_icloglock); 3439 return -EIO; 3440 } 3441 XFS_STATS_INC(mp, xs_log_force_sleep); 3442 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3443 /* 3444 * No need to grab the log lock here since we're 3445 * only deciding whether or not to return EIO 3446 * and the memory read should be atomic. 3447 */ 3448 if (iclog->ic_state & XLOG_STATE_IOERROR) 3449 return -EIO; 3450 3451 if (log_flushed) 3452 *log_flushed = 1; 3453 } else { /* just return */ 3454 spin_unlock(&log->l_icloglock); 3455 } 3456 3457 return 0; 3458 } while (iclog != log->l_iclog); 3459 3460 spin_unlock(&log->l_icloglock); 3461 return 0; 3462 } 3463 3464 /* 3465 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3466 * about errors or whether the log was flushed or not. This is the normal 3467 * interface to use when trying to unpin items or move the log forward. 3468 */ 3469 void 3470 xfs_log_force_lsn( 3471 xfs_mount_t *mp, 3472 xfs_lsn_t lsn, 3473 uint flags) 3474 { 3475 int error; 3476 3477 trace_xfs_log_force(mp, lsn, _RET_IP_); 3478 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3479 if (error) 3480 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3481 } 3482 3483 /* 3484 * Called when we want to mark the current iclog as being ready to sync to 3485 * disk. 3486 */ 3487 STATIC void 3488 xlog_state_want_sync( 3489 struct xlog *log, 3490 struct xlog_in_core *iclog) 3491 { 3492 assert_spin_locked(&log->l_icloglock); 3493 3494 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3495 xlog_state_switch_iclogs(log, iclog, 0); 3496 } else { 3497 ASSERT(iclog->ic_state & 3498 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3499 } 3500 } 3501 3502 3503 /***************************************************************************** 3504 * 3505 * TICKET functions 3506 * 3507 ***************************************************************************** 3508 */ 3509 3510 /* 3511 * Free a used ticket when its refcount falls to zero. 3512 */ 3513 void 3514 xfs_log_ticket_put( 3515 xlog_ticket_t *ticket) 3516 { 3517 ASSERT(atomic_read(&ticket->t_ref) > 0); 3518 if (atomic_dec_and_test(&ticket->t_ref)) 3519 kmem_zone_free(xfs_log_ticket_zone, ticket); 3520 } 3521 3522 xlog_ticket_t * 3523 xfs_log_ticket_get( 3524 xlog_ticket_t *ticket) 3525 { 3526 ASSERT(atomic_read(&ticket->t_ref) > 0); 3527 atomic_inc(&ticket->t_ref); 3528 return ticket; 3529 } 3530 3531 /* 3532 * Figure out the total log space unit (in bytes) that would be 3533 * required for a log ticket. 3534 */ 3535 int 3536 xfs_log_calc_unit_res( 3537 struct xfs_mount *mp, 3538 int unit_bytes) 3539 { 3540 struct xlog *log = mp->m_log; 3541 int iclog_space; 3542 uint num_headers; 3543 3544 /* 3545 * Permanent reservations have up to 'cnt'-1 active log operations 3546 * in the log. A unit in this case is the amount of space for one 3547 * of these log operations. Normal reservations have a cnt of 1 3548 * and their unit amount is the total amount of space required. 3549 * 3550 * The following lines of code account for non-transaction data 3551 * which occupy space in the on-disk log. 3552 * 3553 * Normal form of a transaction is: 3554 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3555 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3556 * 3557 * We need to account for all the leadup data and trailer data 3558 * around the transaction data. 3559 * And then we need to account for the worst case in terms of using 3560 * more space. 3561 * The worst case will happen if: 3562 * - the placement of the transaction happens to be such that the 3563 * roundoff is at its maximum 3564 * - the transaction data is synced before the commit record is synced 3565 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3566 * Therefore the commit record is in its own Log Record. 3567 * This can happen as the commit record is called with its 3568 * own region to xlog_write(). 