1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_log_recover.h" 20 #include "xfs_inode.h" 21 #include "xfs_trace.h" 22 #include "xfs_fsops.h" 23 #include "xfs_cksum.h" 24 #include "xfs_sysfs.h" 25 #include "xfs_sb.h" 26 #include "xfs_health.h" 27 28 kmem_zone_t *xfs_log_ticket_zone; 29 30 /* Local miscellaneous function prototypes */ 31 STATIC int 32 xlog_commit_record( 33 struct xlog *log, 34 struct xlog_ticket *ticket, 35 struct xlog_in_core **iclog, 36 xfs_lsn_t *commitlsnp); 37 38 STATIC struct xlog * 39 xlog_alloc_log( 40 struct xfs_mount *mp, 41 struct xfs_buftarg *log_target, 42 xfs_daddr_t blk_offset, 43 int num_bblks); 44 STATIC int 45 xlog_space_left( 46 struct xlog *log, 47 atomic64_t *head); 48 STATIC int 49 xlog_sync( 50 struct xlog *log, 51 struct xlog_in_core *iclog); 52 STATIC void 53 xlog_dealloc_log( 54 struct xlog *log); 55 56 /* local state machine functions */ 57 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 58 STATIC void 59 xlog_state_do_callback( 60 struct xlog *log, 61 int aborted, 62 struct xlog_in_core *iclog); 63 STATIC int 64 xlog_state_get_iclog_space( 65 struct xlog *log, 66 int len, 67 struct xlog_in_core **iclog, 68 struct xlog_ticket *ticket, 69 int *continued_write, 70 int *logoffsetp); 71 STATIC int 72 xlog_state_release_iclog( 73 struct xlog *log, 74 struct xlog_in_core *iclog); 75 STATIC void 76 xlog_state_switch_iclogs( 77 struct xlog *log, 78 struct xlog_in_core *iclog, 79 int eventual_size); 80 STATIC void 81 xlog_state_want_sync( 82 struct xlog *log, 83 struct xlog_in_core *iclog); 84 85 STATIC void 86 xlog_grant_push_ail( 87 struct xlog *log, 88 int need_bytes); 89 STATIC void 90 xlog_regrant_reserve_log_space( 91 struct xlog *log, 92 struct xlog_ticket *ticket); 93 STATIC void 94 xlog_ungrant_log_space( 95 struct xlog *log, 96 struct xlog_ticket *ticket); 97 98 #if defined(DEBUG) 99 STATIC void 100 xlog_verify_dest_ptr( 101 struct xlog *log, 102 void *ptr); 103 STATIC void 104 xlog_verify_grant_tail( 105 struct xlog *log); 106 STATIC void 107 xlog_verify_iclog( 108 struct xlog *log, 109 struct xlog_in_core *iclog, 110 int count, 111 bool syncing); 112 STATIC void 113 xlog_verify_tail_lsn( 114 struct xlog *log, 115 struct xlog_in_core *iclog, 116 xfs_lsn_t tail_lsn); 117 #else 118 #define xlog_verify_dest_ptr(a,b) 119 #define xlog_verify_grant_tail(a) 120 #define xlog_verify_iclog(a,b,c,d) 121 #define xlog_verify_tail_lsn(a,b,c) 122 #endif 123 124 STATIC int 125 xlog_iclogs_empty( 126 struct xlog *log); 127 128 static void 129 xlog_grant_sub_space( 130 struct xlog *log, 131 atomic64_t *head, 132 int bytes) 133 { 134 int64_t head_val = atomic64_read(head); 135 int64_t new, old; 136 137 do { 138 int cycle, space; 139 140 xlog_crack_grant_head_val(head_val, &cycle, &space); 141 142 space -= bytes; 143 if (space < 0) { 144 space += log->l_logsize; 145 cycle--; 146 } 147 148 old = head_val; 149 new = xlog_assign_grant_head_val(cycle, space); 150 head_val = atomic64_cmpxchg(head, old, new); 151 } while (head_val != old); 152 } 153 154 static void 155 xlog_grant_add_space( 156 struct xlog *log, 157 atomic64_t *head, 158 int bytes) 159 { 160 int64_t head_val = atomic64_read(head); 161 int64_t new, old; 162 163 do { 164 int tmp; 165 int cycle, space; 166 167 xlog_crack_grant_head_val(head_val, &cycle, &space); 168 169 tmp = log->l_logsize - space; 170 if (tmp > bytes) 171 space += bytes; 172 else { 173 space = bytes - tmp; 174 cycle++; 175 } 176 177 old = head_val; 178 new = xlog_assign_grant_head_val(cycle, space); 179 head_val = atomic64_cmpxchg(head, old, new); 180 } while (head_val != old); 181 } 182 183 STATIC void 184 xlog_grant_head_init( 185 struct xlog_grant_head *head) 186 { 187 xlog_assign_grant_head(&head->grant, 1, 0); 188 INIT_LIST_HEAD(&head->waiters); 189 spin_lock_init(&head->lock); 190 } 191 192 STATIC void 193 xlog_grant_head_wake_all( 194 struct xlog_grant_head *head) 195 { 196 struct xlog_ticket *tic; 197 198 spin_lock(&head->lock); 199 list_for_each_entry(tic, &head->waiters, t_queue) 200 wake_up_process(tic->t_task); 201 spin_unlock(&head->lock); 202 } 203 204 static inline int 205 xlog_ticket_reservation( 206 struct xlog *log, 207 struct xlog_grant_head *head, 208 struct xlog_ticket *tic) 209 { 210 if (head == &log->l_write_head) { 211 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 212 return tic->t_unit_res; 213 } else { 214 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 215 return tic->t_unit_res * tic->t_cnt; 216 else 217 return tic->t_unit_res; 218 } 219 } 220 221 STATIC bool 222 xlog_grant_head_wake( 223 struct xlog *log, 224 struct xlog_grant_head *head, 225 int *free_bytes) 226 { 227 struct xlog_ticket *tic; 228 int need_bytes; 229 230 list_for_each_entry(tic, &head->waiters, t_queue) { 231 need_bytes = xlog_ticket_reservation(log, head, tic); 232 if (*free_bytes < need_bytes) 233 return false; 234 235 *free_bytes -= need_bytes; 236 trace_xfs_log_grant_wake_up(log, tic); 237 wake_up_process(tic->t_task); 238 } 239 240 return true; 241 } 242 243 STATIC int 244 xlog_grant_head_wait( 245 struct xlog *log, 246 struct xlog_grant_head *head, 247 struct xlog_ticket *tic, 248 int need_bytes) __releases(&head->lock) 249 __acquires(&head->lock) 250 { 251 list_add_tail(&tic->t_queue, &head->waiters); 252 253 do { 254 if (XLOG_FORCED_SHUTDOWN(log)) 255 goto shutdown; 256 xlog_grant_push_ail(log, need_bytes); 257 258 __set_current_state(TASK_UNINTERRUPTIBLE); 259 spin_unlock(&head->lock); 260 261 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 262 263 trace_xfs_log_grant_sleep(log, tic); 264 schedule(); 265 trace_xfs_log_grant_wake(log, tic); 266 267 spin_lock(&head->lock); 268 if (XLOG_FORCED_SHUTDOWN(log)) 269 goto shutdown; 270 } while (xlog_space_left(log, &head->grant) < need_bytes); 271 272 list_del_init(&tic->t_queue); 273 return 0; 274 shutdown: 275 list_del_init(&tic->t_queue); 276 return -EIO; 277 } 278 279 /* 280 * Atomically get the log space required for a log ticket. 281 * 282 * Once a ticket gets put onto head->waiters, it will only return after the 283 * needed reservation is satisfied. 284 * 285 * This function is structured so that it has a lock free fast path. This is 286 * necessary because every new transaction reservation will come through this 287 * path. Hence any lock will be globally hot if we take it unconditionally on 288 * every pass. 289 * 290 * As tickets are only ever moved on and off head->waiters under head->lock, we 291 * only need to take that lock if we are going to add the ticket to the queue 292 * and sleep. We can avoid taking the lock if the ticket was never added to 293 * head->waiters because the t_queue list head will be empty and we hold the 294 * only reference to it so it can safely be checked unlocked. 295 */ 296 STATIC int 297 xlog_grant_head_check( 298 struct xlog *log, 299 struct xlog_grant_head *head, 300 struct xlog_ticket *tic, 301 int *need_bytes) 302 { 303 int free_bytes; 304 int error = 0; 305 306 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 307 308 /* 309 * If there are other waiters on the queue then give them a chance at 310 * logspace before us. Wake up the first waiters, if we do not wake 311 * up all the waiters then go to sleep waiting for more free space, 312 * otherwise try to get some space for this transaction. 313 */ 314 *need_bytes = xlog_ticket_reservation(log, head, tic); 315 free_bytes = xlog_space_left(log, &head->grant); 316 if (!list_empty_careful(&head->waiters)) { 317 spin_lock(&head->lock); 318 if (!xlog_grant_head_wake(log, head, &free_bytes) || 319 free_bytes < *need_bytes) { 320 error = xlog_grant_head_wait(log, head, tic, 321 *need_bytes); 322 } 323 spin_unlock(&head->lock); 324 } else if (free_bytes < *need_bytes) { 325 spin_lock(&head->lock); 326 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 327 spin_unlock(&head->lock); 328 } 329 330 return error; 331 } 332 333 static void 334 xlog_tic_reset_res(xlog_ticket_t *tic) 335 { 336 tic->t_res_num = 0; 337 tic->t_res_arr_sum = 0; 338 tic->t_res_num_ophdrs = 0; 339 } 340 341 static void 342 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 343 { 344 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 345 /* add to overflow and start again */ 346 tic->t_res_o_flow += tic->t_res_arr_sum; 347 tic->t_res_num = 0; 348 tic->t_res_arr_sum = 0; 349 } 350 351 tic->t_res_arr[tic->t_res_num].r_len = len; 352 tic->t_res_arr[tic->t_res_num].r_type = type; 353 tic->t_res_arr_sum += len; 354 tic->t_res_num++; 355 } 356 357 /* 358 * Replenish the byte reservation required by moving the grant write head. 359 */ 360 int 361 xfs_log_regrant( 362 struct xfs_mount *mp, 363 struct xlog_ticket *tic) 364 { 365 struct xlog *log = mp->m_log; 366 int need_bytes; 367 int error = 0; 368 369 if (XLOG_FORCED_SHUTDOWN(log)) 370 return -EIO; 371 372 XFS_STATS_INC(mp, xs_try_logspace); 373 374 /* 375 * This is a new transaction on the ticket, so we need to change the 376 * transaction ID so that the next transaction has a different TID in 377 * the log. Just add one to the existing tid so that we can see chains 378 * of rolling transactions in the log easily. 379 */ 380 tic->t_tid++; 381 382 xlog_grant_push_ail(log, tic->t_unit_res); 383 384 tic->t_curr_res = tic->t_unit_res; 385 xlog_tic_reset_res(tic); 386 387 if (tic->t_cnt > 0) 388 return 0; 389 390 trace_xfs_log_regrant(log, tic); 391 392 error = xlog_grant_head_check(log, &log->l_write_head, tic, 393 &need_bytes); 394 if (error) 395 goto out_error; 396 397 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 398 trace_xfs_log_regrant_exit(log, tic); 399 xlog_verify_grant_tail(log); 400 return 0; 401 402 out_error: 403 /* 404 * If we are failing, make sure the ticket doesn't have any current 405 * reservations. We don't want to add this back when the ticket/ 406 * transaction gets cancelled. 407 */ 408 tic->t_curr_res = 0; 409 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 410 return error; 411 } 412 413 /* 414 * Reserve log space and return a ticket corresponding to the reservation. 415 * 416 * Each reservation is going to reserve extra space for a log record header. 417 * When writes happen to the on-disk log, we don't subtract the length of the 418 * log record header from any reservation. By wasting space in each 419 * reservation, we prevent over allocation problems. 420 */ 421 int 422 xfs_log_reserve( 423 struct xfs_mount *mp, 424 int unit_bytes, 425 int cnt, 426 struct xlog_ticket **ticp, 427 uint8_t client, 428 bool permanent) 429 { 430 struct xlog *log = mp->m_log; 431 struct xlog_ticket *tic; 432 int need_bytes; 433 int error = 0; 434 435 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 436 437 if (XLOG_FORCED_SHUTDOWN(log)) 438 return -EIO; 439 440 XFS_STATS_INC(mp, xs_try_logspace); 441 442 ASSERT(*ticp == NULL); 443 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 444 KM_SLEEP | KM_MAYFAIL); 445 if (!tic) 446 return -ENOMEM; 447 448 *ticp = tic; 449 450 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 451 : tic->t_unit_res); 452 453 trace_xfs_log_reserve(log, tic); 454 455 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 456 &need_bytes); 457 if (error) 458 goto out_error; 459 460 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 461 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 462 trace_xfs_log_reserve_exit(log, tic); 463 xlog_verify_grant_tail(log); 464 return 0; 465 466 out_error: 467 /* 468 * If we are failing, make sure the ticket doesn't have any current 469 * reservations. We don't want to add this back when the ticket/ 470 * transaction gets cancelled. 