1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_error.h" 28 #include "xfs_trans.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_log.h" 31 #include "xfs_log_priv.h" 32 #include "xfs_log_recover.h" 33 #include "xfs_inode.h" 34 #include "xfs_trace.h" 35 #include "xfs_fsops.h" 36 #include "xfs_cksum.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 char *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return XFS_ERROR(EIO); 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return XFS_ERROR(EIO); 381 382 XFS_STATS_INC(xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 __uint8_t client, 438 bool permanent, 439 uint t_type) 440 { 441 struct xlog *log = mp->m_log; 442 struct xlog_ticket *tic; 443 int need_bytes; 444 int error = 0; 445 446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 447 448 if (XLOG_FORCED_SHUTDOWN(log)) 449 return XFS_ERROR(EIO); 450 451 XFS_STATS_INC(xs_try_logspace); 452 453 ASSERT(*ticp == NULL); 454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 455 KM_SLEEP | KM_MAYFAIL); 456 if (!tic) 457 return XFS_ERROR(ENOMEM); 458 459 tic->t_trans_type = t_type; 460 *ticp = tic; 461 462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 463 : tic->t_unit_res); 464 465 trace_xfs_log_reserve(log, tic); 466 467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 468 &need_bytes); 469 if (error) 470 goto out_error; 471 472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 474 trace_xfs_log_reserve_exit(log, tic); 475 xlog_verify_grant_tail(log); 476 return 0; 477 478 out_error: 479 /* 480 * If we are failing, make sure the ticket doesn't have any current 481 * reservations. We don't want to add this back when the ticket/ 482 * transaction gets cancelled. 483 */ 484 tic->t_curr_res = 0; 485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 486 return error; 487 } 488 489 490 /* 491 * NOTES: 492 * 493 * 1. currblock field gets updated at startup and after in-core logs 494 * marked as with WANT_SYNC. 495 */ 496 497 /* 498 * This routine is called when a user of a log manager ticket is done with 499 * the reservation. If the ticket was ever used, then a commit record for 500 * the associated transaction is written out as a log operation header with 501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 502 * a given ticket. If the ticket was one with a permanent reservation, then 503 * a few operations are done differently. Permanent reservation tickets by 504 * default don't release the reservation. They just commit the current 505 * transaction with the belief that the reservation is still needed. A flag 506 * must be passed in before permanent reservations are actually released. 507 * When these type of tickets are not released, they need to be set into 508 * the inited state again. By doing this, a start record will be written 509 * out when the next write occurs. 510 */ 511 xfs_lsn_t 512 xfs_log_done( 513 struct xfs_mount *mp, 514 struct xlog_ticket *ticket, 515 struct xlog_in_core **iclog, 516 uint flags) 517 { 518 struct xlog *log = mp->m_log; 519 xfs_lsn_t lsn = 0; 520 521 if (XLOG_FORCED_SHUTDOWN(log) || 522 /* 523 * If nothing was ever written, don't write out commit record. 524 * If we get an error, just continue and give back the log ticket. 525 */ 526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 527 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 528 lsn = (xfs_lsn_t) -1; 529 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 530 flags |= XFS_LOG_REL_PERM_RESERV; 531 } 532 } 533 534 535 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 536 (flags & XFS_LOG_REL_PERM_RESERV)) { 537 trace_xfs_log_done_nonperm(log, ticket); 538 539 /* 540 * Release ticket if not permanent reservation or a specific 541 * request has been made to release a permanent reservation. 542 */ 543 xlog_ungrant_log_space(log, ticket); 544 xfs_log_ticket_put(ticket); 545 } else { 546 trace_xfs_log_done_perm(log, ticket); 547 548 xlog_regrant_reserve_log_space(log, ticket); 549 /* If this ticket was a permanent reservation and we aren't 550 * trying to release it, reset the inited flags; so next time 551 * we write, a start record will be written out. 552 */ 553 ticket->t_flags |= XLOG_TIC_INITED; 554 } 555 556 return lsn; 557 } 558 559 /* 560 * Attaches a new iclog I/O completion callback routine during 561 * transaction commit. If the log is in error state, a non-zero 562 * return code is handed back and the caller is responsible for 563 * executing the callback at an appropriate time. 564 */ 565 int 566 xfs_log_notify( 567 struct xfs_mount *mp, 568 struct xlog_in_core *iclog, 569 xfs_log_callback_t *cb) 570 { 571 int abortflg; 572 573 spin_lock(&iclog->ic_callback_lock); 574 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 575 if (!abortflg) { 576 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 577 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 578 cb->cb_next = NULL; 579 *(iclog->ic_callback_tail) = cb; 580 iclog->ic_callback_tail = &(cb->cb_next); 581 } 582 spin_unlock(&iclog->ic_callback_lock); 583 return abortflg; 584 } 585 586 int 587 xfs_log_release_iclog( 588 struct xfs_mount *mp, 589 struct xlog_in_core *iclog) 590 { 591 if (xlog_state_release_iclog(mp->m_log, iclog)) { 592 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 593 return EIO; 594 } 595 596 return 0; 597 } 598 599 /* 600 * Mount a log filesystem 601 * 602 * mp - ubiquitous xfs mount point structure 603 * log_target - buftarg of on-disk log device 604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 605 * num_bblocks - Number of BBSIZE blocks in on-disk log 606 * 607 * Return error or zero. 608 */ 609 int 610 xfs_log_mount( 611 xfs_mount_t *mp, 612 xfs_buftarg_t *log_target, 613 xfs_daddr_t blk_offset, 614 int num_bblks) 615 { 616 int error = 0; 617 int min_logfsbs; 618 619 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 620 xfs_notice(mp, "Mounting V%d Filesystem", 621 XFS_SB_VERSION_NUM(&mp->m_sb)); 622 } else { 623 xfs_notice(mp, 624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 625 XFS_SB_VERSION_NUM(&mp->m_sb)); 626 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 627 } 628 629 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 630 if (IS_ERR(mp->m_log)) { 631 error = -PTR_ERR(mp->m_log); 632 goto out; 633 } 634 635 /* 636 * Validate the given log space and drop a critical message via syslog 637 * if the log size is too small that would lead to some unexpected 638 * situations in transaction log space reservation stage. 639 * 640 * Note: we can't just reject the mount if the validation fails. This 641 * would mean that people would have to downgrade their kernel just to 642 * remedy the situation as there is no way to grow the log (short of 643 * black magic surgery with xfs_db). 644 * 645 * We can, however, reject mounts for CRC format filesystems, as the 646 * mkfs binary being used to make the filesystem should never create a 647 * filesystem with a log that is too small. 648 */ 649 min_logfsbs = xfs_log_calc_minimum_size(mp); 650 651 if (mp->m_sb.sb_logblocks < min_logfsbs) { 652 xfs_warn(mp, 653 "Log size %d blocks too small, minimum size is %d blocks", 654 mp->m_sb.sb_logblocks, min_logfsbs); 655 error = EINVAL; 656 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 657 xfs_warn(mp, 658 "Log size %d blocks too large, maximum size is %lld blocks", 659 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 660 error = EINVAL; 661 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 662 xfs_warn(mp, 663 "log size %lld bytes too large, maximum size is %lld bytes", 664 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 665 XFS_MAX_LOG_BYTES); 666 error = EINVAL; 667 } 668 if (error) { 669 if (xfs_sb_version_hascrc(&mp->m_sb)) { 670 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 671 ASSERT(0); 672 goto out_free_log; 673 } 674 xfs_crit(mp, 675 "Log size out of supported range. Continuing onwards, but if log hangs are\n" 676 "experienced then please report this message in the bug report."); 677 } 678 679 /* 680 * Initialize the AIL now we have a log. 681 */ 682 error = xfs_trans_ail_init(mp); 683 if (error) { 684 xfs_warn(mp, "AIL initialisation failed: error %d", error); 685 goto out_free_log; 686 } 687 mp->m_log->l_ailp = mp->m_ail; 688 689 /* 690 * skip log recovery on a norecovery mount. pretend it all 691 * just worked. 692 */ 693 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 694 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 695 696 if (readonly) 697 mp->m_flags &= ~XFS_MOUNT_RDONLY; 698 699 error = xlog_recover(mp->m_log); 700 701 if (readonly) 702 mp->m_flags |= XFS_MOUNT_RDONLY; 703 if (error) { 704 xfs_warn(mp, "log mount/recovery failed: error %d", 705 error); 706 goto out_destroy_ail; 707 } 708 } 709 710 /* Normal transactions can now occur */ 711 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 712 713 /* 714 * Now the log has been fully initialised and we know were our 715 * space grant counters are, we can initialise the permanent ticket 716 * needed for delayed logging to work. 717 */ 718 xlog_cil_init_post_recovery(mp->m_log); 719 720 return 0; 721 722 out_destroy_ail: 723 xfs_trans_ail_destroy(mp); 724 out_free_log: 725 xlog_dealloc_log(mp->m_log); 726 out: 727 return error; 728 } 729 730 /* 731 * Finish the recovery of the file system. This is separate from the 732 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 733 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 734 * here. 735 * 736 * If we finish recovery successfully, start the background log work. If we are 737 * not doing recovery, then we have a RO filesystem and we don't need to start 738 * it. 739 */ 740 int 741 xfs_log_mount_finish(xfs_mount_t *mp) 742 { 743 int error = 0; 744 745 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 746 error = xlog_recover_finish(mp->m_log); 747 if (!error) 748 xfs_log_work_queue(mp); 749 } else { 750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 751 } 752 753 754 return error; 755 } 756 757 /* 758 * Final log writes as part of unmount. 759 * 760 * Mark the filesystem clean as unmount happens. Note that during relocation 761 * this routine needs to be executed as part of source-bag while the 762 * deallocation must not be done until source-end. 763 */ 764 765 /* 766 * Unmount record used to have a string "Unmount filesystem--" in the 767 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 768 * We just write the magic number now since that particular field isn't 769 * currently architecture converted and "Unmount" is a bit foo. 770 * As far as I know, there weren't any dependencies on the old behaviour. 771 */ 772 773 int 774 xfs_log_unmount_write(xfs_mount_t *mp) 775 { 776 struct xlog *log = mp->m_log; 777 xlog_in_core_t *iclog; 778 #ifdef DEBUG 779 xlog_in_core_t *first_iclog; 780 #endif 781 xlog_ticket_t *tic = NULL; 782 xfs_lsn_t lsn; 783 int error; 784 785 /* 786 * Don't write out unmount record on read-only mounts. 787 * Or, if we are doing a forced umount (typically because of IO errors). 788 */ 789 if (mp->m_flags & XFS_MOUNT_RDONLY) 790 return 0; 791 792 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 793 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 794 795 #ifdef DEBUG 796 first_iclog = iclog = log->l_iclog; 797 do { 798 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 799 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 800 ASSERT(iclog->ic_offset == 0); 801 } 802 iclog = iclog->ic_next; 803 } while (iclog != first_iclog); 804 #endif 805 if (! (XLOG_FORCED_SHUTDOWN(log))) { 806 error = xfs_log_reserve(mp, 600, 1, &tic, 807 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 808 if (!error) { 809 /* the data section must be 32 bit size aligned */ 810 struct { 811 __uint16_t magic; 812 __uint16_t pad1; 813 __uint32_t pad2; /* may as well make it 64 bits */ 814 } magic = { 815 .magic = XLOG_UNMOUNT_TYPE, 816 }; 817 struct xfs_log_iovec reg = { 818 .i_addr = &magic, 819 .i_len = sizeof(magic), 820 .i_type = XLOG_REG_TYPE_UNMOUNT, 821 }; 822 struct xfs_log_vec vec = { 823 .lv_niovecs = 1, 824 .lv_iovecp = ®, 825 }; 826 827 /* remove inited flag, and account for space used */ 828 tic->t_flags = 0; 829 tic->t_curr_res -= sizeof(magic); 830 error = xlog_write(log, &vec, tic, &lsn, 831 NULL, XLOG_UNMOUNT_TRANS); 832 /* 833 * At this point, we're umounting anyway, 834 * so there's no point in transitioning log state 835 * to IOERROR. Just continue... 836 */ 837 } 838 839 if (error) 840 xfs_alert(mp, "%s: unmount record failed", __func__); 841 842 843 spin_lock(&log->l_icloglock); 844 iclog = log->l_iclog; 845 atomic_inc(&iclog->ic_refcnt); 846 xlog_state_want_sync(log, iclog); 847 spin_unlock(&log->l_icloglock); 848 error = xlog_state_release_iclog(log, iclog); 849 850 spin_lock(&log->l_icloglock); 851 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 852 iclog->ic_state == XLOG_STATE_DIRTY)) { 853 if (!XLOG_FORCED_SHUTDOWN(log)) { 854 xlog_wait(&iclog->ic_force_wait, 855 &log->l_icloglock); 856 } else { 857 spin_unlock(&log->l_icloglock); 858 } 859 } else { 860 spin_unlock(&log->l_icloglock); 861 } 862 if (tic) { 863 trace_xfs_log_umount_write(log, tic); 864 xlog_ungrant_log_space(log, tic); 865 xfs_log_ticket_put(tic); 866 } 867 } else { 868 /* 869 * We're already in forced_shutdown mode, couldn't 870 * even attempt to write out the unmount transaction. 871 * 872 * Go through the motions of sync'ing and releasing 873 * the iclog, even though no I/O will actually happen, 874 * we need to wait for other log I/Os that may already 875 * be in progress. Do this as a separate section of 876 * code so we'll know if we ever get stuck here that 877 * we're in this odd situation of trying to unmount 878 * a file system that went into forced_shutdown as 879 * the result of an unmount.. 