1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *continued_write, 53 int *logoffsetp); 54 STATIC void 55 xlog_grant_push_ail( 56 struct xlog *log, 57 int need_bytes); 58 STATIC void 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_verify_dest_ptr( 65 struct xlog *log, 66 void *ptr); 67 STATIC void 68 xlog_verify_grant_tail( 69 struct xlog *log); 70 STATIC void 71 xlog_verify_iclog( 72 struct xlog *log, 73 struct xlog_in_core *iclog, 74 int count); 75 STATIC void 76 xlog_verify_tail_lsn( 77 struct xlog *log, 78 struct xlog_in_core *iclog); 79 #else 80 #define xlog_verify_dest_ptr(a,b) 81 #define xlog_verify_grant_tail(a) 82 #define xlog_verify_iclog(a,b,c) 83 #define xlog_verify_tail_lsn(a,b) 84 #endif 85 86 STATIC int 87 xlog_iclogs_empty( 88 struct xlog *log); 89 90 static int 91 xfs_log_cover(struct xfs_mount *); 92 93 static void 94 xlog_grant_sub_space( 95 struct xlog *log, 96 atomic64_t *head, 97 int bytes) 98 { 99 int64_t head_val = atomic64_read(head); 100 int64_t new, old; 101 102 do { 103 int cycle, space; 104 105 xlog_crack_grant_head_val(head_val, &cycle, &space); 106 107 space -= bytes; 108 if (space < 0) { 109 space += log->l_logsize; 110 cycle--; 111 } 112 113 old = head_val; 114 new = xlog_assign_grant_head_val(cycle, space); 115 head_val = atomic64_cmpxchg(head, old, new); 116 } while (head_val != old); 117 } 118 119 static void 120 xlog_grant_add_space( 121 struct xlog *log, 122 atomic64_t *head, 123 int bytes) 124 { 125 int64_t head_val = atomic64_read(head); 126 int64_t new, old; 127 128 do { 129 int tmp; 130 int cycle, space; 131 132 xlog_crack_grant_head_val(head_val, &cycle, &space); 133 134 tmp = log->l_logsize - space; 135 if (tmp > bytes) 136 space += bytes; 137 else { 138 space = bytes - tmp; 139 cycle++; 140 } 141 142 old = head_val; 143 new = xlog_assign_grant_head_val(cycle, space); 144 head_val = atomic64_cmpxchg(head, old, new); 145 } while (head_val != old); 146 } 147 148 STATIC void 149 xlog_grant_head_init( 150 struct xlog_grant_head *head) 151 { 152 xlog_assign_grant_head(&head->grant, 1, 0); 153 INIT_LIST_HEAD(&head->waiters); 154 spin_lock_init(&head->lock); 155 } 156 157 STATIC void 158 xlog_grant_head_wake_all( 159 struct xlog_grant_head *head) 160 { 161 struct xlog_ticket *tic; 162 163 spin_lock(&head->lock); 164 list_for_each_entry(tic, &head->waiters, t_queue) 165 wake_up_process(tic->t_task); 166 spin_unlock(&head->lock); 167 } 168 169 static inline int 170 xlog_ticket_reservation( 171 struct xlog *log, 172 struct xlog_grant_head *head, 173 struct xlog_ticket *tic) 174 { 175 if (head == &log->l_write_head) { 176 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 177 return tic->t_unit_res; 178 } else { 179 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 180 return tic->t_unit_res * tic->t_cnt; 181 else 182 return tic->t_unit_res; 183 } 184 } 185 186 STATIC bool 187 xlog_grant_head_wake( 188 struct xlog *log, 189 struct xlog_grant_head *head, 190 int *free_bytes) 191 { 192 struct xlog_ticket *tic; 193 int need_bytes; 194 bool woken_task = false; 195 196 list_for_each_entry(tic, &head->waiters, t_queue) { 197 198 /* 199 * There is a chance that the size of the CIL checkpoints in 200 * progress at the last AIL push target calculation resulted in 201 * limiting the target to the log head (l_last_sync_lsn) at the 202 * time. This may not reflect where the log head is now as the 203 * CIL checkpoints may have completed. 204 * 205 * Hence when we are woken here, it may be that the head of the 206 * log that has moved rather than the tail. As the tail didn't 207 * move, there still won't be space available for the 208 * reservation we require. However, if the AIL has already 209 * pushed to the target defined by the old log head location, we 210 * will hang here waiting for something else to update the AIL 211 * push target. 212 * 213 * Therefore, if there isn't space to wake the first waiter on 214 * the grant head, we need to push the AIL again to ensure the 215 * target reflects both the current log tail and log head 216 * position before we wait for the tail to move again. 217 */ 218 219 need_bytes = xlog_ticket_reservation(log, head, tic); 220 if (*free_bytes < need_bytes) { 221 if (!woken_task) 222 xlog_grant_push_ail(log, need_bytes); 223 return false; 224 } 225 226 *free_bytes -= need_bytes; 227 trace_xfs_log_grant_wake_up(log, tic); 228 wake_up_process(tic->t_task); 229 woken_task = true; 230 } 231 232 return true; 233 } 234 235 STATIC int 236 xlog_grant_head_wait( 237 struct xlog *log, 238 struct xlog_grant_head *head, 239 struct xlog_ticket *tic, 240 int need_bytes) __releases(&head->lock) 241 __acquires(&head->lock) 242 { 243 list_add_tail(&tic->t_queue, &head->waiters); 244 245 do { 246 if (xlog_is_shutdown(log)) 247 goto shutdown; 248 xlog_grant_push_ail(log, need_bytes); 249 250 __set_current_state(TASK_UNINTERRUPTIBLE); 251 spin_unlock(&head->lock); 252 253 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 254 255 trace_xfs_log_grant_sleep(log, tic); 256 schedule(); 257 trace_xfs_log_grant_wake(log, tic); 258 259 spin_lock(&head->lock); 260 if (xlog_is_shutdown(log)) 261 goto shutdown; 262 } while (xlog_space_left(log, &head->grant) < need_bytes); 263 264 list_del_init(&tic->t_queue); 265 return 0; 266 shutdown: 267 list_del_init(&tic->t_queue); 268 return -EIO; 269 } 270 271 /* 272 * Atomically get the log space required for a log ticket. 273 * 274 * Once a ticket gets put onto head->waiters, it will only return after the 275 * needed reservation is satisfied. 276 * 277 * This function is structured so that it has a lock free fast path. This is 278 * necessary because every new transaction reservation will come through this 279 * path. Hence any lock will be globally hot if we take it unconditionally on 280 * every pass. 281 * 282 * As tickets are only ever moved on and off head->waiters under head->lock, we 283 * only need to take that lock if we are going to add the ticket to the queue 284 * and sleep. We can avoid taking the lock if the ticket was never added to 285 * head->waiters because the t_queue list head will be empty and we hold the 286 * only reference to it so it can safely be checked unlocked. 287 */ 288 STATIC int 289 xlog_grant_head_check( 290 struct xlog *log, 291 struct xlog_grant_head *head, 292 struct xlog_ticket *tic, 293 int *need_bytes) 294 { 295 int free_bytes; 296 int error = 0; 297 298 ASSERT(!xlog_in_recovery(log)); 299 300 /* 301 * If there are other waiters on the queue then give them a chance at 302 * logspace before us. Wake up the first waiters, if we do not wake 303 * up all the waiters then go to sleep waiting for more free space, 304 * otherwise try to get some space for this transaction. 305 */ 306 *need_bytes = xlog_ticket_reservation(log, head, tic); 307 free_bytes = xlog_space_left(log, &head->grant); 308 if (!list_empty_careful(&head->waiters)) { 309 spin_lock(&head->lock); 310 if (!xlog_grant_head_wake(log, head, &free_bytes) || 311 free_bytes < *need_bytes) { 312 error = xlog_grant_head_wait(log, head, tic, 313 *need_bytes); 314 } 315 spin_unlock(&head->lock); 316 } else if (free_bytes < *need_bytes) { 317 spin_lock(&head->lock); 318 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 319 spin_unlock(&head->lock); 320 } 321 322 return error; 323 } 324 325 static void 326 xlog_tic_reset_res(xlog_ticket_t *tic) 327 { 328 tic->t_res_num = 0; 329 tic->t_res_arr_sum = 0; 330 tic->t_res_num_ophdrs = 0; 331 } 332 333 static void 334 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 335 { 336 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 337 /* add to overflow and start again */ 338 tic->t_res_o_flow += tic->t_res_arr_sum; 339 tic->t_res_num = 0; 340 tic->t_res_arr_sum = 0; 341 } 342 343 tic->t_res_arr[tic->t_res_num].r_len = len; 344 tic->t_res_arr[tic->t_res_num].r_type = type; 345 tic->t_res_arr_sum += len; 346 tic->t_res_num++; 347 } 348 349 bool 350 xfs_log_writable( 351 struct xfs_mount *mp) 352 { 353 /* 354 * Do not write to the log on norecovery mounts, if the data or log 355 * devices are read-only, or if the filesystem is shutdown. Read-only 356 * mounts allow internal writes for log recovery and unmount purposes, 357 * so don't restrict that case. 358 */ 359 if (xfs_has_norecovery(mp)) 360 return false; 361 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 362 return false; 363 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 364 return false; 365 if (xlog_is_shutdown(mp->m_log)) 366 return false; 367 return true; 368 } 369 370 /* 371 * Replenish the byte reservation required by moving the grant write head. 372 */ 373 int 374 xfs_log_regrant( 375 struct xfs_mount *mp, 376 struct xlog_ticket *tic) 377 { 378 struct xlog *log = mp->m_log; 379 int need_bytes; 380 int error = 0; 381 382 if (xlog_is_shutdown(log)) 383 return -EIO; 384 385 XFS_STATS_INC(mp, xs_try_logspace); 386 387 /* 388 * This is a new transaction on the ticket, so we need to change the 389 * transaction ID so that the next transaction has a different TID in 390 * the log. Just add one to the existing tid so that we can see chains 391 * of rolling transactions in the log easily. 392 */ 393 tic->t_tid++; 394 395 xlog_grant_push_ail(log, tic->t_unit_res); 396 397 tic->t_curr_res = tic->t_unit_res; 398 xlog_tic_reset_res(tic); 399 400 if (tic->t_cnt > 0) 401 return 0; 402 403 trace_xfs_log_regrant(log, tic); 404 405 error = xlog_grant_head_check(log, &log->l_write_head, tic, 406 &need_bytes); 407 if (error) 408 goto out_error; 409 410 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 411 trace_xfs_log_regrant_exit(log, tic); 412 xlog_verify_grant_tail(log); 413 return 0; 414 415 out_error: 416 /* 417 * If we are failing, make sure the ticket doesn't have any current 418 * reservations. We don't want to add this back when the ticket/ 419 * transaction gets cancelled. 420 */ 421 tic->t_curr_res = 0; 422 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 423 return error; 424 } 425 426 /* 427 * Reserve log space and return a ticket corresponding to the reservation. 428 * 429 * Each reservation is going to reserve extra space for a log record header. 430 * When writes happen to the on-disk log, we don't subtract the length of the 431 * log record header from any reservation. By wasting space in each 432 * reservation, we prevent over allocation problems. 433 */ 434 int 435 xfs_log_reserve( 436 struct xfs_mount *mp, 437 int unit_bytes, 438 int cnt, 439 struct xlog_ticket **ticp, 440 uint8_t client, 441 bool permanent) 442 { 443 struct xlog *log = mp->m_log; 444 struct xlog_ticket *tic; 445 int need_bytes; 446 int error = 0; 447 448 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 449 450 if (xlog_is_shutdown(log)) 451 return -EIO; 452 453 XFS_STATS_INC(mp, xs_try_logspace); 454 455 ASSERT(*ticp == NULL); 456 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent); 457 *ticp = tic; 458 459 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 460 : tic->t_unit_res); 461 462 trace_xfs_log_reserve(log, tic); 463 464 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 465 &need_bytes); 466 if (error) 467 goto out_error; 468 469 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 470 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 471 trace_xfs_log_reserve_exit(log, tic); 472 xlog_verify_grant_tail(log); 473 return 0; 474 475 out_error: 476 /* 477 * If we are failing, make sure the ticket doesn't have any current 478 * reservations. We don't want to add this back when the ticket/ 479 * transaction gets cancelled. 480 */ 481 tic->t_curr_res = 0; 482 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 483 return error; 484 } 485 486 /* 487 * Run all the pending iclog callbacks and wake log force waiters and iclog 488 * space waiters so they can process the newly set shutdown state. We really 489 * don't care what order we process callbacks here because the log is shut down 490 * and so state cannot change on disk anymore. 491 * 492 * We avoid processing actively referenced iclogs so that we don't run callbacks 493 * while the iclog owner might still be preparing the iclog for IO submssion. 494 * These will be caught by xlog_state_iclog_release() and call this function 495 * again to process any callbacks that may have been added to that iclog. 496 */ 497 static void 498 xlog_state_shutdown_callbacks( 499 struct xlog *log) 500 { 501 struct xlog_in_core *iclog; 502 LIST_HEAD(cb_list); 503 504 spin_lock(&log->l_icloglock); 505 iclog = log->l_iclog; 506 do { 507 if (atomic_read(&iclog->ic_refcnt)) { 508 /* Reference holder will re-run iclog callbacks. */ 509 continue; 510 } 511 list_splice_init(&iclog->ic_callbacks, &cb_list); 512 wake_up_all(&iclog->ic_write_wait); 513 wake_up_all(&iclog->ic_force_wait); 514 } while ((iclog = iclog->ic_next) != log->l_iclog); 515 516 wake_up_all(&log->l_flush_wait); 517 spin_unlock(&log->l_icloglock); 518 519 xlog_cil_process_committed(&cb_list); 520 } 521 522 /* 523 * Flush iclog to disk if this is the last reference to the given iclog and the 524 * it is in the WANT_SYNC state. 525 * 526 * If the caller passes in a non-zero @old_tail_lsn and the current log tail 527 * does not match, there may be metadata on disk that must be persisted before 528 * this iclog is written. To satisfy that requirement, set the 529 * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new 530 * log tail value. 531 * 532 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 533 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 534 * written to stable storage, and implies that a commit record is contained 535 * within the iclog. We need to ensure that the log tail does not move beyond 536 * the tail that the first commit record in the iclog ordered against, otherwise 537 * correct recovery of that checkpoint becomes dependent on future operations 538 * performed on this iclog. 539 * 540 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 541 * current tail into iclog. Once the iclog tail is set, future operations must 542 * not modify it, otherwise they potentially violate ordering constraints for 543 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 544 * the iclog will get zeroed on activation of the iclog after sync, so we 545 * always capture the tail lsn on the iclog on the first NEED_FUA release 546 * regardless of the number of active reference counts on this iclog. 547 */ 548 549 int 550 xlog_state_release_iclog( 551 struct xlog *log, 552 struct xlog_in_core *iclog, 553 xfs_lsn_t old_tail_lsn) 554 { 555 xfs_lsn_t tail_lsn; 556 bool last_ref; 557 558 lockdep_assert_held(&log->l_icloglock); 559 560 trace_xlog_iclog_release(iclog, _RET_IP_); 561 /* 562 * Grabbing the current log tail needs to be atomic w.r.t. the writing 563 * of the tail LSN into the iclog so we guarantee that the log tail does 564 * not move between deciding if a cache flush is required and writing 565 * the LSN into the iclog below. 566 */ 567 if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) { 568 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 569 570 if (old_tail_lsn && tail_lsn != old_tail_lsn) 571 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 572 573 if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) && 574 !iclog->ic_header.h_tail_lsn) 575 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 576 } 577 578 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 579 580 if (xlog_is_shutdown(log)) { 581 /* 582 * If there are no more references to this iclog, process the 583 * pending iclog callbacks that were waiting on the release of 584 * this iclog. 