471 */ 472 tic->t_curr_res = 0; 473 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 474 return error; 475 } 476 477 478 /* 479 * NOTES: 480 * 481 * 1. currblock field gets updated at startup and after in-core logs 482 * marked as with WANT_SYNC. 483 */ 484 485 /* 486 * This routine is called when a user of a log manager ticket is done with 487 * the reservation. If the ticket was ever used, then a commit record for 488 * the associated transaction is written out as a log operation header with 489 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 490 * a given ticket. If the ticket was one with a permanent reservation, then 491 * a few operations are done differently. Permanent reservation tickets by 492 * default don't release the reservation. They just commit the current 493 * transaction with the belief that the reservation is still needed. A flag 494 * must be passed in before permanent reservations are actually released. 495 * When these type of tickets are not released, they need to be set into 496 * the inited state again. By doing this, a start record will be written 497 * out when the next write occurs. 498 */ 499 xfs_lsn_t 500 xfs_log_done( 501 struct xfs_mount *mp, 502 struct xlog_ticket *ticket, 503 struct xlog_in_core **iclog, 504 bool regrant) 505 { 506 struct xlog *log = mp->m_log; 507 xfs_lsn_t lsn = 0; 508 509 if (XLOG_FORCED_SHUTDOWN(log) || 510 /* 511 * If nothing was ever written, don't write out commit record. 512 * If we get an error, just continue and give back the log ticket. 513 */ 514 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 515 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 516 lsn = (xfs_lsn_t) -1; 517 regrant = false; 518 } 519 520 521 if (!regrant) { 522 trace_xfs_log_done_nonperm(log, ticket); 523 524 /* 525 * Release ticket if not permanent reservation or a specific 526 * request has been made to release a permanent reservation. 527 */ 528 xlog_ungrant_log_space(log, ticket); 529 } else { 530 trace_xfs_log_done_perm(log, ticket); 531 532 xlog_regrant_reserve_log_space(log, ticket); 533 /* If this ticket was a permanent reservation and we aren't 534 * trying to release it, reset the inited flags; so next time 535 * we write, a start record will be written out. 536 */ 537 ticket->t_flags |= XLOG_TIC_INITED; 538 } 539 540 xfs_log_ticket_put(ticket); 541 return lsn; 542 } 543 544 /* 545 * Attaches a new iclog I/O completion callback routine during 546 * transaction commit. If the log is in error state, a non-zero 547 * return code is handed back and the caller is responsible for 548 * executing the callback at an appropriate time. 549 */ 550 int 551 xfs_log_notify( 552 struct xlog_in_core *iclog, 553 xfs_log_callback_t *cb) 554 { 555 int abortflg; 556 557 spin_lock(&iclog->ic_callback_lock); 558 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 559 if (!abortflg) { 560 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 561 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 562 cb->cb_next = NULL; 563 *(iclog->ic_callback_tail) = cb; 564 iclog->ic_callback_tail = &(cb->cb_next); 565 } 566 spin_unlock(&iclog->ic_callback_lock); 567 return abortflg; 568 } 569 570 int 571 xfs_log_release_iclog( 572 struct xfs_mount *mp, 573 struct xlog_in_core *iclog) 574 { 575 if (xlog_state_release_iclog(mp->m_log, iclog)) { 576 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 577 return -EIO; 578 } 579 580 return 0; 581 } 582 583 /* 584 * Mount a log filesystem 585 * 586 * mp - ubiquitous xfs mount point structure 587 * log_target - buftarg of on-disk log device 588 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 589 * num_bblocks - Number of BBSIZE blocks in on-disk log 590 * 591 * Return error or zero. 592 */ 593 int 594 xfs_log_mount( 595 xfs_mount_t *mp, 596 xfs_buftarg_t *log_target, 597 xfs_daddr_t blk_offset, 598 int num_bblks) 599 { 600 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 601 int error = 0; 602 int min_logfsbs; 603 604 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 605 xfs_notice(mp, "Mounting V%d Filesystem", 606 XFS_SB_VERSION_NUM(&mp->m_sb)); 607 } else { 608 xfs_notice(mp, 609 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 610 XFS_SB_VERSION_NUM(&mp->m_sb)); 611 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 612 } 613 614 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 615 if (IS_ERR(mp->m_log)) { 616 error = PTR_ERR(mp->m_log); 617 goto out; 618 } 619 620 /* 621 * Validate the given log space and drop a critical message via syslog 622 * if the log size is too small that would lead to some unexpected 623 * situations in transaction log space reservation stage. 624 * 625 * Note: we can't just reject the mount if the validation fails. This 626 * would mean that people would have to downgrade their kernel just to 627 * remedy the situation as there is no way to grow the log (short of 628 * black magic surgery with xfs_db). 629 * 630 * We can, however, reject mounts for CRC format filesystems, as the 631 * mkfs binary being used to make the filesystem should never create a 632 * filesystem with a log that is too small. 633 */ 634 min_logfsbs = xfs_log_calc_minimum_size(mp); 635 636 if (mp->m_sb.sb_logblocks < min_logfsbs) { 637 xfs_warn(mp, 638 "Log size %d blocks too small, minimum size is %d blocks", 639 mp->m_sb.sb_logblocks, min_logfsbs); 640 error = -EINVAL; 641 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 642 xfs_warn(mp, 643 "Log size %d blocks too large, maximum size is %lld blocks", 644 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 645 error = -EINVAL; 646 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 647 xfs_warn(mp, 648 "log size %lld bytes too large, maximum size is %lld bytes", 649 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 650 XFS_MAX_LOG_BYTES); 651 error = -EINVAL; 652 } else if (mp->m_sb.sb_logsunit > 1 && 653 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 654 xfs_warn(mp, 655 "log stripe unit %u bytes must be a multiple of block size", 656 mp->m_sb.sb_logsunit); 657 error = -EINVAL; 658 fatal = true; 659 } 660 if (error) { 661 /* 662 * Log check errors are always fatal on v5; or whenever bad 663 * metadata leads to a crash. 664 */ 665 if (fatal) { 666 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 667 ASSERT(0); 668 goto out_free_log; 669 } 670 xfs_crit(mp, "Log size out of supported range."); 671 xfs_crit(mp, 672 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 673 } 674 675 /* 676 * Initialize the AIL now we have a log. 677 */ 678 error = xfs_trans_ail_init(mp); 679 if (error) { 680 xfs_warn(mp, "AIL initialisation failed: error %d", error); 681 goto out_free_log; 682 } 683 mp->m_log->l_ailp = mp->m_ail; 684 685 /* 686 * skip log recovery on a norecovery mount. pretend it all 687 * just worked. 688 */ 689 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 690 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 691 692 if (readonly) 693 mp->m_flags &= ~XFS_MOUNT_RDONLY; 694 695 error = xlog_recover(mp->m_log); 696 697 if (readonly) 698 mp->m_flags |= XFS_MOUNT_RDONLY; 699 if (error) { 700 xfs_warn(mp, "log mount/recovery failed: error %d", 701 error); 702 xlog_recover_cancel(mp->m_log); 703 goto out_destroy_ail; 704 } 705 } 706 707 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 708 "log"); 709 if (error) 710 goto out_destroy_ail; 711 712 /* Normal transactions can now occur */ 713 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 714 715 /* 716 * Now the log has been fully initialised and we know were our 717 * space grant counters are, we can initialise the permanent ticket 718 * needed for delayed logging to work. 719 */ 720 xlog_cil_init_post_recovery(mp->m_log); 721 722 return 0; 723 724 out_destroy_ail: 725 xfs_trans_ail_destroy(mp); 726 out_free_log: 727 xlog_dealloc_log(mp->m_log); 728 out: 729 return error; 730 } 731 732 /* 733 * Finish the recovery of the file system. This is separate from the 734 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 735 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 736 * here. 737 * 738 * If we finish recovery successfully, start the background log work. If we are 739 * not doing recovery, then we have a RO filesystem and we don't need to start 740 * it. 741 */ 742 int 743 xfs_log_mount_finish( 744 struct xfs_mount *mp) 745 { 746 int error = 0; 747 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 748 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 749 750 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 751 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 752 return 0; 753 } else if (readonly) { 754 /* Allow unlinked processing to proceed */ 755 mp->m_flags &= ~XFS_MOUNT_RDONLY; 756 } 757 758 /* 759 * During the second phase of log recovery, we need iget and 760 * iput to behave like they do for an active filesystem. 761 * xfs_fs_drop_inode needs to be able to prevent the deletion 762 * of inodes before we're done replaying log items on those 763 * inodes. Turn it off immediately after recovery finishes 764 * so that we don't leak the quota inodes if subsequent mount 765 * activities fail. 766 * 767 * We let all inodes involved in redo item processing end up on 768 * the LRU instead of being evicted immediately so that if we do 769 * something to an unlinked inode, the irele won't cause 770 * premature truncation and freeing of the inode, which results 771 * in log recovery failure. We have to evict the unreferenced 772 * lru inodes after clearing SB_ACTIVE because we don't 773 * otherwise clean up the lru if there's a subsequent failure in 774 * xfs_mountfs, which leads to us leaking the inodes if nothing 775 * else (e.g. quotacheck) references the inodes before the 776 * mount failure occurs. 777 */ 778 mp->m_super->s_flags |= SB_ACTIVE; 779 error = xlog_recover_finish(mp->m_log); 780 if (!error) 781 xfs_log_work_queue(mp); 782 mp->m_super->s_flags &= ~SB_ACTIVE; 783 evict_inodes(mp->m_super); 784 785 /* 786 * Drain the buffer LRU after log recovery. This is required for v4 787 * filesystems to avoid leaving around buffers with NULL verifier ops, 788 * but we do it unconditionally to make sure we're always in a clean 789 * cache state after mount. 790 * 791 * Don't push in the error case because the AIL may have pending intents 792 * that aren't removed until recovery is cancelled. 793 */ 794 if (!error && recovered) { 795 xfs_log_force(mp, XFS_LOG_SYNC); 796 xfs_ail_push_all_sync(mp->m_ail); 797 } 798 xfs_wait_buftarg(mp->m_ddev_targp); 799 800 if (readonly) 801 mp->m_flags |= XFS_MOUNT_RDONLY; 802 803 return error; 804 } 805 806 /* 807 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 808 * the log. 809 */ 810 int 811 xfs_log_mount_cancel( 812 struct xfs_mount *mp) 813 { 814 int error; 815 816 error = xlog_recover_cancel(mp->m_log); 817 xfs_log_unmount(mp); 818 819 return error; 820 } 821 822 /* 823 * Final log writes as part of unmount. 