880 */ 881 spin_lock(&log->l_icloglock); 882 iclog = log->l_iclog; 883 atomic_inc(&iclog->ic_refcnt); 884 885 xlog_state_want_sync(log, iclog); 886 spin_unlock(&log->l_icloglock); 887 error = xlog_state_release_iclog(log, iclog); 888 889 spin_lock(&log->l_icloglock); 890 891 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 892 || iclog->ic_state == XLOG_STATE_DIRTY 893 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 894 895 xlog_wait(&iclog->ic_force_wait, 896 &log->l_icloglock); 897 } else { 898 spin_unlock(&log->l_icloglock); 899 } 900 } 901 902 return error; 903 } /* xfs_log_unmount_write */ 904 905 /* 906 * Empty the log for unmount/freeze. 907 * 908 * To do this, we first need to shut down the background log work so it is not 909 * trying to cover the log as we clean up. We then need to unpin all objects in 910 * the log so we can then flush them out. Once they have completed their IO and 911 * run the callbacks removing themselves from the AIL, we can write the unmount 912 * record. 913 */ 914 void 915 xfs_log_quiesce( 916 struct xfs_mount *mp) 917 { 918 cancel_delayed_work_sync(&mp->m_log->l_work); 919 xfs_log_force(mp, XFS_LOG_SYNC); 920 921 /* 922 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 923 * will push it, xfs_wait_buftarg() will not wait for it. Further, 924 * xfs_buf_iowait() cannot be used because it was pushed with the 925 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 926 * the IO to complete. 927 */ 928 xfs_ail_push_all_sync(mp->m_ail); 929 xfs_wait_buftarg(mp->m_ddev_targp); 930 xfs_buf_lock(mp->m_sb_bp); 931 xfs_buf_unlock(mp->m_sb_bp); 932 933 xfs_log_unmount_write(mp); 934 } 935 936 /* 937 * Shut down and release the AIL and Log. 938 * 939 * During unmount, we need to ensure we flush all the dirty metadata objects 940 * from the AIL so that the log is empty before we write the unmount record to 941 * the log. Once this is done, we can tear down the AIL and the log. 942 */ 943 void 944 xfs_log_unmount( 945 struct xfs_mount *mp) 946 { 947 xfs_log_quiesce(mp); 948 949 xfs_trans_ail_destroy(mp); 950 xlog_dealloc_log(mp->m_log); 951 } 952 953 void 954 xfs_log_item_init( 955 struct xfs_mount *mp, 956 struct xfs_log_item *item, 957 int type, 958 const struct xfs_item_ops *ops) 959 { 960 item->li_mountp = mp; 961 item->li_ailp = mp->m_ail; 962 item->li_type = type; 963 item->li_ops = ops; 964 item->li_lv = NULL; 965 966 INIT_LIST_HEAD(&item->li_ail); 967 INIT_LIST_HEAD(&item->li_cil); 968 } 969 970 /* 971 * Wake up processes waiting for log space after we have moved the log tail. 972 */ 973 void 974 xfs_log_space_wake( 975 struct xfs_mount *mp) 976 { 977 struct xlog *log = mp->m_log; 978 int free_bytes; 979 980 if (XLOG_FORCED_SHUTDOWN(log)) 981 return; 982 983 if (!list_empty_careful(&log->l_write_head.waiters)) { 984 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 985 986 spin_lock(&log->l_write_head.lock); 987 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 988 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 989 spin_unlock(&log->l_write_head.lock); 990 } 991 992 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 993 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 994 995 spin_lock(&log->l_reserve_head.lock); 996 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 997 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 998 spin_unlock(&log->l_reserve_head.lock); 999 } 1000 } 1001 1002 /* 1003 * Determine if we have a transaction that has gone to disk that needs to be 1004 * covered. To begin the transition to the idle state firstly the log needs to 1005 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1006 * we start attempting to cover the log. 1007 * 1008 * Only if we are then in a state where covering is needed, the caller is 1009 * informed that dummy transactions are required to move the log into the idle 1010 * state. 1011 * 1012 * If there are any items in the AIl or CIL, then we do not want to attempt to 1013 * cover the log as we may be in a situation where there isn't log space 1014 * available to run a dummy transaction and this can lead to deadlocks when the 1015 * tail of the log is pinned by an item that is modified in the CIL. Hence 1016 * there's no point in running a dummy transaction at this point because we 1017 * can't start trying to idle the log until both the CIL and AIL are empty. 1018 */ 1019 int 1020 xfs_log_need_covered(xfs_mount_t *mp) 1021 { 1022 struct xlog *log = mp->m_log; 1023 int needed = 0; 1024 1025 if (!xfs_fs_writable(mp)) 1026 return 0; 1027 1028 if (!xlog_cil_empty(log)) 1029 return 0; 1030 1031 spin_lock(&log->l_icloglock); 1032 switch (log->l_covered_state) { 1033 case XLOG_STATE_COVER_DONE: 1034 case XLOG_STATE_COVER_DONE2: 1035 case XLOG_STATE_COVER_IDLE: 1036 break; 1037 case XLOG_STATE_COVER_NEED: 1038 case XLOG_STATE_COVER_NEED2: 1039 if (xfs_ail_min_lsn(log->l_ailp)) 1040 break; 1041 if (!xlog_iclogs_empty(log)) 1042 break; 1043 1044 needed = 1; 1045 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1046 log->l_covered_state = XLOG_STATE_COVER_DONE; 1047 else 1048 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1049 break; 1050 default: 1051 needed = 1; 1052 break; 1053 } 1054 spin_unlock(&log->l_icloglock); 1055 return needed; 1056 } 1057 1058 /* 1059 * We may be holding the log iclog lock upon entering this routine. 1060 */ 1061 xfs_lsn_t 1062 xlog_assign_tail_lsn_locked( 1063 struct xfs_mount *mp) 1064 { 1065 struct xlog *log = mp->m_log; 1066 struct xfs_log_item *lip; 1067 xfs_lsn_t tail_lsn; 1068 1069 assert_spin_locked(&mp->m_ail->xa_lock); 1070 1071 /* 1072 * To make sure we always have a valid LSN for the log tail we keep 1073 * track of the last LSN which was committed in log->l_last_sync_lsn, 1074 * and use that when the AIL was empty. 1075 */ 1076 lip = xfs_ail_min(mp->m_ail); 1077 if (lip) 1078 tail_lsn = lip->li_lsn; 1079 else 1080 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1081 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1082 atomic64_set(&log->l_tail_lsn, tail_lsn); 1083 return tail_lsn; 1084 } 1085 1086 xfs_lsn_t 1087 xlog_assign_tail_lsn( 1088 struct xfs_mount *mp) 1089 { 1090 xfs_lsn_t tail_lsn; 1091 1092 spin_lock(&mp->m_ail->xa_lock); 1093 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1094 spin_unlock(&mp->m_ail->xa_lock); 1095 1096 return tail_lsn; 1097 } 1098 1099 /* 1100 * Return the space in the log between the tail and the head. The head 1101 * is passed in the cycle/bytes formal parms. In the special case where 1102 * the reserve head has wrapped passed the tail, this calculation is no 1103 * longer valid. In this case, just return 0 which means there is no space 1104 * in the log. This works for all places where this function is called 1105 * with the reserve head. Of course, if the write head were to ever 1106 * wrap the tail, we should blow up. Rather than catch this case here, 1107 * we depend on other ASSERTions in other parts of the code. XXXmiken 1108 * 1109 * This code also handles the case where the reservation head is behind 1110 * the tail. The details of this case are described below, but the end 1111 * result is that we return the size of the log as the amount of space left. 1112 */ 1113 STATIC int 1114 xlog_space_left( 1115 struct xlog *log, 1116 atomic64_t *head) 1117 { 1118 int free_bytes; 1119 int tail_bytes; 1120 int tail_cycle; 1121 int head_cycle; 1122 int head_bytes; 1123 1124 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1125 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1126 tail_bytes = BBTOB(tail_bytes); 1127 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1128 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1129 else if (tail_cycle + 1 < head_cycle) 1130 return 0; 1131 else if (tail_cycle < head_cycle) { 1132 ASSERT(tail_cycle == (head_cycle - 1)); 1133 free_bytes = tail_bytes - head_bytes; 1134 } else { 1135 /* 1136 * The reservation head is behind the tail. 1137 * In this case we just want to return the size of the 1138 * log as the amount of space left. 1139 */ 1140 xfs_alert(log->l_mp, 1141 "xlog_space_left: head behind tail\n" 1142 " tail_cycle = %d, tail_bytes = %d\n" 1143 " GH cycle = %d, GH bytes = %d", 1144 tail_cycle, tail_bytes, head_cycle, head_bytes); 1145 ASSERT(0); 1146 free_bytes = log->l_logsize; 1147 } 1148 return free_bytes; 1149 } 1150 1151 1152 /* 1153 * Log function which is called when an io completes. 1154 * 1155 * The log manager needs its own routine, in order to control what 1156 * happens with the buffer after the write completes. 1157 */ 1158 void 1159 xlog_iodone(xfs_buf_t *bp) 1160 { 1161 struct xlog_in_core *iclog = bp->b_fspriv; 1162 struct xlog *l = iclog->ic_log; 1163 int aborted = 0; 1164 1165 /* 1166 * Race to shutdown the filesystem if we see an error. 1167 */ 1168 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, 1169 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1170 xfs_buf_ioerror_alert(bp, __func__); 1171 xfs_buf_stale(bp); 1172 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1173 /* 1174 * This flag will be propagated to the trans-committed 1175 * callback routines to let them know that the log-commit 1176 * didn't succeed. 1177 */ 1178 aborted = XFS_LI_ABORTED; 1179 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1180 aborted = XFS_LI_ABORTED; 1181 } 1182 1183 /* log I/O is always issued ASYNC */ 1184 ASSERT(XFS_BUF_ISASYNC(bp)); 1185 xlog_state_done_syncing(iclog, aborted); 1186 1187 /* 1188 * drop the buffer lock now that we are done. Nothing references 1189 * the buffer after this, so an unmount waiting on this lock can now 1190 * tear it down safely. As such, it is unsafe to reference the buffer 1191 * (bp) after the unlock as we could race with it being freed. 1192 */ 1193 xfs_buf_unlock(bp); 1194 } 1195 1196 /* 1197 * Return size of each in-core log record buffer. 1198 * 1199 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1200 * 1201 * If the filesystem blocksize is too large, we may need to choose a 1202 * larger size since the directory code currently logs entire blocks. 1203 */ 1204 1205 STATIC void 1206 xlog_get_iclog_buffer_size( 1207 struct xfs_mount *mp, 1208 struct xlog *log) 1209 { 1210 int size; 1211 int xhdrs; 1212 1213 if (mp->m_logbufs <= 0) 1214 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1215 else 1216 log->l_iclog_bufs = mp->m_logbufs; 1217 1218 /* 1219 * Buffer size passed in from mount system call. 1220 */ 1221 if (mp->m_logbsize > 0) { 1222 size = log->l_iclog_size = mp->m_logbsize; 1223 log->l_iclog_size_log = 0; 1224 while (size != 1) { 1225 log->l_iclog_size_log++; 1226 size >>= 1; 1227 } 1228 1229 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1230 /* # headers = size / 32k 1231 * one header holds cycles from 32k of data 1232 */ 1233 1234 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1235 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1236 xhdrs++; 1237 log->l_iclog_hsize = xhdrs << BBSHIFT; 1238 log->l_iclog_heads = xhdrs; 1239 } else { 1240 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1241 log->l_iclog_hsize = BBSIZE; 1242 log->l_iclog_heads = 1; 1243 } 1244 goto done; 1245 } 1246 1247 /* All machines use 32kB buffers by default. */ 1248 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1249 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1250 1251 /* the default log size is 16k or 32k which is one header sector */ 1252 log->l_iclog_hsize = BBSIZE; 1253 log->l_iclog_heads = 1; 1254 1255 done: 1256 /* are we being asked to make the sizes selected above visible? */ 1257 if (mp->m_logbufs == 0) 1258 mp->m_logbufs = log->l_iclog_bufs; 1259 if (mp->m_logbsize == 0) 1260 mp->m_logbsize = log->l_iclog_size; 1261 } /* xlog_get_iclog_buffer_size */ 1262 1263 1264 void 1265 xfs_log_work_queue( 1266 struct xfs_mount *mp) 1267 { 1268 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1269 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1270 } 1271 1272 /* 1273 * Every sync period we need to unpin all items in the AIL and push them to 1274 * disk. If there is nothing dirty, then we might need to cover the log to 1275 * indicate that the filesystem is idle. 1276 */ 1277 void 1278 xfs_log_worker( 1279 struct work_struct *work) 1280 { 1281 struct xlog *log = container_of(to_delayed_work(work), 1282 struct xlog, l_work); 1283 struct xfs_mount *mp = log->l_mp; 1284 1285 /* dgc: errors ignored - not fatal and nowhere to report them */ 1286 if (xfs_log_need_covered(mp)) 1287 xfs_fs_log_dummy(mp); 1288 else 1289 xfs_log_force(mp, 0); 1290 1291 /* start pushing all the metadata that is currently dirty */ 1292 xfs_ail_push_all(mp->m_ail); 1293 1294 /* queue us up again */ 1295 xfs_log_work_queue(mp); 1296 } 1297 1298 /* 1299 * This routine initializes some of the log structure for a given mount point. 