585 */ 586 if (last_ref) { 587 spin_unlock(&log->l_icloglock); 588 xlog_state_shutdown_callbacks(log); 589 spin_lock(&log->l_icloglock); 590 } 591 return -EIO; 592 } 593 594 if (!last_ref) 595 return 0; 596 597 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 598 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 599 return 0; 600 } 601 602 iclog->ic_state = XLOG_STATE_SYNCING; 603 if (!iclog->ic_header.h_tail_lsn) 604 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 605 xlog_verify_tail_lsn(log, iclog); 606 trace_xlog_iclog_syncing(iclog, _RET_IP_); 607 608 spin_unlock(&log->l_icloglock); 609 xlog_sync(log, iclog); 610 spin_lock(&log->l_icloglock); 611 return 0; 612 } 613 614 /* 615 * Mount a log filesystem 616 * 617 * mp - ubiquitous xfs mount point structure 618 * log_target - buftarg of on-disk log device 619 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 620 * num_bblocks - Number of BBSIZE blocks in on-disk log 621 * 622 * Return error or zero. 623 */ 624 int 625 xfs_log_mount( 626 xfs_mount_t *mp, 627 xfs_buftarg_t *log_target, 628 xfs_daddr_t blk_offset, 629 int num_bblks) 630 { 631 struct xlog *log; 632 bool fatal = xfs_has_crc(mp); 633 int error = 0; 634 int min_logfsbs; 635 636 if (!xfs_has_norecovery(mp)) { 637 xfs_notice(mp, "Mounting V%d Filesystem", 638 XFS_SB_VERSION_NUM(&mp->m_sb)); 639 } else { 640 xfs_notice(mp, 641 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 642 XFS_SB_VERSION_NUM(&mp->m_sb)); 643 ASSERT(xfs_is_readonly(mp)); 644 } 645 646 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 647 if (IS_ERR(log)) { 648 error = PTR_ERR(log); 649 goto out; 650 } 651 mp->m_log = log; 652 653 /* 654 * Validate the given log space and drop a critical message via syslog 655 * if the log size is too small that would lead to some unexpected 656 * situations in transaction log space reservation stage. 657 * 658 * Note: we can't just reject the mount if the validation fails. This 659 * would mean that people would have to downgrade their kernel just to 660 * remedy the situation as there is no way to grow the log (short of 661 * black magic surgery with xfs_db). 662 * 663 * We can, however, reject mounts for CRC format filesystems, as the 664 * mkfs binary being used to make the filesystem should never create a 665 * filesystem with a log that is too small. 666 */ 667 min_logfsbs = xfs_log_calc_minimum_size(mp); 668 669 if (mp->m_sb.sb_logblocks < min_logfsbs) { 670 xfs_warn(mp, 671 "Log size %d blocks too small, minimum size is %d blocks", 672 mp->m_sb.sb_logblocks, min_logfsbs); 673 error = -EINVAL; 674 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 675 xfs_warn(mp, 676 "Log size %d blocks too large, maximum size is %lld blocks", 677 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 678 error = -EINVAL; 679 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 680 xfs_warn(mp, 681 "log size %lld bytes too large, maximum size is %lld bytes", 682 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 683 XFS_MAX_LOG_BYTES); 684 error = -EINVAL; 685 } else if (mp->m_sb.sb_logsunit > 1 && 686 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 687 xfs_warn(mp, 688 "log stripe unit %u bytes must be a multiple of block size", 689 mp->m_sb.sb_logsunit); 690 error = -EINVAL; 691 fatal = true; 692 } 693 if (error) { 694 /* 695 * Log check errors are always fatal on v5; or whenever bad 696 * metadata leads to a crash. 697 */ 698 if (fatal) { 699 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 700 ASSERT(0); 701 goto out_free_log; 702 } 703 xfs_crit(mp, "Log size out of supported range."); 704 xfs_crit(mp, 705 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 706 } 707 708 /* 709 * Initialize the AIL now we have a log. 710 */ 711 error = xfs_trans_ail_init(mp); 712 if (error) { 713 xfs_warn(mp, "AIL initialisation failed: error %d", error); 714 goto out_free_log; 715 } 716 log->l_ailp = mp->m_ail; 717 718 /* 719 * skip log recovery on a norecovery mount. pretend it all 720 * just worked. 721 */ 722 if (!xfs_has_norecovery(mp)) { 723 /* 724 * log recovery ignores readonly state and so we need to clear 725 * mount-based read only state so it can write to disk. 726 */ 727 bool readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, 728 &mp->m_opstate); 729 error = xlog_recover(log); 730 if (readonly) 731 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 732 if (error) { 733 xfs_warn(mp, "log mount/recovery failed: error %d", 734 error); 735 xlog_recover_cancel(log); 736 goto out_destroy_ail; 737 } 738 } 739 740 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 741 "log"); 742 if (error) 743 goto out_destroy_ail; 744 745 /* Normal transactions can now occur */ 746 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 747 748 /* 749 * Now the log has been fully initialised and we know were our 750 * space grant counters are, we can initialise the permanent ticket 751 * needed for delayed logging to work. 752 */ 753 xlog_cil_init_post_recovery(log); 754 755 return 0; 756 757 out_destroy_ail: 758 xfs_trans_ail_destroy(mp); 759 out_free_log: 760 xlog_dealloc_log(log); 761 out: 762 return error; 763 } 764 765 /* 766 * Finish the recovery of the file system. This is separate from the 767 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 768 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 769 * here. 770 * 771 * If we finish recovery successfully, start the background log work. If we are 772 * not doing recovery, then we have a RO filesystem and we don't need to start 773 * it. 774 */ 775 int 776 xfs_log_mount_finish( 777 struct xfs_mount *mp) 778 { 779 struct xlog *log = mp->m_log; 780 bool readonly; 781 int error = 0; 782 783 if (xfs_has_norecovery(mp)) { 784 ASSERT(xfs_is_readonly(mp)); 785 return 0; 786 } 787 788 /* 789 * log recovery ignores readonly state and so we need to clear 790 * mount-based read only state so it can write to disk. 791 */ 792 readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 793 794 /* 795 * During the second phase of log recovery, we need iget and 796 * iput to behave like they do for an active filesystem. 797 * xfs_fs_drop_inode needs to be able to prevent the deletion 798 * of inodes before we're done replaying log items on those 799 * inodes. Turn it off immediately after recovery finishes 800 * so that we don't leak the quota inodes if subsequent mount 801 * activities fail. 802 * 803 * We let all inodes involved in redo item processing end up on 804 * the LRU instead of being evicted immediately so that if we do 805 * something to an unlinked inode, the irele won't cause 806 * premature truncation and freeing of the inode, which results 807 * in log recovery failure. We have to evict the unreferenced 808 * lru inodes after clearing SB_ACTIVE because we don't 809 * otherwise clean up the lru if there's a subsequent failure in 810 * xfs_mountfs, which leads to us leaking the inodes if nothing 811 * else (e.g. quotacheck) references the inodes before the 812 * mount failure occurs. 813 */ 814 mp->m_super->s_flags |= SB_ACTIVE; 815 if (xlog_recovery_needed(log)) 816 error = xlog_recover_finish(log); 817 if (!error) 818 xfs_log_work_queue(mp); 819 mp->m_super->s_flags &= ~SB_ACTIVE; 820 evict_inodes(mp->m_super); 821 822 /* 823 * Drain the buffer LRU after log recovery. This is required for v4 824 * filesystems to avoid leaving around buffers with NULL verifier ops, 825 * but we do it unconditionally to make sure we're always in a clean 826 * cache state after mount. 827 * 828 * Don't push in the error case because the AIL may have pending intents 829 * that aren't removed until recovery is cancelled. 830 */ 831 if (xlog_recovery_needed(log)) { 832 if (!error) { 833 xfs_log_force(mp, XFS_LOG_SYNC); 834 xfs_ail_push_all_sync(mp->m_ail); 835 } 836 xfs_notice(mp, "Ending recovery (logdev: %s)", 837 mp->m_logname ? mp->m_logname : "internal"); 838 } else { 839 xfs_info(mp, "Ending clean mount"); 840 } 841 xfs_buftarg_drain(mp->m_ddev_targp); 842 843 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 844 if (readonly) 845 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 846 847 /* Make sure the log is dead if we're returning failure. */ 848 ASSERT(!error || xlog_is_shutdown(log)); 849 850 return error; 851 } 852 853 /* 854 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 855 * the log. 856 */ 857 void 858 xfs_log_mount_cancel( 859 struct xfs_mount *mp) 860 { 861 xlog_recover_cancel(mp->m_log); 862 xfs_log_unmount(mp); 863 } 864 865 /* 866 * Flush out the iclog to disk ensuring that device caches are flushed and 867 * the iclog hits stable storage before any completion waiters are woken. 868 */ 869 static inline int 870 xlog_force_iclog( 871 struct xlog_in_core *iclog) 872 { 873 atomic_inc(&iclog->ic_refcnt); 874 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 875 if (iclog->ic_state == XLOG_STATE_ACTIVE) 876 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 877 return xlog_state_release_iclog(iclog->ic_log, iclog, 0); 878 } 879 880 /* 881 * Wait for the iclog and all prior iclogs to be written disk as required by the 882 * log force state machine. Waiting on ic_force_wait ensures iclog completions 883 * have been ordered and callbacks run before we are woken here, hence 884 * guaranteeing that all the iclogs up to this one are on stable storage. 885 */ 886 int 887 xlog_wait_on_iclog( 888 struct xlog_in_core *iclog) 889 __releases(iclog->ic_log->l_icloglock) 890 { 891 struct xlog *log = iclog->ic_log; 892 893 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 894 if (!xlog_is_shutdown(log) && 895 iclog->ic_state != XLOG_STATE_ACTIVE && 896 iclog->ic_state != XLOG_STATE_DIRTY) { 897 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 898 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 899 } else { 900 spin_unlock(&log->l_icloglock); 901 } 902 903 if (xlog_is_shutdown(log)) 904 return -EIO; 905 return 0; 906 } 907 908 /* 909 * Write out an unmount record using the ticket provided. We have to account for 910 * the data space used in the unmount ticket as this write is not done from a 911 * transaction context that has already done the accounting for us. 912 */ 913 static int 914 xlog_write_unmount_record( 915 struct xlog *log, 916 struct xlog_ticket *ticket) 917 { 918 struct xfs_unmount_log_format ulf = { 919 .magic = XLOG_UNMOUNT_TYPE, 920 }; 921 struct xfs_log_iovec reg = { 922 .i_addr = &ulf, 923 .i_len = sizeof(ulf), 924 .i_type = XLOG_REG_TYPE_UNMOUNT, 925 }; 926 struct xfs_log_vec vec = { 927 .lv_niovecs = 1, 928 .lv_iovecp = ®, 929 }; 930 931 /* account for space used by record data */ 932 ticket->t_curr_res -= sizeof(ulf); 933 934 return xlog_write(log, NULL, &vec, ticket, XLOG_UNMOUNT_TRANS); 935 } 936 937 /* 938 * Mark the filesystem clean by writing an unmount record to the head of the 939 * log. 940 */ 941 static void 942 xlog_unmount_write( 943 struct xlog *log) 944 { 945 struct xfs_mount *mp = log->l_mp; 946 struct xlog_in_core *iclog; 947 struct xlog_ticket *tic = NULL; 948 int error; 949 950 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 951 if (error) 952 goto out_err; 953 954 error = xlog_write_unmount_record(log, tic); 955 /* 956 * At this point, we're umounting anyway, so there's no point in 957 * transitioning log state to shutdown. Just continue... 958 */ 959 out_err: 960 if (error) 961 xfs_alert(mp, "%s: unmount record failed", __func__); 962 963 spin_lock(&log->l_icloglock); 964 iclog = log->l_iclog; 965 error = xlog_force_iclog(iclog); 966 xlog_wait_on_iclog(iclog); 967 968 if (tic) { 969 trace_xfs_log_umount_write(log, tic); 970 xfs_log_ticket_ungrant(log, tic); 971 } 972 } 973 974 static void 975 xfs_log_unmount_verify_iclog( 976 struct xlog *log) 977 { 978 struct xlog_in_core *iclog = log->l_iclog; 979 980 do { 981 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 982 ASSERT(iclog->ic_offset == 0); 983 } while ((iclog = iclog->ic_next) != log->l_iclog); 984 } 985 986 /* 987 * Unmount record used to have a string "Unmount filesystem--" in the 988 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 989 * We just write the magic number now since that particular field isn't 990 * currently architecture converted and "Unmount" is a bit foo. 991 * As far as I know, there weren't any dependencies on the old behaviour. 992 */ 993 static void 994 xfs_log_unmount_write( 995 struct xfs_mount *mp) 996 { 997 struct xlog *log = mp->m_log; 998 999 if (!xfs_log_writable(mp)) 1000 return; 1001 1002 xfs_log_force(mp, XFS_LOG_SYNC); 1003 1004 if (xlog_is_shutdown(log)) 1005 return; 1006 1007 /* 1008 * If we think the summary counters are bad, avoid writing the unmount 1009 * record to force log recovery at next mount, after which the summary 1010 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1011 * more details. 1012 */ 1013 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1014 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1015 xfs_alert(mp, "%s: will fix summary counters at next mount", 1016 __func__); 1017 return; 1018 } 1019 1020 xfs_log_unmount_verify_iclog(log); 1021 xlog_unmount_write(log); 1022 } 1023 1024 /* 1025 * Empty the log for unmount/freeze. 1026 * 1027 * To do this, we first need to shut down the background log work so it is not 1028 * trying to cover the log as we clean up. We then need to unpin all objects in 1029 * the log so we can then flush them out. Once they have completed their IO and 1030 * run the callbacks removing themselves from the AIL, we can cover the log. 1031 */ 1032 int 1033 xfs_log_quiesce( 1034 struct xfs_mount *mp) 1035 { 1036 /* 1037 * Clear log incompat features since we're quiescing the log. Report 1038 * failures, though it's not fatal to have a higher log feature 1039 * protection level than the log contents actually require. 1040 */ 1041 if (xfs_clear_incompat_log_features(mp)) { 1042 int error; 1043 1044 error = xfs_sync_sb(mp, false); 1045 if (error) 1046 xfs_warn(mp, 1047 "Failed to clear log incompat features on quiesce"); 1048 } 1049 1050 cancel_delayed_work_sync(&mp->m_log->l_work); 1051 xfs_log_force(mp, XFS_LOG_SYNC); 1052 1053 /* 1054 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1055 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1056 * xfs_buf_iowait() cannot be used because it was pushed with the 1057 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1058 * the IO to complete. 