824 * 825 * Mark the filesystem clean as unmount happens. Note that during relocation 826 * this routine needs to be executed as part of source-bag while the 827 * deallocation must not be done until source-end. 828 */ 829 830 /* Actually write the unmount record to disk. */ 831 static void 832 xfs_log_write_unmount_record( 833 struct xfs_mount *mp) 834 { 835 /* the data section must be 32 bit size aligned */ 836 struct xfs_unmount_log_format magic = { 837 .magic = XLOG_UNMOUNT_TYPE, 838 }; 839 struct xfs_log_iovec reg = { 840 .i_addr = &magic, 841 .i_len = sizeof(magic), 842 .i_type = XLOG_REG_TYPE_UNMOUNT, 843 }; 844 struct xfs_log_vec vec = { 845 .lv_niovecs = 1, 846 .lv_iovecp = ®, 847 }; 848 struct xlog *log = mp->m_log; 849 struct xlog_in_core *iclog; 850 struct xlog_ticket *tic = NULL; 851 xfs_lsn_t lsn; 852 uint flags = XLOG_UNMOUNT_TRANS; 853 int error; 854 855 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 856 if (error) 857 goto out_err; 858 859 /* 860 * If we think the summary counters are bad, clear the unmount header 861 * flag in the unmount record so that the summary counters will be 862 * recalculated during log recovery at next mount. Refer to 863 * xlog_check_unmount_rec for more details. 864 */ 865 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 866 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 867 xfs_alert(mp, "%s: will fix summary counters at next mount", 868 __func__); 869 flags &= ~XLOG_UNMOUNT_TRANS; 870 } 871 872 /* remove inited flag, and account for space used */ 873 tic->t_flags = 0; 874 tic->t_curr_res -= sizeof(magic); 875 error = xlog_write(log, &vec, tic, &lsn, NULL, flags); 876 /* 877 * At this point, we're umounting anyway, so there's no point in 878 * transitioning log state to IOERROR. Just continue... 879 */ 880 out_err: 881 if (error) 882 xfs_alert(mp, "%s: unmount record failed", __func__); 883 884 spin_lock(&log->l_icloglock); 885 iclog = log->l_iclog; 886 atomic_inc(&iclog->ic_refcnt); 887 xlog_state_want_sync(log, iclog); 888 spin_unlock(&log->l_icloglock); 889 error = xlog_state_release_iclog(log, iclog); 890 891 spin_lock(&log->l_icloglock); 892 switch (iclog->ic_state) { 893 default: 894 if (!XLOG_FORCED_SHUTDOWN(log)) { 895 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 896 break; 897 } 898 /* fall through */ 899 case XLOG_STATE_ACTIVE: 900 case XLOG_STATE_DIRTY: 901 spin_unlock(&log->l_icloglock); 902 break; 903 } 904 905 if (tic) { 906 trace_xfs_log_umount_write(log, tic); 907 xlog_ungrant_log_space(log, tic); 908 xfs_log_ticket_put(tic); 909 } 910 } 911 912 /* 913 * Unmount record used to have a string "Unmount filesystem--" in the 914 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 915 * We just write the magic number now since that particular field isn't 916 * currently architecture converted and "Unmount" is a bit foo. 917 * As far as I know, there weren't any dependencies on the old behaviour. 918 */ 919 920 static int 921 xfs_log_unmount_write(xfs_mount_t *mp) 922 { 923 struct xlog *log = mp->m_log; 924 xlog_in_core_t *iclog; 925 #ifdef DEBUG 926 xlog_in_core_t *first_iclog; 927 #endif 928 int error; 929 930 /* 931 * Don't write out unmount record on norecovery mounts or ro devices. 932 * Or, if we are doing a forced umount (typically because of IO errors). 933 */ 934 if (mp->m_flags & XFS_MOUNT_NORECOVERY || 935 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 936 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 937 return 0; 938 } 939 940 error = xfs_log_force(mp, XFS_LOG_SYNC); 941 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 942 943 #ifdef DEBUG 944 first_iclog = iclog = log->l_iclog; 945 do { 946 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 947 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 948 ASSERT(iclog->ic_offset == 0); 949 } 950 iclog = iclog->ic_next; 951 } while (iclog != first_iclog); 952 #endif 953 if (! (XLOG_FORCED_SHUTDOWN(log))) { 954 xfs_log_write_unmount_record(mp); 955 } else { 956 /* 957 * We're already in forced_shutdown mode, couldn't 958 * even attempt to write out the unmount transaction. 959 * 960 * Go through the motions of sync'ing and releasing 961 * the iclog, even though no I/O will actually happen, 962 * we need to wait for other log I/Os that may already 963 * be in progress. Do this as a separate section of 964 * code so we'll know if we ever get stuck here that 965 * we're in this odd situation of trying to unmount 966 * a file system that went into forced_shutdown as 967 * the result of an unmount.. 968 */ 969 spin_lock(&log->l_icloglock); 970 iclog = log->l_iclog; 971 atomic_inc(&iclog->ic_refcnt); 972 973 xlog_state_want_sync(log, iclog); 974 spin_unlock(&log->l_icloglock); 975 error = xlog_state_release_iclog(log, iclog); 976 977 spin_lock(&log->l_icloglock); 978 979 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 980 || iclog->ic_state == XLOG_STATE_DIRTY 981 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 982 983 xlog_wait(&iclog->ic_force_wait, 984 &log->l_icloglock); 985 } else { 986 spin_unlock(&log->l_icloglock); 987 } 988 } 989 990 return error; 991 } /* xfs_log_unmount_write */ 992 993 /* 994 * Empty the log for unmount/freeze. 995 * 996 * To do this, we first need to shut down the background log work so it is not 997 * trying to cover the log as we clean up. We then need to unpin all objects in 998 * the log so we can then flush them out. Once they have completed their IO and 999 * run the callbacks removing themselves from the AIL, we can write the unmount 1000 * record. 1001 */ 1002 void 1003 xfs_log_quiesce( 1004 struct xfs_mount *mp) 1005 { 1006 cancel_delayed_work_sync(&mp->m_log->l_work); 1007 xfs_log_force(mp, XFS_LOG_SYNC); 1008 1009 /* 1010 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1011 * will push it, xfs_wait_buftarg() will not wait for it. Further, 1012 * xfs_buf_iowait() cannot be used because it was pushed with the 1013 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1014 * the IO to complete. 1015 */ 1016 xfs_ail_push_all_sync(mp->m_ail); 1017 xfs_wait_buftarg(mp->m_ddev_targp); 1018 xfs_buf_lock(mp->m_sb_bp); 1019 xfs_buf_unlock(mp->m_sb_bp); 1020 1021 xfs_log_unmount_write(mp); 1022 } 1023 1024 /* 1025 * Shut down and release the AIL and Log. 1026 * 1027 * During unmount, we need to ensure we flush all the dirty metadata objects 1028 * from the AIL so that the log is empty before we write the unmount record to 1029 * the log. Once this is done, we can tear down the AIL and the log. 1030 */ 1031 void 1032 xfs_log_unmount( 1033 struct xfs_mount *mp) 1034 { 1035 xfs_log_quiesce(mp); 1036 1037 xfs_trans_ail_destroy(mp); 1038 1039 xfs_sysfs_del(&mp->m_log->l_kobj); 1040 1041 xlog_dealloc_log(mp->m_log); 1042 } 1043 1044 void 1045 xfs_log_item_init( 1046 struct xfs_mount *mp, 1047 struct xfs_log_item *item, 1048 int type, 1049 const struct xfs_item_ops *ops) 1050 { 1051 item->li_mountp = mp; 1052 item->li_ailp = mp->m_ail; 1053 item->li_type = type; 1054 item->li_ops = ops; 1055 item->li_lv = NULL; 1056 1057 INIT_LIST_HEAD(&item->li_ail); 1058 INIT_LIST_HEAD(&item->li_cil); 1059 INIT_LIST_HEAD(&item->li_bio_list); 1060 INIT_LIST_HEAD(&item->li_trans); 1061 } 1062 1063 /* 1064 * Wake up processes waiting for log space after we have moved the log tail. 1065 */ 1066 void 1067 xfs_log_space_wake( 1068 struct xfs_mount *mp) 1069 { 1070 struct xlog *log = mp->m_log; 1071 int free_bytes; 1072 1073 if (XLOG_FORCED_SHUTDOWN(log)) 1074 return; 1075 1076 if (!list_empty_careful(&log->l_write_head.waiters)) { 1077 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1078 1079 spin_lock(&log->l_write_head.lock); 1080 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1081 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1082 spin_unlock(&log->l_write_head.lock); 1083 } 1084 1085 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1086 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1087 1088 spin_lock(&log->l_reserve_head.lock); 1089 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1090 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1091 spin_unlock(&log->l_reserve_head.lock); 1092 } 1093 } 1094 1095 /* 1096 * Determine if we have a transaction that has gone to disk that needs to be 1097 * covered. To begin the transition to the idle state firstly the log needs to 1098 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1099 * we start attempting to cover the log. 1100 * 1101 * Only if we are then in a state where covering is needed, the caller is 1102 * informed that dummy transactions are required to move the log into the idle 1103 * state. 1104 * 1105 * If there are any items in the AIl or CIL, then we do not want to attempt to 1106 * cover the log as we may be in a situation where there isn't log space 1107 * available to run a dummy transaction and this can lead to deadlocks when the 1108 * tail of the log is pinned by an item that is modified in the CIL. Hence 1109 * there's no point in running a dummy transaction at this point because we 1110 * can't start trying to idle the log until both the CIL and AIL are empty. 1111 */ 1112 static int 1113 xfs_log_need_covered(xfs_mount_t *mp) 1114 { 1115 struct xlog *log = mp->m_log; 1116 int needed = 0; 1117 1118 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1119 return 0; 1120 1121 if (!xlog_cil_empty(log)) 1122 return 0; 1123 1124 spin_lock(&log->l_icloglock); 1125 switch (log->l_covered_state) { 1126 case XLOG_STATE_COVER_DONE: 1127 case XLOG_STATE_COVER_DONE2: 1128 case XLOG_STATE_COVER_IDLE: 1129 break; 1130 case XLOG_STATE_COVER_NEED: 1131 case XLOG_STATE_COVER_NEED2: 1132 if (xfs_ail_min_lsn(log->l_ailp)) 1133 break; 1134 if (!xlog_iclogs_empty(log)) 1135 break; 1136 1137 needed = 1; 1138 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1139 log->l_covered_state = XLOG_STATE_COVER_DONE; 1140 else 1141 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1142 break; 1143 default: 1144 needed = 1; 1145 break; 1146 } 1147 spin_unlock(&log->l_icloglock); 1148 return needed; 1149 } 1150 1151 /* 1152 * We may be holding the log iclog lock upon entering this routine. 1153 */ 1154 xfs_lsn_t 1155 xlog_assign_tail_lsn_locked( 1156 struct xfs_mount *mp) 1157 { 1158 struct xlog *log = mp->m_log; 1159 struct xfs_log_item *lip; 1160 xfs_lsn_t tail_lsn; 1161 1162 assert_spin_locked(&mp->m_ail->ail_lock); 1163 1164 /* 1165 * To make sure we always have a valid LSN for the log tail we keep 1166 * track of the last LSN which was committed in log->l_last_sync_lsn, 1167 * and use that when the AIL was empty. 1168 */ 1169 lip = xfs_ail_min(mp->m_ail); 1170 if (lip) 1171 tail_lsn = lip->li_lsn; 1172 else 1173 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1174 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1175 atomic64_set(&log->l_tail_lsn, tail_lsn); 1176 return tail_lsn; 1177 } 1178 1179 xfs_lsn_t 1180 xlog_assign_tail_lsn( 1181 struct xfs_mount *mp) 1182 { 1183 xfs_lsn_t tail_lsn; 1184 1185 spin_lock(&mp->m_ail->ail_lock); 1186 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1187 spin_unlock(&mp->m_ail->ail_lock); 1188 1189 return tail_lsn; 1190 } 1191 1192 /* 1193 * Return the space in the log between the tail and the head. The head 1194 * is passed in the cycle/bytes formal parms. In the special case where 1195 * the reserve head has wrapped passed the tail, this calculation is no 1196 * longer valid. In this case, just return 0 which means there is no space 1197 * in the log. This works for all places where this function is called 1198 * with the reserve head. Of course, if the write head were to ever 1199 * wrap the tail, we should blow up. Rather than catch this case here, 1200 * we depend on other ASSERTions in other parts of the code. XXXmiken 1201 * 1202 * This code also handles the case where the reservation head is behind 1203 * the tail. The details of this case are described below, but the end 1204 * result is that we return the size of the log as the amount of space left. 1205 */ 1206 STATIC int 1207 xlog_space_left( 1208 struct xlog *log, 1209 atomic64_t *head) 1210 { 1211 int free_bytes; 1212 int tail_bytes; 1213 int tail_cycle; 1214 int head_cycle; 1215 int head_bytes; 1216 1217 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1218 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1219 tail_bytes = BBTOB(tail_bytes); 1220 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1221 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1222 else if (tail_cycle + 1 < head_cycle) 1223 return 0; 1224 else if (tail_cycle < head_cycle) { 1225 ASSERT(tail_cycle == (head_cycle - 1)); 1226 free_bytes = tail_bytes - head_bytes; 1227 } else { 1228 /* 1229 * The reservation head is behind the tail. 1230 * In this case we just want to return the size of the 1231 * log as the amount of space left. 1232 */ 1233 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1234 xfs_alert(log->l_mp, 1235 " tail_cycle = %d, tail_bytes = %d", 1236 tail_cycle, tail_bytes); 1237 xfs_alert(log->l_mp, 1238 " GH cycle = %d, GH bytes = %d", 1239 head_cycle, head_bytes); 1240 ASSERT(0); 1241 free_bytes = log->l_logsize; 1242 } 1243 return free_bytes; 1244 } 1245 1246 1247 /* 1248 * Log function which is called when an io completes. 