1300 * Its primary purpose is to fill in enough, so recovery can occur. However, 1301 * some other stuff may be filled in too. 1302 */ 1303 STATIC struct xlog * 1304 xlog_alloc_log( 1305 struct xfs_mount *mp, 1306 struct xfs_buftarg *log_target, 1307 xfs_daddr_t blk_offset, 1308 int num_bblks) 1309 { 1310 struct xlog *log; 1311 xlog_rec_header_t *head; 1312 xlog_in_core_t **iclogp; 1313 xlog_in_core_t *iclog, *prev_iclog=NULL; 1314 xfs_buf_t *bp; 1315 int i; 1316 int error = ENOMEM; 1317 uint log2_size = 0; 1318 1319 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1320 if (!log) { 1321 xfs_warn(mp, "Log allocation failed: No memory!"); 1322 goto out; 1323 } 1324 1325 log->l_mp = mp; 1326 log->l_targ = log_target; 1327 log->l_logsize = BBTOB(num_bblks); 1328 log->l_logBBstart = blk_offset; 1329 log->l_logBBsize = num_bblks; 1330 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1331 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1332 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1333 1334 log->l_prev_block = -1; 1335 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1336 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1337 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1338 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1339 1340 xlog_grant_head_init(&log->l_reserve_head); 1341 xlog_grant_head_init(&log->l_write_head); 1342 1343 error = EFSCORRUPTED; 1344 if (xfs_sb_version_hassector(&mp->m_sb)) { 1345 log2_size = mp->m_sb.sb_logsectlog; 1346 if (log2_size < BBSHIFT) { 1347 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1348 log2_size, BBSHIFT); 1349 goto out_free_log; 1350 } 1351 1352 log2_size -= BBSHIFT; 1353 if (log2_size > mp->m_sectbb_log) { 1354 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1355 log2_size, mp->m_sectbb_log); 1356 goto out_free_log; 1357 } 1358 1359 /* for larger sector sizes, must have v2 or external log */ 1360 if (log2_size && log->l_logBBstart > 0 && 1361 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1362 xfs_warn(mp, 1363 "log sector size (0x%x) invalid for configuration.", 1364 log2_size); 1365 goto out_free_log; 1366 } 1367 } 1368 log->l_sectBBsize = 1 << log2_size; 1369 1370 xlog_get_iclog_buffer_size(mp, log); 1371 1372 error = ENOMEM; 1373 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0); 1374 if (!bp) 1375 goto out_free_log; 1376 1377 /* 1378 * The iclogbuf buffer locks are held over IO but we are not going to do 1379 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1380 * when appropriately. 1381 */ 1382 ASSERT(xfs_buf_islocked(bp)); 1383 xfs_buf_unlock(bp); 1384 1385 bp->b_iodone = xlog_iodone; 1386 log->l_xbuf = bp; 1387 1388 spin_lock_init(&log->l_icloglock); 1389 init_waitqueue_head(&log->l_flush_wait); 1390 1391 iclogp = &log->l_iclog; 1392 /* 1393 * The amount of memory to allocate for the iclog structure is 1394 * rather funky due to the way the structure is defined. It is 1395 * done this way so that we can use different sizes for machines 1396 * with different amounts of memory. See the definition of 1397 * xlog_in_core_t in xfs_log_priv.h for details. 1398 */ 1399 ASSERT(log->l_iclog_size >= 4096); 1400 for (i=0; i < log->l_iclog_bufs; i++) { 1401 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1402 if (!*iclogp) 1403 goto out_free_iclog; 1404 1405 iclog = *iclogp; 1406 iclog->ic_prev = prev_iclog; 1407 prev_iclog = iclog; 1408 1409 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1410 BTOBB(log->l_iclog_size), 0); 1411 if (!bp) 1412 goto out_free_iclog; 1413 1414 ASSERT(xfs_buf_islocked(bp)); 1415 xfs_buf_unlock(bp); 1416 1417 bp->b_iodone = xlog_iodone; 1418 iclog->ic_bp = bp; 1419 iclog->ic_data = bp->b_addr; 1420 #ifdef DEBUG 1421 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1422 #endif 1423 head = &iclog->ic_header; 1424 memset(head, 0, sizeof(xlog_rec_header_t)); 1425 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1426 head->h_version = cpu_to_be32( 1427 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1428 head->h_size = cpu_to_be32(log->l_iclog_size); 1429 /* new fields */ 1430 head->h_fmt = cpu_to_be32(XLOG_FMT); 1431 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1432 1433 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1434 iclog->ic_state = XLOG_STATE_ACTIVE; 1435 iclog->ic_log = log; 1436 atomic_set(&iclog->ic_refcnt, 0); 1437 spin_lock_init(&iclog->ic_callback_lock); 1438 iclog->ic_callback_tail = &(iclog->ic_callback); 1439 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1440 1441 init_waitqueue_head(&iclog->ic_force_wait); 1442 init_waitqueue_head(&iclog->ic_write_wait); 1443 1444 iclogp = &iclog->ic_next; 1445 } 1446 *iclogp = log->l_iclog; /* complete ring */ 1447 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1448 1449 error = xlog_cil_init(log); 1450 if (error) 1451 goto out_free_iclog; 1452 return log; 1453 1454 out_free_iclog: 1455 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1456 prev_iclog = iclog->ic_next; 1457 if (iclog->ic_bp) 1458 xfs_buf_free(iclog->ic_bp); 1459 kmem_free(iclog); 1460 } 1461 spinlock_destroy(&log->l_icloglock); 1462 xfs_buf_free(log->l_xbuf); 1463 out_free_log: 1464 kmem_free(log); 1465 out: 1466 return ERR_PTR(-error); 1467 } /* xlog_alloc_log */ 1468 1469 1470 /* 1471 * Write out the commit record of a transaction associated with the given 1472 * ticket. Return the lsn of the commit record. 1473 */ 1474 STATIC int 1475 xlog_commit_record( 1476 struct xlog *log, 1477 struct xlog_ticket *ticket, 1478 struct xlog_in_core **iclog, 1479 xfs_lsn_t *commitlsnp) 1480 { 1481 struct xfs_mount *mp = log->l_mp; 1482 int error; 1483 struct xfs_log_iovec reg = { 1484 .i_addr = NULL, 1485 .i_len = 0, 1486 .i_type = XLOG_REG_TYPE_COMMIT, 1487 }; 1488 struct xfs_log_vec vec = { 1489 .lv_niovecs = 1, 1490 .lv_iovecp = ®, 1491 }; 1492 1493 ASSERT_ALWAYS(iclog); 1494 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1495 XLOG_COMMIT_TRANS); 1496 if (error) 1497 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1498 return error; 1499 } 1500 1501 /* 1502 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1503 * log space. This code pushes on the lsn which would supposedly free up 1504 * the 25% which we want to leave free. We may need to adopt a policy which 1505 * pushes on an lsn which is further along in the log once we reach the high 1506 * water mark. In this manner, we would be creating a low water mark. 1507 */ 1508 STATIC void 1509 xlog_grant_push_ail( 1510 struct xlog *log, 1511 int need_bytes) 1512 { 1513 xfs_lsn_t threshold_lsn = 0; 1514 xfs_lsn_t last_sync_lsn; 1515 int free_blocks; 1516 int free_bytes; 1517 int threshold_block; 1518 int threshold_cycle; 1519 int free_threshold; 1520 1521 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1522 1523 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1524 free_blocks = BTOBBT(free_bytes); 1525 1526 /* 1527 * Set the threshold for the minimum number of free blocks in the 1528 * log to the maximum of what the caller needs, one quarter of the 1529 * log, and 256 blocks. 1530 */ 1531 free_threshold = BTOBB(need_bytes); 1532 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1533 free_threshold = MAX(free_threshold, 256); 1534 if (free_blocks >= free_threshold) 1535 return; 1536 1537 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1538 &threshold_block); 1539 threshold_block += free_threshold; 1540 if (threshold_block >= log->l_logBBsize) { 1541 threshold_block -= log->l_logBBsize; 1542 threshold_cycle += 1; 1543 } 1544 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1545 threshold_block); 1546 /* 1547 * Don't pass in an lsn greater than the lsn of the last 1548 * log record known to be on disk. Use a snapshot of the last sync lsn 1549 * so that it doesn't change between the compare and the set. 1550 */ 1551 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1552 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1553 threshold_lsn = last_sync_lsn; 1554 1555 /* 1556 * Get the transaction layer to kick the dirty buffers out to 1557 * disk asynchronously. No point in trying to do this if 1558 * the filesystem is shutting down. 1559 */ 1560 if (!XLOG_FORCED_SHUTDOWN(log)) 1561 xfs_ail_push(log->l_ailp, threshold_lsn); 1562 } 1563 1564 /* 1565 * Stamp cycle number in every block 1566 */ 1567 STATIC void 1568 xlog_pack_data( 1569 struct xlog *log, 1570 struct xlog_in_core *iclog, 1571 int roundoff) 1572 { 1573 int i, j, k; 1574 int size = iclog->ic_offset + roundoff; 1575 __be32 cycle_lsn; 1576 xfs_caddr_t dp; 1577 1578 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1579 1580 dp = iclog->ic_datap; 1581 for (i = 0; i < BTOBB(size); i++) { 1582 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1583 break; 1584 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1585 *(__be32 *)dp = cycle_lsn; 1586 dp += BBSIZE; 1587 } 1588 1589 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1590 xlog_in_core_2_t *xhdr = iclog->ic_data; 1591 1592 for ( ; i < BTOBB(size); i++) { 1593 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1594 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1595 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1596 *(__be32 *)dp = cycle_lsn; 1597 dp += BBSIZE; 1598 } 1599 1600 for (i = 1; i < log->l_iclog_heads; i++) 1601 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1602 } 1603 } 1604 1605 /* 1606 * Calculate the checksum for a log buffer. 1607 * 1608 * This is a little more complicated than it should be because the various 1609 * headers and the actual data are non-contiguous. 1610 */ 1611 __le32 1612 xlog_cksum( 1613 struct xlog *log, 1614 struct xlog_rec_header *rhead, 1615 char *dp, 1616 int size) 1617 { 1618 __uint32_t crc; 1619 1620 /* first generate the crc for the record header ... */ 1621 crc = xfs_start_cksum((char *)rhead, 1622 sizeof(struct xlog_rec_header), 1623 offsetof(struct xlog_rec_header, h_crc)); 1624 1625 /* ... then for additional cycle data for v2 logs ... */ 1626 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1627 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1628 int i; 1629 1630 for (i = 1; i < log->l_iclog_heads; i++) { 1631 crc = crc32c(crc, &xhdr[i].hic_xheader, 1632 sizeof(struct xlog_rec_ext_header)); 1633 } 1634 } 1635 1636 /* ... and finally for the payload */ 1637 crc = crc32c(crc, dp, size); 1638 1639 return xfs_end_cksum(crc); 1640 } 1641 1642 /* 1643 * The bdstrat callback function for log bufs. This gives us a central 1644 * place to trap bufs in case we get hit by a log I/O error and need to 1645 * shutdown. Actually, in practice, even when we didn't get a log error, 1646 * we transition the iclogs to IOERROR state *after* flushing all existing 1647 * iclogs to disk. This is because we don't want anymore new transactions to be 1648 * started or completed afterwards. 1649 * 1650 * We lock the iclogbufs here so that we can serialise against IO completion 1651 * during unmount. We might be processing a shutdown triggered during unmount, 1652 * and that can occur asynchronously to the unmount thread, and hence we need to 1653 * ensure that completes before tearing down the iclogbufs. Hence we need to 1654 * hold the buffer lock across the log IO to acheive that. 1655 */ 1656 STATIC int 1657 xlog_bdstrat( 1658 struct xfs_buf *bp) 1659 { 1660 struct xlog_in_core *iclog = bp->b_fspriv; 1661 1662 xfs_buf_lock(bp); 1663 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1664 xfs_buf_ioerror(bp, EIO); 1665 xfs_buf_stale(bp); 1666 xfs_buf_ioend(bp, 0); 1667 /* 1668 * It would seem logical to return EIO here, but we rely on 1669 * the log state machine to propagate I/O errors instead of 1670 * doing it here. Similarly, IO completion will unlock the 1671 * buffer, so we don't do it here. 1672 */ 1673 return 0; 1674 } 1675 1676 xfs_buf_iorequest(bp); 1677 return 0; 1678 } 1679 1680 /* 1681 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1682 * fashion. Previously, we should have moved the current iclog 1683 * ptr in the log to point to the next available iclog. This allows further 1684 * write to continue while this code syncs out an iclog ready to go. 1685 * Before an in-core log can be written out, the data section must be scanned 1686 * to save away the 1st word of each BBSIZE block into the header. We replace 1687 * it with the current cycle count. Each BBSIZE block is tagged with the 1688 * cycle count because there in an implicit assumption that drives will 1689 * guarantee that entire 512 byte blocks get written at once. In other words, 1690 * we can't have part of a 512 byte block written and part not written. By 1691 * tagging each block, we will know which blocks are valid when recovering 1692 * after an unclean shutdown. 1693 * 1694 * This routine is single threaded on the iclog. No other thread can be in 1695 * this routine with the same iclog. Changing contents of iclog can there- 1696 * fore be done without grabbing the state machine lock. Updating the global 1697 * log will require grabbing the lock though. 1698 * 1699 * The entire log manager uses a logical block numbering scheme. Only 1700 * log_sync (and then only bwrite()) know about the fact that the log may 1701 * not start with block zero on a given device. The log block start offset 1702 * is added immediately before calling bwrite(). 1703 */ 1704 1705 STATIC int 1706 xlog_sync( 1707 struct xlog *log, 1708 struct xlog_in_core *iclog) 1709 { 1710 xfs_buf_t *bp; 1711 int i; 1712 uint count; /* byte count of bwrite */ 1713 uint count_init; /* initial count before roundup */ 1714 int roundoff; /* roundoff to BB or stripe */ 1715 int split = 0; /* split write into two regions */ 1716 int error; 1717 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1718 int size; 1719 1720 XFS_STATS_INC(xs_log_writes); 1721 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1722 1723 /* Add for LR header */ 1724 count_init = log->l_iclog_hsize + iclog->ic_offset; 1725 1726 /* Round out the log write size */ 1727 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1728 /* we have a v2 stripe unit to use */ 1729 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1730 } else { 1731 count = BBTOB(BTOBB(count_init)); 1732 } 1733 roundoff = count - count_init; 1734 ASSERT(roundoff >= 0); 1735 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1736 roundoff < log->l_mp->m_sb.sb_logsunit) 1737 || 1738 (log->l_mp->m_sb.sb_logsunit <= 1 && 1739 roundoff < BBTOB(1))); 1740 1741 /* move grant heads by roundoff in sync */ 1742 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1743 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1744 1745 /* put cycle number in every block */ 1746 xlog_pack_data(log, iclog, roundoff); 1747 1748 /* real byte length */ 1749 size = iclog->ic_offset; 1750 if (v2) 1751 size += roundoff; 1752 iclog->ic_header.h_len = cpu_to_be32(size); 1753 1754 bp = iclog->ic_bp; 1755 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1756 1757 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1758 1759 /* Do we need to split this write into 2 parts? */ 1760 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1761 char *dptr; 1762 1763 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1764 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1765 iclog->ic_bwritecnt = 2; 1766 1767 /* 1768 * Bump the cycle numbers at the start of each block in the 1769 * part of the iclog that ends up in the buffer that gets 1770 * written to the start of the log. 1771 * 1772 * Watch out for the header magic number case, though. 