3569 * This then means that in the worst case, roundoff can happen for 3570 * the commit-rec as well. 3571 * The commit-rec is smaller than padding in this scenario and so it is 3572 * not added separately. 3573 */ 3574 3575 /* for trans header */ 3576 unit_bytes += sizeof(xlog_op_header_t); 3577 unit_bytes += sizeof(xfs_trans_header_t); 3578 3579 /* for start-rec */ 3580 unit_bytes += sizeof(xlog_op_header_t); 3581 3582 /* 3583 * for LR headers - the space for data in an iclog is the size minus 3584 * the space used for the headers. If we use the iclog size, then we 3585 * undercalculate the number of headers required. 3586 * 3587 * Furthermore - the addition of op headers for split-recs might 3588 * increase the space required enough to require more log and op 3589 * headers, so take that into account too. 3590 * 3591 * IMPORTANT: This reservation makes the assumption that if this 3592 * transaction is the first in an iclog and hence has the LR headers 3593 * accounted to it, then the remaining space in the iclog is 3594 * exclusively for this transaction. i.e. if the transaction is larger 3595 * than the iclog, it will be the only thing in that iclog. 3596 * Fundamentally, this means we must pass the entire log vector to 3597 * xlog_write to guarantee this. 3598 */ 3599 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3600 num_headers = howmany(unit_bytes, iclog_space); 3601 3602 /* for split-recs - ophdrs added when data split over LRs */ 3603 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3604 3605 /* add extra header reservations if we overrun */ 3606 while (!num_headers || 3607 howmany(unit_bytes, iclog_space) > num_headers) { 3608 unit_bytes += sizeof(xlog_op_header_t); 3609 num_headers++; 3610 } 3611 unit_bytes += log->l_iclog_hsize * num_headers; 3612 3613 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3614 unit_bytes += log->l_iclog_hsize; 3615 3616 /* for roundoff padding for transaction data and one for commit record */ 3617 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3618 /* log su roundoff */ 3619 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3620 } else { 3621 /* BB roundoff */ 3622 unit_bytes += 2 * BBSIZE; 3623 } 3624 3625 return unit_bytes; 3626 } 3627 3628 /* 3629 * Allocate and initialise a new log ticket. 3630 */ 3631 struct xlog_ticket * 3632 xlog_ticket_alloc( 3633 struct xlog *log, 3634 int unit_bytes, 3635 int cnt, 3636 char client, 3637 bool permanent, 3638 xfs_km_flags_t alloc_flags) 3639 { 3640 struct xlog_ticket *tic; 3641 int unit_res; 3642 3643 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3644 if (!tic) 3645 return NULL; 3646 3647 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3648 3649 atomic_set(&tic->t_ref, 1); 3650 tic->t_task = current; 3651 INIT_LIST_HEAD(&tic->t_queue); 3652 tic->t_unit_res = unit_res; 3653 tic->t_curr_res = unit_res; 3654 tic->t_cnt = cnt; 3655 tic->t_ocnt = cnt; 3656 tic->t_tid = prandom_u32(); 3657 tic->t_clientid = client; 3658 tic->t_flags = XLOG_TIC_INITED; 3659 if (permanent) 3660 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3661 3662 xlog_tic_reset_res(tic); 3663 3664 return tic; 3665 } 3666 3667 3668 /****************************************************************************** 3669 * 3670 * Log debug routines 3671 * 3672 ****************************************************************************** 3673 */ 3674 #if defined(DEBUG) 3675 /* 3676 * Make sure that the destination ptr is within the valid data region of 3677 * one of the iclogs. This uses backup pointers stored in a different 3678 * part of the log in case we trash the log structure. 3679 */ 3680 void 3681 xlog_verify_dest_ptr( 3682 struct xlog *log, 3683 void *ptr) 3684 { 3685 int i; 3686 int good_ptr = 0; 3687 3688 for (i = 0; i < log->l_iclog_bufs; i++) { 3689 if (ptr >= log->l_iclog_bak[i] && 3690 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3691 good_ptr++; 3692 } 3693 3694 if (!good_ptr) 3695 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3696 } 3697 3698 /* 3699 * Check to make sure the grant write head didn't just over lap the tail. If 3700 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3701 * the cycles differ by exactly one and check the byte count. 