1249 * 1250 * The log manager needs its own routine, in order to control what 1251 * happens with the buffer after the write completes. 1252 */ 1253 static void 1254 xlog_iodone(xfs_buf_t *bp) 1255 { 1256 struct xlog_in_core *iclog = bp->b_log_item; 1257 struct xlog *l = iclog->ic_log; 1258 int aborted = 0; 1259 1260 /* 1261 * Race to shutdown the filesystem if we see an error or the iclog is in 1262 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1263 * CRC errors into log recovery. 1264 */ 1265 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) || 1266 iclog->ic_state & XLOG_STATE_IOABORT) { 1267 if (iclog->ic_state & XLOG_STATE_IOABORT) 1268 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1269 1270 xfs_buf_ioerror_alert(bp, __func__); 1271 xfs_buf_stale(bp); 1272 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1273 /* 1274 * This flag will be propagated to the trans-committed 1275 * callback routines to let them know that the log-commit 1276 * didn't succeed. 1277 */ 1278 aborted = XFS_LI_ABORTED; 1279 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1280 aborted = XFS_LI_ABORTED; 1281 } 1282 1283 /* log I/O is always issued ASYNC */ 1284 ASSERT(bp->b_flags & XBF_ASYNC); 1285 xlog_state_done_syncing(iclog, aborted); 1286 1287 /* 1288 * drop the buffer lock now that we are done. Nothing references 1289 * the buffer after this, so an unmount waiting on this lock can now 1290 * tear it down safely. As such, it is unsafe to reference the buffer 1291 * (bp) after the unlock as we could race with it being freed. 1292 */ 1293 xfs_buf_unlock(bp); 1294 } 1295 1296 /* 1297 * Return size of each in-core log record buffer. 1298 * 1299 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1300 * 1301 * If the filesystem blocksize is too large, we may need to choose a 1302 * larger size since the directory code currently logs entire blocks. 1303 */ 1304 1305 STATIC void 1306 xlog_get_iclog_buffer_size( 1307 struct xfs_mount *mp, 1308 struct xlog *log) 1309 { 1310 int size; 1311 int xhdrs; 1312 1313 if (mp->m_logbufs <= 0) 1314 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1315 else 1316 log->l_iclog_bufs = mp->m_logbufs; 1317 1318 /* 1319 * Buffer size passed in from mount system call. 1320 */ 1321 if (mp->m_logbsize > 0) { 1322 size = log->l_iclog_size = mp->m_logbsize; 1323 log->l_iclog_size_log = 0; 1324 while (size != 1) { 1325 log->l_iclog_size_log++; 1326 size >>= 1; 1327 } 1328 1329 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1330 /* # headers = size / 32k 1331 * one header holds cycles from 32k of data 1332 */ 1333 1334 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1335 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1336 xhdrs++; 1337 log->l_iclog_hsize = xhdrs << BBSHIFT; 1338 log->l_iclog_heads = xhdrs; 1339 } else { 1340 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1341 log->l_iclog_hsize = BBSIZE; 1342 log->l_iclog_heads = 1; 1343 } 1344 goto done; 1345 } 1346 1347 /* All machines use 32kB buffers by default. */ 1348 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1349 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1350 1351 /* the default log size is 16k or 32k which is one header sector */ 1352 log->l_iclog_hsize = BBSIZE; 1353 log->l_iclog_heads = 1; 1354 1355 done: 1356 /* are we being asked to make the sizes selected above visible? */ 1357 if (mp->m_logbufs == 0) 1358 mp->m_logbufs = log->l_iclog_bufs; 1359 if (mp->m_logbsize == 0) 1360 mp->m_logbsize = log->l_iclog_size; 1361 } /* xlog_get_iclog_buffer_size */ 1362 1363 1364 void 1365 xfs_log_work_queue( 1366 struct xfs_mount *mp) 1367 { 1368 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1369 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1370 } 1371 1372 /* 1373 * Every sync period we need to unpin all items in the AIL and push them to 1374 * disk. If there is nothing dirty, then we might need to cover the log to 1375 * indicate that the filesystem is idle. 1376 */ 1377 static void 1378 xfs_log_worker( 1379 struct work_struct *work) 1380 { 1381 struct xlog *log = container_of(to_delayed_work(work), 1382 struct xlog, l_work); 1383 struct xfs_mount *mp = log->l_mp; 1384 1385 /* dgc: errors ignored - not fatal and nowhere to report them */ 1386 if (xfs_log_need_covered(mp)) { 1387 /* 1388 * Dump a transaction into the log that contains no real change. 1389 * This is needed to stamp the current tail LSN into the log 1390 * during the covering operation. 1391 * 1392 * We cannot use an inode here for this - that will push dirty 1393 * state back up into the VFS and then periodic inode flushing 1394 * will prevent log covering from making progress. Hence we 1395 * synchronously log the superblock instead to ensure the 1396 * superblock is immediately unpinned and can be written back. 1397 */ 1398 xfs_sync_sb(mp, true); 1399 } else 1400 xfs_log_force(mp, 0); 1401 1402 /* start pushing all the metadata that is currently dirty */ 1403 xfs_ail_push_all(mp->m_ail); 1404 1405 /* queue us up again */ 1406 xfs_log_work_queue(mp); 1407 } 1408 1409 /* 1410 * This routine initializes some of the log structure for a given mount point. 1411 * Its primary purpose is to fill in enough, so recovery can occur. However, 1412 * some other stuff may be filled in too. 1413 */ 1414 STATIC struct xlog * 1415 xlog_alloc_log( 1416 struct xfs_mount *mp, 1417 struct xfs_buftarg *log_target, 1418 xfs_daddr_t blk_offset, 1419 int num_bblks) 1420 { 1421 struct xlog *log; 1422 xlog_rec_header_t *head; 1423 xlog_in_core_t **iclogp; 1424 xlog_in_core_t *iclog, *prev_iclog=NULL; 1425 xfs_buf_t *bp; 1426 int i; 1427 int error = -ENOMEM; 1428 uint log2_size = 0; 1429 1430 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1431 if (!log) { 1432 xfs_warn(mp, "Log allocation failed: No memory!"); 1433 goto out; 1434 } 1435 1436 log->l_mp = mp; 1437 log->l_targ = log_target; 1438 log->l_logsize = BBTOB(num_bblks); 1439 log->l_logBBstart = blk_offset; 1440 log->l_logBBsize = num_bblks; 1441 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1442 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1443 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1444 1445 log->l_prev_block = -1; 1446 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1447 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1448 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1449 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1450 1451 xlog_grant_head_init(&log->l_reserve_head); 1452 xlog_grant_head_init(&log->l_write_head); 1453 1454 error = -EFSCORRUPTED; 1455 if (xfs_sb_version_hassector(&mp->m_sb)) { 1456 log2_size = mp->m_sb.sb_logsectlog; 1457 if (log2_size < BBSHIFT) { 1458 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1459 log2_size, BBSHIFT); 1460 goto out_free_log; 1461 } 1462 1463 log2_size -= BBSHIFT; 1464 if (log2_size > mp->m_sectbb_log) { 1465 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1466 log2_size, mp->m_sectbb_log); 1467 goto out_free_log; 1468 } 1469 1470 /* for larger sector sizes, must have v2 or external log */ 1471 if (log2_size && log->l_logBBstart > 0 && 1472 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1473 xfs_warn(mp, 1474 "log sector size (0x%x) invalid for configuration.", 1475 log2_size); 1476 goto out_free_log; 1477 } 1478 } 1479 log->l_sectBBsize = 1 << log2_size; 1480 1481 xlog_get_iclog_buffer_size(mp, log); 1482 1483 /* 1484 * Use a NULL block for the extra log buffer used during splits so that 1485 * it will trigger errors if we ever try to do IO on it without first 1486 * having set it up properly. 1487 */ 1488 error = -ENOMEM; 1489 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1490 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1491 if (!bp) 1492 goto out_free_log; 1493 1494 /* 1495 * The iclogbuf buffer locks are held over IO but we are not going to do 1496 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1497 * when appropriately. 1498 */ 1499 ASSERT(xfs_buf_islocked(bp)); 1500 xfs_buf_unlock(bp); 1501 1502 /* use high priority wq for log I/O completion */ 1503 bp->b_ioend_wq = mp->m_log_workqueue; 1504 bp->b_iodone = xlog_iodone; 1505 log->l_xbuf = bp; 1506 1507 spin_lock_init(&log->l_icloglock); 1508 init_waitqueue_head(&log->l_flush_wait); 1509 1510 iclogp = &log->l_iclog; 1511 /* 1512 * The amount of memory to allocate for the iclog structure is 1513 * rather funky due to the way the structure is defined. It is 1514 * done this way so that we can use different sizes for machines 1515 * with different amounts of memory. See the definition of 1516 * xlog_in_core_t in xfs_log_priv.h for details. 1517 */ 1518 ASSERT(log->l_iclog_size >= 4096); 1519 for (i=0; i < log->l_iclog_bufs; i++) { 1520 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1521 if (!*iclogp) 1522 goto out_free_iclog; 1523 1524 iclog = *iclogp; 1525 iclog->ic_prev = prev_iclog; 1526 prev_iclog = iclog; 1527 1528 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1529 BTOBB(log->l_iclog_size), 1530 XBF_NO_IOACCT); 1531 if (!bp) 1532 goto out_free_iclog; 1533 1534 ASSERT(xfs_buf_islocked(bp)); 1535 xfs_buf_unlock(bp); 1536 1537 /* use high priority wq for log I/O completion */ 1538 bp->b_ioend_wq = mp->m_log_workqueue; 1539 bp->b_iodone = xlog_iodone; 1540 iclog->ic_bp = bp; 1541 iclog->ic_data = bp->b_addr; 1542 #ifdef DEBUG 1543 log->l_iclog_bak[i] = &iclog->ic_header; 1544 #endif 1545 head = &iclog->ic_header; 1546 memset(head, 0, sizeof(xlog_rec_header_t)); 1547 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1548 head->h_version = cpu_to_be32( 1549 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1550 head->h_size = cpu_to_be32(log->l_iclog_size); 1551 /* new fields */ 1552 head->h_fmt = cpu_to_be32(XLOG_FMT); 1553 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1554 1555 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1556 iclog->ic_state = XLOG_STATE_ACTIVE; 1557 iclog->ic_log = log; 1558 atomic_set(&iclog->ic_refcnt, 0); 1559 spin_lock_init(&iclog->ic_callback_lock); 1560 iclog->ic_callback_tail = &(iclog->ic_callback); 1561 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1562 1563 init_waitqueue_head(&iclog->ic_force_wait); 1564 init_waitqueue_head(&iclog->ic_write_wait); 1565 1566 iclogp = &iclog->ic_next; 1567 } 1568 *iclogp = log->l_iclog; /* complete ring */ 1569 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1570 1571 error = xlog_cil_init(log); 1572 if (error) 1573 goto out_free_iclog; 1574 return log; 1575 1576 out_free_iclog: 1577 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1578 prev_iclog = iclog->ic_next; 1579 if (iclog->ic_bp) 1580 xfs_buf_free(iclog->ic_bp); 1581 kmem_free(iclog); 1582 } 1583 spinlock_destroy(&log->l_icloglock); 1584 xfs_buf_free(log->l_xbuf); 1585 out_free_log: 1586 kmem_free(log); 1587 out: 1588 return ERR_PTR(error); 1589 } /* xlog_alloc_log */ 1590 1591 1592 /* 1593 * Write out the commit record of a transaction associated with the given 1594 * ticket. Return the lsn of the commit record. 