1059 */ 1060 xfs_ail_push_all_sync(mp->m_ail); 1061 xfs_buftarg_wait(mp->m_ddev_targp); 1062 xfs_buf_lock(mp->m_sb_bp); 1063 xfs_buf_unlock(mp->m_sb_bp); 1064 1065 return xfs_log_cover(mp); 1066 } 1067 1068 void 1069 xfs_log_clean( 1070 struct xfs_mount *mp) 1071 { 1072 xfs_log_quiesce(mp); 1073 xfs_log_unmount_write(mp); 1074 } 1075 1076 /* 1077 * Shut down and release the AIL and Log. 1078 * 1079 * During unmount, we need to ensure we flush all the dirty metadata objects 1080 * from the AIL so that the log is empty before we write the unmount record to 1081 * the log. Once this is done, we can tear down the AIL and the log. 1082 */ 1083 void 1084 xfs_log_unmount( 1085 struct xfs_mount *mp) 1086 { 1087 xfs_log_clean(mp); 1088 1089 xfs_buftarg_drain(mp->m_ddev_targp); 1090 1091 xfs_trans_ail_destroy(mp); 1092 1093 xfs_sysfs_del(&mp->m_log->l_kobj); 1094 1095 xlog_dealloc_log(mp->m_log); 1096 } 1097 1098 void 1099 xfs_log_item_init( 1100 struct xfs_mount *mp, 1101 struct xfs_log_item *item, 1102 int type, 1103 const struct xfs_item_ops *ops) 1104 { 1105 item->li_mountp = mp; 1106 item->li_ailp = mp->m_ail; 1107 item->li_type = type; 1108 item->li_ops = ops; 1109 item->li_lv = NULL; 1110 1111 INIT_LIST_HEAD(&item->li_ail); 1112 INIT_LIST_HEAD(&item->li_cil); 1113 INIT_LIST_HEAD(&item->li_bio_list); 1114 INIT_LIST_HEAD(&item->li_trans); 1115 } 1116 1117 /* 1118 * Wake up processes waiting for log space after we have moved the log tail. 1119 */ 1120 void 1121 xfs_log_space_wake( 1122 struct xfs_mount *mp) 1123 { 1124 struct xlog *log = mp->m_log; 1125 int free_bytes; 1126 1127 if (xlog_is_shutdown(log)) 1128 return; 1129 1130 if (!list_empty_careful(&log->l_write_head.waiters)) { 1131 ASSERT(!xlog_in_recovery(log)); 1132 1133 spin_lock(&log->l_write_head.lock); 1134 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1135 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1136 spin_unlock(&log->l_write_head.lock); 1137 } 1138 1139 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1140 ASSERT(!xlog_in_recovery(log)); 1141 1142 spin_lock(&log->l_reserve_head.lock); 1143 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1144 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1145 spin_unlock(&log->l_reserve_head.lock); 1146 } 1147 } 1148 1149 /* 1150 * Determine if we have a transaction that has gone to disk that needs to be 1151 * covered. To begin the transition to the idle state firstly the log needs to 1152 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1153 * we start attempting to cover the log. 1154 * 1155 * Only if we are then in a state where covering is needed, the caller is 1156 * informed that dummy transactions are required to move the log into the idle 1157 * state. 1158 * 1159 * If there are any items in the AIl or CIL, then we do not want to attempt to 1160 * cover the log as we may be in a situation where there isn't log space 1161 * available to run a dummy transaction and this can lead to deadlocks when the 1162 * tail of the log is pinned by an item that is modified in the CIL. Hence 1163 * there's no point in running a dummy transaction at this point because we 1164 * can't start trying to idle the log until both the CIL and AIL are empty. 1165 */ 1166 static bool 1167 xfs_log_need_covered( 1168 struct xfs_mount *mp) 1169 { 1170 struct xlog *log = mp->m_log; 1171 bool needed = false; 1172 1173 if (!xlog_cil_empty(log)) 1174 return false; 1175 1176 spin_lock(&log->l_icloglock); 1177 switch (log->l_covered_state) { 1178 case XLOG_STATE_COVER_DONE: 1179 case XLOG_STATE_COVER_DONE2: 1180 case XLOG_STATE_COVER_IDLE: 1181 break; 1182 case XLOG_STATE_COVER_NEED: 1183 case XLOG_STATE_COVER_NEED2: 1184 if (xfs_ail_min_lsn(log->l_ailp)) 1185 break; 1186 if (!xlog_iclogs_empty(log)) 1187 break; 1188 1189 needed = true; 1190 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1191 log->l_covered_state = XLOG_STATE_COVER_DONE; 1192 else 1193 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1194 break; 1195 default: 1196 needed = true; 1197 break; 1198 } 1199 spin_unlock(&log->l_icloglock); 1200 return needed; 1201 } 1202 1203 /* 1204 * Explicitly cover the log. This is similar to background log covering but 1205 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1206 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1207 * must all be empty. 1208 */ 1209 static int 1210 xfs_log_cover( 1211 struct xfs_mount *mp) 1212 { 1213 int error = 0; 1214 bool need_covered; 1215 1216 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1217 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1218 xlog_is_shutdown(mp->m_log)); 1219 1220 if (!xfs_log_writable(mp)) 1221 return 0; 1222 1223 /* 1224 * xfs_log_need_covered() is not idempotent because it progresses the 1225 * state machine if the log requires covering. Therefore, we must call 1226 * this function once and use the result until we've issued an sb sync. 1227 * Do so first to make that abundantly clear. 1228 * 1229 * Fall into the covering sequence if the log needs covering or the 1230 * mount has lazy superblock accounting to sync to disk. The sb sync 1231 * used for covering accumulates the in-core counters, so covering 1232 * handles this for us. 1233 */ 1234 need_covered = xfs_log_need_covered(mp); 1235 if (!need_covered && !xfs_has_lazysbcount(mp)) 1236 return 0; 1237 1238 /* 1239 * To cover the log, commit the superblock twice (at most) in 1240 * independent checkpoints. The first serves as a reference for the 1241 * tail pointer. The sync transaction and AIL push empties the AIL and 1242 * updates the in-core tail to the LSN of the first checkpoint. The 1243 * second commit updates the on-disk tail with the in-core LSN, 1244 * covering the log. Push the AIL one more time to leave it empty, as 1245 * we found it. 1246 */ 1247 do { 1248 error = xfs_sync_sb(mp, true); 1249 if (error) 1250 break; 1251 xfs_ail_push_all_sync(mp->m_ail); 1252 } while (xfs_log_need_covered(mp)); 1253 1254 return error; 1255 } 1256 1257 /* 1258 * We may be holding the log iclog lock upon entering this routine. 1259 */ 1260 xfs_lsn_t 1261 xlog_assign_tail_lsn_locked( 1262 struct xfs_mount *mp) 1263 { 1264 struct xlog *log = mp->m_log; 1265 struct xfs_log_item *lip; 1266 xfs_lsn_t tail_lsn; 1267 1268 assert_spin_locked(&mp->m_ail->ail_lock); 1269 1270 /* 1271 * To make sure we always have a valid LSN for the log tail we keep 1272 * track of the last LSN which was committed in log->l_last_sync_lsn, 1273 * and use that when the AIL was empty. 1274 */ 1275 lip = xfs_ail_min(mp->m_ail); 1276 if (lip) 1277 tail_lsn = lip->li_lsn; 1278 else 1279 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1280 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1281 atomic64_set(&log->l_tail_lsn, tail_lsn); 1282 return tail_lsn; 1283 } 1284 1285 xfs_lsn_t 1286 xlog_assign_tail_lsn( 1287 struct xfs_mount *mp) 1288 { 1289 xfs_lsn_t tail_lsn; 1290 1291 spin_lock(&mp->m_ail->ail_lock); 1292 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1293 spin_unlock(&mp->m_ail->ail_lock); 1294 1295 return tail_lsn; 1296 } 1297 1298 /* 1299 * Return the space in the log between the tail and the head. The head 1300 * is passed in the cycle/bytes formal parms. In the special case where 1301 * the reserve head has wrapped passed the tail, this calculation is no 1302 * longer valid. In this case, just return 0 which means there is no space 1303 * in the log. This works for all places where this function is called 1304 * with the reserve head. Of course, if the write head were to ever 1305 * wrap the tail, we should blow up. Rather than catch this case here, 1306 * we depend on other ASSERTions in other parts of the code. XXXmiken 1307 * 1308 * If reservation head is behind the tail, we have a problem. Warn about it, 1309 * but then treat it as if the log is empty. 1310 * 1311 * If the log is shut down, the head and tail may be invalid or out of whack, so 1312 * shortcut invalidity asserts in this case so that we don't trigger them 1313 * falsely. 1314 */ 1315 STATIC int 1316 xlog_space_left( 1317 struct xlog *log, 1318 atomic64_t *head) 1319 { 1320 int tail_bytes; 1321 int tail_cycle; 1322 int head_cycle; 1323 int head_bytes; 1324 1325 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1326 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1327 tail_bytes = BBTOB(tail_bytes); 1328 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1329 return log->l_logsize - (head_bytes - tail_bytes); 1330 if (tail_cycle + 1 < head_cycle) 1331 return 0; 1332 1333 /* Ignore potential inconsistency when shutdown. */ 1334 if (xlog_is_shutdown(log)) 1335 return log->l_logsize; 1336 1337 if (tail_cycle < head_cycle) { 1338 ASSERT(tail_cycle == (head_cycle - 1)); 1339 return tail_bytes - head_bytes; 1340 } 1341 1342 /* 1343 * The reservation head is behind the tail. In this case we just want to 1344 * return the size of the log as the amount of space left. 1345 */ 1346 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1347 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1348 tail_cycle, tail_bytes); 1349 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1350 head_cycle, head_bytes); 1351 ASSERT(0); 1352 return log->l_logsize; 1353 } 1354 1355 1356 static void 1357 xlog_ioend_work( 1358 struct work_struct *work) 1359 { 1360 struct xlog_in_core *iclog = 1361 container_of(work, struct xlog_in_core, ic_end_io_work); 1362 struct xlog *log = iclog->ic_log; 1363 int error; 1364 1365 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1366 #ifdef DEBUG 1367 /* treat writes with injected CRC errors as failed */ 1368 if (iclog->ic_fail_crc) 1369 error = -EIO; 1370 #endif 1371 1372 /* 1373 * Race to shutdown the filesystem if we see an error. 1374 */ 1375 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1376 xfs_alert(log->l_mp, "log I/O error %d", error); 1377 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1378 } 1379 1380 xlog_state_done_syncing(iclog); 1381 bio_uninit(&iclog->ic_bio); 1382 1383 /* 1384 * Drop the lock to signal that we are done. Nothing references the 1385 * iclog after this, so an unmount waiting on this lock can now tear it 1386 * down safely. As such, it is unsafe to reference the iclog after the 1387 * unlock as we could race with it being freed. 1388 */ 1389 up(&iclog->ic_sema); 1390 } 1391 1392 /* 1393 * Return size of each in-core log record buffer. 1394 * 1395 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1396 * 1397 * If the filesystem blocksize is too large, we may need to choose a 1398 * larger size since the directory code currently logs entire blocks. 1399 */ 1400 STATIC void 1401 xlog_get_iclog_buffer_size( 1402 struct xfs_mount *mp, 1403 struct xlog *log) 1404 { 1405 if (mp->m_logbufs <= 0) 1406 mp->m_logbufs = XLOG_MAX_ICLOGS; 1407 if (mp->m_logbsize <= 0) 1408 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1409 1410 log->l_iclog_bufs = mp->m_logbufs; 1411 log->l_iclog_size = mp->m_logbsize; 1412 1413 /* 1414 * # headers = size / 32k - one header holds cycles from 32k of data. 1415 */ 1416 log->l_iclog_heads = 1417 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1418 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1419 } 1420 1421 void 1422 xfs_log_work_queue( 1423 struct xfs_mount *mp) 1424 { 1425 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1426 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1427 } 1428 1429 /* 1430 * Clear the log incompat flags if we have the opportunity. 1431 * 1432 * This only happens if we're about to log the second dummy transaction as part 1433 * of covering the log and we can get the log incompat feature usage lock. 1434 */ 1435 static inline void 1436 xlog_clear_incompat( 1437 struct xlog *log) 1438 { 1439 struct xfs_mount *mp = log->l_mp; 1440 1441 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1442 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1443 return; 1444 1445 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1446 return; 1447 1448 if (!down_write_trylock(&log->l_incompat_users)) 1449 return; 1450 1451 xfs_clear_incompat_log_features(mp); 1452 up_write(&log->l_incompat_users); 1453 } 1454 1455 /* 1456 * Every sync period we need to unpin all items in the AIL and push them to 1457 * disk. If there is nothing dirty, then we might need to cover the log to 1458 * indicate that the filesystem is idle. 1459 */ 1460 static void 1461 xfs_log_worker( 1462 struct work_struct *work) 1463 { 1464 struct xlog *log = container_of(to_delayed_work(work), 1465 struct xlog, l_work); 1466 struct xfs_mount *mp = log->l_mp; 1467 1468 /* dgc: errors ignored - not fatal and nowhere to report them */ 1469 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1470 /* 1471 * Dump a transaction into the log that contains no real change. 1472 * This is needed to stamp the current tail LSN into the log 1473 * during the covering operation. 1474 * 1475 * We cannot use an inode here for this - that will push dirty 1476 * state back up into the VFS and then periodic inode flushing 1477 * will prevent log covering from making progress. Hence we 1478 * synchronously log the superblock instead to ensure the 1479 * superblock is immediately unpinned and can be written back. 1480 */ 1481 xlog_clear_incompat(log); 1482 xfs_sync_sb(mp, true); 1483 } else 1484 xfs_log_force(mp, 0); 1485 1486 /* start pushing all the metadata that is currently dirty */ 1487 xfs_ail_push_all(mp->m_ail); 1488 1489 /* queue us up again */ 1490 xfs_log_work_queue(mp); 1491 } 1492 1493 /* 1494 * This routine initializes some of the log structure for a given mount point. 1495 * Its primary purpose is to fill in enough, so recovery can occur. However, 1496 * some other stuff may be filled in too. 1497 */ 1498 STATIC struct xlog * 1499 xlog_alloc_log( 1500 struct xfs_mount *mp, 1501 struct xfs_buftarg *log_target, 1502 xfs_daddr_t blk_offset, 1503 int num_bblks) 1504 { 1505 struct xlog *log; 1506 xlog_rec_header_t *head; 1507 xlog_in_core_t **iclogp; 1508 xlog_in_core_t *iclog, *prev_iclog=NULL; 1509 int i; 1510 int error = -ENOMEM; 1511 uint log2_size = 0; 1512 1513 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1514 if (!log) { 1515 xfs_warn(mp, "Log allocation failed: No memory!"); 1516 goto out; 1517 } 1518 1519 log->l_mp = mp; 1520 log->l_targ = log_target; 1521 log->l_logsize = BBTOB(num_bblks); 1522 log->l_logBBstart = blk_offset; 1523 log->l_logBBsize = num_bblks; 1524 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1525 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1526 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1527 1528 log->l_prev_block = -1; 1529 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1530 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1531 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1532 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1533 1534 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1535 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1536 else 1537 log->l_iclog_roundoff = BBSIZE; 1538 1539 xlog_grant_head_init(&log->l_reserve_head); 1540 xlog_grant_head_init(&log->l_write_head); 1541 1542 error = -EFSCORRUPTED; 1543 if (xfs_has_sector(mp)) { 1544 log2_size = mp->m_sb.sb_logsectlog; 1545 if (log2_size < BBSHIFT) { 1546 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1547 log2_size, BBSHIFT); 1548 goto out_free_log; 1549 } 1550 1551 log2_size -= BBSHIFT; 1552 if (log2_size > mp->m_sectbb_log) { 1553 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1554 log2_size, mp->m_sectbb_log); 1555 goto out_free_log; 1556 } 1557 1558 /* for larger sector sizes, must have v2 or external log */ 1559 if (log2_size && log->l_logBBstart > 0 && 1560 !xfs_has_logv2(mp)) { 1561 xfs_warn(mp, 1562 "log sector size (0x%x) invalid for configuration.", 1563 log2_size); 1564 goto out_free_log; 1565 } 1566 } 1567 log->l_sectBBsize = 1 << log2_size; 1568 1569 init_rwsem(&log->l_incompat_users); 1570 1571 xlog_get_iclog_buffer_size(mp, log); 1572 1573 spin_lock_init(&log->l_icloglock); 1574 init_waitqueue_head(&log->l_flush_wait); 1575 1576 iclogp = &log->l_iclog; 1577 /* 1578 * The amount of memory to allocate for the iclog structure is 1579 * rather funky due to the way the structure is defined. It is 1580 * done this way so that we can use different sizes for machines 1581 * with different amounts of memory. See the definition of 1582 * xlog_in_core_t in xfs_log_priv.h for details. 