1773 */ 1774 dptr = (char *)&iclog->ic_header + count; 1775 for (i = 0; i < split; i += BBSIZE) { 1776 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1777 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1778 cycle++; 1779 *(__be32 *)dptr = cpu_to_be32(cycle); 1780 1781 dptr += BBSIZE; 1782 } 1783 } else { 1784 iclog->ic_bwritecnt = 1; 1785 } 1786 1787 /* calculcate the checksum */ 1788 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1789 iclog->ic_datap, size); 1790 1791 bp->b_io_length = BTOBB(count); 1792 bp->b_fspriv = iclog; 1793 XFS_BUF_ZEROFLAGS(bp); 1794 XFS_BUF_ASYNC(bp); 1795 bp->b_flags |= XBF_SYNCIO; 1796 1797 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1798 bp->b_flags |= XBF_FUA; 1799 1800 /* 1801 * Flush the data device before flushing the log to make 1802 * sure all meta data written back from the AIL actually made 1803 * it to disk before stamping the new log tail LSN into the 1804 * log buffer. For an external log we need to issue the 1805 * flush explicitly, and unfortunately synchronously here; 1806 * for an internal log we can simply use the block layer 1807 * state machine for preflushes. 1808 */ 1809 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1810 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1811 else 1812 bp->b_flags |= XBF_FLUSH; 1813 } 1814 1815 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1816 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1817 1818 xlog_verify_iclog(log, iclog, count, true); 1819 1820 /* account for log which doesn't start at block #0 */ 1821 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1822 /* 1823 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1824 * is shutting down. 1825 */ 1826 XFS_BUF_WRITE(bp); 1827 1828 error = xlog_bdstrat(bp); 1829 if (error) { 1830 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1831 return error; 1832 } 1833 if (split) { 1834 bp = iclog->ic_log->l_xbuf; 1835 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1836 xfs_buf_associate_memory(bp, 1837 (char *)&iclog->ic_header + count, split); 1838 bp->b_fspriv = iclog; 1839 XFS_BUF_ZEROFLAGS(bp); 1840 XFS_BUF_ASYNC(bp); 1841 bp->b_flags |= XBF_SYNCIO; 1842 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1843 bp->b_flags |= XBF_FUA; 1844 1845 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1846 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1847 1848 /* account for internal log which doesn't start at block #0 */ 1849 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1850 XFS_BUF_WRITE(bp); 1851 error = xlog_bdstrat(bp); 1852 if (error) { 1853 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1854 return error; 1855 } 1856 } 1857 return 0; 1858 } /* xlog_sync */ 1859 1860 /* 1861 * Deallocate a log structure 1862 */ 1863 STATIC void 1864 xlog_dealloc_log( 1865 struct xlog *log) 1866 { 1867 xlog_in_core_t *iclog, *next_iclog; 1868 int i; 1869 1870 xlog_cil_destroy(log); 1871 1872 /* 1873 * Cycle all the iclogbuf locks to make sure all log IO completion 1874 * is done before we tear down these buffers. 1875 */ 1876 iclog = log->l_iclog; 1877 for (i = 0; i < log->l_iclog_bufs; i++) { 1878 xfs_buf_lock(iclog->ic_bp); 1879 xfs_buf_unlock(iclog->ic_bp); 1880 iclog = iclog->ic_next; 1881 } 1882 1883 /* 1884 * Always need to ensure that the extra buffer does not point to memory 1885 * owned by another log buffer before we free it. Also, cycle the lock 1886 * first to ensure we've completed IO on it. 1887 */ 1888 xfs_buf_lock(log->l_xbuf); 1889 xfs_buf_unlock(log->l_xbuf); 1890 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1891 xfs_buf_free(log->l_xbuf); 1892 1893 iclog = log->l_iclog; 1894 for (i = 0; i < log->l_iclog_bufs; i++) { 1895 xfs_buf_free(iclog->ic_bp); 1896 next_iclog = iclog->ic_next; 1897 kmem_free(iclog); 1898 iclog = next_iclog; 1899 } 1900 spinlock_destroy(&log->l_icloglock); 1901 1902 log->l_mp->m_log = NULL; 1903 kmem_free(log); 1904 } /* xlog_dealloc_log */ 1905 1906 /* 1907 * Update counters atomically now that memcpy is done. 1908 */ 1909 /* ARGSUSED */ 1910 static inline void 1911 xlog_state_finish_copy( 1912 struct xlog *log, 1913 struct xlog_in_core *iclog, 1914 int record_cnt, 1915 int copy_bytes) 1916 { 1917 spin_lock(&log->l_icloglock); 1918 1919 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1920 iclog->ic_offset += copy_bytes; 1921 1922 spin_unlock(&log->l_icloglock); 1923 } /* xlog_state_finish_copy */ 1924 1925 1926 1927 1928 /* 1929 * print out info relating to regions written which consume 1930 * the reservation 1931 */ 1932 void 1933 xlog_print_tic_res( 1934 struct xfs_mount *mp, 1935 struct xlog_ticket *ticket) 1936 { 1937 uint i; 1938 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1939 1940 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1941 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1942 "bformat", 1943 "bchunk", 1944 "efi_format", 1945 "efd_format", 1946 "iformat", 1947 "icore", 1948 "iext", 1949 "ibroot", 1950 "ilocal", 1951 "iattr_ext", 1952 "iattr_broot", 1953 "iattr_local", 1954 "qformat", 1955 "dquot", 1956 "quotaoff", 1957 "LR header", 1958 "unmount", 1959 "commit", 1960 "trans header" 1961 }; 1962 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1963 "SETATTR_NOT_SIZE", 1964 "SETATTR_SIZE", 1965 "INACTIVE", 1966 "CREATE", 1967 "CREATE_TRUNC", 1968 "TRUNCATE_FILE", 1969 "REMOVE", 1970 "LINK", 1971 "RENAME", 1972 "MKDIR", 1973 "RMDIR", 1974 "SYMLINK", 1975 "SET_DMATTRS", 1976 "GROWFS", 1977 "STRAT_WRITE", 1978 "DIOSTRAT", 1979 "WRITE_SYNC", 1980 "WRITEID", 1981 "ADDAFORK", 1982 "ATTRINVAL", 1983 "ATRUNCATE", 1984 "ATTR_SET", 1985 "ATTR_RM", 1986 "ATTR_FLAG", 1987 "CLEAR_AGI_BUCKET", 1988 "QM_SBCHANGE", 1989 "DUMMY1", 1990 "DUMMY2", 1991 "QM_QUOTAOFF", 1992 "QM_DQALLOC", 1993 "QM_SETQLIM", 1994 "QM_DQCLUSTER", 1995 "QM_QINOCREATE", 1996 "QM_QUOTAOFF_END", 1997 "SB_UNIT", 1998 "FSYNC_TS", 1999 "GROWFSRT_ALLOC", 2000 "GROWFSRT_ZERO", 2001 "GROWFSRT_FREE", 2002 "SWAPEXT" 2003 }; 2004 2005 xfs_warn(mp, 2006 "xlog_write: reservation summary:\n" 2007 " trans type = %s (%u)\n" 2008 " unit res = %d bytes\n" 2009 " current res = %d bytes\n" 2010 " total reg = %u bytes (o/flow = %u bytes)\n" 2011 " ophdrs = %u (ophdr space = %u bytes)\n" 2012 " ophdr + reg = %u bytes\n" 2013 " num regions = %u\n", 2014 ((ticket->t_trans_type <= 0 || 2015 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 2016 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 2017 ticket->t_trans_type, 2018 ticket->t_unit_res, 2019 ticket->t_curr_res, 2020 ticket->t_res_arr_sum, ticket->t_res_o_flow, 2021 ticket->t_res_num_ophdrs, ophdr_spc, 2022 ticket->t_res_arr_sum + 2023 ticket->t_res_o_flow + ophdr_spc, 2024 ticket->t_res_num); 2025 2026 for (i = 0; i < ticket->t_res_num; i++) { 2027 uint r_type = ticket->t_res_arr[i].r_type; 2028 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2029 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2030 "bad-rtype" : res_type_str[r_type-1]), 2031 ticket->t_res_arr[i].r_len); 2032 } 2033 2034 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 2035 "xlog_write: reservation ran out. Need to up reservation"); 2036 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2037 } 2038 2039 /* 2040 * Calculate the potential space needed by the log vector. Each region gets 2041 * its own xlog_op_header_t and may need to be double word aligned. 2042 */ 2043 static int 2044 xlog_write_calc_vec_length( 2045 struct xlog_ticket *ticket, 2046 struct xfs_log_vec *log_vector) 2047 { 2048 struct xfs_log_vec *lv; 2049 int headers = 0; 2050 int len = 0; 2051 int i; 2052 2053 /* acct for start rec of xact */ 2054 if (ticket->t_flags & XLOG_TIC_INITED) 2055 headers++; 2056 2057 for (lv = log_vector; lv; lv = lv->lv_next) { 2058 /* we don't write ordered log vectors */ 2059 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2060 continue; 2061 2062 headers += lv->lv_niovecs; 2063 2064 for (i = 0; i < lv->lv_niovecs; i++) { 2065 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2066 2067 len += vecp->i_len; 2068 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2069 } 2070 } 2071 2072 ticket->t_res_num_ophdrs += headers; 2073 len += headers * sizeof(struct xlog_op_header); 2074 2075 return len; 2076 } 2077 2078 /* 2079 * If first write for transaction, insert start record We can't be trying to 2080 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2081 */ 2082 static int 2083 xlog_write_start_rec( 2084 struct xlog_op_header *ophdr, 2085 struct xlog_ticket *ticket) 2086 { 2087 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2088 return 0; 2089 2090 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2091 ophdr->oh_clientid = ticket->t_clientid; 2092 ophdr->oh_len = 0; 2093 ophdr->oh_flags = XLOG_START_TRANS; 2094 ophdr->oh_res2 = 0; 2095 2096 ticket->t_flags &= ~XLOG_TIC_INITED; 2097 2098 return sizeof(struct xlog_op_header); 2099 } 2100 2101 static xlog_op_header_t * 2102 xlog_write_setup_ophdr( 2103 struct xlog *log, 2104 struct xlog_op_header *ophdr, 2105 struct xlog_ticket *ticket, 2106 uint flags) 2107 { 2108 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2109 ophdr->oh_clientid = ticket->t_clientid; 2110 ophdr->oh_res2 = 0; 2111 2112 /* are we copying a commit or unmount record? */ 2113 ophdr->oh_flags = flags; 2114 2115 /* 2116 * We've seen logs corrupted with bad transaction client ids. This 2117 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2118 * and shut down the filesystem. 2119 */ 2120 switch (ophdr->oh_clientid) { 2121 case XFS_TRANSACTION: 2122 case XFS_VOLUME: 2123 case XFS_LOG: 2124 break; 2125 default: 2126 xfs_warn(log->l_mp, 2127 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2128 ophdr->oh_clientid, ticket); 2129 return NULL; 2130 } 2131 2132 return ophdr; 2133 } 2134 2135 /* 2136 * Set up the parameters of the region copy into the log. This has 2137 * to handle region write split across multiple log buffers - this 2138 * state is kept external to this function so that this code can 2139 * be written in an obvious, self documenting manner. 2140 */ 2141 static int 2142 xlog_write_setup_copy( 2143 struct xlog_ticket *ticket, 2144 struct xlog_op_header *ophdr, 2145 int space_available, 2146 int space_required, 2147 int *copy_off, 2148 int *copy_len, 2149 int *last_was_partial_copy, 2150 int *bytes_consumed) 2151 { 2152 int still_to_copy; 2153 2154 still_to_copy = space_required - *bytes_consumed; 2155 *copy_off = *bytes_consumed; 2156 2157 if (still_to_copy <= space_available) { 2158 /* write of region completes here */ 2159 *copy_len = still_to_copy; 2160 ophdr->oh_len = cpu_to_be32(*copy_len); 2161 if (*last_was_partial_copy) 2162 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2163 *last_was_partial_copy = 0; 2164 *bytes_consumed = 0; 2165 return 0; 2166 } 2167 2168 /* partial write of region, needs extra log op header reservation */ 2169 *copy_len = space_available; 2170 ophdr->oh_len = cpu_to_be32(*copy_len); 2171 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2172 if (*last_was_partial_copy) 2173 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2174 *bytes_consumed += *copy_len; 2175 (*last_was_partial_copy)++; 2176 2177 /* account for new log op header */ 2178 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2179 ticket->t_res_num_ophdrs++; 2180 2181 return sizeof(struct xlog_op_header); 2182 } 2183 2184 static int 2185 xlog_write_copy_finish( 2186 struct xlog *log, 2187 struct xlog_in_core *iclog, 2188 uint flags, 2189 int *record_cnt, 2190 int *data_cnt, 2191 int *partial_copy, 2192 int *partial_copy_len, 2193 int log_offset, 2194 struct xlog_in_core **commit_iclog) 2195 { 2196 if (*partial_copy) { 2197 /* 2198 * This iclog has already been marked WANT_SYNC by 2199 * xlog_state_get_iclog_space. 2200 */ 2201 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2202 *record_cnt = 0; 2203 *data_cnt = 0; 2204 return xlog_state_release_iclog(log, iclog); 2205 } 2206 2207 *partial_copy = 0; 2208 *partial_copy_len = 0; 2209 2210 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2211 /* no more space in this iclog - push it. */ 2212 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2213 *record_cnt = 0; 2214 *data_cnt = 0; 2215 2216 spin_lock(&log->l_icloglock); 2217 xlog_state_want_sync(log, iclog); 2218 spin_unlock(&log->l_icloglock); 2219 2220 if (!commit_iclog) 2221 return xlog_state_release_iclog(log, iclog); 2222 ASSERT(flags & XLOG_COMMIT_TRANS); 2223 *commit_iclog = iclog; 2224 } 2225 2226 return 0; 2227 } 2228 2229 /* 2230 * Write some region out to in-core log 2231 * 2232 * This will be called when writing externally provided regions or when 2233 * writing out a commit record for a given transaction. 2234 * 2235 * General algorithm: 2236 * 1. Find total length of this write. This may include adding to the 2237 * lengths passed in. 2238 * 2. Check whether we violate the tickets reservation. 2239 * 3. While writing to this iclog 2240 * A. Reserve as much space in this iclog as can get 2241 * B. If this is first write, save away start lsn 2242 * C. While writing this region: 2243 * 1. If first write of transaction, write start record 2244 * 2. Write log operation header (header per region) 2245 * 3. Find out if we can fit entire region into this iclog 2246 * 4. Potentially, verify destination memcpy ptr 2247 * 5. Memcpy (partial) region 2248 * 6. If partial copy, release iclog; otherwise, continue 2249 * copying more regions into current iclog 2250 * 4. Mark want sync bit (in simulation mode) 2251 * 5. Release iclog for potential flush to on-disk log. 2252 * 2253 * ERRORS: 2254 * 1. Panic if reservation is overrun. This should never happen since 2255 * reservation amounts are generated internal to the filesystem. 