3702 * 3703 * This check is run unlocked, so can give false positives. Rather than assert 3704 * on failures, use a warn-once flag and a panic tag to allow the admin to 3705 * determine if they want to panic the machine when such an error occurs. For 3706 * debug kernels this will have the same effect as using an assert but, unlinke 3707 * an assert, it can be turned off at runtime. 3708 */ 3709 STATIC void 3710 xlog_verify_grant_tail( 3711 struct xlog *log) 3712 { 3713 int tail_cycle, tail_blocks; 3714 int cycle, space; 3715 3716 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3717 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3718 if (tail_cycle != cycle) { 3719 if (cycle - 1 != tail_cycle && 3720 !(log->l_flags & XLOG_TAIL_WARN)) { 3721 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3722 "%s: cycle - 1 != tail_cycle", __func__); 3723 log->l_flags |= XLOG_TAIL_WARN; 3724 } 3725 3726 if (space > BBTOB(tail_blocks) && 3727 !(log->l_flags & XLOG_TAIL_WARN)) { 3728 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3729 "%s: space > BBTOB(tail_blocks)", __func__); 3730 log->l_flags |= XLOG_TAIL_WARN; 3731 } 3732 } 3733 } 3734 3735 /* check if it will fit */ 3736 STATIC void 3737 xlog_verify_tail_lsn( 3738 struct xlog *log, 3739 struct xlog_in_core *iclog, 3740 xfs_lsn_t tail_lsn) 3741 { 3742 int blocks; 3743 3744 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3745 blocks = 3746 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3747 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3748 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3749 } else { 3750 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3751 3752 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3753 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3754 3755 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3756 if (blocks < BTOBB(iclog->ic_offset) + 1) 3757 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3758 } 3759 } /* xlog_verify_tail_lsn */ 3760 3761 /* 3762 * Perform a number of checks on the iclog before writing to disk. 3763 * 3764 * 1. Make sure the iclogs are still circular 3765 * 2. Make sure we have a good magic number 3766 * 3. Make sure we don't have magic numbers in the data 3767 * 4. Check fields of each log operation header for: 3768 * A. Valid client identifier 3769 * B. tid ptr value falls in valid ptr space (user space code) 3770 * C. Length in log record header is correct according to the 3771 * individual operation headers within record. 3772 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3773 * log, check the preceding blocks of the physical log to make sure all 3774 * the cycle numbers agree with the current cycle number. 3775 */ 3776 STATIC void 3777 xlog_verify_iclog( 3778 struct xlog *log, 3779 struct xlog_in_core *iclog, 3780 int count, 3781 bool syncing) 3782 { 3783 xlog_op_header_t *ophead; 3784 xlog_in_core_t *icptr; 3785 xlog_in_core_2_t *xhdr; 3786 void *base_ptr, *ptr, *p; 3787 ptrdiff_t field_offset; 3788 __uint8_t clientid; 3789 int len, i, j, k, op_len; 3790 int idx; 3791 3792 /* check validity of iclog pointers */ 3793 spin_lock(&log->l_icloglock); 3794 icptr = log->l_iclog; 3795 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3796 ASSERT(icptr); 3797 3798 if (icptr != log->l_iclog) 3799 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3800 spin_unlock(&log->l_icloglock); 3801 3802 /* check log magic numbers */ 3803 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3804 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3805 3806 base_ptr = ptr = &iclog->ic_header; 3807 p = &iclog->ic_header; 3808 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3809 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3810 