1583 */ 1584 ASSERT(log->l_iclog_size >= 4096); 1585 for (i = 0; i < log->l_iclog_bufs; i++) { 1586 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1587 sizeof(struct bio_vec); 1588 1589 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1590 if (!iclog) 1591 goto out_free_iclog; 1592 1593 *iclogp = iclog; 1594 iclog->ic_prev = prev_iclog; 1595 prev_iclog = iclog; 1596 1597 iclog->ic_data = kvzalloc(log->l_iclog_size, 1598 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1599 if (!iclog->ic_data) 1600 goto out_free_iclog; 1601 #ifdef DEBUG 1602 log->l_iclog_bak[i] = &iclog->ic_header; 1603 #endif 1604 head = &iclog->ic_header; 1605 memset(head, 0, sizeof(xlog_rec_header_t)); 1606 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1607 head->h_version = cpu_to_be32( 1608 xfs_has_logv2(log->l_mp) ? 2 : 1); 1609 head->h_size = cpu_to_be32(log->l_iclog_size); 1610 /* new fields */ 1611 head->h_fmt = cpu_to_be32(XLOG_FMT); 1612 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1613 1614 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1615 iclog->ic_state = XLOG_STATE_ACTIVE; 1616 iclog->ic_log = log; 1617 atomic_set(&iclog->ic_refcnt, 0); 1618 INIT_LIST_HEAD(&iclog->ic_callbacks); 1619 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1620 1621 init_waitqueue_head(&iclog->ic_force_wait); 1622 init_waitqueue_head(&iclog->ic_write_wait); 1623 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1624 sema_init(&iclog->ic_sema, 1); 1625 1626 iclogp = &iclog->ic_next; 1627 } 1628 *iclogp = log->l_iclog; /* complete ring */ 1629 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1630 1631 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1632 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1633 WQ_HIGHPRI), 1634 0, mp->m_super->s_id); 1635 if (!log->l_ioend_workqueue) 1636 goto out_free_iclog; 1637 1638 error = xlog_cil_init(log); 1639 if (error) 1640 goto out_destroy_workqueue; 1641 return log; 1642 1643 out_destroy_workqueue: 1644 destroy_workqueue(log->l_ioend_workqueue); 1645 out_free_iclog: 1646 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1647 prev_iclog = iclog->ic_next; 1648 kmem_free(iclog->ic_data); 1649 kmem_free(iclog); 1650 if (prev_iclog == log->l_iclog) 1651 break; 1652 } 1653 out_free_log: 1654 kmem_free(log); 1655 out: 1656 return ERR_PTR(error); 1657 } /* xlog_alloc_log */ 1658 1659 /* 1660 * Compute the LSN that we'd need to push the log tail towards in order to have 1661 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1662 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1663 * log free space already meets all three thresholds, this function returns 1664 * NULLCOMMITLSN. 1665 */ 1666 xfs_lsn_t 1667 xlog_grant_push_threshold( 1668 struct xlog *log, 1669 int need_bytes) 1670 { 1671 xfs_lsn_t threshold_lsn = 0; 1672 xfs_lsn_t last_sync_lsn; 1673 int free_blocks; 1674 int free_bytes; 1675 int threshold_block; 1676 int threshold_cycle; 1677 int free_threshold; 1678 1679 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1680 1681 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1682 free_blocks = BTOBBT(free_bytes); 1683 1684 /* 1685 * Set the threshold for the minimum number of free blocks in the 1686 * log to the maximum of what the caller needs, one quarter of the 1687 * log, and 256 blocks. 1688 */ 1689 free_threshold = BTOBB(need_bytes); 1690 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1691 free_threshold = max(free_threshold, 256); 1692 if (free_blocks >= free_threshold) 1693 return NULLCOMMITLSN; 1694 1695 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1696 &threshold_block); 1697 threshold_block += free_threshold; 1698 if (threshold_block >= log->l_logBBsize) { 1699 threshold_block -= log->l_logBBsize; 1700 threshold_cycle += 1; 1701 } 1702 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1703 threshold_block); 1704 /* 1705 * Don't pass in an lsn greater than the lsn of the last 1706 * log record known to be on disk. Use a snapshot of the last sync lsn 1707 * so that it doesn't change between the compare and the set. 1708 */ 1709 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1710 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1711 threshold_lsn = last_sync_lsn; 1712 1713 return threshold_lsn; 1714 } 1715 1716 /* 1717 * Push the tail of the log if we need to do so to maintain the free log space 1718 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1719 * policy which pushes on an lsn which is further along in the log once we 1720 * reach the high water mark. In this manner, we would be creating a low water 1721 * mark. 1722 */ 1723 STATIC void 1724 xlog_grant_push_ail( 1725 struct xlog *log, 1726 int need_bytes) 1727 { 1728 xfs_lsn_t threshold_lsn; 1729 1730 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1731 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1732 return; 1733 1734 /* 1735 * Get the transaction layer to kick the dirty buffers out to 1736 * disk asynchronously. No point in trying to do this if 1737 * the filesystem is shutting down. 1738 */ 1739 xfs_ail_push(log->l_ailp, threshold_lsn); 1740 } 1741 1742 /* 1743 * Stamp cycle number in every block 1744 */ 1745 STATIC void 1746 xlog_pack_data( 1747 struct xlog *log, 1748 struct xlog_in_core *iclog, 1749 int roundoff) 1750 { 1751 int i, j, k; 1752 int size = iclog->ic_offset + roundoff; 1753 __be32 cycle_lsn; 1754 char *dp; 1755 1756 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1757 1758 dp = iclog->ic_datap; 1759 for (i = 0; i < BTOBB(size); i++) { 1760 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1761 break; 1762 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1763 *(__be32 *)dp = cycle_lsn; 1764 dp += BBSIZE; 1765 } 1766 1767 if (xfs_has_logv2(log->l_mp)) { 1768 xlog_in_core_2_t *xhdr = iclog->ic_data; 1769 1770 for ( ; i < BTOBB(size); i++) { 1771 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1772 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1773 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1774 *(__be32 *)dp = cycle_lsn; 1775 dp += BBSIZE; 1776 } 1777 1778 for (i = 1; i < log->l_iclog_heads; i++) 1779 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1780 } 1781 } 1782 1783 /* 1784 * Calculate the checksum for a log buffer. 1785 * 1786 * This is a little more complicated than it should be because the various 1787 * headers and the actual data are non-contiguous. 1788 */ 1789 __le32 1790 xlog_cksum( 1791 struct xlog *log, 1792 struct xlog_rec_header *rhead, 1793 char *dp, 1794 int size) 1795 { 1796 uint32_t crc; 1797 1798 /* first generate the crc for the record header ... */ 1799 crc = xfs_start_cksum_update((char *)rhead, 1800 sizeof(struct xlog_rec_header), 1801 offsetof(struct xlog_rec_header, h_crc)); 1802 1803 /* ... then for additional cycle data for v2 logs ... */ 1804 if (xfs_has_logv2(log->l_mp)) { 1805 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1806 int i; 1807 int xheads; 1808 1809 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1810 1811 for (i = 1; i < xheads; i++) { 1812 crc = crc32c(crc, &xhdr[i].hic_xheader, 1813 sizeof(struct xlog_rec_ext_header)); 1814 } 1815 } 1816 1817 /* ... and finally for the payload */ 1818 crc = crc32c(crc, dp, size); 1819 1820 return xfs_end_cksum(crc); 1821 } 1822 1823 static void 1824 xlog_bio_end_io( 1825 struct bio *bio) 1826 { 1827 struct xlog_in_core *iclog = bio->bi_private; 1828 1829 queue_work(iclog->ic_log->l_ioend_workqueue, 1830 &iclog->ic_end_io_work); 1831 } 1832 1833 static int 1834 xlog_map_iclog_data( 1835 struct bio *bio, 1836 void *data, 1837 size_t count) 1838 { 1839 do { 1840 struct page *page = kmem_to_page(data); 1841 unsigned int off = offset_in_page(data); 1842 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1843 1844 if (bio_add_page(bio, page, len, off) != len) 1845 return -EIO; 1846 1847 data += len; 1848 count -= len; 1849 } while (count); 1850 1851 return 0; 1852 } 1853 1854 STATIC void 1855 xlog_write_iclog( 1856 struct xlog *log, 1857 struct xlog_in_core *iclog, 1858 uint64_t bno, 1859 unsigned int count) 1860 { 1861 ASSERT(bno < log->l_logBBsize); 1862 trace_xlog_iclog_write(iclog, _RET_IP_); 1863 1864 /* 1865 * We lock the iclogbufs here so that we can serialise against I/O 1866 * completion during unmount. We might be processing a shutdown 1867 * triggered during unmount, and that can occur asynchronously to the 1868 * unmount thread, and hence we need to ensure that completes before 1869 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1870 * across the log IO to archieve that. 1871 */ 1872 down(&iclog->ic_sema); 1873 if (xlog_is_shutdown(log)) { 1874 /* 1875 * It would seem logical to return EIO here, but we rely on 1876 * the log state machine to propagate I/O errors instead of 1877 * doing it here. We kick of the state machine and unlock 1878 * the buffer manually, the code needs to be kept in sync 1879 * with the I/O completion path. 1880 */ 1881 xlog_state_done_syncing(iclog); 1882 up(&iclog->ic_sema); 1883 return; 1884 } 1885 1886 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE)); 1887 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev); 1888 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1889 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1890 iclog->ic_bio.bi_private = iclog; 1891 1892 /* 1893 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1894 * IOs coming immediately after this one. This prevents the block layer 1895 * writeback throttle from throttling log writes behind background 1896 * metadata writeback and causing priority inversions. 1897 */ 1898 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE; 1899 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1900 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1901 /* 1902 * For external log devices, we also need to flush the data 1903 * device cache first to ensure all metadata writeback covered 1904 * by the LSN in this iclog is on stable storage. This is slow, 1905 * but it *must* complete before we issue the external log IO. 1906 */ 1907 if (log->l_targ != log->l_mp->m_ddev_targp) 1908 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev); 1909 } 1910 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1911 iclog->ic_bio.bi_opf |= REQ_FUA; 1912 1913 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1914 1915 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1916 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1917 return; 1918 } 1919 if (is_vmalloc_addr(iclog->ic_data)) 1920 flush_kernel_vmap_range(iclog->ic_data, count); 1921 1922 /* 1923 * If this log buffer would straddle the end of the log we will have 1924 * to split it up into two bios, so that we can continue at the start. 1925 */ 1926 if (bno + BTOBB(count) > log->l_logBBsize) { 1927 struct bio *split; 1928 1929 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1930 GFP_NOIO, &fs_bio_set); 1931 bio_chain(split, &iclog->ic_bio); 1932 submit_bio(split); 1933 1934 /* restart at logical offset zero for the remainder */ 1935 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1936 } 1937 1938 submit_bio(&iclog->ic_bio); 1939 } 1940 1941 /* 1942 * We need to bump cycle number for the part of the iclog that is 1943 * written to the start of the log. Watch out for the header magic 1944 * number case, though. 1945 */ 1946 static void 1947 xlog_split_iclog( 1948 struct xlog *log, 1949 void *data, 1950 uint64_t bno, 1951 unsigned int count) 1952 { 1953 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1954 unsigned int i; 1955 1956 for (i = split_offset; i < count; i += BBSIZE) { 1957 uint32_t cycle = get_unaligned_be32(data + i); 1958 1959 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1960 cycle++; 1961 put_unaligned_be32(cycle, data + i); 1962 } 1963 } 1964 1965 static int 1966 xlog_calc_iclog_size( 1967 struct xlog *log, 1968 struct xlog_in_core *iclog, 1969 uint32_t *roundoff) 1970 { 1971 uint32_t count_init, count; 1972 1973 /* Add for LR header */ 1974 count_init = log->l_iclog_hsize + iclog->ic_offset; 1975 count = roundup(count_init, log->l_iclog_roundoff); 1976 1977 *roundoff = count - count_init; 1978 1979 ASSERT(count >= count_init); 1980 ASSERT(*roundoff < log->l_iclog_roundoff); 1981 return count; 1982 } 1983 1984 /* 1985 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1986 * fashion. Previously, we should have moved the current iclog 1987 * ptr in the log to point to the next available iclog. This allows further 1988 * write to continue while this code syncs out an iclog ready to go. 1989 * Before an in-core log can be written out, the data section must be scanned 1990 * to save away the 1st word of each BBSIZE block into the header. We replace 1991 * it with the current cycle count. Each BBSIZE block is tagged with the 1992 * cycle count because there in an implicit assumption that drives will 1993 * guarantee that entire 512 byte blocks get written at once. In other words, 1994 * we can't have part of a 512 byte block written and part not written. By 1995 * tagging each block, we will know which blocks are valid when recovering 1996 * after an unclean shutdown. 1997 * 1998 * This routine is single threaded on the iclog. No other thread can be in 1999 * this routine with the same iclog. Changing contents of iclog can there- 2000 * fore be done without grabbing the state machine lock. Updating the global 2001 * log will require grabbing the lock though. 2002 * 2003 * The entire log manager uses a logical block numbering scheme. Only 2004 * xlog_write_iclog knows about the fact that the log may not start with 2005 * block zero on a given device. 2006 */ 2007 STATIC void 2008 xlog_sync( 2009 struct xlog *log, 2010 struct xlog_in_core *iclog) 2011 { 2012 unsigned int count; /* byte count of bwrite */ 2013 unsigned int roundoff; /* roundoff to BB or stripe */ 2014 uint64_t bno; 2015 unsigned int size; 2016 2017 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2018 trace_xlog_iclog_sync(iclog, _RET_IP_); 2019 2020 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2021 2022 /* move grant heads by roundoff in sync */ 2023 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2024 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2025 2026 /* put cycle number in every block */ 2027 xlog_pack_data(log, iclog, roundoff); 2028 2029 /* real byte length */ 2030 size = iclog->ic_offset; 2031 if (xfs_has_logv2(log->l_mp)) 2032 size += roundoff; 2033 iclog->ic_header.h_len = cpu_to_be32(size); 2034 2035 XFS_STATS_INC(log->l_mp, xs_log_writes); 2036 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2037 2038 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2039 2040 /* Do we need to split this write into 2 parts? */ 2041 if (bno + BTOBB(count) > log->l_logBBsize) 2042 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2043 2044 /* calculcate the checksum */ 2045 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2046 iclog->ic_datap, size); 2047 /* 2048 * Intentionally corrupt the log record CRC based on the error injection 2049 * frequency, if defined. This facilitates testing log recovery in the 2050 * event of torn writes. Hence, set the IOABORT state to abort the log 2051 * write on I/O completion and shutdown the fs. The subsequent mount 2052 * detects the bad CRC and attempts to recover. 