2256 * NOTES: 2257 * 1. Tickets are single threaded data structures. 2258 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2259 * syncing routine. When a single log_write region needs to span 2260 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2261 * on all log operation writes which don't contain the end of the 2262 * region. The XLOG_END_TRANS bit is used for the in-core log 2263 * operation which contains the end of the continued log_write region. 2264 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2265 * we don't really know exactly how much space will be used. As a result, 2266 * we don't update ic_offset until the end when we know exactly how many 2267 * bytes have been written out. 2268 */ 2269 int 2270 xlog_write( 2271 struct xlog *log, 2272 struct xfs_log_vec *log_vector, 2273 struct xlog_ticket *ticket, 2274 xfs_lsn_t *start_lsn, 2275 struct xlog_in_core **commit_iclog, 2276 uint flags) 2277 { 2278 struct xlog_in_core *iclog = NULL; 2279 struct xfs_log_iovec *vecp; 2280 struct xfs_log_vec *lv; 2281 int len; 2282 int index; 2283 int partial_copy = 0; 2284 int partial_copy_len = 0; 2285 int contwr = 0; 2286 int record_cnt = 0; 2287 int data_cnt = 0; 2288 int error; 2289 2290 *start_lsn = 0; 2291 2292 len = xlog_write_calc_vec_length(ticket, log_vector); 2293 2294 /* 2295 * Region headers and bytes are already accounted for. 2296 * We only need to take into account start records and 2297 * split regions in this function. 2298 */ 2299 if (ticket->t_flags & XLOG_TIC_INITED) 2300 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2301 2302 /* 2303 * Commit record headers need to be accounted for. These 2304 * come in as separate writes so are easy to detect. 2305 */ 2306 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2307 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2308 2309 if (ticket->t_curr_res < 0) 2310 xlog_print_tic_res(log->l_mp, ticket); 2311 2312 index = 0; 2313 lv = log_vector; 2314 vecp = lv->lv_iovecp; 2315 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2316 void *ptr; 2317 int log_offset; 2318 2319 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2320 &contwr, &log_offset); 2321 if (error) 2322 return error; 2323 2324 ASSERT(log_offset <= iclog->ic_size - 1); 2325 ptr = iclog->ic_datap + log_offset; 2326 2327 /* start_lsn is the first lsn written to. That's all we need. */ 2328 if (!*start_lsn) 2329 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2330 2331 /* 2332 * This loop writes out as many regions as can fit in the amount 2333 * of space which was allocated by xlog_state_get_iclog_space(). 2334 */ 2335 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2336 struct xfs_log_iovec *reg; 2337 struct xlog_op_header *ophdr; 2338 int start_rec_copy; 2339 int copy_len; 2340 int copy_off; 2341 bool ordered = false; 2342 2343 /* ordered log vectors have no regions to write */ 2344 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2345 ASSERT(lv->lv_niovecs == 0); 2346 ordered = true; 2347 goto next_lv; 2348 } 2349 2350 reg = &vecp[index]; 2351 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2352 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2353 2354 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2355 if (start_rec_copy) { 2356 record_cnt++; 2357 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2358 start_rec_copy); 2359 } 2360 2361 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2362 if (!ophdr) 2363 return XFS_ERROR(EIO); 2364 2365 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2366 sizeof(struct xlog_op_header)); 2367 2368 len += xlog_write_setup_copy(ticket, ophdr, 2369 iclog->ic_size-log_offset, 2370 reg->i_len, 2371 ©_off, ©_len, 2372 &partial_copy, 2373 &partial_copy_len); 2374 xlog_verify_dest_ptr(log, ptr); 2375 2376 /* copy region */ 2377 ASSERT(copy_len >= 0); 2378 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2379 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2380 2381 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2382 record_cnt++; 2383 data_cnt += contwr ? copy_len : 0; 2384 2385 error = xlog_write_copy_finish(log, iclog, flags, 2386 &record_cnt, &data_cnt, 2387 &partial_copy, 2388 &partial_copy_len, 2389 log_offset, 2390 commit_iclog); 2391 if (error) 2392 return error; 2393 2394 /* 2395 * if we had a partial copy, we need to get more iclog 2396 * space but we don't want to increment the region 2397 * index because there is still more is this region to 2398 * write. 2399 * 2400 * If we completed writing this region, and we flushed 2401 * the iclog (indicated by resetting of the record 2402 * count), then we also need to get more log space. If 2403 * this was the last record, though, we are done and 2404 * can just return. 2405 */ 2406 if (partial_copy) 2407 break; 2408 2409 if (++index == lv->lv_niovecs) { 2410 next_lv: 2411 lv = lv->lv_next; 2412 index = 0; 2413 if (lv) 2414 vecp = lv->lv_iovecp; 2415 } 2416 if (record_cnt == 0 && ordered == false) { 2417 if (!lv) 2418 return 0; 2419 break; 2420 } 2421 } 2422 } 2423 2424 ASSERT(len == 0); 2425 2426 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2427 if (!commit_iclog) 2428 return xlog_state_release_iclog(log, iclog); 2429 2430 ASSERT(flags & XLOG_COMMIT_TRANS); 2431 *commit_iclog = iclog; 2432 return 0; 2433 } 2434 2435 2436 /***************************************************************************** 2437 * 2438 * State Machine functions 2439 * 2440 ***************************************************************************** 2441 */ 2442 2443 /* Clean iclogs starting from the head. This ordering must be 2444 * maintained, so an iclog doesn't become ACTIVE beyond one that 2445 * is SYNCING. This is also required to maintain the notion that we use 2446 * a ordered wait queue to hold off would be writers to the log when every 2447 * iclog is trying to sync to disk. 2448 * 2449 * State Change: DIRTY -> ACTIVE 2450 */ 2451 STATIC void 2452 xlog_state_clean_log( 2453 struct xlog *log) 2454 { 2455 xlog_in_core_t *iclog; 2456 int changed = 0; 2457 2458 iclog = log->l_iclog; 2459 do { 2460 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2461 iclog->ic_state = XLOG_STATE_ACTIVE; 2462 iclog->ic_offset = 0; 2463 ASSERT(iclog->ic_callback == NULL); 2464 /* 2465 * If the number of ops in this iclog indicate it just 2466 * contains the dummy transaction, we can 2467 * change state into IDLE (the second time around). 2468 * Otherwise we should change the state into 2469 * NEED a dummy. 2470 * We don't need to cover the dummy. 2471 */ 2472 if (!changed && 2473 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2474 XLOG_COVER_OPS)) { 2475 changed = 1; 2476 } else { 2477 /* 2478 * We have two dirty iclogs so start over 2479 * This could also be num of ops indicates 2480 * this is not the dummy going out. 2481 */ 2482 changed = 2; 2483 } 2484 iclog->ic_header.h_num_logops = 0; 2485 memset(iclog->ic_header.h_cycle_data, 0, 2486 sizeof(iclog->ic_header.h_cycle_data)); 2487 iclog->ic_header.h_lsn = 0; 2488 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2489 /* do nothing */; 2490 else 2491 break; /* stop cleaning */ 2492 iclog = iclog->ic_next; 2493 } while (iclog != log->l_iclog); 2494 2495 /* log is locked when we are called */ 2496 /* 2497 * Change state for the dummy log recording. 2498 * We usually go to NEED. But we go to NEED2 if the changed indicates 2499 * we are done writing the dummy record. 2500 * If we are done with the second dummy recored (DONE2), then 2501 * we go to IDLE. 2502 */ 2503 if (changed) { 2504 switch (log->l_covered_state) { 2505 case XLOG_STATE_COVER_IDLE: 2506 case XLOG_STATE_COVER_NEED: 2507 case XLOG_STATE_COVER_NEED2: 2508 log->l_covered_state = XLOG_STATE_COVER_NEED; 2509 break; 2510 2511 case XLOG_STATE_COVER_DONE: 2512 if (changed == 1) 2513 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2514 else 2515 log->l_covered_state = XLOG_STATE_COVER_NEED; 2516 break; 2517 2518 case XLOG_STATE_COVER_DONE2: 2519 if (changed == 1) 2520 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2521 else 2522 log->l_covered_state = XLOG_STATE_COVER_NEED; 2523 break; 2524 2525 default: 2526 ASSERT(0); 2527 } 2528 } 2529 } /* xlog_state_clean_log */ 2530 2531 STATIC xfs_lsn_t 2532 xlog_get_lowest_lsn( 2533 struct xlog *log) 2534 { 2535 xlog_in_core_t *lsn_log; 2536 xfs_lsn_t lowest_lsn, lsn; 2537 2538 lsn_log = log->l_iclog; 2539 lowest_lsn = 0; 2540 do { 2541 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2542 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2543 if ((lsn && !lowest_lsn) || 2544 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2545 lowest_lsn = lsn; 2546 } 2547 } 2548 lsn_log = lsn_log->ic_next; 2549 } while (lsn_log != log->l_iclog); 2550 return lowest_lsn; 2551 } 2552 2553 2554 STATIC void 2555 xlog_state_do_callback( 2556 struct xlog *log, 2557 int aborted, 2558 struct xlog_in_core *ciclog) 2559 { 2560 xlog_in_core_t *iclog; 2561 xlog_in_core_t *first_iclog; /* used to know when we've 2562 * processed all iclogs once */ 2563 xfs_log_callback_t *cb, *cb_next; 2564 int flushcnt = 0; 2565 xfs_lsn_t lowest_lsn; 2566 int ioerrors; /* counter: iclogs with errors */ 2567 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2568 int funcdidcallbacks; /* flag: function did callbacks */ 2569 int repeats; /* for issuing console warnings if 2570 * looping too many times */ 2571 int wake = 0; 2572 2573 spin_lock(&log->l_icloglock); 2574 first_iclog = iclog = log->l_iclog; 2575 ioerrors = 0; 2576 funcdidcallbacks = 0; 2577 repeats = 0; 2578 2579 do { 2580 /* 2581 * Scan all iclogs starting with the one pointed to by the 2582 * log. Reset this starting point each time the log is 2583 * unlocked (during callbacks). 2584 * 2585 * Keep looping through iclogs until one full pass is made 2586 * without running any callbacks. 2587 */ 2588 first_iclog = log->l_iclog; 2589 iclog = log->l_iclog; 2590 loopdidcallbacks = 0; 2591 repeats++; 2592 2593 do { 2594 2595 /* skip all iclogs in the ACTIVE & DIRTY states */ 2596 if (iclog->ic_state & 2597 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2598 iclog = iclog->ic_next; 2599 continue; 2600 } 2601 2602 /* 2603 * Between marking a filesystem SHUTDOWN and stopping 2604 * the log, we do flush all iclogs to disk (if there 2605 * wasn't a log I/O error). So, we do want things to 2606 * go smoothly in case of just a SHUTDOWN w/o a 2607 * LOG_IO_ERROR. 2608 */ 2609 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2610 /* 2611 * Can only perform callbacks in order. Since 2612 * this iclog is not in the DONE_SYNC/ 2613 * DO_CALLBACK state, we skip the rest and 2614 * just try to clean up. If we set our iclog 2615 * to DO_CALLBACK, we will not process it when 2616 * we retry since a previous iclog is in the 2617 * CALLBACK and the state cannot change since 2618 * we are holding the l_icloglock. 2619 */ 2620 if (!(iclog->ic_state & 2621 (XLOG_STATE_DONE_SYNC | 2622 XLOG_STATE_DO_CALLBACK))) { 2623 if (ciclog && (ciclog->ic_state == 2624 XLOG_STATE_DONE_SYNC)) { 2625 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2626 } 2627 break; 2628 } 2629 /* 2630 * We now have an iclog that is in either the 2631 * DO_CALLBACK or DONE_SYNC states. The other 2632 * states (WANT_SYNC, SYNCING, or CALLBACK were 2633 * caught by the above if and are going to 2634 * clean (i.e. we aren't doing their callbacks) 2635 * see the above if. 2636 */ 2637 2638 /* 2639 * We will do one more check here to see if we 2640 * have chased our tail around. 2641 */ 2642 2643 lowest_lsn = xlog_get_lowest_lsn(log); 2644 if (lowest_lsn && 2645 XFS_LSN_CMP(lowest_lsn, 2646 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2647 iclog = iclog->ic_next; 2648 continue; /* Leave this iclog for 2649 * another thread */ 2650 } 2651 2652 iclog->ic_state = XLOG_STATE_CALLBACK; 2653 2654 2655 /* 2656 * Completion of a iclog IO does not imply that 2657 * a transaction has completed, as transactions 2658 * can be large enough to span many iclogs. We 2659 * cannot change the tail of the log half way 2660 * through a transaction as this may be the only 2661 * transaction in the log and moving th etail to 2662 * point to the middle of it will prevent 2663 * recovery from finding the start of the 2664 * transaction. Hence we should only update the 2665 * last_sync_lsn if this iclog contains 2666 * transaction completion callbacks on it. 2667 * 2668 * We have to do this before we drop the 2669 * icloglock to ensure we are the only one that 2670 * can update it. 2671 */ 2672 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2673 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2674 if (iclog->ic_callback) 2675 atomic64_set(&log->l_last_sync_lsn, 2676 be64_to_cpu(iclog->ic_header.h_lsn)); 2677 2678 } else 2679 ioerrors++; 2680 2681 spin_unlock(&log->l_icloglock); 2682 2683 /* 2684 * Keep processing entries in the callback list until 2685 * we come around and it is empty. We need to 2686 * atomically see that the list is empty and change the 2687 * state to DIRTY so that we don't miss any more 2688 * callbacks being added. 2689 */ 2690 spin_lock(&iclog->ic_callback_lock); 2691 cb = iclog->ic_callback; 2692 while (cb) { 2693 iclog->ic_callback_tail = &(iclog->ic_callback); 2694 iclog->ic_callback = NULL; 2695 spin_unlock(&iclog->ic_callback_lock); 2696 2697 /* perform callbacks in the order given */ 2698 for (; cb; cb = cb_next) { 2699 cb_next = cb->cb_next; 2700 cb->cb_func(cb->cb_arg, aborted); 2701 } 2702 spin_lock(&iclog->ic_callback_lock); 2703 cb = iclog->ic_callback; 2704 } 2705 2706 loopdidcallbacks++; 2707 funcdidcallbacks++; 2708 2709 spin_lock(&log->l_icloglock); 2710 ASSERT(iclog->ic_callback == NULL); 2711 spin_unlock(&iclog->ic_callback_lock); 2712 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2713 iclog->ic_state = XLOG_STATE_DIRTY; 2714 2715 /* 2716 * Transition from DIRTY to ACTIVE if applicable. 