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3811 __func__); 3812 } 3813 3814 /* check fields */ 3815 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3816 base_ptr = ptr = iclog->ic_datap; 3817 ophead = ptr; 3818 xhdr = iclog->ic_data; 3819 for (i = 0; i < len; i++) { 3820 ophead = ptr; 3821 3822 /* clientid is only 1 byte */ 3823 p = &ophead->oh_clientid; 3824 field_offset = p - base_ptr; 3825 if (!syncing || (field_offset & 0x1ff)) { 3826 clientid = ophead->oh_clientid; 3827 } else { 3828 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3829 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3830 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3831 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3832 clientid = xlog_get_client_id( 3833 xhdr[j].hic_xheader.xh_cycle_data[k]); 3834 } else { 3835 clientid = xlog_get_client_id( 3836 iclog->ic_header.h_cycle_data[idx]); 3837 } 3838 } 3839 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3840 xfs_warn(log->l_mp, 3841 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3842 __func__, clientid, ophead, 3843 (unsigned long)field_offset); 3844 3845 /* check length */ 3846 p = &ophead->oh_len; 3847 field_offset = p - base_ptr; 3848 if (!syncing || (field_offset & 0x1ff)) { 3849 op_len = be32_to_cpu(ophead->oh_len); 3850 } else { 3851 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3852 (uintptr_t)iclog->ic_datap); 3853 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3854 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3855 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3856 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3857 } else { 3858 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3859 } 3860 } 3861 ptr += sizeof(xlog_op_header_t) + op_len; 3862 } 3863 } /* xlog_verify_iclog */ 3864 #endif 3865 3866 /* 3867 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3868 */ 3869 STATIC int 3870 xlog_state_ioerror( 3871 struct xlog *log) 3872 { 3873 xlog_in_core_t *iclog, *ic; 3874 3875 iclog = log->l_iclog; 3876 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3877 /* 3878 * Mark all the incore logs IOERROR. 3879 * From now on, no log flushes will result. 3880 */ 3881 ic = iclog; 3882 do { 3883 ic->ic_state = XLOG_STATE_IOERROR; 3884 ic = ic->ic_next; 3885 } while (ic != iclog); 3886 return 0; 3887 } 3888 /* 3889 * Return non-zero, if state transition has already happened. 3890 */ 3891 return 1; 3892 } 3893 3894 /* 3895 * This is called from xfs_force_shutdown, when we're forcibly 3896 * shutting down the filesystem, typically because of an IO error. 3897 * Our main objectives here are to make sure that: 3898 * a. if !logerror, flush the logs to disk. Anything modified 3899 * after this is ignored. 3900 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3901 * parties to find out, 'atomically'. 3902 * c. those who're sleeping on log reservations, pinned objects and 3903 * other resources get woken up, and be told the bad news. 3904 * d. nothing new gets queued up after (b) and (c) are done. 3905 * 3906 * Note: for the !logerror case we need to flush the regions held in memory out 3907 * to disk first. This needs to be done before the log is marked as shutdown, 3908 * otherwise the iclog writes will fail. 3909 */ 3910 int 3911 xfs_log_force_umount( 3912 struct xfs_mount *mp, 3913 int logerror) 3914 { 3915 struct xlog *log; 3916 int retval; 3917 3918 log = mp->m_log; 3919 3920 /* 3921 * If this happens during log recovery, don't worry about 3922 * locking; the log isn't open for business yet. 3923 */ 3924 if (!log || 3925 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3926 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3927 if (mp->m_sb_bp) 3928 mp->m_sb_bp->b_flags |= XBF_DONE; 3929 return 0; 3930 } 3931 3932 /* 3933 * Somebody could've already done the hard work for us. 3934 * No need to get locks for this. 3935 */ 3936 