2053 */ 2054 #ifdef DEBUG 2055 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2056 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2057 iclog->ic_fail_crc = true; 2058 xfs_warn(log->l_mp, 2059 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2060 be64_to_cpu(iclog->ic_header.h_lsn)); 2061 } 2062 #endif 2063 xlog_verify_iclog(log, iclog, count); 2064 xlog_write_iclog(log, iclog, bno, count); 2065 } 2066 2067 /* 2068 * Deallocate a log structure 2069 */ 2070 STATIC void 2071 xlog_dealloc_log( 2072 struct xlog *log) 2073 { 2074 xlog_in_core_t *iclog, *next_iclog; 2075 int i; 2076 2077 xlog_cil_destroy(log); 2078 2079 /* 2080 * Cycle all the iclogbuf locks to make sure all log IO completion 2081 * is done before we tear down these buffers. 2082 */ 2083 iclog = log->l_iclog; 2084 for (i = 0; i < log->l_iclog_bufs; i++) { 2085 down(&iclog->ic_sema); 2086 up(&iclog->ic_sema); 2087 iclog = iclog->ic_next; 2088 } 2089 2090 iclog = log->l_iclog; 2091 for (i = 0; i < log->l_iclog_bufs; i++) { 2092 next_iclog = iclog->ic_next; 2093 kmem_free(iclog->ic_data); 2094 kmem_free(iclog); 2095 iclog = next_iclog; 2096 } 2097 2098 log->l_mp->m_log = NULL; 2099 destroy_workqueue(log->l_ioend_workqueue); 2100 kmem_free(log); 2101 } 2102 2103 /* 2104 * Update counters atomically now that memcpy is done. 2105 */ 2106 static inline void 2107 xlog_state_finish_copy( 2108 struct xlog *log, 2109 struct xlog_in_core *iclog, 2110 int record_cnt, 2111 int copy_bytes) 2112 { 2113 lockdep_assert_held(&log->l_icloglock); 2114 2115 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2116 iclog->ic_offset += copy_bytes; 2117 } 2118 2119 /* 2120 * print out info relating to regions written which consume 2121 * the reservation 2122 */ 2123 void 2124 xlog_print_tic_res( 2125 struct xfs_mount *mp, 2126 struct xlog_ticket *ticket) 2127 { 2128 uint i; 2129 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2130 2131 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2132 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2133 static char *res_type_str[] = { 2134 REG_TYPE_STR(BFORMAT, "bformat"), 2135 REG_TYPE_STR(BCHUNK, "bchunk"), 2136 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2137 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2138 REG_TYPE_STR(IFORMAT, "iformat"), 2139 REG_TYPE_STR(ICORE, "icore"), 2140 REG_TYPE_STR(IEXT, "iext"), 2141 REG_TYPE_STR(IBROOT, "ibroot"), 2142 REG_TYPE_STR(ILOCAL, "ilocal"), 2143 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2144 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2145 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2146 REG_TYPE_STR(QFORMAT, "qformat"), 2147 REG_TYPE_STR(DQUOT, "dquot"), 2148 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2149 REG_TYPE_STR(LRHEADER, "LR header"), 2150 REG_TYPE_STR(UNMOUNT, "unmount"), 2151 REG_TYPE_STR(COMMIT, "commit"), 2152 REG_TYPE_STR(TRANSHDR, "trans header"), 2153 REG_TYPE_STR(ICREATE, "inode create"), 2154 REG_TYPE_STR(RUI_FORMAT, "rui_format"), 2155 REG_TYPE_STR(RUD_FORMAT, "rud_format"), 2156 REG_TYPE_STR(CUI_FORMAT, "cui_format"), 2157 REG_TYPE_STR(CUD_FORMAT, "cud_format"), 2158 REG_TYPE_STR(BUI_FORMAT, "bui_format"), 2159 REG_TYPE_STR(BUD_FORMAT, "bud_format"), 2160 }; 2161 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1); 2162 #undef REG_TYPE_STR 2163 2164 xfs_warn(mp, "ticket reservation summary:"); 2165 xfs_warn(mp, " unit res = %d bytes", 2166 ticket->t_unit_res); 2167 xfs_warn(mp, " current res = %d bytes", 2168 ticket->t_curr_res); 2169 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2170 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2171 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2172 ticket->t_res_num_ophdrs, ophdr_spc); 2173 xfs_warn(mp, " ophdr + reg = %u bytes", 2174 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2175 xfs_warn(mp, " num regions = %u", 2176 ticket->t_res_num); 2177 2178 for (i = 0; i < ticket->t_res_num; i++) { 2179 uint r_type = ticket->t_res_arr[i].r_type; 2180 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2181 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2182 "bad-rtype" : res_type_str[r_type]), 2183 ticket->t_res_arr[i].r_len); 2184 } 2185 } 2186 2187 /* 2188 * Print a summary of the transaction. 2189 */ 2190 void 2191 xlog_print_trans( 2192 struct xfs_trans *tp) 2193 { 2194 struct xfs_mount *mp = tp->t_mountp; 2195 struct xfs_log_item *lip; 2196 2197 /* dump core transaction and ticket info */ 2198 xfs_warn(mp, "transaction summary:"); 2199 xfs_warn(mp, " log res = %d", tp->t_log_res); 2200 xfs_warn(mp, " log count = %d", tp->t_log_count); 2201 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2202 2203 xlog_print_tic_res(mp, tp->t_ticket); 2204 2205 /* dump each log item */ 2206 list_for_each_entry(lip, &tp->t_items, li_trans) { 2207 struct xfs_log_vec *lv = lip->li_lv; 2208 struct xfs_log_iovec *vec; 2209 int i; 2210 2211 xfs_warn(mp, "log item: "); 2212 xfs_warn(mp, " type = 0x%x", lip->li_type); 2213 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2214 if (!lv) 2215 continue; 2216 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2217 xfs_warn(mp, " size = %d", lv->lv_size); 2218 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2219 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2220 2221 /* dump each iovec for the log item */ 2222 vec = lv->lv_iovecp; 2223 for (i = 0; i < lv->lv_niovecs; i++) { 2224 int dumplen = min(vec->i_len, 32); 2225 2226 xfs_warn(mp, " iovec[%d]", i); 2227 xfs_warn(mp, " type = 0x%x", vec->i_type); 2228 xfs_warn(mp, " len = %d", vec->i_len); 2229 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2230 xfs_hex_dump(vec->i_addr, dumplen); 2231 2232 vec++; 2233 } 2234 } 2235 } 2236 2237 /* 2238 * Calculate the potential space needed by the log vector. We may need a start 2239 * record, and each region gets its own struct xlog_op_header and may need to be 2240 * double word aligned. 2241 */ 2242 static int 2243 xlog_write_calc_vec_length( 2244 struct xlog_ticket *ticket, 2245 struct xfs_log_vec *log_vector, 2246 uint optype) 2247 { 2248 struct xfs_log_vec *lv; 2249 int headers = 0; 2250 int len = 0; 2251 int i; 2252 2253 if (optype & XLOG_START_TRANS) 2254 headers++; 2255 2256 for (lv = log_vector; lv; lv = lv->lv_next) { 2257 /* we don't write ordered log vectors */ 2258 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2259 continue; 2260 2261 headers += lv->lv_niovecs; 2262 2263 for (i = 0; i < lv->lv_niovecs; i++) { 2264 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2265 2266 len += vecp->i_len; 2267 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2268 } 2269 } 2270 2271 ticket->t_res_num_ophdrs += headers; 2272 len += headers * sizeof(struct xlog_op_header); 2273 2274 return len; 2275 } 2276 2277 static void 2278 xlog_write_start_rec( 2279 struct xlog_op_header *ophdr, 2280 struct xlog_ticket *ticket) 2281 { 2282 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2283 ophdr->oh_clientid = ticket->t_clientid; 2284 ophdr->oh_len = 0; 2285 ophdr->oh_flags = XLOG_START_TRANS; 2286 ophdr->oh_res2 = 0; 2287 } 2288 2289 static xlog_op_header_t * 2290 xlog_write_setup_ophdr( 2291 struct xlog *log, 2292 struct xlog_op_header *ophdr, 2293 struct xlog_ticket *ticket, 2294 uint flags) 2295 { 2296 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2297 ophdr->oh_clientid = ticket->t_clientid; 2298 ophdr->oh_res2 = 0; 2299 2300 /* are we copying a commit or unmount record? */ 2301 ophdr->oh_flags = flags; 2302 2303 /* 2304 * We've seen logs corrupted with bad transaction client ids. This 2305 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2306 * and shut down the filesystem. 2307 */ 2308 switch (ophdr->oh_clientid) { 2309 case XFS_TRANSACTION: 2310 case XFS_VOLUME: 2311 case XFS_LOG: 2312 break; 2313 default: 2314 xfs_warn(log->l_mp, 2315 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2316 ophdr->oh_clientid, ticket); 2317 return NULL; 2318 } 2319 2320 return ophdr; 2321 } 2322 2323 /* 2324 * Set up the parameters of the region copy into the log. This has 2325 * to handle region write split across multiple log buffers - this 2326 * state is kept external to this function so that this code can 2327 * be written in an obvious, self documenting manner. 2328 */ 2329 static int 2330 xlog_write_setup_copy( 2331 struct xlog_ticket *ticket, 2332 struct xlog_op_header *ophdr, 2333 int space_available, 2334 int space_required, 2335 int *copy_off, 2336 int *copy_len, 2337 int *last_was_partial_copy, 2338 int *bytes_consumed) 2339 { 2340 int still_to_copy; 2341 2342 still_to_copy = space_required - *bytes_consumed; 2343 *copy_off = *bytes_consumed; 2344 2345 if (still_to_copy <= space_available) { 2346 /* write of region completes here */ 2347 *copy_len = still_to_copy; 2348 ophdr->oh_len = cpu_to_be32(*copy_len); 2349 if (*last_was_partial_copy) 2350 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2351 *last_was_partial_copy = 0; 2352 *bytes_consumed = 0; 2353 return 0; 2354 } 2355 2356 /* partial write of region, needs extra log op header reservation */ 2357 *copy_len = space_available; 2358 ophdr->oh_len = cpu_to_be32(*copy_len); 2359 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2360 if (*last_was_partial_copy) 2361 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2362 *bytes_consumed += *copy_len; 2363 (*last_was_partial_copy)++; 2364 2365 /* account for new log op header */ 2366 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2367 ticket->t_res_num_ophdrs++; 2368 2369 return sizeof(struct xlog_op_header); 2370 } 2371 2372 static int 2373 xlog_write_copy_finish( 2374 struct xlog *log, 2375 struct xlog_in_core *iclog, 2376 uint flags, 2377 int *record_cnt, 2378 int *data_cnt, 2379 int *partial_copy, 2380 int *partial_copy_len, 2381 int log_offset) 2382 { 2383 int error; 2384 2385 if (*partial_copy) { 2386 /* 2387 * This iclog has already been marked WANT_SYNC by 2388 * xlog_state_get_iclog_space. 2389 */ 2390 spin_lock(&log->l_icloglock); 2391 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2392 *record_cnt = 0; 2393 *data_cnt = 0; 2394 goto release_iclog; 2395 } 2396 2397 *partial_copy = 0; 2398 *partial_copy_len = 0; 2399 2400 if (iclog->ic_size - log_offset > sizeof(xlog_op_header_t)) 2401 return 0; 2402 2403 /* no more space in this iclog - push it. */ 2404 spin_lock(&log->l_icloglock); 2405 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2406 *record_cnt = 0; 2407 *data_cnt = 0; 2408 2409 if (iclog->ic_state == XLOG_STATE_ACTIVE) 2410 xlog_state_switch_iclogs(log, iclog, 0); 2411 else 2412 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 2413 xlog_is_shutdown(log)); 2414 release_iclog: 2415 error = xlog_state_release_iclog(log, iclog, 0); 2416 spin_unlock(&log->l_icloglock); 2417 return error; 2418 } 2419 2420 /* 2421 * Write some region out to in-core log 2422 * 2423 * This will be called when writing externally provided regions or when 2424 * writing out a commit record for a given transaction. 2425 * 2426 * General algorithm: 2427 * 1. Find total length of this write. This may include adding to the 2428 * lengths passed in. 2429 * 2. Check whether we violate the tickets reservation. 2430 * 3. While writing to this iclog 2431 * A. Reserve as much space in this iclog as can get 2432 * B. If this is first write, save away start lsn 2433 * C. While writing this region: 2434 * 1. If first write of transaction, write start record 2435 * 2. Write log operation header (header per region) 2436 * 3. Find out if we can fit entire region into this iclog 2437 * 4. Potentially, verify destination memcpy ptr 2438 * 5. Memcpy (partial) region 2439 * 6. If partial copy, release iclog; otherwise, continue 2440 * copying more regions into current iclog 2441 * 4. Mark want sync bit (in simulation mode) 2442 * 5. Release iclog for potential flush to on-disk log. 2443 * 2444 * ERRORS: 2445 * 1. Panic if reservation is overrun. This should never happen since 2446 * reservation amounts are generated internal to the filesystem. 2447 * NOTES: 2448 * 1. Tickets are single threaded data structures. 2449 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2450 * syncing routine. When a single log_write region needs to span 2451 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2452 * on all log operation writes which don't contain the end of the 2453 * region. The XLOG_END_TRANS bit is used for the in-core log 2454 * operation which contains the end of the continued log_write region. 2455 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2456 * we don't really know exactly how much space will be used. As a result, 2457 * we don't update ic_offset until the end when we know exactly how many 2458 * bytes have been written out. 2459 */ 2460 int 2461 xlog_write( 2462 struct xlog *log, 2463 struct xfs_cil_ctx *ctx, 2464 struct xfs_log_vec *log_vector, 2465 struct xlog_ticket *ticket, 2466 uint optype) 2467 { 2468 struct xlog_in_core *iclog = NULL; 2469 struct xfs_log_vec *lv = log_vector; 2470 struct xfs_log_iovec *vecp = lv->lv_iovecp; 2471 int index = 0; 2472 int len; 2473 int partial_copy = 0; 2474 int partial_copy_len = 0; 2475 int contwr = 0; 2476 int record_cnt = 0; 2477 int data_cnt = 0; 2478 int error = 0; 2479 2480 /* 2481 * If this is a commit or unmount transaction, we don't need a start 2482 * record to be written. We do, however, have to account for the 2483 * commit or unmount header that gets written. Hence we always have 2484 * to account for an extra xlog_op_header here. 2485 */ 2486 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2487 if (ticket->t_curr_res < 0) { 2488 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2489 "ctx ticket reservation ran out. Need to up reservation"); 2490 xlog_print_tic_res(log->l_mp, ticket); 2491 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2492 } 2493 2494 len = xlog_write_calc_vec_length(ticket, log_vector, optype); 2495 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2496 void *ptr; 2497 int log_offset; 2498 2499 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2500 &contwr, &log_offset); 2501 if (error) 2502 return error; 2503 2504 ASSERT(log_offset <= iclog->ic_size - 1); 2505 ptr = iclog->ic_datap + log_offset; 2506 2507 /* 2508 * If we have a context pointer, pass it the first iclog we are 2509 * writing to so it can record state needed for iclog write 2510 * ordering. 2511 */ 2512 if (ctx) { 2513 xlog_cil_set_ctx_write_state(ctx, iclog); 2514 ctx = NULL; 2515 } 2516 2517 /* 2518 * This loop writes out as many regions as can fit in the amount 2519 * of space which was allocated by xlog_state_get_iclog_space(). 2520 */ 2521 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2522 struct xfs_log_iovec *reg; 2523 struct xlog_op_header *ophdr; 2524 int copy_len; 2525 int copy_off; 2526 bool ordered = false; 2527 bool wrote_start_rec = false; 2528 2529 /* ordered log vectors have no regions to write */ 2530 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2531 ASSERT(lv->lv_niovecs == 0); 2532 ordered = true; 2533 goto next_lv; 2534 } 2535 2536 reg = &vecp[index]; 2537 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2538 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2539 2540 /* 2541 * Before we start formatting log vectors, we need to 2542 * write a start record. Only do this for the first 2543 * iclog we write to. 2544 */ 2545 if (optype & XLOG_START_TRANS) { 2546 xlog_write_start_rec(ptr, ticket); 2547 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2548 sizeof(struct xlog_op_header)); 2549 optype &= ~XLOG_START_TRANS; 2550 wrote_start_rec = true; 2551 } 2552 2553 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype); 2554 if (!ophdr) 2555 return -EIO; 2556 2557 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2558 sizeof(struct xlog_op_header)); 2559 2560 len += xlog_write_setup_copy(ticket, ophdr, 2561 iclog->ic_size-log_offset, 2562 reg->i_len, 2563 ©_off, ©_len, 2564 &partial_copy, 2565 &partial_copy_len); 2566 xlog_verify_dest_ptr(log, ptr); 2567 2568 /* 2569 * Copy region. 