2717 * NOP if STATE_IOERROR. 2718 */ 2719 xlog_state_clean_log(log); 2720 2721 /* wake up threads waiting in xfs_log_force() */ 2722 wake_up_all(&iclog->ic_force_wait); 2723 2724 iclog = iclog->ic_next; 2725 } while (first_iclog != iclog); 2726 2727 if (repeats > 5000) { 2728 flushcnt += repeats; 2729 repeats = 0; 2730 xfs_warn(log->l_mp, 2731 "%s: possible infinite loop (%d iterations)", 2732 __func__, flushcnt); 2733 } 2734 } while (!ioerrors && loopdidcallbacks); 2735 2736 /* 2737 * make one last gasp attempt to see if iclogs are being left in 2738 * limbo.. 2739 */ 2740 #ifdef DEBUG 2741 if (funcdidcallbacks) { 2742 first_iclog = iclog = log->l_iclog; 2743 do { 2744 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2745 /* 2746 * Terminate the loop if iclogs are found in states 2747 * which will cause other threads to clean up iclogs. 2748 * 2749 * SYNCING - i/o completion will go through logs 2750 * DONE_SYNC - interrupt thread should be waiting for 2751 * l_icloglock 2752 * IOERROR - give up hope all ye who enter here 2753 */ 2754 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2755 iclog->ic_state == XLOG_STATE_SYNCING || 2756 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2757 iclog->ic_state == XLOG_STATE_IOERROR ) 2758 break; 2759 iclog = iclog->ic_next; 2760 } while (first_iclog != iclog); 2761 } 2762 #endif 2763 2764 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2765 wake = 1; 2766 spin_unlock(&log->l_icloglock); 2767 2768 if (wake) 2769 wake_up_all(&log->l_flush_wait); 2770 } 2771 2772 2773 /* 2774 * Finish transitioning this iclog to the dirty state. 2775 * 2776 * Make sure that we completely execute this routine only when this is 2777 * the last call to the iclog. There is a good chance that iclog flushes, 2778 * when we reach the end of the physical log, get turned into 2 separate 2779 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2780 * routine. By using the reference count bwritecnt, we guarantee that only 2781 * the second completion goes through. 2782 * 2783 * Callbacks could take time, so they are done outside the scope of the 2784 * global state machine log lock. 2785 */ 2786 STATIC void 2787 xlog_state_done_syncing( 2788 xlog_in_core_t *iclog, 2789 int aborted) 2790 { 2791 struct xlog *log = iclog->ic_log; 2792 2793 spin_lock(&log->l_icloglock); 2794 2795 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2796 iclog->ic_state == XLOG_STATE_IOERROR); 2797 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2798 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2799 2800 2801 /* 2802 * If we got an error, either on the first buffer, or in the case of 2803 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2804 * and none should ever be attempted to be written to disk 2805 * again. 2806 */ 2807 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2808 if (--iclog->ic_bwritecnt == 1) { 2809 spin_unlock(&log->l_icloglock); 2810 return; 2811 } 2812 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2813 } 2814 2815 /* 2816 * Someone could be sleeping prior to writing out the next 2817 * iclog buffer, we wake them all, one will get to do the 2818 * I/O, the others get to wait for the result. 2819 */ 2820 wake_up_all(&iclog->ic_write_wait); 2821 spin_unlock(&log->l_icloglock); 2822 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2823 } /* xlog_state_done_syncing */ 2824 2825 2826 /* 2827 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2828 * sleep. We wait on the flush queue on the head iclog as that should be 2829 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2830 * we will wait here and all new writes will sleep until a sync completes. 2831 * 2832 * The in-core logs are used in a circular fashion. They are not used 2833 * out-of-order even when an iclog past the head is free. 2834 * 2835 * return: 2836 * * log_offset where xlog_write() can start writing into the in-core 2837 * log's data space. 2838 * * in-core log pointer to which xlog_write() should write. 2839 * * boolean indicating this is a continued write to an in-core log. 2840 * If this is the last write, then the in-core log's offset field 2841 * needs to be incremented, depending on the amount of data which 2842 * is copied. 2843 */ 2844 STATIC int 2845 xlog_state_get_iclog_space( 2846 struct xlog *log, 2847 int len, 2848 struct xlog_in_core **iclogp, 2849 struct xlog_ticket *ticket, 2850 int *continued_write, 2851 int *logoffsetp) 2852 { 2853 int log_offset; 2854 xlog_rec_header_t *head; 2855 xlog_in_core_t *iclog; 2856 int error; 2857 2858 restart: 2859 spin_lock(&log->l_icloglock); 2860 if (XLOG_FORCED_SHUTDOWN(log)) { 2861 spin_unlock(&log->l_icloglock); 2862 return XFS_ERROR(EIO); 2863 } 2864 2865 iclog = log->l_iclog; 2866 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2867 XFS_STATS_INC(xs_log_noiclogs); 2868 2869 /* Wait for log writes to have flushed */ 2870 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2871 goto restart; 2872 } 2873 2874 head = &iclog->ic_header; 2875 2876 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2877 log_offset = iclog->ic_offset; 2878 2879 /* On the 1st write to an iclog, figure out lsn. This works 2880 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2881 * committing to. If the offset is set, that's how many blocks 2882 * must be written. 2883 */ 2884 if (log_offset == 0) { 2885 ticket->t_curr_res -= log->l_iclog_hsize; 2886 xlog_tic_add_region(ticket, 2887 log->l_iclog_hsize, 2888 XLOG_REG_TYPE_LRHEADER); 2889 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2890 head->h_lsn = cpu_to_be64( 2891 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2892 ASSERT(log->l_curr_block >= 0); 2893 } 2894 2895 /* If there is enough room to write everything, then do it. Otherwise, 2896 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2897 * bit is on, so this will get flushed out. Don't update ic_offset 2898 * until you know exactly how many bytes get copied. Therefore, wait 2899 * until later to update ic_offset. 2900 * 2901 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2902 * can fit into remaining data section. 2903 */ 2904 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2905 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2906 2907 /* 2908 * If I'm the only one writing to this iclog, sync it to disk. 2909 * We need to do an atomic compare and decrement here to avoid 2910 * racing with concurrent atomic_dec_and_lock() calls in 2911 * xlog_state_release_iclog() when there is more than one 2912 * reference to the iclog. 2913 */ 2914 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2915 /* we are the only one */ 2916 spin_unlock(&log->l_icloglock); 2917 error = xlog_state_release_iclog(log, iclog); 2918 if (error) 2919 return error; 2920 } else { 2921 spin_unlock(&log->l_icloglock); 2922 } 2923 goto restart; 2924 } 2925 2926 /* Do we have enough room to write the full amount in the remainder 2927 * of this iclog? Or must we continue a write on the next iclog and 2928 * mark this iclog as completely taken? In the case where we switch 2929 * iclogs (to mark it taken), this particular iclog will release/sync 2930 * to disk in xlog_write(). 2931 */ 2932 if (len <= iclog->ic_size - iclog->ic_offset) { 2933 *continued_write = 0; 2934 iclog->ic_offset += len; 2935 } else { 2936 *continued_write = 1; 2937 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2938 } 2939 *iclogp = iclog; 2940 2941 ASSERT(iclog->ic_offset <= iclog->ic_size); 2942 spin_unlock(&log->l_icloglock); 2943 2944 *logoffsetp = log_offset; 2945 return 0; 2946 } /* xlog_state_get_iclog_space */ 2947 2948 /* The first cnt-1 times through here we don't need to 2949 * move the grant write head because the permanent 2950 * reservation has reserved cnt times the unit amount. 2951 * Release part of current permanent unit reservation and 2952 * reset current reservation to be one units worth. Also 2953 * move grant reservation head forward. 2954 */ 2955 STATIC void 2956 xlog_regrant_reserve_log_space( 2957 struct xlog *log, 2958 struct xlog_ticket *ticket) 2959 { 2960 trace_xfs_log_regrant_reserve_enter(log, ticket); 2961 2962 if (ticket->t_cnt > 0) 2963 ticket->t_cnt--; 2964 2965 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2966 ticket->t_curr_res); 2967 xlog_grant_sub_space(log, &log->l_write_head.grant, 2968 ticket->t_curr_res); 2969 ticket->t_curr_res = ticket->t_unit_res; 2970 xlog_tic_reset_res(ticket); 2971 2972 trace_xfs_log_regrant_reserve_sub(log, ticket); 2973 2974 /* just return if we still have some of the pre-reserved space */ 2975 if (ticket->t_cnt > 0) 2976 return; 2977 2978 xlog_grant_add_space(log, &log->l_reserve_head.grant, 2979 ticket->t_unit_res); 2980 2981 trace_xfs_log_regrant_reserve_exit(log, ticket); 2982 2983 ticket->t_curr_res = ticket->t_unit_res; 2984 xlog_tic_reset_res(ticket); 2985 } /* xlog_regrant_reserve_log_space */ 2986 2987 2988 /* 2989 * Give back the space left from a reservation. 2990 * 2991 * All the information we need to make a correct determination of space left 2992 * is present. For non-permanent reservations, things are quite easy. The 2993 * count should have been decremented to zero. We only need to deal with the 2994 * space remaining in the current reservation part of the ticket. If the 2995 * ticket contains a permanent reservation, there may be left over space which 2996 * needs to be released. A count of N means that N-1 refills of the current 2997 * reservation can be done before we need to ask for more space. The first 2998 * one goes to fill up the first current reservation. Once we run out of 2999 * space, the count will stay at zero and the only space remaining will be 3000 * in the current reservation field. 3001 */ 3002 STATIC void 3003 xlog_ungrant_log_space( 3004 struct xlog *log, 3005 struct xlog_ticket *ticket) 3006 { 3007 int bytes; 3008 3009 if (ticket->t_cnt > 0) 3010 ticket->t_cnt--; 3011 3012 trace_xfs_log_ungrant_enter(log, ticket); 3013 trace_xfs_log_ungrant_sub(log, ticket); 3014 3015 /* 3016 * If this is a permanent reservation ticket, we may be able to free 3017 * up more space based on the remaining count. 3018 */ 3019 bytes = ticket->t_curr_res; 3020 if (ticket->t_cnt > 0) { 3021 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3022 bytes += ticket->t_unit_res*ticket->t_cnt; 3023 } 3024 3025 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3026 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3027 3028 trace_xfs_log_ungrant_exit(log, ticket); 3029 3030 xfs_log_space_wake(log->l_mp); 3031 } 3032 3033 /* 3034 * Flush iclog to disk if this is the last reference to the given iclog and 3035 * the WANT_SYNC bit is set. 3036 * 3037 * When this function is entered, the iclog is not necessarily in the 3038 * WANT_SYNC state. It may be sitting around waiting to get filled. 3039 * 3040 * 3041 */ 3042 STATIC int 3043 xlog_state_release_iclog( 3044 struct xlog *log, 3045 struct xlog_in_core *iclog) 3046 { 3047 int sync = 0; /* do we sync? */ 3048 3049 if (iclog->ic_state & XLOG_STATE_IOERROR) 3050 return XFS_ERROR(EIO); 3051 3052 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3053 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3054 return 0; 3055 3056 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3057 spin_unlock(&log->l_icloglock); 3058 return XFS_ERROR(EIO); 3059 } 3060 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3061 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3062 3063 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3064 /* update tail before writing to iclog */ 3065 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3066 sync++; 3067 iclog->ic_state = XLOG_STATE_SYNCING; 3068 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3069 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3070 /* cycle incremented when incrementing curr_block */ 3071 } 3072 spin_unlock(&log->l_icloglock); 3073 3074 /* 3075 * We let the log lock go, so it's possible that we hit a log I/O 3076 * error or some other SHUTDOWN condition that marks the iclog 3077 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3078 * this iclog has consistent data, so we ignore IOERROR 3079 * flags after this point. 3080 */ 3081 if (sync) 3082 return xlog_sync(log, iclog); 3083 return 0; 3084 } /* xlog_state_release_iclog */ 3085 3086 3087 /* 3088 * This routine will mark the current iclog in the ring as WANT_SYNC 3089 * and move the current iclog pointer to the next iclog in the ring. 3090 * When this routine is called from xlog_state_get_iclog_space(), the 3091 * exact size of the iclog has not yet been determined. All we know is 3092 * that every data block. We have run out of space in this log record. 3093 */ 3094 STATIC void 3095 xlog_state_switch_iclogs( 3096 struct xlog *log, 3097 struct xlog_in_core *iclog, 3098 int eventual_size) 3099 { 3100 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3101 if (!eventual_size) 3102 eventual_size = iclog->ic_offset; 3103 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3104 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3105 log->l_prev_block = log->l_curr_block; 3106 log->l_prev_cycle = log->l_curr_cycle; 3107 3108 /* roll log?: ic_offset changed later */ 3109 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3110 3111 /* Round up to next log-sunit */ 3112 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3113 log->l_mp->m_sb.sb_logsunit > 1) { 3114 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3115 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3116 } 3117 3118 if (log->l_curr_block >= log->l_logBBsize) { 3119 log->l_curr_cycle++; 3120 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3121 log->l_curr_cycle++; 3122 log->l_curr_block -= log->l_logBBsize; 3123 ASSERT(log->l_curr_block >= 0); 3124 } 3125 ASSERT(iclog == log->l_iclog); 3126 log->l_iclog = iclog->ic_next; 3127 } /* xlog_state_switch_iclogs */ 3128 3129 /* 3130 * Write out all data in the in-core log as of this exact moment in time. 3131 * 3132 * Data may be written to the in-core log during this call. However, 3133 * we don't guarantee this data will be written out. A change from past 3134 * implementation means this routine will *not* write out zero length LRs. 3135 * 3136 * Basically, we try and perform an intelligent scan of the in-core logs. 3137 * If we determine there is no flushable data, we just return. There is no 3138 * flushable data if: 3139 * 3140 * 1. the current iclog is active and has no data; the previous iclog 3141 * is in the active or dirty state. 