1595 */ 1596 STATIC int 1597 xlog_commit_record( 1598 struct xlog *log, 1599 struct xlog_ticket *ticket, 1600 struct xlog_in_core **iclog, 1601 xfs_lsn_t *commitlsnp) 1602 { 1603 struct xfs_mount *mp = log->l_mp; 1604 int error; 1605 struct xfs_log_iovec reg = { 1606 .i_addr = NULL, 1607 .i_len = 0, 1608 .i_type = XLOG_REG_TYPE_COMMIT, 1609 }; 1610 struct xfs_log_vec vec = { 1611 .lv_niovecs = 1, 1612 .lv_iovecp = ®, 1613 }; 1614 1615 ASSERT_ALWAYS(iclog); 1616 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1617 XLOG_COMMIT_TRANS); 1618 if (error) 1619 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1620 return error; 1621 } 1622 1623 /* 1624 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1625 * log space. This code pushes on the lsn which would supposedly free up 1626 * the 25% which we want to leave free. We may need to adopt a policy which 1627 * pushes on an lsn which is further along in the log once we reach the high 1628 * water mark. In this manner, we would be creating a low water mark. 1629 */ 1630 STATIC void 1631 xlog_grant_push_ail( 1632 struct xlog *log, 1633 int need_bytes) 1634 { 1635 xfs_lsn_t threshold_lsn = 0; 1636 xfs_lsn_t last_sync_lsn; 1637 int free_blocks; 1638 int free_bytes; 1639 int threshold_block; 1640 int threshold_cycle; 1641 int free_threshold; 1642 1643 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1644 1645 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1646 free_blocks = BTOBBT(free_bytes); 1647 1648 /* 1649 * Set the threshold for the minimum number of free blocks in the 1650 * log to the maximum of what the caller needs, one quarter of the 1651 * log, and 256 blocks. 1652 */ 1653 free_threshold = BTOBB(need_bytes); 1654 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1655 free_threshold = max(free_threshold, 256); 1656 if (free_blocks >= free_threshold) 1657 return; 1658 1659 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1660 &threshold_block); 1661 threshold_block += free_threshold; 1662 if (threshold_block >= log->l_logBBsize) { 1663 threshold_block -= log->l_logBBsize; 1664 threshold_cycle += 1; 1665 } 1666 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1667 threshold_block); 1668 /* 1669 * Don't pass in an lsn greater than the lsn of the last 1670 * log record known to be on disk. Use a snapshot of the last sync lsn 1671 * so that it doesn't change between the compare and the set. 1672 */ 1673 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1674 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1675 threshold_lsn = last_sync_lsn; 1676 1677 /* 1678 * Get the transaction layer to kick the dirty buffers out to 1679 * disk asynchronously. No point in trying to do this if 1680 * the filesystem is shutting down. 1681 */ 1682 if (!XLOG_FORCED_SHUTDOWN(log)) 1683 xfs_ail_push(log->l_ailp, threshold_lsn); 1684 } 1685 1686 /* 1687 * Stamp cycle number in every block 1688 */ 1689 STATIC void 1690 xlog_pack_data( 1691 struct xlog *log, 1692 struct xlog_in_core *iclog, 1693 int roundoff) 1694 { 1695 int i, j, k; 1696 int size = iclog->ic_offset + roundoff; 1697 __be32 cycle_lsn; 1698 char *dp; 1699 1700 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1701 1702 dp = iclog->ic_datap; 1703 for (i = 0; i < BTOBB(size); i++) { 1704 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1705 break; 1706 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1707 *(__be32 *)dp = cycle_lsn; 1708 dp += BBSIZE; 1709 } 1710 1711 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1712 xlog_in_core_2_t *xhdr = iclog->ic_data; 1713 1714 for ( ; i < BTOBB(size); i++) { 1715 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1716 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1717 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1718 *(__be32 *)dp = cycle_lsn; 1719 dp += BBSIZE; 1720 } 1721 1722 for (i = 1; i < log->l_iclog_heads; i++) 1723 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1724 } 1725 } 1726 1727 /* 1728 * Calculate the checksum for a log buffer. 1729 * 1730 * This is a little more complicated than it should be because the various 1731 * headers and the actual data are non-contiguous. 1732 */ 1733 __le32 1734 xlog_cksum( 1735 struct xlog *log, 1736 struct xlog_rec_header *rhead, 1737 char *dp, 1738 int size) 1739 { 1740 uint32_t crc; 1741 1742 /* first generate the crc for the record header ... */ 1743 crc = xfs_start_cksum_update((char *)rhead, 1744 sizeof(struct xlog_rec_header), 1745 offsetof(struct xlog_rec_header, h_crc)); 1746 1747 /* ... then for additional cycle data for v2 logs ... */ 1748 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1749 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1750 int i; 1751 int xheads; 1752 1753 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1754 if (size % XLOG_HEADER_CYCLE_SIZE) 1755 xheads++; 1756 1757 for (i = 1; i < xheads; i++) { 1758 crc = crc32c(crc, &xhdr[i].hic_xheader, 1759 sizeof(struct xlog_rec_ext_header)); 1760 } 1761 } 1762 1763 /* ... and finally for the payload */ 1764 crc = crc32c(crc, dp, size); 1765 1766 return xfs_end_cksum(crc); 1767 } 1768 1769 /* 1770 * The bdstrat callback function for log bufs. This gives us a central 1771 * place to trap bufs in case we get hit by a log I/O error and need to 1772 * shutdown. Actually, in practice, even when we didn't get a log error, 1773 * we transition the iclogs to IOERROR state *after* flushing all existing 1774 * iclogs to disk. This is because we don't want anymore new transactions to be 1775 * started or completed afterwards. 1776 * 1777 * We lock the iclogbufs here so that we can serialise against IO completion 1778 * during unmount. We might be processing a shutdown triggered during unmount, 1779 * and that can occur asynchronously to the unmount thread, and hence we need to 1780 * ensure that completes before tearing down the iclogbufs. Hence we need to 1781 * hold the buffer lock across the log IO to acheive that. 1782 */ 1783 STATIC int 1784 xlog_bdstrat( 1785 struct xfs_buf *bp) 1786 { 1787 struct xlog_in_core *iclog = bp->b_log_item; 1788 1789 xfs_buf_lock(bp); 1790 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1791 xfs_buf_ioerror(bp, -EIO); 1792 xfs_buf_stale(bp); 1793 xfs_buf_ioend(bp); 1794 /* 1795 * It would seem logical to return EIO here, but we rely on 1796 * the log state machine to propagate I/O errors instead of 1797 * doing it here. Similarly, IO completion will unlock the 1798 * buffer, so we don't do it here. 1799 */ 1800 return 0; 1801 } 1802 1803 xfs_buf_submit(bp); 1804 return 0; 1805 } 1806 1807 /* 1808 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1809 * fashion. Previously, we should have moved the current iclog 1810 * ptr in the log to point to the next available iclog. This allows further 1811 * write to continue while this code syncs out an iclog ready to go. 1812 * Before an in-core log can be written out, the data section must be scanned 1813 * to save away the 1st word of each BBSIZE block into the header. We replace 1814 * it with the current cycle count. Each BBSIZE block is tagged with the 1815 * cycle count because there in an implicit assumption that drives will 1816 * guarantee that entire 512 byte blocks get written at once. In other words, 1817 * we can't have part of a 512 byte block written and part not written. By 1818 * tagging each block, we will know which blocks are valid when recovering 1819 * after an unclean shutdown. 1820 * 1821 * This routine is single threaded on the iclog. No other thread can be in 1822 * this routine with the same iclog. Changing contents of iclog can there- 1823 * fore be done without grabbing the state machine lock. Updating the global 1824 * log will require grabbing the lock though. 1825 * 1826 * The entire log manager uses a logical block numbering scheme. Only 1827 * log_sync (and then only bwrite()) know about the fact that the log may 1828 * not start with block zero on a given device. The log block start offset 1829 * is added immediately before calling bwrite(). 1830 */ 1831 1832 STATIC int 1833 xlog_sync( 1834 struct xlog *log, 1835 struct xlog_in_core *iclog) 1836 { 1837 xfs_buf_t *bp; 1838 int i; 1839 uint count; /* byte count of bwrite */ 1840 uint count_init; /* initial count before roundup */ 1841 int roundoff; /* roundoff to BB or stripe */ 1842 int split = 0; /* split write into two regions */ 1843 int error; 1844 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1845 int size; 1846 1847 XFS_STATS_INC(log->l_mp, xs_log_writes); 1848 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1849 1850 /* Add for LR header */ 1851 count_init = log->l_iclog_hsize + iclog->ic_offset; 1852 1853 /* Round out the log write size */ 1854 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1855 /* we have a v2 stripe unit to use */ 1856 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1857 } else { 1858 count = BBTOB(BTOBB(count_init)); 1859 } 1860 roundoff = count - count_init; 1861 ASSERT(roundoff >= 0); 1862 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1863 roundoff < log->l_mp->m_sb.sb_logsunit) 1864 || 1865 (log->l_mp->m_sb.sb_logsunit <= 1 && 1866 roundoff < BBTOB(1))); 1867 1868 /* move grant heads by roundoff in sync */ 1869 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1870 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1871 1872 /* put cycle number in every block */ 1873 xlog_pack_data(log, iclog, roundoff); 1874 1875 /* real byte length */ 1876 size = iclog->ic_offset; 1877 if (v2) 1878 size += roundoff; 1879 iclog->ic_header.h_len = cpu_to_be32(size); 1880 1881 bp = iclog->ic_bp; 1882 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1883 1884 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1885 1886 /* Do we need to split this write into 2 parts? */ 1887 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1888 char *dptr; 1889 1890 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1891 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1892 iclog->ic_bwritecnt = 2; 1893 1894 /* 1895 * Bump the cycle numbers at the start of each block in the 1896 * part of the iclog that ends up in the buffer that gets 1897 * written to the start of the log. 1898 * 1899 * Watch out for the header magic number case, though. 1900 */ 1901 dptr = (char *)&iclog->ic_header + count; 1902 for (i = 0; i < split; i += BBSIZE) { 1903 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1904 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1905 cycle++; 1906 *(__be32 *)dptr = cpu_to_be32(cycle); 1907 1908 dptr += BBSIZE; 1909 } 1910 } else { 1911 iclog->ic_bwritecnt = 1; 1912 } 1913 1914 /* calculcate the checksum */ 1915 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1916 iclog->ic_datap, size); 1917 /* 1918 * Intentionally corrupt the log record CRC based on the error injection 1919 * frequency, if defined. This facilitates testing log recovery in the 1920 * event of torn writes. Hence, set the IOABORT state to abort the log 1921 * write on I/O completion and shutdown the fs. The subsequent mount 1922 * detects the bad CRC and attempts to recover. 