2570 * 2571 * Unmount records just log an opheader, so can have 2572 * empty payloads with no data region to copy. Hence we 2573 * only copy the payload if the vector says it has data 2574 * to copy. 2575 */ 2576 ASSERT(copy_len >= 0); 2577 if (copy_len > 0) { 2578 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2579 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2580 copy_len); 2581 } 2582 copy_len += sizeof(struct xlog_op_header); 2583 record_cnt++; 2584 if (wrote_start_rec) { 2585 copy_len += sizeof(struct xlog_op_header); 2586 record_cnt++; 2587 } 2588 data_cnt += contwr ? copy_len : 0; 2589 2590 error = xlog_write_copy_finish(log, iclog, optype, 2591 &record_cnt, &data_cnt, 2592 &partial_copy, 2593 &partial_copy_len, 2594 log_offset); 2595 if (error) 2596 return error; 2597 2598 /* 2599 * if we had a partial copy, we need to get more iclog 2600 * space but we don't want to increment the region 2601 * index because there is still more is this region to 2602 * write. 2603 * 2604 * If we completed writing this region, and we flushed 2605 * the iclog (indicated by resetting of the record 2606 * count), then we also need to get more log space. If 2607 * this was the last record, though, we are done and 2608 * can just return. 2609 */ 2610 if (partial_copy) 2611 break; 2612 2613 if (++index == lv->lv_niovecs) { 2614 next_lv: 2615 lv = lv->lv_next; 2616 index = 0; 2617 if (lv) 2618 vecp = lv->lv_iovecp; 2619 } 2620 if (record_cnt == 0 && !ordered) { 2621 if (!lv) 2622 return 0; 2623 break; 2624 } 2625 } 2626 } 2627 2628 ASSERT(len == 0); 2629 2630 spin_lock(&log->l_icloglock); 2631 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2632 error = xlog_state_release_iclog(log, iclog, 0); 2633 spin_unlock(&log->l_icloglock); 2634 2635 return error; 2636 } 2637 2638 static void 2639 xlog_state_activate_iclog( 2640 struct xlog_in_core *iclog, 2641 int *iclogs_changed) 2642 { 2643 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2644 trace_xlog_iclog_activate(iclog, _RET_IP_); 2645 2646 /* 2647 * If the number of ops in this iclog indicate it just contains the 2648 * dummy transaction, we can change state into IDLE (the second time 2649 * around). Otherwise we should change the state into NEED a dummy. 2650 * We don't need to cover the dummy. 2651 */ 2652 if (*iclogs_changed == 0 && 2653 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2654 *iclogs_changed = 1; 2655 } else { 2656 /* 2657 * We have two dirty iclogs so start over. This could also be 2658 * num of ops indicating this is not the dummy going out. 2659 */ 2660 *iclogs_changed = 2; 2661 } 2662 2663 iclog->ic_state = XLOG_STATE_ACTIVE; 2664 iclog->ic_offset = 0; 2665 iclog->ic_header.h_num_logops = 0; 2666 memset(iclog->ic_header.h_cycle_data, 0, 2667 sizeof(iclog->ic_header.h_cycle_data)); 2668 iclog->ic_header.h_lsn = 0; 2669 iclog->ic_header.h_tail_lsn = 0; 2670 } 2671 2672 /* 2673 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2674 * ACTIVE after iclog I/O has completed. 2675 */ 2676 static void 2677 xlog_state_activate_iclogs( 2678 struct xlog *log, 2679 int *iclogs_changed) 2680 { 2681 struct xlog_in_core *iclog = log->l_iclog; 2682 2683 do { 2684 if (iclog->ic_state == XLOG_STATE_DIRTY) 2685 xlog_state_activate_iclog(iclog, iclogs_changed); 2686 /* 2687 * The ordering of marking iclogs ACTIVE must be maintained, so 2688 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2689 */ 2690 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2691 break; 2692 } while ((iclog = iclog->ic_next) != log->l_iclog); 2693 } 2694 2695 static int 2696 xlog_covered_state( 2697 int prev_state, 2698 int iclogs_changed) 2699 { 2700 /* 2701 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2702 * wrote the first covering record (DONE). We go to IDLE if we just 2703 * wrote the second covering record (DONE2) and remain in IDLE until a 2704 * non-covering write occurs. 2705 */ 2706 switch (prev_state) { 2707 case XLOG_STATE_COVER_IDLE: 2708 if (iclogs_changed == 1) 2709 return XLOG_STATE_COVER_IDLE; 2710 fallthrough; 2711 case XLOG_STATE_COVER_NEED: 2712 case XLOG_STATE_COVER_NEED2: 2713 break; 2714 case XLOG_STATE_COVER_DONE: 2715 if (iclogs_changed == 1) 2716 return XLOG_STATE_COVER_NEED2; 2717 break; 2718 case XLOG_STATE_COVER_DONE2: 2719 if (iclogs_changed == 1) 2720 return XLOG_STATE_COVER_IDLE; 2721 break; 2722 default: 2723 ASSERT(0); 2724 } 2725 2726 return XLOG_STATE_COVER_NEED; 2727 } 2728 2729 STATIC void 2730 xlog_state_clean_iclog( 2731 struct xlog *log, 2732 struct xlog_in_core *dirty_iclog) 2733 { 2734 int iclogs_changed = 0; 2735 2736 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2737 2738 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2739 2740 xlog_state_activate_iclogs(log, &iclogs_changed); 2741 wake_up_all(&dirty_iclog->ic_force_wait); 2742 2743 if (iclogs_changed) { 2744 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2745 iclogs_changed); 2746 } 2747 } 2748 2749 STATIC xfs_lsn_t 2750 xlog_get_lowest_lsn( 2751 struct xlog *log) 2752 { 2753 struct xlog_in_core *iclog = log->l_iclog; 2754 xfs_lsn_t lowest_lsn = 0, lsn; 2755 2756 do { 2757 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2758 iclog->ic_state == XLOG_STATE_DIRTY) 2759 continue; 2760 2761 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2762 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2763 lowest_lsn = lsn; 2764 } while ((iclog = iclog->ic_next) != log->l_iclog); 2765 2766 return lowest_lsn; 2767 } 2768 2769 /* 2770 * Completion of a iclog IO does not imply that a transaction has completed, as 2771 * transactions can be large enough to span many iclogs. We cannot change the 2772 * tail of the log half way through a transaction as this may be the only 2773 * transaction in the log and moving the tail to point to the middle of it 2774 * will prevent recovery from finding the start of the transaction. Hence we 2775 * should only update the last_sync_lsn if this iclog contains transaction 2776 * completion callbacks on it. 2777 * 2778 * We have to do this before we drop the icloglock to ensure we are the only one 2779 * that can update it. 2780 * 2781 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2782 * the reservation grant head pushing. This is due to the fact that the push 2783 * target is bound by the current last_sync_lsn value. Hence if we have a large 2784 * amount of log space bound up in this committing transaction then the 2785 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2786 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2787 * should push the AIL to ensure the push target (and hence the grant head) is 2788 * no longer bound by the old log head location and can move forwards and make 2789 * progress again. 2790 */ 2791 static void 2792 xlog_state_set_callback( 2793 struct xlog *log, 2794 struct xlog_in_core *iclog, 2795 xfs_lsn_t header_lsn) 2796 { 2797 trace_xlog_iclog_callback(iclog, _RET_IP_); 2798 iclog->ic_state = XLOG_STATE_CALLBACK; 2799 2800 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2801 header_lsn) <= 0); 2802 2803 if (list_empty_careful(&iclog->ic_callbacks)) 2804 return; 2805 2806 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2807 xlog_grant_push_ail(log, 0); 2808 } 2809 2810 /* 2811 * Return true if we need to stop processing, false to continue to the next 2812 * iclog. The caller will need to run callbacks if the iclog is returned in the 2813 * XLOG_STATE_CALLBACK state. 2814 */ 2815 static bool 2816 xlog_state_iodone_process_iclog( 2817 struct xlog *log, 2818 struct xlog_in_core *iclog) 2819 { 2820 xfs_lsn_t lowest_lsn; 2821 xfs_lsn_t header_lsn; 2822 2823 switch (iclog->ic_state) { 2824 case XLOG_STATE_ACTIVE: 2825 case XLOG_STATE_DIRTY: 2826 /* 2827 * Skip all iclogs in the ACTIVE & DIRTY states: 2828 */ 2829 return false; 2830 case XLOG_STATE_DONE_SYNC: 2831 /* 2832 * Now that we have an iclog that is in the DONE_SYNC state, do 2833 * one more check here to see if we have chased our tail around. 2834 * If this is not the lowest lsn iclog, then we will leave it 2835 * for another completion to process. 2836 */ 2837 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2838 lowest_lsn = xlog_get_lowest_lsn(log); 2839 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2840 return false; 2841 xlog_state_set_callback(log, iclog, header_lsn); 2842 return false; 2843 default: 2844 /* 2845 * Can only perform callbacks in order. Since this iclog is not 2846 * in the DONE_SYNC state, we skip the rest and just try to 2847 * clean up. 2848 */ 2849 return true; 2850 } 2851 } 2852 2853 /* 2854 * Loop over all the iclogs, running attached callbacks on them. Return true if 2855 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2856 * to handle transient shutdown state here at all because 2857 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2858 * cleanup of the callbacks. 2859 */ 2860 static bool 2861 xlog_state_do_iclog_callbacks( 2862 struct xlog *log) 2863 __releases(&log->l_icloglock) 2864 __acquires(&log->l_icloglock) 2865 { 2866 struct xlog_in_core *first_iclog = log->l_iclog; 2867 struct xlog_in_core *iclog = first_iclog; 2868 bool ran_callback = false; 2869 2870 do { 2871 LIST_HEAD(cb_list); 2872 2873 if (xlog_state_iodone_process_iclog(log, iclog)) 2874 break; 2875 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2876 iclog = iclog->ic_next; 2877 continue; 2878 } 2879 list_splice_init(&iclog->ic_callbacks, &cb_list); 2880 spin_unlock(&log->l_icloglock); 2881 2882 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2883 xlog_cil_process_committed(&cb_list); 2884 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2885 ran_callback = true; 2886 2887 spin_lock(&log->l_icloglock); 2888 xlog_state_clean_iclog(log, iclog); 2889 iclog = iclog->ic_next; 2890 } while (iclog != first_iclog); 2891 2892 return ran_callback; 2893 } 2894 2895 2896 /* 2897 * Loop running iclog completion callbacks until there are no more iclogs in a 2898 * state that can run callbacks. 2899 */ 2900 STATIC void 2901 xlog_state_do_callback( 2902 struct xlog *log) 2903 { 2904 int flushcnt = 0; 2905 int repeats = 0; 2906 2907 spin_lock(&log->l_icloglock); 2908 while (xlog_state_do_iclog_callbacks(log)) { 2909 if (xlog_is_shutdown(log)) 2910 break; 2911 2912 if (++repeats > 5000) { 2913 flushcnt += repeats; 2914 repeats = 0; 2915 xfs_warn(log->l_mp, 2916 "%s: possible infinite loop (%d iterations)", 2917 __func__, flushcnt); 2918 } 2919 } 2920 2921 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2922 wake_up_all(&log->l_flush_wait); 2923 2924 spin_unlock(&log->l_icloglock); 2925 } 2926 2927 2928 /* 2929 * Finish transitioning this iclog to the dirty state. 2930 * 2931 * Callbacks could take time, so they are done outside the scope of the 2932 * global state machine log lock. 2933 */ 2934 STATIC void 2935 xlog_state_done_syncing( 2936 struct xlog_in_core *iclog) 2937 { 2938 struct xlog *log = iclog->ic_log; 2939 2940 spin_lock(&log->l_icloglock); 2941 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2942 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2943 2944 /* 2945 * If we got an error, either on the first buffer, or in the case of 2946 * split log writes, on the second, we shut down the file system and 2947 * no iclogs should ever be attempted to be written to disk again. 2948 */ 2949 if (!xlog_is_shutdown(log)) { 2950 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2951 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2952 } 2953 2954 /* 2955 * Someone could be sleeping prior to writing out the next 2956 * iclog buffer, we wake them all, one will get to do the 2957 * I/O, the others get to wait for the result. 2958 */ 2959 wake_up_all(&iclog->ic_write_wait); 2960 spin_unlock(&log->l_icloglock); 2961 xlog_state_do_callback(log); 2962 } 2963 2964 /* 2965 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2966 * sleep. We wait on the flush queue on the head iclog as that should be 2967 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2968 * we will wait here and all new writes will sleep until a sync completes. 2969 * 2970 * The in-core logs are used in a circular fashion. They are not used 2971 * out-of-order even when an iclog past the head is free. 2972 * 2973 * return: 2974 * * log_offset where xlog_write() can start writing into the in-core 2975 * log's data space. 2976 * * in-core log pointer to which xlog_write() should write. 2977 * * boolean indicating this is a continued write to an in-core log. 2978 * If this is the last write, then the in-core log's offset field 2979 * needs to be incremented, depending on the amount of data which 2980 * is copied. 2981 */ 2982 STATIC int 2983 xlog_state_get_iclog_space( 2984 struct xlog *log, 2985 int len, 2986 struct xlog_in_core **iclogp, 2987 struct xlog_ticket *ticket, 2988 int *continued_write, 2989 int *logoffsetp) 2990 { 2991 int log_offset; 2992 xlog_rec_header_t *head; 2993 xlog_in_core_t *iclog; 2994 2995 restart: 2996 spin_lock(&log->l_icloglock); 2997 if (xlog_is_shutdown(log)) { 2998 spin_unlock(&log->l_icloglock); 2999 return -EIO; 3000 } 3001 3002 iclog = log->l_iclog; 3003 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 3004 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 3005 3006 /* Wait for log writes to have flushed */ 3007 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 3008 goto restart; 3009 } 3010 3011 head = &iclog->ic_header; 3012 3013 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 3014 log_offset = iclog->ic_offset; 3015 3016 trace_xlog_iclog_get_space(iclog, _RET_IP_); 3017 3018 /* On the 1st write to an iclog, figure out lsn. This works 3019 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 3020 * committing to. If the offset is set, that's how many blocks 3021 * must be written. 3022 */ 3023 if (log_offset == 0) { 3024 ticket->t_curr_res -= log->l_iclog_hsize; 3025 xlog_tic_add_region(ticket, 3026 log->l_iclog_hsize, 3027 XLOG_REG_TYPE_LRHEADER); 3028 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 3029 head->h_lsn = cpu_to_be64( 3030 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 3031 ASSERT(log->l_curr_block >= 0); 3032 } 3033 3034 /* If there is enough room to write everything, then do it. Otherwise, 3035 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 3036 * bit is on, so this will get flushed out. Don't update ic_offset 3037 * until you know exactly how many bytes get copied. Therefore, wait 3038 * until later to update ic_offset. 3039 * 3040 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 3041 * can fit into remaining data section. 3042 */ 3043 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3044 int error = 0; 3045 3046 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3047 3048 /* 3049 * If we are the only one writing to this iclog, sync it to 3050 * disk. We need to do an atomic compare and decrement here to 3051 * avoid racing with concurrent atomic_dec_and_lock() calls in 3052 * xlog_state_release_iclog() when there is more than one 3053 * reference to the iclog. 