3142 * 2. the current iclog is drity, and the previous iclog is in the 3143 * active or dirty state. 3144 * 3145 * We may sleep if: 3146 * 3147 * 1. the current iclog is not in the active nor dirty state. 3148 * 2. the current iclog dirty, and the previous iclog is not in the 3149 * active nor dirty state. 3150 * 3. the current iclog is active, and there is another thread writing 3151 * to this particular iclog. 3152 * 4. a) the current iclog is active and has no other writers 3153 * b) when we return from flushing out this iclog, it is still 3154 * not in the active nor dirty state. 3155 */ 3156 int 3157 _xfs_log_force( 3158 struct xfs_mount *mp, 3159 uint flags, 3160 int *log_flushed) 3161 { 3162 struct xlog *log = mp->m_log; 3163 struct xlog_in_core *iclog; 3164 xfs_lsn_t lsn; 3165 3166 XFS_STATS_INC(xs_log_force); 3167 3168 xlog_cil_force(log); 3169 3170 spin_lock(&log->l_icloglock); 3171 3172 iclog = log->l_iclog; 3173 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3174 spin_unlock(&log->l_icloglock); 3175 return XFS_ERROR(EIO); 3176 } 3177 3178 /* If the head iclog is not active nor dirty, we just attach 3179 * ourselves to the head and go to sleep. 3180 */ 3181 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3182 iclog->ic_state == XLOG_STATE_DIRTY) { 3183 /* 3184 * If the head is dirty or (active and empty), then 3185 * we need to look at the previous iclog. If the previous 3186 * iclog is active or dirty we are done. There is nothing 3187 * to sync out. Otherwise, we attach ourselves to the 3188 * previous iclog and go to sleep. 3189 */ 3190 if (iclog->ic_state == XLOG_STATE_DIRTY || 3191 (atomic_read(&iclog->ic_refcnt) == 0 3192 && iclog->ic_offset == 0)) { 3193 iclog = iclog->ic_prev; 3194 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3195 iclog->ic_state == XLOG_STATE_DIRTY) 3196 goto no_sleep; 3197 else 3198 goto maybe_sleep; 3199 } else { 3200 if (atomic_read(&iclog->ic_refcnt) == 0) { 3201 /* We are the only one with access to this 3202 * iclog. Flush it out now. There should 3203 * be a roundoff of zero to show that someone 3204 * has already taken care of the roundoff from 3205 * the previous sync. 3206 */ 3207 atomic_inc(&iclog->ic_refcnt); 3208 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3209 xlog_state_switch_iclogs(log, iclog, 0); 3210 spin_unlock(&log->l_icloglock); 3211 3212 if (xlog_state_release_iclog(log, iclog)) 3213 return XFS_ERROR(EIO); 3214 3215 if (log_flushed) 3216 *log_flushed = 1; 3217 spin_lock(&log->l_icloglock); 3218 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3219 iclog->ic_state != XLOG_STATE_DIRTY) 3220 goto maybe_sleep; 3221 else 3222 goto no_sleep; 3223 } else { 3224 /* Someone else is writing to this iclog. 3225 * Use its call to flush out the data. However, 3226 * the other thread may not force out this LR, 3227 * so we mark it WANT_SYNC. 3228 */ 3229 xlog_state_switch_iclogs(log, iclog, 0); 3230 goto maybe_sleep; 3231 } 3232 } 3233 } 3234 3235 /* By the time we come around again, the iclog could've been filled 3236 * which would give it another lsn. If we have a new lsn, just 3237 * return because the relevant data has been flushed. 3238 */ 3239 maybe_sleep: 3240 if (flags & XFS_LOG_SYNC) { 3241 /* 3242 * We must check if we're shutting down here, before 3243 * we wait, while we're holding the l_icloglock. 3244 * Then we check again after waking up, in case our 3245 * sleep was disturbed by a bad news. 3246 */ 3247 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3248 spin_unlock(&log->l_icloglock); 3249 return XFS_ERROR(EIO); 3250 } 3251 XFS_STATS_INC(xs_log_force_sleep); 3252 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3253 /* 3254 * No need to grab the log lock here since we're 3255 * only deciding whether or not to return EIO 3256 * and the memory read should be atomic. 3257 */ 3258 if (iclog->ic_state & XLOG_STATE_IOERROR) 3259 return XFS_ERROR(EIO); 3260 if (log_flushed) 3261 *log_flushed = 1; 3262 } else { 3263 3264 no_sleep: 3265 spin_unlock(&log->l_icloglock); 3266 } 3267 return 0; 3268 } 3269 3270 /* 3271 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3272 * about errors or whether the log was flushed or not. This is the normal 3273 * interface to use when trying to unpin items or move the log forward. 3274 */ 3275 void 3276 xfs_log_force( 3277 xfs_mount_t *mp, 3278 uint flags) 3279 { 3280 int error; 3281 3282 trace_xfs_log_force(mp, 0); 3283 error = _xfs_log_force(mp, flags, NULL); 3284 if (error) 3285 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3286 } 3287 3288 /* 3289 * Force the in-core log to disk for a specific LSN. 3290 * 3291 * Find in-core log with lsn. 3292 * If it is in the DIRTY state, just return. 3293 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3294 * state and go to sleep or return. 3295 * If it is in any other state, go to sleep or return. 3296 * 3297 * Synchronous forces are implemented with a signal variable. All callers 3298 * to force a given lsn to disk will wait on a the sv attached to the 3299 * specific in-core log. When given in-core log finally completes its 3300 * write to disk, that thread will wake up all threads waiting on the 3301 * sv. 3302 */ 3303 int 3304 _xfs_log_force_lsn( 3305 struct xfs_mount *mp, 3306 xfs_lsn_t lsn, 3307 uint flags, 3308 int *log_flushed) 3309 { 3310 struct xlog *log = mp->m_log; 3311 struct xlog_in_core *iclog; 3312 int already_slept = 0; 3313 3314 ASSERT(lsn != 0); 3315 3316 XFS_STATS_INC(xs_log_force); 3317 3318 lsn = xlog_cil_force_lsn(log, lsn); 3319 if (lsn == NULLCOMMITLSN) 3320 return 0; 3321 3322 try_again: 3323 spin_lock(&log->l_icloglock); 3324 iclog = log->l_iclog; 3325 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3326 spin_unlock(&log->l_icloglock); 3327 return XFS_ERROR(EIO); 3328 } 3329 3330 do { 3331 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3332 iclog = iclog->ic_next; 3333 continue; 3334 } 3335 3336 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3337 spin_unlock(&log->l_icloglock); 3338 return 0; 3339 } 3340 3341 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3342 /* 3343 * We sleep here if we haven't already slept (e.g. 3344 * this is the first time we've looked at the correct 3345 * iclog buf) and the buffer before us is going to 3346 * be sync'ed. The reason for this is that if we 3347 * are doing sync transactions here, by waiting for 3348 * the previous I/O to complete, we can allow a few 3349 * more transactions into this iclog before we close 3350 * it down. 3351 * 3352 * Otherwise, we mark the buffer WANT_SYNC, and bump 3353 * up the refcnt so we can release the log (which 3354 * drops the ref count). The state switch keeps new 3355 * transaction commits from using this buffer. When 3356 * the current commits finish writing into the buffer, 3357 * the refcount will drop to zero and the buffer will 3358 * go out then. 3359 */ 3360 if (!already_slept && 3361 (iclog->ic_prev->ic_state & 3362 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3363 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3364 3365 XFS_STATS_INC(xs_log_force_sleep); 3366 3367 xlog_wait(&iclog->ic_prev->ic_write_wait, 3368 &log->l_icloglock); 3369 if (log_flushed) 3370 *log_flushed = 1; 3371 already_slept = 1; 3372 goto try_again; 3373 } 3374 atomic_inc(&iclog->ic_refcnt); 3375 xlog_state_switch_iclogs(log, iclog, 0); 3376 spin_unlock(&log->l_icloglock); 3377 if (xlog_state_release_iclog(log, iclog)) 3378 return XFS_ERROR(EIO); 3379 if (log_flushed) 3380 *log_flushed = 1; 3381 spin_lock(&log->l_icloglock); 3382 } 3383 3384 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3385 !(iclog->ic_state & 3386 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3387 /* 3388 * Don't wait on completion if we know that we've 3389 * gotten a log write error. 3390 */ 3391 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3392 spin_unlock(&log->l_icloglock); 3393 return XFS_ERROR(EIO); 3394 } 3395 XFS_STATS_INC(xs_log_force_sleep); 3396 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3397 /* 3398 * No need to grab the log lock here since we're 3399 * only deciding whether or not to return EIO 3400 * and the memory read should be atomic. 3401 */ 3402 if (iclog->ic_state & XLOG_STATE_IOERROR) 3403 return XFS_ERROR(EIO); 3404 3405 if (log_flushed) 3406 *log_flushed = 1; 3407 } else { /* just return */ 3408 spin_unlock(&log->l_icloglock); 3409 } 3410 3411 return 0; 3412 } while (iclog != log->l_iclog); 3413 3414 spin_unlock(&log->l_icloglock); 3415 return 0; 3416 } 3417 3418 /* 3419 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3420 * about errors or whether the log was flushed or not. This is the normal 3421 * interface to use when trying to unpin items or move the log forward. 3422 */ 3423 void 3424 xfs_log_force_lsn( 3425 xfs_mount_t *mp, 3426 xfs_lsn_t lsn, 3427 uint flags) 3428 { 3429 int error; 3430 3431 trace_xfs_log_force(mp, lsn); 3432 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3433 if (error) 3434 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3435 } 3436 3437 /* 3438 * Called when we want to mark the current iclog as being ready to sync to 3439 * disk. 3440 */ 3441 STATIC void 3442 xlog_state_want_sync( 3443 struct xlog *log, 3444 struct xlog_in_core *iclog) 3445 { 3446 assert_spin_locked(&log->l_icloglock); 3447 3448 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3449 xlog_state_switch_iclogs(log, iclog, 0); 3450 } else { 3451 ASSERT(iclog->ic_state & 3452 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3453 } 3454 } 3455 3456 3457 /***************************************************************************** 3458 * 3459 * TICKET functions 3460 * 3461 ***************************************************************************** 3462 */ 3463 3464 /* 3465 * Free a used ticket when its refcount falls to zero. 3466 */ 3467 void 3468 xfs_log_ticket_put( 3469 xlog_ticket_t *ticket) 3470 { 3471 ASSERT(atomic_read(&ticket->t_ref) > 0); 3472 if (atomic_dec_and_test(&ticket->t_ref)) 3473 kmem_zone_free(xfs_log_ticket_zone, ticket); 3474 } 3475 3476 xlog_ticket_t * 3477 xfs_log_ticket_get( 3478 xlog_ticket_t *ticket) 3479 { 3480 ASSERT(atomic_read(&ticket->t_ref) > 0); 3481 atomic_inc(&ticket->t_ref); 3482 return ticket; 3483 } 3484 3485 /* 3486 * Figure out the total log space unit (in bytes) that would be 3487 * required for a log ticket. 3488 */ 3489 int 3490 xfs_log_calc_unit_res( 3491 struct xfs_mount *mp, 3492 int unit_bytes) 3493 { 3494 struct xlog *log = mp->m_log; 3495 int iclog_space; 3496 uint num_headers; 3497 3498 /* 3499 * Permanent reservations have up to 'cnt'-1 active log operations 3500 * in the log. A unit in this case is the amount of space for one 3501 * of these log operations. Normal reservations have a cnt of 1 3502 * and their unit amount is the total amount of space required. 3503 * 3504 * The following lines of code account for non-transaction data 3505 * which occupy space in the on-disk log. 3506 * 3507 * Normal form of a transaction is: 3508 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3509 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3510 * 3511 * We need to account for all the leadup data and trailer data 3512 * around the transaction data. 3513 * And then we need to account for the worst case in terms of using 3514 * more space. 3515 * The worst case will happen if: 3516 * - the placement of the transaction happens to be such that the 3517 * roundoff is at its maximum 3518 * - the transaction data is synced before the commit record is synced 3519 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3520 * Therefore the commit record is in its own Log Record. 3521 * This can happen as the commit record is called with its 3522 * own region to xlog_write(). 3523 * This then means that in the worst case, roundoff can happen for 3524 * the commit-rec as well. 3525 * The commit-rec is smaller than padding in this scenario and so it is 3526 * not added separately. 3527 */ 3528 3529 /* for trans header */ 3530 unit_bytes += sizeof(xlog_op_header_t); 3531 unit_bytes += sizeof(xfs_trans_header_t); 3532 3533 /* for start-rec */ 3534 unit_bytes += sizeof(xlog_op_header_t); 3535 3536 /* 3537 * for LR headers - the space for data in an iclog is the size minus 3538 * the space used for the headers. If we use the iclog size, then we 3539 * undercalculate the number of headers required. 3540 * 3541 * Furthermore - the addition of op headers for split-recs might 3542 * increase the space required enough to require more log and op 3543 * headers, so take that into account too. 3544 * 3545 * IMPORTANT: This reservation makes the assumption that if this 3546 * transaction is the first in an iclog and hence has the LR headers 3547 * accounted to it, then the remaining space in the iclog is 3548 * exclusively for this transaction. i.e. if the transaction is larger 3549 * than the iclog, it will be the only thing in that iclog. 