1923 */ 1924 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1925 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1926 iclog->ic_state |= XLOG_STATE_IOABORT; 1927 xfs_warn(log->l_mp, 1928 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1929 be64_to_cpu(iclog->ic_header.h_lsn)); 1930 } 1931 1932 bp->b_io_length = BTOBB(count); 1933 bp->b_log_item = iclog; 1934 bp->b_flags &= ~XBF_FLUSH; 1935 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1936 1937 /* 1938 * Flush the data device before flushing the log to make sure all meta 1939 * data written back from the AIL actually made it to disk before 1940 * stamping the new log tail LSN into the log buffer. For an external 1941 * log we need to issue the flush explicitly, and unfortunately 1942 * synchronously here; for an internal log we can simply use the block 1943 * layer state machine for preflushes. 1944 */ 1945 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1946 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1947 else 1948 bp->b_flags |= XBF_FLUSH; 1949 1950 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1951 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1952 1953 xlog_verify_iclog(log, iclog, count, true); 1954 1955 /* account for log which doesn't start at block #0 */ 1956 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1957 1958 /* 1959 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1960 * is shutting down. 1961 */ 1962 error = xlog_bdstrat(bp); 1963 if (error) { 1964 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1965 return error; 1966 } 1967 if (split) { 1968 bp = iclog->ic_log->l_xbuf; 1969 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1970 xfs_buf_associate_memory(bp, 1971 (char *)&iclog->ic_header + count, split); 1972 bp->b_log_item = iclog; 1973 bp->b_flags &= ~XBF_FLUSH; 1974 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1975 1976 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1977 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1978 1979 /* account for internal log which doesn't start at block #0 */ 1980 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1981 error = xlog_bdstrat(bp); 1982 if (error) { 1983 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1984 return error; 1985 } 1986 } 1987 return 0; 1988 } /* xlog_sync */ 1989 1990 /* 1991 * Deallocate a log structure 1992 */ 1993 STATIC void 1994 xlog_dealloc_log( 1995 struct xlog *log) 1996 { 1997 xlog_in_core_t *iclog, *next_iclog; 1998 int i; 1999 2000 xlog_cil_destroy(log); 2001 2002 /* 2003 * Cycle all the iclogbuf locks to make sure all log IO completion 2004 * is done before we tear down these buffers. 2005 */ 2006 iclog = log->l_iclog; 2007 for (i = 0; i < log->l_iclog_bufs; i++) { 2008 xfs_buf_lock(iclog->ic_bp); 2009 xfs_buf_unlock(iclog->ic_bp); 2010 iclog = iclog->ic_next; 2011 } 2012 2013 /* 2014 * Always need to ensure that the extra buffer does not point to memory 2015 * owned by another log buffer before we free it. Also, cycle the lock 2016 * first to ensure we've completed IO on it. 2017 */ 2018 xfs_buf_lock(log->l_xbuf); 2019 xfs_buf_unlock(log->l_xbuf); 2020 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 2021 xfs_buf_free(log->l_xbuf); 2022 2023 iclog = log->l_iclog; 2024 for (i = 0; i < log->l_iclog_bufs; i++) { 2025 xfs_buf_free(iclog->ic_bp); 2026 next_iclog = iclog->ic_next; 2027 kmem_free(iclog); 2028 iclog = next_iclog; 2029 } 2030 spinlock_destroy(&log->l_icloglock); 2031 2032 log->l_mp->m_log = NULL; 2033 kmem_free(log); 2034 } /* xlog_dealloc_log */ 2035 2036 /* 2037 * Update counters atomically now that memcpy is done. 2038 */ 2039 /* ARGSUSED */ 2040 static inline void 2041 xlog_state_finish_copy( 2042 struct xlog *log, 2043 struct xlog_in_core *iclog, 2044 int record_cnt, 2045 int copy_bytes) 2046 { 2047 spin_lock(&log->l_icloglock); 2048 2049 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2050 iclog->ic_offset += copy_bytes; 2051 2052 spin_unlock(&log->l_icloglock); 2053 } /* xlog_state_finish_copy */ 2054 2055 2056 2057 2058 /* 2059 * print out info relating to regions written which consume 2060 * the reservation 2061 */ 2062 void 2063 xlog_print_tic_res( 2064 struct xfs_mount *mp, 2065 struct xlog_ticket *ticket) 2066 { 2067 uint i; 2068 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2069 2070 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2071 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2072 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2073 REG_TYPE_STR(BFORMAT, "bformat"), 2074 REG_TYPE_STR(BCHUNK, "bchunk"), 2075 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2076 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2077 REG_TYPE_STR(IFORMAT, "iformat"), 2078 REG_TYPE_STR(ICORE, "icore"), 2079 REG_TYPE_STR(IEXT, "iext"), 2080 REG_TYPE_STR(IBROOT, "ibroot"), 2081 REG_TYPE_STR(ILOCAL, "ilocal"), 2082 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2083 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2084 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2085 REG_TYPE_STR(QFORMAT, "qformat"), 2086 REG_TYPE_STR(DQUOT, "dquot"), 2087 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2088 REG_TYPE_STR(LRHEADER, "LR header"), 2089 REG_TYPE_STR(UNMOUNT, "unmount"), 2090 REG_TYPE_STR(COMMIT, "commit"), 2091 REG_TYPE_STR(TRANSHDR, "trans header"), 2092 REG_TYPE_STR(ICREATE, "inode create") 2093 }; 2094 #undef REG_TYPE_STR 2095 2096 xfs_warn(mp, "ticket reservation summary:"); 2097 xfs_warn(mp, " unit res = %d bytes", 2098 ticket->t_unit_res); 2099 xfs_warn(mp, " current res = %d bytes", 2100 ticket->t_curr_res); 2101 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2102 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2103 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2104 ticket->t_res_num_ophdrs, ophdr_spc); 2105 xfs_warn(mp, " ophdr + reg = %u bytes", 2106 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2107 xfs_warn(mp, " num regions = %u", 2108 ticket->t_res_num); 2109 2110 for (i = 0; i < ticket->t_res_num; i++) { 2111 uint r_type = ticket->t_res_arr[i].r_type; 2112 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2113 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2114 "bad-rtype" : res_type_str[r_type]), 2115 ticket->t_res_arr[i].r_len); 2116 } 2117 } 2118 2119 /* 2120 * Print a summary of the transaction. 2121 */ 2122 void 2123 xlog_print_trans( 2124 struct xfs_trans *tp) 2125 { 2126 struct xfs_mount *mp = tp->t_mountp; 2127 struct xfs_log_item *lip; 2128 2129 /* dump core transaction and ticket info */ 2130 xfs_warn(mp, "transaction summary:"); 2131 xfs_warn(mp, " log res = %d", tp->t_log_res); 2132 xfs_warn(mp, " log count = %d", tp->t_log_count); 2133 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2134 2135 xlog_print_tic_res(mp, tp->t_ticket); 2136 2137 /* dump each log item */ 2138 list_for_each_entry(lip, &tp->t_items, li_trans) { 2139 struct xfs_log_vec *lv = lip->li_lv; 2140 struct xfs_log_iovec *vec; 2141 int i; 2142 2143 xfs_warn(mp, "log item: "); 2144 xfs_warn(mp, " type = 0x%x", lip->li_type); 2145 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2146 if (!lv) 2147 continue; 2148 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2149 xfs_warn(mp, " size = %d", lv->lv_size); 2150 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2151 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2152 2153 /* dump each iovec for the log item */ 2154 vec = lv->lv_iovecp; 2155 for (i = 0; i < lv->lv_niovecs; i++) { 2156 int dumplen = min(vec->i_len, 32); 2157 2158 xfs_warn(mp, " iovec[%d]", i); 2159 xfs_warn(mp, " type = 0x%x", vec->i_type); 2160 xfs_warn(mp, " len = %d", vec->i_len); 2161 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2162 xfs_hex_dump(vec->i_addr, dumplen); 2163 2164 vec++; 2165 } 2166 } 2167 } 2168 2169 /* 2170 * Calculate the potential space needed by the log vector. Each region gets 2171 * its own xlog_op_header_t and may need to be double word aligned. 2172 */ 2173 static int 2174 xlog_write_calc_vec_length( 2175 struct xlog_ticket *ticket, 2176 struct xfs_log_vec *log_vector) 2177 { 2178 struct xfs_log_vec *lv; 2179 int headers = 0; 2180 int len = 0; 2181 int i; 2182 2183 /* acct for start rec of xact */ 2184 if (ticket->t_flags & XLOG_TIC_INITED) 2185 headers++; 2186 2187 for (lv = log_vector; lv; lv = lv->lv_next) { 2188 /* we don't write ordered log vectors */ 2189 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2190 continue; 2191 2192 headers += lv->lv_niovecs; 2193 2194 for (i = 0; i < lv->lv_niovecs; i++) { 2195 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2196 2197 len += vecp->i_len; 2198 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2199 } 2200 } 2201 2202 ticket->t_res_num_ophdrs += headers; 2203 len += headers * sizeof(struct xlog_op_header); 2204 2205 return len; 2206 } 2207 2208 /* 2209 * If first write for transaction, insert start record We can't be trying to 2210 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2211 */ 2212 static int 2213 xlog_write_start_rec( 2214 struct xlog_op_header *ophdr, 2215 struct xlog_ticket *ticket) 2216 { 2217 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2218 return 0; 2219 2220 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2221 ophdr->oh_clientid = ticket->t_clientid; 2222 ophdr->oh_len = 0; 2223 ophdr->oh_flags = XLOG_START_TRANS; 2224 ophdr->oh_res2 = 0; 2225 2226 ticket->t_flags &= ~XLOG_TIC_INITED; 2227 2228 return sizeof(struct xlog_op_header); 2229 } 2230 2231 static xlog_op_header_t * 2232 xlog_write_setup_ophdr( 2233 struct xlog *log, 2234 struct xlog_op_header *ophdr, 2235 struct xlog_ticket *ticket, 2236 uint flags) 2237 { 2238 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2239 ophdr->oh_clientid = ticket->t_clientid; 2240 ophdr->oh_res2 = 0; 2241 2242 /* are we copying a commit or unmount record? */ 2243 ophdr->oh_flags = flags; 2244 2245 /* 2246 * We've seen logs corrupted with bad transaction client ids. This 2247 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2248 * and shut down the filesystem. 2249 */ 2250 switch (ophdr->oh_clientid) { 2251 case XFS_TRANSACTION: 2252 case XFS_VOLUME: 2253 case XFS_LOG: 2254 break; 2255 default: 2256 xfs_warn(log->l_mp, 2257 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2258 ophdr->oh_clientid, ticket); 2259 return NULL; 2260 } 2261 2262 return ophdr; 2263 } 2264 2265 /* 2266 * Set up the parameters of the region copy into the log. This has 2267 * to handle region write split across multiple log buffers - this 2268 * state is kept external to this function so that this code can 2269 * be written in an obvious, self documenting manner. 