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3937 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3938 return 1; 3939 } 3940 3941 /* 3942 * Flush all the completed transactions to disk before marking the log 3943 * being shut down. We need to do it in this order to ensure that 3944 * completed operations are safely on disk before we shut down, and that 3945 * we don't have to issue any buffer IO after the shutdown flags are set 3946 * to guarantee this. 3947 */ 3948 if (!logerror) 3949 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3950 3951 /* 3952 * mark the filesystem and the as in a shutdown state and wake 3953 * everybody up to tell them the bad news. 3954 */ 3955 spin_lock(&log->l_icloglock); 3956 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3957 if (mp->m_sb_bp) 3958 mp->m_sb_bp->b_flags |= XBF_DONE; 3959 3960 /* 3961 * Mark the log and the iclogs with IO error flags to prevent any 3962 * further log IO from being issued or completed. 3963 */ 3964 log->l_flags |= XLOG_IO_ERROR; 3965 retval = xlog_state_ioerror(log); 3966 spin_unlock(&log->l_icloglock); 3967 3968 /* 3969 * We don't want anybody waiting for log reservations after this. That 3970 * means we have to wake up everybody queued up on reserveq as well as 3971 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3972 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3973 * action is protected by the grant locks. 3974 */ 3975 xlog_grant_head_wake_all(&log->l_reserve_head); 3976 xlog_grant_head_wake_all(&log->l_write_head); 3977 3978 /* 3979 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3980 * as if the log writes were completed. The abort handling in the log 3981 * item committed callback functions will do this again under lock to 3982 * avoid races. 3983 */ 3984 wake_up_all(&log->l_cilp->xc_commit_wait); 3985 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3986 3987 #ifdef XFSERRORDEBUG 3988 { 3989 xlog_in_core_t *iclog; 3990 3991 spin_lock(&log->l_icloglock); 3992 iclog = log->l_iclog; 3993 do { 3994 ASSERT(iclog->ic_callback == 0); 3995 iclog = iclog->ic_next; 3996 } while (iclog != log->l_iclog); 3997 spin_unlock(&log->l_icloglock); 3998 } 3999 #endif 4000 /* return non-zero if log IOERROR transition had already happened */ 4001 return retval; 4002 } 4003 4004 STATIC int 4005 xlog_iclogs_empty( 4006 struct xlog *log) 4007 { 4008 xlog_in_core_t *iclog; 4009 4010 iclog = log->l_iclog; 4011 do { 4012 /* endianness does not matter here, zero is zero in 4013 * any language. 4014 */ 4015 if (iclog->ic_header.h_num_logops) 4016 return 0; 4017 iclog = iclog->ic_next; 4018 } while (iclog != log->l_iclog); 4019 return 1; 4020 } 4021 4022 /* 4023 * Verify that an LSN stamped into a piece of metadata is valid. This is 4024 * intended for use in read verifiers on v5 superblocks. 4025 */ 4026 bool 4027 xfs_log_check_lsn( 4028 struct xfs_mount *mp, 4029 xfs_lsn_t lsn) 4030 { 4031 struct xlog *log = mp->m_log; 4032 bool valid; 4033 4034 /* 4035 * norecovery mode skips mount-time log processing and unconditionally 4036 * resets the in-core LSN. We can't validate in this mode, but 4037 * modifications are not allowed anyways so just return true. 4038 */ 4039 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4040 return true; 4041 4042 /* 4043 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4044 * handled by recovery and thus safe to ignore here. 4045 */ 4046 if (lsn == NULLCOMMITLSN) 4047 return true; 4048 4049 valid = xlog_valid_lsn(mp->m_log, lsn); 4050 4051 /* warn the user about what's gone wrong before verifier failure */ 4052 if (!valid) { 4053 spin_lock(&log->l_icloglock); 4054 xfs_warn(mp, 4055 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4056 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4057 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4058 log->l_curr_cycle, log->l_curr_block); 4059 spin_unlock(&log->l_icloglock); 4060 } 4061 4062 return valid; 4063 } 4064