3550 * Fundamentally, this means we must pass the entire log vector to 3551 * xlog_write to guarantee this. 3552 */ 3553 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3554 num_headers = howmany(unit_bytes, iclog_space); 3555 3556 /* for split-recs - ophdrs added when data split over LRs */ 3557 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3558 3559 /* add extra header reservations if we overrun */ 3560 while (!num_headers || 3561 howmany(unit_bytes, iclog_space) > num_headers) { 3562 unit_bytes += sizeof(xlog_op_header_t); 3563 num_headers++; 3564 } 3565 unit_bytes += log->l_iclog_hsize * num_headers; 3566 3567 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3568 unit_bytes += log->l_iclog_hsize; 3569 3570 /* for roundoff padding for transaction data and one for commit record */ 3571 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3572 /* log su roundoff */ 3573 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3574 } else { 3575 /* BB roundoff */ 3576 unit_bytes += 2 * BBSIZE; 3577 } 3578 3579 return unit_bytes; 3580 } 3581 3582 /* 3583 * Allocate and initialise a new log ticket. 3584 */ 3585 struct xlog_ticket * 3586 xlog_ticket_alloc( 3587 struct xlog *log, 3588 int unit_bytes, 3589 int cnt, 3590 char client, 3591 bool permanent, 3592 xfs_km_flags_t alloc_flags) 3593 { 3594 struct xlog_ticket *tic; 3595 int unit_res; 3596 3597 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3598 if (!tic) 3599 return NULL; 3600 3601 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3602 3603 atomic_set(&tic->t_ref, 1); 3604 tic->t_task = current; 3605 INIT_LIST_HEAD(&tic->t_queue); 3606 tic->t_unit_res = unit_res; 3607 tic->t_curr_res = unit_res; 3608 tic->t_cnt = cnt; 3609 tic->t_ocnt = cnt; 3610 tic->t_tid = prandom_u32(); 3611 tic->t_clientid = client; 3612 tic->t_flags = XLOG_TIC_INITED; 3613 tic->t_trans_type = 0; 3614 if (permanent) 3615 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3616 3617 xlog_tic_reset_res(tic); 3618 3619 return tic; 3620 } 3621 3622 3623 /****************************************************************************** 3624 * 3625 * Log debug routines 3626 * 3627 ****************************************************************************** 3628 */ 3629 #if defined(DEBUG) 3630 /* 3631 * Make sure that the destination ptr is within the valid data region of 3632 * one of the iclogs. This uses backup pointers stored in a different 3633 * part of the log in case we trash the log structure. 3634 */ 3635 void 3636 xlog_verify_dest_ptr( 3637 struct xlog *log, 3638 char *ptr) 3639 { 3640 int i; 3641 int good_ptr = 0; 3642 3643 for (i = 0; i < log->l_iclog_bufs; i++) { 3644 if (ptr >= log->l_iclog_bak[i] && 3645 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3646 good_ptr++; 3647 } 3648 3649 if (!good_ptr) 3650 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3651 } 3652 3653 /* 3654 * Check to make sure the grant write head didn't just over lap the tail. If 3655 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3656 * the cycles differ by exactly one and check the byte count. 3657 * 3658 * This check is run unlocked, so can give false positives. Rather than assert 3659 * on failures, use a warn-once flag and a panic tag to allow the admin to 3660 * determine if they want to panic the machine when such an error occurs. For 3661 * debug kernels this will have the same effect as using an assert but, unlinke 3662 * an assert, it can be turned off at runtime. 3663 */ 3664 STATIC void 3665 xlog_verify_grant_tail( 3666 struct xlog *log) 3667 { 3668 int tail_cycle, tail_blocks; 3669 int cycle, space; 3670 3671 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3672 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3673 if (tail_cycle != cycle) { 3674 if (cycle - 1 != tail_cycle && 3675 !(log->l_flags & XLOG_TAIL_WARN)) { 3676 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3677 "%s: cycle - 1 != tail_cycle", __func__); 3678 log->l_flags |= XLOG_TAIL_WARN; 3679 } 3680 3681 if (space > BBTOB(tail_blocks) && 3682 !(log->l_flags & XLOG_TAIL_WARN)) { 3683 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3684 "%s: space > BBTOB(tail_blocks)", __func__); 3685 log->l_flags |= XLOG_TAIL_WARN; 3686 } 3687 } 3688 } 3689 3690 /* check if it will fit */ 3691 STATIC void 3692 xlog_verify_tail_lsn( 3693 struct xlog *log, 3694 struct xlog_in_core *iclog, 3695 xfs_lsn_t tail_lsn) 3696 { 3697 int blocks; 3698 3699 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3700 blocks = 3701 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3702 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3703 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3704 } else { 3705 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3706 3707 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3708 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3709 3710 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3711 if (blocks < BTOBB(iclog->ic_offset) + 1) 3712 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3713 } 3714 } /* xlog_verify_tail_lsn */ 3715 3716 /* 3717 * Perform a number of checks on the iclog before writing to disk. 3718 * 3719 * 1. Make sure the iclogs are still circular 3720 * 2. Make sure we have a good magic number 3721 * 3. Make sure we don't have magic numbers in the data 3722 * 4. Check fields of each log operation header for: 3723 * A. Valid client identifier 3724 * B. tid ptr value falls in valid ptr space (user space code) 3725 * C. Length in log record header is correct according to the 3726 * individual operation headers within record. 3727 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3728 * log, check the preceding blocks of the physical log to make sure all 3729 * the cycle numbers agree with the current cycle number. 3730 */ 3731 STATIC void 3732 xlog_verify_iclog( 3733 struct xlog *log, 3734 struct xlog_in_core *iclog, 3735 int count, 3736 bool syncing) 3737 { 3738 xlog_op_header_t *ophead; 3739 xlog_in_core_t *icptr; 3740 xlog_in_core_2_t *xhdr; 3741 xfs_caddr_t ptr; 3742 xfs_caddr_t base_ptr; 3743 __psint_t field_offset; 3744 __uint8_t clientid; 3745 int len, i, j, k, op_len; 3746 int idx; 3747 3748 /* check validity of iclog pointers */ 3749 spin_lock(&log->l_icloglock); 3750 icptr = log->l_iclog; 3751 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3752 ASSERT(icptr); 3753 3754 if (icptr != log->l_iclog) 3755 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3756 spin_unlock(&log->l_icloglock); 3757 3758 /* check log magic numbers */ 3759 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3760 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3761 3762 ptr = (xfs_caddr_t) &iclog->ic_header; 3763 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3764 ptr += BBSIZE) { 3765 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3766 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3767 __func__); 3768 } 3769 3770 /* check fields */ 3771 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3772 ptr = iclog->ic_datap; 3773 base_ptr = ptr; 3774 ophead = (xlog_op_header_t *)ptr; 3775 xhdr = iclog->ic_data; 3776 for (i = 0; i < len; i++) { 3777 ophead = (xlog_op_header_t *)ptr; 3778 3779 /* clientid is only 1 byte */ 3780 field_offset = (__psint_t) 3781 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3782 if (!syncing || (field_offset & 0x1ff)) { 3783 clientid = ophead->oh_clientid; 3784 } else { 3785 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3786 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3787 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3788 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3789 clientid = xlog_get_client_id( 3790 xhdr[j].hic_xheader.xh_cycle_data[k]); 3791 } else { 3792 clientid = xlog_get_client_id( 3793 iclog->ic_header.h_cycle_data[idx]); 3794 } 3795 } 3796 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3797 xfs_warn(log->l_mp, 3798 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3799 __func__, clientid, ophead, 3800 (unsigned long)field_offset); 3801 3802 /* check length */ 3803 field_offset = (__psint_t) 3804 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3805 if (!syncing || (field_offset & 0x1ff)) { 3806 op_len = be32_to_cpu(ophead->oh_len); 3807 } else { 3808 idx = BTOBBT((__psint_t)&ophead->oh_len - 3809 (__psint_t)iclog->ic_datap); 3810 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3811 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3812 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3813 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3814 } else { 3815 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3816 } 3817 } 3818 ptr += sizeof(xlog_op_header_t) + op_len; 3819 } 3820 } /* xlog_verify_iclog */ 3821 #endif 3822 3823 /* 3824 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3825 */ 3826 STATIC int 3827 xlog_state_ioerror( 3828 struct xlog *log) 3829 { 3830 xlog_in_core_t *iclog, *ic; 3831 3832 iclog = log->l_iclog; 3833 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3834 /* 3835 * Mark all the incore logs IOERROR. 3836 * From now on, no log flushes will result. 3837 */ 3838 ic = iclog; 3839 do { 3840 ic->ic_state = XLOG_STATE_IOERROR; 3841 ic = ic->ic_next; 3842 } while (ic != iclog); 3843 return 0; 3844 } 3845 /* 3846 * Return non-zero, if state transition has already happened. 3847 */ 3848 return 1; 3849 } 3850 3851 /* 3852 * This is called from xfs_force_shutdown, when we're forcibly 3853 * shutting down the filesystem, typically because of an IO error. 3854 * Our main objectives here are to make sure that: 3855 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3856 * parties to find out, 'atomically'. 3857 * b. those who're sleeping on log reservations, pinned objects and 3858 * other resources get woken up, and be told the bad news. 3859 * c. nothing new gets queued up after (a) and (b) are done. 3860 * d. if !logerror, flush the iclogs to disk, then seal them off 3861 * for business. 3862 * 3863 * Note: for delayed logging the !logerror case needs to flush the regions 3864 * held in memory out to the iclogs before flushing them to disk. This needs 3865 * to be done before the log is marked as shutdown, otherwise the flush to the 3866 * iclogs will fail. 3867 */ 3868 int 3869 xfs_log_force_umount( 3870 struct xfs_mount *mp, 3871 int logerror) 3872 { 3873 struct xlog *log; 3874 int retval; 3875 3876 log = mp->m_log; 3877 3878 /* 3879 * If this happens during log recovery, don't worry about 3880 * locking; the log isn't open for business yet. 3881 */ 3882 if (!log || 3883 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3884 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3885 if (mp->m_sb_bp) 3886 XFS_BUF_DONE(mp->m_sb_bp); 3887 return 0; 3888 } 3889 3890 /* 3891 * Somebody could've already done the hard work for us. 3892 * No need to get locks for this. 3893 */ 3894 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3895 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3896 return 1; 3897 } 3898 retval = 0; 3899 3900 /* 3901 * Flush the in memory commit item list before marking the log as 3902 * being shut down. We need to do it in this order to ensure all the 3903 * completed transactions are flushed to disk with the xfs_log_force() 3904 * call below. 3905 */ 3906 if (!logerror) 3907 xlog_cil_force(log); 3908 3909 /* 3910 * mark the filesystem and the as in a shutdown state and wake 3911 * everybody up to tell them the bad news. 3912 */ 3913 spin_lock(&log->l_icloglock); 3914 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3915 if (mp->m_sb_bp) 3916 XFS_BUF_DONE(mp->m_sb_bp); 3917 3918 /* 3919 * This flag is sort of redundant because of the mount flag, but 3920 * it's good to maintain the separation between the log and the rest 3921 * of XFS. 3922 */ 3923 log->l_flags |= XLOG_IO_ERROR; 3924 3925 /* 3926 * If we hit a log error, we want to mark all the iclogs IOERROR 3927 * while we're still holding the loglock. 3928 */ 3929 if (logerror) 3930 retval = xlog_state_ioerror(log); 3931 spin_unlock(&log->l_icloglock); 3932 3933 /* 3934 * We don't want anybody waiting for log reservations after this. That 3935 * means we have to wake up everybody queued up on reserveq as well as 3936 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3937 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3938 * action is protected by the grant locks. 3939 */ 3940 xlog_grant_head_wake_all(&log->l_reserve_head); 3941 xlog_grant_head_wake_all(&log->l_write_head); 3942 3943 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3944 ASSERT(!logerror); 3945 /* 3946 * Force the incore logs to disk before shutting the 3947 * log down completely. 3948 */ 3949 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3950 3951 spin_lock(&log->l_icloglock); 3952 retval = xlog_state_ioerror(log); 3953 spin_unlock(&log->l_icloglock); 3954 } 3955 3956 /* 3957 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3958 * as if the log writes were completed. The abort handling in the log 3959 * item committed callback functions will do this again under lock to 3960 * avoid races. 3961 */ 3962 wake_up_all(&log->l_cilp->xc_commit_wait); 3963 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3964 3965 #ifdef XFSERRORDEBUG 3966 { 3967 xlog_in_core_t *iclog; 3968 3969 spin_lock(&log->l_icloglock); 3970 iclog = log->l_iclog; 3971 do { 3972 ASSERT(iclog->ic_callback == 0); 3973 iclog = iclog->ic_next; 3974 } while (iclog != log->l_iclog); 3975 spin_unlock(&log->l_icloglock); 3976 } 3977 #endif 3978 /* return non-zero if log IOERROR transition had already happened */ 3979 return retval; 3980 } 3981 3982 STATIC int 3983 xlog_iclogs_empty( 3984 struct xlog *log) 3985 { 3986 xlog_in_core_t *iclog; 3987 3988 iclog = log->l_iclog; 3989 do { 3990 /* endianness does not matter here, zero is zero in 3991 * any language. 3992 */ 3993 if (iclog->ic_header.h_num_logops) 3994 return 0; 3995 iclog = iclog->ic_next; 3996 } while (iclog != log->l_iclog); 3997 return 1; 3998 } 3999 4000