3054 */ 3055 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 3056 error = xlog_state_release_iclog(log, iclog, 0); 3057 spin_unlock(&log->l_icloglock); 3058 if (error) 3059 return error; 3060 goto restart; 3061 } 3062 3063 /* Do we have enough room to write the full amount in the remainder 3064 * of this iclog? Or must we continue a write on the next iclog and 3065 * mark this iclog as completely taken? In the case where we switch 3066 * iclogs (to mark it taken), this particular iclog will release/sync 3067 * to disk in xlog_write(). 3068 */ 3069 if (len <= iclog->ic_size - iclog->ic_offset) { 3070 *continued_write = 0; 3071 iclog->ic_offset += len; 3072 } else { 3073 *continued_write = 1; 3074 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3075 } 3076 *iclogp = iclog; 3077 3078 ASSERT(iclog->ic_offset <= iclog->ic_size); 3079 spin_unlock(&log->l_icloglock); 3080 3081 *logoffsetp = log_offset; 3082 return 0; 3083 } 3084 3085 /* 3086 * The first cnt-1 times a ticket goes through here we don't need to move the 3087 * grant write head because the permanent reservation has reserved cnt times the 3088 * unit amount. Release part of current permanent unit reservation and reset 3089 * current reservation to be one units worth. Also move grant reservation head 3090 * forward. 3091 */ 3092 void 3093 xfs_log_ticket_regrant( 3094 struct xlog *log, 3095 struct xlog_ticket *ticket) 3096 { 3097 trace_xfs_log_ticket_regrant(log, ticket); 3098 3099 if (ticket->t_cnt > 0) 3100 ticket->t_cnt--; 3101 3102 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3103 ticket->t_curr_res); 3104 xlog_grant_sub_space(log, &log->l_write_head.grant, 3105 ticket->t_curr_res); 3106 ticket->t_curr_res = ticket->t_unit_res; 3107 xlog_tic_reset_res(ticket); 3108 3109 trace_xfs_log_ticket_regrant_sub(log, ticket); 3110 3111 /* just return if we still have some of the pre-reserved space */ 3112 if (!ticket->t_cnt) { 3113 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3114 ticket->t_unit_res); 3115 trace_xfs_log_ticket_regrant_exit(log, ticket); 3116 3117 ticket->t_curr_res = ticket->t_unit_res; 3118 xlog_tic_reset_res(ticket); 3119 } 3120 3121 xfs_log_ticket_put(ticket); 3122 } 3123 3124 /* 3125 * Give back the space left from a reservation. 3126 * 3127 * All the information we need to make a correct determination of space left 3128 * is present. For non-permanent reservations, things are quite easy. The 3129 * count should have been decremented to zero. We only need to deal with the 3130 * space remaining in the current reservation part of the ticket. If the 3131 * ticket contains a permanent reservation, there may be left over space which 3132 * needs to be released. A count of N means that N-1 refills of the current 3133 * reservation can be done before we need to ask for more space. The first 3134 * one goes to fill up the first current reservation. Once we run out of 3135 * space, the count will stay at zero and the only space remaining will be 3136 * in the current reservation field. 3137 */ 3138 void 3139 xfs_log_ticket_ungrant( 3140 struct xlog *log, 3141 struct xlog_ticket *ticket) 3142 { 3143 int bytes; 3144 3145 trace_xfs_log_ticket_ungrant(log, ticket); 3146 3147 if (ticket->t_cnt > 0) 3148 ticket->t_cnt--; 3149 3150 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3151 3152 /* 3153 * If this is a permanent reservation ticket, we may be able to free 3154 * up more space based on the remaining count. 3155 */ 3156 bytes = ticket->t_curr_res; 3157 if (ticket->t_cnt > 0) { 3158 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3159 bytes += ticket->t_unit_res*ticket->t_cnt; 3160 } 3161 3162 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3163 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3164 3165 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3166 3167 xfs_log_space_wake(log->l_mp); 3168 xfs_log_ticket_put(ticket); 3169 } 3170 3171 /* 3172 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3173 * the current iclog pointer to the next iclog in the ring. 3174 */ 3175 void 3176 xlog_state_switch_iclogs( 3177 struct xlog *log, 3178 struct xlog_in_core *iclog, 3179 int eventual_size) 3180 { 3181 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3182 assert_spin_locked(&log->l_icloglock); 3183 trace_xlog_iclog_switch(iclog, _RET_IP_); 3184 3185 if (!eventual_size) 3186 eventual_size = iclog->ic_offset; 3187 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3188 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3189 log->l_prev_block = log->l_curr_block; 3190 log->l_prev_cycle = log->l_curr_cycle; 3191 3192 /* roll log?: ic_offset changed later */ 3193 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3194 3195 /* Round up to next log-sunit */ 3196 if (log->l_iclog_roundoff > BBSIZE) { 3197 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3198 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3199 } 3200 3201 if (log->l_curr_block >= log->l_logBBsize) { 3202 /* 3203 * Rewind the current block before the cycle is bumped to make 3204 * sure that the combined LSN never transiently moves forward 3205 * when the log wraps to the next cycle. This is to support the 3206 * unlocked sample of these fields from xlog_valid_lsn(). Most 3207 * other cases should acquire l_icloglock. 3208 */ 3209 log->l_curr_block -= log->l_logBBsize; 3210 ASSERT(log->l_curr_block >= 0); 3211 smp_wmb(); 3212 log->l_curr_cycle++; 3213 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3214 log->l_curr_cycle++; 3215 } 3216 ASSERT(iclog == log->l_iclog); 3217 log->l_iclog = iclog->ic_next; 3218 } 3219 3220 /* 3221 * Force the iclog to disk and check if the iclog has been completed before 3222 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3223 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3224 * If completion has already occurred, tell the caller so that it can avoid an 3225 * unnecessary wait on the iclog. 3226 */ 3227 static int 3228 xlog_force_and_check_iclog( 3229 struct xlog_in_core *iclog, 3230 bool *completed) 3231 { 3232 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3233 int error; 3234 3235 *completed = false; 3236 error = xlog_force_iclog(iclog); 3237 if (error) 3238 return error; 3239 3240 /* 3241 * If the iclog has already been completed and reused the header LSN 3242 * will have been rewritten by completion 3243 */ 3244 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3245 *completed = true; 3246 return 0; 3247 } 3248 3249 /* 3250 * Write out all data in the in-core log as of this exact moment in time. 3251 * 3252 * Data may be written to the in-core log during this call. However, 3253 * we don't guarantee this data will be written out. A change from past 3254 * implementation means this routine will *not* write out zero length LRs. 3255 * 3256 * Basically, we try and perform an intelligent scan of the in-core logs. 3257 * If we determine there is no flushable data, we just return. There is no 3258 * flushable data if: 3259 * 3260 * 1. the current iclog is active and has no data; the previous iclog 3261 * is in the active or dirty state. 3262 * 2. the current iclog is drity, and the previous iclog is in the 3263 * active or dirty state. 3264 * 3265 * We may sleep if: 3266 * 3267 * 1. the current iclog is not in the active nor dirty state. 3268 * 2. the current iclog dirty, and the previous iclog is not in the 3269 * active nor dirty state. 3270 * 3. the current iclog is active, and there is another thread writing 3271 * to this particular iclog. 3272 * 4. a) the current iclog is active and has no other writers 3273 * b) when we return from flushing out this iclog, it is still 3274 * not in the active nor dirty state. 3275 */ 3276 int 3277 xfs_log_force( 3278 struct xfs_mount *mp, 3279 uint flags) 3280 { 3281 struct xlog *log = mp->m_log; 3282 struct xlog_in_core *iclog; 3283 3284 XFS_STATS_INC(mp, xs_log_force); 3285 trace_xfs_log_force(mp, 0, _RET_IP_); 3286 3287 xlog_cil_force(log); 3288 3289 spin_lock(&log->l_icloglock); 3290 if (xlog_is_shutdown(log)) 3291 goto out_error; 3292 3293 iclog = log->l_iclog; 3294 trace_xlog_iclog_force(iclog, _RET_IP_); 3295 3296 if (iclog->ic_state == XLOG_STATE_DIRTY || 3297 (iclog->ic_state == XLOG_STATE_ACTIVE && 3298 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3299 /* 3300 * If the head is dirty or (active and empty), then we need to 3301 * look at the previous iclog. 3302 * 3303 * If the previous iclog is active or dirty we are done. There 3304 * is nothing to sync out. Otherwise, we attach ourselves to the 3305 * previous iclog and go to sleep. 3306 */ 3307 iclog = iclog->ic_prev; 3308 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3309 if (atomic_read(&iclog->ic_refcnt) == 0) { 3310 /* We have exclusive access to this iclog. */ 3311 bool completed; 3312 3313 if (xlog_force_and_check_iclog(iclog, &completed)) 3314 goto out_error; 3315 3316 if (completed) 3317 goto out_unlock; 3318 } else { 3319 /* 3320 * Someone else is still writing to this iclog, so we 3321 * need to ensure that when they release the iclog it 3322 * gets synced immediately as we may be waiting on it. 3323 */ 3324 xlog_state_switch_iclogs(log, iclog, 0); 3325 } 3326 } 3327 3328 /* 3329 * The iclog we are about to wait on may contain the checkpoint pushed 3330 * by the above xlog_cil_force() call, but it may not have been pushed 3331 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3332 * are flushed when this iclog is written. 3333 */ 3334 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3335 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3336 3337 if (flags & XFS_LOG_SYNC) 3338 return xlog_wait_on_iclog(iclog); 3339 out_unlock: 3340 spin_unlock(&log->l_icloglock); 3341 return 0; 3342 out_error: 3343 spin_unlock(&log->l_icloglock); 3344 return -EIO; 3345 } 3346 3347 /* 3348 * Force the log to a specific LSN. 3349 * 3350 * If an iclog with that lsn can be found: 3351 * If it is in the DIRTY state, just return. 3352 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3353 * state and go to sleep or return. 3354 * If it is in any other state, go to sleep or return. 3355 * 3356 * Synchronous forces are implemented with a wait queue. All callers trying 3357 * to force a given lsn to disk must wait on the queue attached to the 3358 * specific in-core log. When given in-core log finally completes its write 3359 * to disk, that thread will wake up all threads waiting on the queue. 3360 */ 3361 static int 3362 xlog_force_lsn( 3363 struct xlog *log, 3364 xfs_lsn_t lsn, 3365 uint flags, 3366 int *log_flushed, 3367 bool already_slept) 3368 { 3369 struct xlog_in_core *iclog; 3370 bool completed; 3371 3372 spin_lock(&log->l_icloglock); 3373 if (xlog_is_shutdown(log)) 3374 goto out_error; 3375 3376 iclog = log->l_iclog; 3377 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3378 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3379 iclog = iclog->ic_next; 3380 if (iclog == log->l_iclog) 3381 goto out_unlock; 3382 } 3383 3384 switch (iclog->ic_state) { 3385 case XLOG_STATE_ACTIVE: 3386 /* 3387 * We sleep here if we haven't already slept (e.g. this is the 3388 * first time we've looked at the correct iclog buf) and the 3389 * buffer before us is going to be sync'ed. The reason for this 3390 * is that if we are doing sync transactions here, by waiting 3391 * for the previous I/O to complete, we can allow a few more 3392 * transactions into this iclog before we close it down. 3393 * 3394 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3395 * refcnt so we can release the log (which drops the ref count). 3396 * The state switch keeps new transaction commits from using 3397 * this buffer. When the current commits finish writing into 3398 * the buffer, the refcount will drop to zero and the buffer 3399 * will go out then. 3400 */ 3401 if (!already_slept && 3402 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3403 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3404 xlog_wait(&iclog->ic_prev->ic_write_wait, 3405 &log->l_icloglock); 3406 return -EAGAIN; 3407 } 3408 if (xlog_force_and_check_iclog(iclog, &completed)) 3409 goto out_error; 3410 if (log_flushed) 3411 *log_flushed = 1; 3412 if (completed) 3413 goto out_unlock; 3414 break; 3415 case XLOG_STATE_WANT_SYNC: 3416 /* 3417 * This iclog may contain the checkpoint pushed by the 3418 * xlog_cil_force_seq() call, but there are other writers still 3419 * accessing it so it hasn't been pushed to disk yet. Like the 3420 * ACTIVE case above, we need to make sure caches are flushed 3421 * when this iclog is written. 3422 */ 3423 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3424 break; 3425 default: 3426 /* 3427 * The entire checkpoint was written by the CIL force and is on 3428 * its way to disk already. It will be stable when it 3429 * completes, so we don't need to manipulate caches here at all. 3430 * We just need to wait for completion if necessary. 3431 */ 3432 break; 3433 } 3434 3435 if (flags & XFS_LOG_SYNC) 3436 return xlog_wait_on_iclog(iclog); 3437 out_unlock: 3438 spin_unlock(&log->l_icloglock); 3439 return 0; 3440 out_error: 3441 spin_unlock(&log->l_icloglock); 3442 return -EIO; 3443 } 3444 3445 /* 3446 * Force the log to a specific checkpoint sequence. 3447 * 3448 * First force the CIL so that all the required changes have been flushed to the 3449 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3450 * the iclog that needs to be flushed to stable storage. If the caller needs 3451 * a synchronous log force, we will wait on the iclog with the LSN returned by 3452 * xlog_cil_force_seq() to be completed. 3453 */ 3454 int 3455 xfs_log_force_seq( 3456 struct xfs_mount *mp, 3457 xfs_csn_t seq, 3458 uint flags, 3459 int *log_flushed) 3460 { 3461 struct xlog *log = mp->m_log; 3462 xfs_lsn_t lsn; 3463 int ret; 3464 ASSERT(seq != 0); 3465 3466 XFS_STATS_INC(mp, xs_log_force); 3467 trace_xfs_log_force(mp, seq, _RET_IP_); 3468 3469 lsn = xlog_cil_force_seq(log, seq); 3470 if (lsn == NULLCOMMITLSN) 3471 return 0; 3472 3473 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3474 if (ret == -EAGAIN) { 3475 XFS_STATS_INC(mp, xs_log_force_sleep); 3476 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3477 } 3478 return ret; 3479 } 3480 3481 /* 3482 * Free a used ticket when its refcount falls to zero. 3483 */ 3484 void 3485 xfs_log_ticket_put( 3486 xlog_ticket_t *ticket) 3487 { 3488 ASSERT(atomic_read(&ticket->t_ref) > 0); 3489 if (atomic_dec_and_test(&ticket->t_ref)) 3490 kmem_cache_free(xfs_log_ticket_cache, ticket); 3491 } 3492 3493 xlog_ticket_t * 3494 xfs_log_ticket_get( 3495 xlog_ticket_t *ticket) 3496 { 3497 ASSERT(atomic_read(&ticket->t_ref) > 0); 3498 atomic_inc(&ticket->t_ref); 3499 return ticket; 3500 } 3501 3502 /* 3503 * Figure out the total log space unit (in bytes) that would be 3504 * required for a log ticket. 3505 */ 3506 static int 3507 xlog_calc_unit_res( 3508 struct xlog *log, 3509 int unit_bytes) 3510 { 3511 int iclog_space; 3512 uint num_headers; 3513 3514 /* 3515 * Permanent reservations have up to 'cnt'-1 active log operations 3516 * in the log. A unit in this case is the amount of space for one 3517 * of these log operations. Normal reservations have a cnt of 1 3518 * and their unit amount is the total amount of space required. 3519 * 3520 * The following lines of code account for non-transaction data 3521 * which occupy space in the on-disk log. 3522 * 3523 * Normal form of a transaction is: 3524 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3525 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3526 * 3527 * We need to account for all the leadup data and trailer data 3528 * around the transaction data. 3529 * And then we need to account for the worst case in terms of using 3530 * more space. 