2270 */ 2271 static int 2272 xlog_write_setup_copy( 2273 struct xlog_ticket *ticket, 2274 struct xlog_op_header *ophdr, 2275 int space_available, 2276 int space_required, 2277 int *copy_off, 2278 int *copy_len, 2279 int *last_was_partial_copy, 2280 int *bytes_consumed) 2281 { 2282 int still_to_copy; 2283 2284 still_to_copy = space_required - *bytes_consumed; 2285 *copy_off = *bytes_consumed; 2286 2287 if (still_to_copy <= space_available) { 2288 /* write of region completes here */ 2289 *copy_len = still_to_copy; 2290 ophdr->oh_len = cpu_to_be32(*copy_len); 2291 if (*last_was_partial_copy) 2292 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2293 *last_was_partial_copy = 0; 2294 *bytes_consumed = 0; 2295 return 0; 2296 } 2297 2298 /* partial write of region, needs extra log op header reservation */ 2299 *copy_len = space_available; 2300 ophdr->oh_len = cpu_to_be32(*copy_len); 2301 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2302 if (*last_was_partial_copy) 2303 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2304 *bytes_consumed += *copy_len; 2305 (*last_was_partial_copy)++; 2306 2307 /* account for new log op header */ 2308 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2309 ticket->t_res_num_ophdrs++; 2310 2311 return sizeof(struct xlog_op_header); 2312 } 2313 2314 static int 2315 xlog_write_copy_finish( 2316 struct xlog *log, 2317 struct xlog_in_core *iclog, 2318 uint flags, 2319 int *record_cnt, 2320 int *data_cnt, 2321 int *partial_copy, 2322 int *partial_copy_len, 2323 int log_offset, 2324 struct xlog_in_core **commit_iclog) 2325 { 2326 if (*partial_copy) { 2327 /* 2328 * This iclog has already been marked WANT_SYNC by 2329 * xlog_state_get_iclog_space. 2330 */ 2331 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2332 *record_cnt = 0; 2333 *data_cnt = 0; 2334 return xlog_state_release_iclog(log, iclog); 2335 } 2336 2337 *partial_copy = 0; 2338 *partial_copy_len = 0; 2339 2340 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2341 /* no more space in this iclog - push it. */ 2342 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2343 *record_cnt = 0; 2344 *data_cnt = 0; 2345 2346 spin_lock(&log->l_icloglock); 2347 xlog_state_want_sync(log, iclog); 2348 spin_unlock(&log->l_icloglock); 2349 2350 if (!commit_iclog) 2351 return xlog_state_release_iclog(log, iclog); 2352 ASSERT(flags & XLOG_COMMIT_TRANS); 2353 *commit_iclog = iclog; 2354 } 2355 2356 return 0; 2357 } 2358 2359 /* 2360 * Write some region out to in-core log 2361 * 2362 * This will be called when writing externally provided regions or when 2363 * writing out a commit record for a given transaction. 2364 * 2365 * General algorithm: 2366 * 1. Find total length of this write. This may include adding to the 2367 * lengths passed in. 2368 * 2. Check whether we violate the tickets reservation. 2369 * 3. While writing to this iclog 2370 * A. Reserve as much space in this iclog as can get 2371 * B. If this is first write, save away start lsn 2372 * C. While writing this region: 2373 * 1. If first write of transaction, write start record 2374 * 2. Write log operation header (header per region) 2375 * 3. Find out if we can fit entire region into this iclog 2376 * 4. Potentially, verify destination memcpy ptr 2377 * 5. Memcpy (partial) region 2378 * 6. If partial copy, release iclog; otherwise, continue 2379 * copying more regions into current iclog 2380 * 4. Mark want sync bit (in simulation mode) 2381 * 5. Release iclog for potential flush to on-disk log. 2382 * 2383 * ERRORS: 2384 * 1. Panic if reservation is overrun. This should never happen since 2385 * reservation amounts are generated internal to the filesystem. 2386 * NOTES: 2387 * 1. Tickets are single threaded data structures. 2388 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2389 * syncing routine. When a single log_write region needs to span 2390 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2391 * on all log operation writes which don't contain the end of the 2392 * region. The XLOG_END_TRANS bit is used for the in-core log 2393 * operation which contains the end of the continued log_write region. 2394 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2395 * we don't really know exactly how much space will be used. As a result, 2396 * we don't update ic_offset until the end when we know exactly how many 2397 * bytes have been written out. 2398 */ 2399 int 2400 xlog_write( 2401 struct xlog *log, 2402 struct xfs_log_vec *log_vector, 2403 struct xlog_ticket *ticket, 2404 xfs_lsn_t *start_lsn, 2405 struct xlog_in_core **commit_iclog, 2406 uint flags) 2407 { 2408 struct xlog_in_core *iclog = NULL; 2409 struct xfs_log_iovec *vecp; 2410 struct xfs_log_vec *lv; 2411 int len; 2412 int index; 2413 int partial_copy = 0; 2414 int partial_copy_len = 0; 2415 int contwr = 0; 2416 int record_cnt = 0; 2417 int data_cnt = 0; 2418 int error; 2419 2420 *start_lsn = 0; 2421 2422 len = xlog_write_calc_vec_length(ticket, log_vector); 2423 2424 /* 2425 * Region headers and bytes are already accounted for. 2426 * We only need to take into account start records and 2427 * split regions in this function. 2428 */ 2429 if (ticket->t_flags & XLOG_TIC_INITED) 2430 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2431 2432 /* 2433 * Commit record headers need to be accounted for. These 2434 * come in as separate writes so are easy to detect. 2435 */ 2436 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2437 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2438 2439 if (ticket->t_curr_res < 0) { 2440 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2441 "ctx ticket reservation ran out. Need to up reservation"); 2442 xlog_print_tic_res(log->l_mp, ticket); 2443 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2444 } 2445 2446 index = 0; 2447 lv = log_vector; 2448 vecp = lv->lv_iovecp; 2449 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2450 void *ptr; 2451 int log_offset; 2452 2453 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2454 &contwr, &log_offset); 2455 if (error) 2456 return error; 2457 2458 ASSERT(log_offset <= iclog->ic_size - 1); 2459 ptr = iclog->ic_datap + log_offset; 2460 2461 /* start_lsn is the first lsn written to. That's all we need. */ 2462 if (!*start_lsn) 2463 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2464 2465 /* 2466 * This loop writes out as many regions as can fit in the amount 2467 * of space which was allocated by xlog_state_get_iclog_space(). 2468 */ 2469 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2470 struct xfs_log_iovec *reg; 2471 struct xlog_op_header *ophdr; 2472 int start_rec_copy; 2473 int copy_len; 2474 int copy_off; 2475 bool ordered = false; 2476 2477 /* ordered log vectors have no regions to write */ 2478 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2479 ASSERT(lv->lv_niovecs == 0); 2480 ordered = true; 2481 goto next_lv; 2482 } 2483 2484 reg = &vecp[index]; 2485 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2486 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2487 2488 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2489 if (start_rec_copy) { 2490 record_cnt++; 2491 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2492 start_rec_copy); 2493 } 2494 2495 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2496 if (!ophdr) 2497 return -EIO; 2498 2499 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2500 sizeof(struct xlog_op_header)); 2501 2502 len += xlog_write_setup_copy(ticket, ophdr, 2503 iclog->ic_size-log_offset, 2504 reg->i_len, 2505 ©_off, ©_len, 2506 &partial_copy, 2507 &partial_copy_len); 2508 xlog_verify_dest_ptr(log, ptr); 2509 2510 /* 2511 * Copy region. 2512 * 2513 * Unmount records just log an opheader, so can have 2514 * empty payloads with no data region to copy. Hence we 2515 * only copy the payload if the vector says it has data 2516 * to copy. 2517 */ 2518 ASSERT(copy_len >= 0); 2519 if (copy_len > 0) { 2520 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2521 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2522 copy_len); 2523 } 2524 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2525 record_cnt++; 2526 data_cnt += contwr ? copy_len : 0; 2527 2528 error = xlog_write_copy_finish(log, iclog, flags, 2529 &record_cnt, &data_cnt, 2530 &partial_copy, 2531 &partial_copy_len, 2532 log_offset, 2533 commit_iclog); 2534 if (error) 2535 return error; 2536 2537 /* 2538 * if we had a partial copy, we need to get more iclog 2539 * space but we don't want to increment the region 2540 * index because there is still more is this region to 2541 * write. 2542 * 2543 * If we completed writing this region, and we flushed 2544 * the iclog (indicated by resetting of the record 2545 * count), then we also need to get more log space. If 2546 * this was the last record, though, we are done and 2547 * can just return. 2548 */ 2549 if (partial_copy) 2550 break; 2551 2552 if (++index == lv->lv_niovecs) { 2553 next_lv: 2554 lv = lv->lv_next; 2555 index = 0; 2556 if (lv) 2557 vecp = lv->lv_iovecp; 2558 } 2559 if (record_cnt == 0 && !ordered) { 2560 if (!lv) 2561 return 0; 2562 break; 2563 } 2564 } 2565 } 2566 2567 ASSERT(len == 0); 2568 2569 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2570 if (!commit_iclog) 2571 return xlog_state_release_iclog(log, iclog); 2572 2573 ASSERT(flags & XLOG_COMMIT_TRANS); 2574 *commit_iclog = iclog; 2575 return 0; 2576 } 2577 2578 2579 /***************************************************************************** 2580 * 2581 * State Machine functions 2582 * 2583 ***************************************************************************** 2584 */ 2585 2586 /* Clean iclogs starting from the head. This ordering must be 2587 * maintained, so an iclog doesn't become ACTIVE beyond one that 2588 * is SYNCING. This is also required to maintain the notion that we use 2589 * a ordered wait queue to hold off would be writers to the log when every 2590 * iclog is trying to sync to disk. 2591 * 2592 * State Change: DIRTY -> ACTIVE 2593 */ 2594 STATIC void 2595 xlog_state_clean_log( 2596 struct xlog *log) 2597 { 2598 xlog_in_core_t *iclog; 2599 int changed = 0; 2600 2601 iclog = log->l_iclog; 2602 do { 2603 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2604 iclog->ic_state = XLOG_STATE_ACTIVE; 2605 iclog->ic_offset = 0; 2606 ASSERT(iclog->ic_callback == NULL); 2607 /* 2608 * If the number of ops in this iclog indicate it just 2609 * contains the dummy transaction, we can 2610 * change state into IDLE (the second time around). 2611 * Otherwise we should change the state into 2612 * NEED a dummy. 2613 * We don't need to cover the dummy. 2614 */ 2615 if (!changed && 2616 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2617 XLOG_COVER_OPS)) { 2618 changed = 1; 2619 } else { 2620 /* 2621 * We have two dirty iclogs so start over 2622 * This could also be num of ops indicates 2623 * this is not the dummy going out. 2624 */ 2625 changed = 2; 2626 } 2627 iclog->ic_header.h_num_logops = 0; 2628 memset(iclog->ic_header.h_cycle_data, 0, 2629 sizeof(iclog->ic_header.h_cycle_data)); 2630 iclog->ic_header.h_lsn = 0; 2631 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2632 /* do nothing */; 2633 else 2634 break; /* stop cleaning */ 2635 iclog = iclog->ic_next; 2636 } while (iclog != log->l_iclog); 2637 2638 /* log is locked when we are called */ 2639 /* 2640 * Change state for the dummy log recording. 2641 * We usually go to NEED. But we go to NEED2 if the changed indicates 2642 * we are done writing the dummy record. 