3531 * The worst case will happen if: 3532 * - the placement of the transaction happens to be such that the 3533 * roundoff is at its maximum 3534 * - the transaction data is synced before the commit record is synced 3535 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3536 * Therefore the commit record is in its own Log Record. 3537 * This can happen as the commit record is called with its 3538 * own region to xlog_write(). 3539 * This then means that in the worst case, roundoff can happen for 3540 * the commit-rec as well. 3541 * The commit-rec is smaller than padding in this scenario and so it is 3542 * not added separately. 3543 */ 3544 3545 /* for trans header */ 3546 unit_bytes += sizeof(xlog_op_header_t); 3547 unit_bytes += sizeof(xfs_trans_header_t); 3548 3549 /* for start-rec */ 3550 unit_bytes += sizeof(xlog_op_header_t); 3551 3552 /* 3553 * for LR headers - the space for data in an iclog is the size minus 3554 * the space used for the headers. If we use the iclog size, then we 3555 * undercalculate the number of headers required. 3556 * 3557 * Furthermore - the addition of op headers for split-recs might 3558 * increase the space required enough to require more log and op 3559 * headers, so take that into account too. 3560 * 3561 * IMPORTANT: This reservation makes the assumption that if this 3562 * transaction is the first in an iclog and hence has the LR headers 3563 * accounted to it, then the remaining space in the iclog is 3564 * exclusively for this transaction. i.e. if the transaction is larger 3565 * than the iclog, it will be the only thing in that iclog. 3566 * Fundamentally, this means we must pass the entire log vector to 3567 * xlog_write to guarantee this. 3568 */ 3569 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3570 num_headers = howmany(unit_bytes, iclog_space); 3571 3572 /* for split-recs - ophdrs added when data split over LRs */ 3573 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3574 3575 /* add extra header reservations if we overrun */ 3576 while (!num_headers || 3577 howmany(unit_bytes, iclog_space) > num_headers) { 3578 unit_bytes += sizeof(xlog_op_header_t); 3579 num_headers++; 3580 } 3581 unit_bytes += log->l_iclog_hsize * num_headers; 3582 3583 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3584 unit_bytes += log->l_iclog_hsize; 3585 3586 /* roundoff padding for transaction data and one for commit record */ 3587 unit_bytes += 2 * log->l_iclog_roundoff; 3588 3589 return unit_bytes; 3590 } 3591 3592 int 3593 xfs_log_calc_unit_res( 3594 struct xfs_mount *mp, 3595 int unit_bytes) 3596 { 3597 return xlog_calc_unit_res(mp->m_log, unit_bytes); 3598 } 3599 3600 /* 3601 * Allocate and initialise a new log ticket. 3602 */ 3603 struct xlog_ticket * 3604 xlog_ticket_alloc( 3605 struct xlog *log, 3606 int unit_bytes, 3607 int cnt, 3608 char client, 3609 bool permanent) 3610 { 3611 struct xlog_ticket *tic; 3612 int unit_res; 3613 3614 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3615 3616 unit_res = xlog_calc_unit_res(log, unit_bytes); 3617 3618 atomic_set(&tic->t_ref, 1); 3619 tic->t_task = current; 3620 INIT_LIST_HEAD(&tic->t_queue); 3621 tic->t_unit_res = unit_res; 3622 tic->t_curr_res = unit_res; 3623 tic->t_cnt = cnt; 3624 tic->t_ocnt = cnt; 3625 tic->t_tid = prandom_u32(); 3626 tic->t_clientid = client; 3627 if (permanent) 3628 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3629 3630 xlog_tic_reset_res(tic); 3631 3632 return tic; 3633 } 3634 3635 #if defined(DEBUG) 3636 /* 3637 * Make sure that the destination ptr is within the valid data region of 3638 * one of the iclogs. This uses backup pointers stored in a different 3639 * part of the log in case we trash the log structure. 3640 */ 3641 STATIC void 3642 xlog_verify_dest_ptr( 3643 struct xlog *log, 3644 void *ptr) 3645 { 3646 int i; 3647 int good_ptr = 0; 3648 3649 for (i = 0; i < log->l_iclog_bufs; i++) { 3650 if (ptr >= log->l_iclog_bak[i] && 3651 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3652 good_ptr++; 3653 } 3654 3655 if (!good_ptr) 3656 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3657 } 3658 3659 /* 3660 * Check to make sure the grant write head didn't just over lap the tail. If 3661 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3662 * the cycles differ by exactly one and check the byte count. 3663 * 3664 * This check is run unlocked, so can give false positives. Rather than assert 3665 * on failures, use a warn-once flag and a panic tag to allow the admin to 3666 * determine if they want to panic the machine when such an error occurs. For 3667 * debug kernels this will have the same effect as using an assert but, unlinke 3668 * an assert, it can be turned off at runtime. 3669 */ 3670 STATIC void 3671 xlog_verify_grant_tail( 3672 struct xlog *log) 3673 { 3674 int tail_cycle, tail_blocks; 3675 int cycle, space; 3676 3677 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3678 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3679 if (tail_cycle != cycle) { 3680 if (cycle - 1 != tail_cycle && 3681 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3682 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3683 "%s: cycle - 1 != tail_cycle", __func__); 3684 } 3685 3686 if (space > BBTOB(tail_blocks) && 3687 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3688 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3689 "%s: space > BBTOB(tail_blocks)", __func__); 3690 } 3691 } 3692 } 3693 3694 /* check if it will fit */ 3695 STATIC void 3696 xlog_verify_tail_lsn( 3697 struct xlog *log, 3698 struct xlog_in_core *iclog) 3699 { 3700 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3701 int blocks; 3702 3703 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3704 blocks = 3705 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3706 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3707 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3708 } else { 3709 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3710 3711 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3712 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3713 3714 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3715 if (blocks < BTOBB(iclog->ic_offset) + 1) 3716 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3717 } 3718 } 3719 3720 /* 3721 * Perform a number of checks on the iclog before writing to disk. 3722 * 3723 * 1. Make sure the iclogs are still circular 3724 * 2. Make sure we have a good magic number 3725 * 3. Make sure we don't have magic numbers in the data 3726 * 4. Check fields of each log operation header for: 3727 * A. Valid client identifier 3728 * B. tid ptr value falls in valid ptr space (user space code) 3729 * C. Length in log record header is correct according to the 3730 * individual operation headers within record. 3731 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3732 * log, check the preceding blocks of the physical log to make sure all 3733 * the cycle numbers agree with the current cycle number. 3734 */ 3735 STATIC void 3736 xlog_verify_iclog( 3737 struct xlog *log, 3738 struct xlog_in_core *iclog, 3739 int count) 3740 { 3741 xlog_op_header_t *ophead; 3742 xlog_in_core_t *icptr; 3743 xlog_in_core_2_t *xhdr; 3744 void *base_ptr, *ptr, *p; 3745 ptrdiff_t field_offset; 3746 uint8_t clientid; 3747 int len, i, j, k, op_len; 3748 int idx; 3749 3750 /* check validity of iclog pointers */ 3751 spin_lock(&log->l_icloglock); 3752 icptr = log->l_iclog; 3753 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3754 ASSERT(icptr); 3755 3756 if (icptr != log->l_iclog) 3757 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3758 spin_unlock(&log->l_icloglock); 3759 3760 /* check log magic numbers */ 3761 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3762 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3763 3764 base_ptr = ptr = &iclog->ic_header; 3765 p = &iclog->ic_header; 3766 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3767 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3768 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3769 __func__); 3770 } 3771 3772 /* check fields */ 3773 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3774 base_ptr = ptr = iclog->ic_datap; 3775 ophead = ptr; 3776 xhdr = iclog->ic_data; 3777 for (i = 0; i < len; i++) { 3778 ophead = ptr; 3779 3780 /* clientid is only 1 byte */ 3781 p = &ophead->oh_clientid; 3782 field_offset = p - base_ptr; 3783 if (field_offset & 0x1ff) { 3784 clientid = ophead->oh_clientid; 3785 } else { 3786 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3787 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3788 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3789 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3790 clientid = xlog_get_client_id( 3791 xhdr[j].hic_xheader.xh_cycle_data[k]); 3792 } else { 3793 clientid = xlog_get_client_id( 3794 iclog->ic_header.h_cycle_data[idx]); 3795 } 3796 } 3797 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3798 xfs_warn(log->l_mp, 3799 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3800 __func__, clientid, ophead, 3801 (unsigned long)field_offset); 3802 3803 /* check length */ 3804 p = &ophead->oh_len; 3805 field_offset = p - base_ptr; 3806 if (field_offset & 0x1ff) { 3807 op_len = be32_to_cpu(ophead->oh_len); 3808 } else { 3809 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3810 (uintptr_t)iclog->ic_datap); 3811 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3812 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3813 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3814 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3815 } else { 3816 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3817 } 3818 } 3819 ptr += sizeof(xlog_op_header_t) + op_len; 3820 } 3821 } 3822 #endif 3823 3824 /* 3825 * Perform a forced shutdown on the log. This should be called once and once 3826 * only by the high level filesystem shutdown code to shut the log subsystem 3827 * down cleanly. 3828 * 3829 * Our main objectives here are to make sure that: 3830 * a. if the shutdown was not due to a log IO error, flush the logs to 3831 * disk. Anything modified after this is ignored. 3832 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3833 * parties to find out. Nothing new gets queued after this is done. 3834 * c. Tasks sleeping on log reservations, pinned objects and 3835 * other resources get woken up. 3836 * 3837 * Return true if the shutdown cause was a log IO error and we actually shut the 3838 * log down. 3839 */ 3840 bool 3841 xlog_force_shutdown( 3842 struct xlog *log, 3843 int shutdown_flags) 3844 { 3845 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3846 3847 /* 3848 * If this happens during log recovery then we aren't using the runtime 3849 * log mechanisms yet so there's nothing to shut down. 3850 */ 3851 if (!log || xlog_in_recovery(log)) 3852 return false; 3853 3854 ASSERT(!xlog_is_shutdown(log)); 3855 3856 /* 3857 * Flush all the completed transactions to disk before marking the log 3858 * being shut down. We need to do this first as shutting down the log 3859 * before the force will prevent the log force from flushing the iclogs 3860 * to disk. 3861 * 3862 * Re-entry due to a log IO error shutdown during the log force is 3863 * prevented by the atomicity of higher level shutdown code. 3864 */ 3865 if (!log_error) 3866 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3867 3868 /* 3869 * Atomically set the shutdown state. If the shutdown state is already 3870 * set, there someone else is performing the shutdown and so we are done 3871 * here. This should never happen because we should only ever get called 3872 * once by the first shutdown caller. 3873 * 3874 * Much of the log state machine transitions assume that shutdown state 3875 * cannot change once they hold the log->l_icloglock. Hence we need to 3876 * hold that lock here, even though we use the atomic test_and_set_bit() 3877 * operation to set the shutdown state. 3878 */ 3879 spin_lock(&log->l_icloglock); 3880 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3881 spin_unlock(&log->l_icloglock); 3882 ASSERT(0); 3883 return false; 3884 } 3885 spin_unlock(&log->l_icloglock); 3886 3887 /* 3888 * We don't want anybody waiting for log reservations after this. That 3889 * means we have to wake up everybody queued up on reserveq as well as 3890 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3891 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3892 * action is protected by the grant locks. 3893 */ 3894 xlog_grant_head_wake_all(&log->l_reserve_head); 3895 xlog_grant_head_wake_all(&log->l_write_head); 3896 3897 /* 3898 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3899 * as if the log writes were completed. The abort handling in the log 3900 * item committed callback functions will do this again under lock to 3901 * avoid races. 3902 */ 3903 spin_lock(&log->l_cilp->xc_push_lock); 3904 wake_up_all(&log->l_cilp->xc_start_wait); 3905 wake_up_all(&log->l_cilp->xc_commit_wait); 3906 spin_unlock(&log->l_cilp->xc_push_lock); 3907 xlog_state_shutdown_callbacks(log); 3908 3909 return log_error; 3910 } 3911 3912 STATIC int 3913 xlog_iclogs_empty( 3914 struct xlog *log) 3915 { 3916 xlog_in_core_t *iclog; 3917 3918 iclog = log->l_iclog; 3919 do { 3920 /* endianness does not matter here, zero is zero in 3921 * any language. 3922 */ 3923 if (iclog->ic_header.h_num_logops) 3924 return 0; 3925 iclog = iclog->ic_next; 3926 } while (iclog != log->l_iclog); 3927 return 1; 3928 } 3929 3930 /* 3931 * Verify that an LSN stamped into a piece of metadata is valid. This is 3932 * intended for use in read verifiers on v5 superblocks. 3933 */ 3934 bool 3935 xfs_log_check_lsn( 3936 struct xfs_mount *mp, 3937 xfs_lsn_t lsn) 3938 { 3939 struct xlog *log = mp->m_log; 3940 bool valid; 3941 3942 /* 3943 * norecovery mode skips mount-time log processing and unconditionally 3944 * resets the in-core LSN. We can't validate in this mode, but 3945 * modifications are not allowed anyways so just return true. 3946 */ 3947 if (xfs_has_norecovery(mp)) 3948 return true; 3949 3950 /* 3951 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3952 * handled by recovery and thus safe to ignore here. 3953 */ 3954 if (lsn == NULLCOMMITLSN) 3955 return true; 3956 3957 valid = xlog_valid_lsn(mp->m_log, lsn); 3958 3959 /* warn the user about what's gone wrong before verifier failure */ 3960 if (!valid) { 3961 spin_lock(&log->l_icloglock); 3962 xfs_warn(mp, 3963 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3964 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3965 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3966 log->l_curr_cycle, log->l_curr_block); 3967 spin_unlock(&log->l_icloglock); 3968 } 3969 3970 return valid; 3971 } 3972 3973 /* 3974 * Notify the log that we're about to start using a feature that is protected 3975 * by a log incompat feature flag. This will prevent log covering from 3976 * clearing those flags. 3977 */ 3978 void 3979 xlog_use_incompat_feat( 3980 struct xlog *log) 3981 { 3982 down_read(&log->l_incompat_users); 3983 } 3984 3985 /* Notify the log that we've finished using log incompat features. */ 3986 void 3987 xlog_drop_incompat_feat( 3988 struct xlog *log) 3989 { 3990 up_read(&log->l_incompat_users); 3991 } 3992