2643 * If we are done with the second dummy recored (DONE2), then 2644 * we go to IDLE. 2645 */ 2646 if (changed) { 2647 switch (log->l_covered_state) { 2648 case XLOG_STATE_COVER_IDLE: 2649 case XLOG_STATE_COVER_NEED: 2650 case XLOG_STATE_COVER_NEED2: 2651 log->l_covered_state = XLOG_STATE_COVER_NEED; 2652 break; 2653 2654 case XLOG_STATE_COVER_DONE: 2655 if (changed == 1) 2656 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2657 else 2658 log->l_covered_state = XLOG_STATE_COVER_NEED; 2659 break; 2660 2661 case XLOG_STATE_COVER_DONE2: 2662 if (changed == 1) 2663 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2664 else 2665 log->l_covered_state = XLOG_STATE_COVER_NEED; 2666 break; 2667 2668 default: 2669 ASSERT(0); 2670 } 2671 } 2672 } /* xlog_state_clean_log */ 2673 2674 STATIC xfs_lsn_t 2675 xlog_get_lowest_lsn( 2676 struct xlog *log) 2677 { 2678 xlog_in_core_t *lsn_log; 2679 xfs_lsn_t lowest_lsn, lsn; 2680 2681 lsn_log = log->l_iclog; 2682 lowest_lsn = 0; 2683 do { 2684 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2685 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2686 if ((lsn && !lowest_lsn) || 2687 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2688 lowest_lsn = lsn; 2689 } 2690 } 2691 lsn_log = lsn_log->ic_next; 2692 } while (lsn_log != log->l_iclog); 2693 return lowest_lsn; 2694 } 2695 2696 2697 STATIC void 2698 xlog_state_do_callback( 2699 struct xlog *log, 2700 int aborted, 2701 struct xlog_in_core *ciclog) 2702 { 2703 xlog_in_core_t *iclog; 2704 xlog_in_core_t *first_iclog; /* used to know when we've 2705 * processed all iclogs once */ 2706 xfs_log_callback_t *cb, *cb_next; 2707 int flushcnt = 0; 2708 xfs_lsn_t lowest_lsn; 2709 int ioerrors; /* counter: iclogs with errors */ 2710 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2711 int funcdidcallbacks; /* flag: function did callbacks */ 2712 int repeats; /* for issuing console warnings if 2713 * looping too many times */ 2714 int wake = 0; 2715 2716 spin_lock(&log->l_icloglock); 2717 first_iclog = iclog = log->l_iclog; 2718 ioerrors = 0; 2719 funcdidcallbacks = 0; 2720 repeats = 0; 2721 2722 do { 2723 /* 2724 * Scan all iclogs starting with the one pointed to by the 2725 * log. Reset this starting point each time the log is 2726 * unlocked (during callbacks). 2727 * 2728 * Keep looping through iclogs until one full pass is made 2729 * without running any callbacks. 2730 */ 2731 first_iclog = log->l_iclog; 2732 iclog = log->l_iclog; 2733 loopdidcallbacks = 0; 2734 repeats++; 2735 2736 do { 2737 2738 /* skip all iclogs in the ACTIVE & DIRTY states */ 2739 if (iclog->ic_state & 2740 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2741 iclog = iclog->ic_next; 2742 continue; 2743 } 2744 2745 /* 2746 * Between marking a filesystem SHUTDOWN and stopping 2747 * the log, we do flush all iclogs to disk (if there 2748 * wasn't a log I/O error). So, we do want things to 2749 * go smoothly in case of just a SHUTDOWN w/o a 2750 * LOG_IO_ERROR. 2751 */ 2752 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2753 /* 2754 * Can only perform callbacks in order. Since 2755 * this iclog is not in the DONE_SYNC/ 2756 * DO_CALLBACK state, we skip the rest and 2757 * just try to clean up. If we set our iclog 2758 * to DO_CALLBACK, we will not process it when 2759 * we retry since a previous iclog is in the 2760 * CALLBACK and the state cannot change since 2761 * we are holding the l_icloglock. 2762 */ 2763 if (!(iclog->ic_state & 2764 (XLOG_STATE_DONE_SYNC | 2765 XLOG_STATE_DO_CALLBACK))) { 2766 if (ciclog && (ciclog->ic_state == 2767 XLOG_STATE_DONE_SYNC)) { 2768 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2769 } 2770 break; 2771 } 2772 /* 2773 * We now have an iclog that is in either the 2774 * DO_CALLBACK or DONE_SYNC states. The other 2775 * states (WANT_SYNC, SYNCING, or CALLBACK were 2776 * caught by the above if and are going to 2777 * clean (i.e. we aren't doing their callbacks) 2778 * see the above if. 2779 */ 2780 2781 /* 2782 * We will do one more check here to see if we 2783 * have chased our tail around. 2784 */ 2785 2786 lowest_lsn = xlog_get_lowest_lsn(log); 2787 if (lowest_lsn && 2788 XFS_LSN_CMP(lowest_lsn, 2789 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2790 iclog = iclog->ic_next; 2791 continue; /* Leave this iclog for 2792 * another thread */ 2793 } 2794 2795 iclog->ic_state = XLOG_STATE_CALLBACK; 2796 2797 2798 /* 2799 * Completion of a iclog IO does not imply that 2800 * a transaction has completed, as transactions 2801 * can be large enough to span many iclogs. We 2802 * cannot change the tail of the log half way 2803 * through a transaction as this may be the only 2804 * transaction in the log and moving th etail to 2805 * point to the middle of it will prevent 2806 * recovery from finding the start of the 2807 * transaction. Hence we should only update the 2808 * last_sync_lsn if this iclog contains 2809 * transaction completion callbacks on it. 2810 * 2811 * We have to do this before we drop the 2812 * icloglock to ensure we are the only one that 2813 * can update it. 2814 */ 2815 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2816 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2817 if (iclog->ic_callback) 2818 atomic64_set(&log->l_last_sync_lsn, 2819 be64_to_cpu(iclog->ic_header.h_lsn)); 2820 2821 } else 2822 ioerrors++; 2823 2824 spin_unlock(&log->l_icloglock); 2825 2826 /* 2827 * Keep processing entries in the callback list until 2828 * we come around and it is empty. We need to 2829 * atomically see that the list is empty and change the 2830 * state to DIRTY so that we don't miss any more 2831 * callbacks being added. 2832 */ 2833 spin_lock(&iclog->ic_callback_lock); 2834 cb = iclog->ic_callback; 2835 while (cb) { 2836 iclog->ic_callback_tail = &(iclog->ic_callback); 2837 iclog->ic_callback = NULL; 2838 spin_unlock(&iclog->ic_callback_lock); 2839 2840 /* perform callbacks in the order given */ 2841 for (; cb; cb = cb_next) { 2842 cb_next = cb->cb_next; 2843 cb->cb_func(cb->cb_arg, aborted); 2844 } 2845 spin_lock(&iclog->ic_callback_lock); 2846 cb = iclog->ic_callback; 2847 } 2848 2849 loopdidcallbacks++; 2850 funcdidcallbacks++; 2851 2852 spin_lock(&log->l_icloglock); 2853 ASSERT(iclog->ic_callback == NULL); 2854 spin_unlock(&iclog->ic_callback_lock); 2855 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2856 iclog->ic_state = XLOG_STATE_DIRTY; 2857 2858 /* 2859 * Transition from DIRTY to ACTIVE if applicable. 2860 * NOP if STATE_IOERROR. 2861 */ 2862 xlog_state_clean_log(log); 2863 2864 /* wake up threads waiting in xfs_log_force() */ 2865 wake_up_all(&iclog->ic_force_wait); 2866 2867 iclog = iclog->ic_next; 2868 } while (first_iclog != iclog); 2869 2870 if (repeats > 5000) { 2871 flushcnt += repeats; 2872 repeats = 0; 2873 xfs_warn(log->l_mp, 2874 "%s: possible infinite loop (%d iterations)", 2875 __func__, flushcnt); 2876 } 2877 } while (!ioerrors && loopdidcallbacks); 2878 2879 #ifdef DEBUG 2880 /* 2881 * Make one last gasp attempt to see if iclogs are being left in limbo. 2882 * If the above loop finds an iclog earlier than the current iclog and 2883 * in one of the syncing states, the current iclog is put into 2884 * DO_CALLBACK and the callbacks are deferred to the completion of the 2885 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2886 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2887 * states. 2888 * 2889 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2890 * for ic_state == SYNCING. 2891 */ 2892 if (funcdidcallbacks) { 2893 first_iclog = iclog = log->l_iclog; 2894 do { 2895 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2896 /* 2897 * Terminate the loop if iclogs are found in states 2898 * which will cause other threads to clean up iclogs. 2899 * 2900 * SYNCING - i/o completion will go through logs 2901 * DONE_SYNC - interrupt thread should be waiting for 2902 * l_icloglock 2903 * IOERROR - give up hope all ye who enter here 2904 */ 2905 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2906 iclog->ic_state & XLOG_STATE_SYNCING || 2907 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2908 iclog->ic_state == XLOG_STATE_IOERROR ) 2909 break; 2910 iclog = iclog->ic_next; 2911 } while (first_iclog != iclog); 2912 } 2913 #endif 2914 2915 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2916 wake = 1; 2917 spin_unlock(&log->l_icloglock); 2918 2919 if (wake) 2920 wake_up_all(&log->l_flush_wait); 2921 } 2922 2923 2924 /* 2925 * Finish transitioning this iclog to the dirty state. 2926 * 2927 * Make sure that we completely execute this routine only when this is 2928 * the last call to the iclog. There is a good chance that iclog flushes, 2929 * when we reach the end of the physical log, get turned into 2 separate 2930 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2931 * routine. By using the reference count bwritecnt, we guarantee that only 2932 * the second completion goes through. 2933 * 2934 * Callbacks could take time, so they are done outside the scope of the 2935 * global state machine log lock. 2936 */ 2937 STATIC void 2938 xlog_state_done_syncing( 2939 xlog_in_core_t *iclog, 2940 int aborted) 2941 { 2942 struct xlog *log = iclog->ic_log; 2943 2944 spin_lock(&log->l_icloglock); 2945 2946 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2947 iclog->ic_state == XLOG_STATE_IOERROR); 2948 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2949 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2950 2951 2952 /* 2953 * If we got an error, either on the first buffer, or in the case of 2954 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2955 * and none should ever be attempted to be written to disk 2956 * again. 2957 */ 2958 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2959 if (--iclog->ic_bwritecnt == 1) { 2960 spin_unlock(&log->l_icloglock); 2961 return; 2962 } 2963 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2964 } 2965 2966 /* 2967 * Someone could be sleeping prior to writing out the next 2968 * iclog buffer, we wake them all, one will get to do the 2969 * I/O, the others get to wait for the result. 2970 */ 2971 wake_up_all(&iclog->ic_write_wait); 2972 spin_unlock(&log->l_icloglock); 2973 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2974 } /* xlog_state_done_syncing */ 2975 2976 2977 /* 2978 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2979 * sleep. We wait on the flush queue on the head iclog as that should be 2980 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2981 * we will wait here and all new writes will sleep until a sync completes. 2982 * 2983 * The in-core logs are used in a circular fashion. They are not used 2984 * out-of-order even when an iclog past the head is free. 2985 * 2986 * return: 2987 * * log_offset where xlog_write() can start writing into the in-core 2988 * log's data space. 2989 * * in-core log pointer to which xlog_write() should write. 2990 * * boolean indicating this is a continued write to an in-core log. 2991 * If this is the last write, then the in-core log's offset field 2992 * needs to be incremented, depending on the amount of data which 2993 * is copied. 2994 */ 2995 STATIC int 2996 xlog_state_get_iclog_space( 2997 struct xlog *log, 2998 int len, 2999 struct xlog_in_core **iclogp, 3000 struct xlog_ticket *ticket, 3001 int *continued_write, 3002 int *logoffsetp) 3003 { 3004 int log_offset; 3005 xlog_rec_header_t *head; 3006 xlog_in_core_t *iclog; 3007 int error; 3008 3009 restart: 3010 spin_lock(&log->l_icloglock); 3011 if (XLOG_FORCED_SHUTDOWN(log)) { 3012 spin_unlock(&log->l_icloglock); 3013 return -EIO; 3014 } 3015 3016 iclog = log->l_iclog; 3017 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 3018 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 3019 3020 /* Wait for log writes to have flushed */ 3021 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 3022 goto restart; 3023 } 3024 3025 head = &iclog->ic_header; 3026 3027 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 3028 log_offset = iclog->ic_offset; 3029 3030 /* On the 1st write to an iclog, figure out lsn. This works 3031 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 3032 * committing to. If the offset is set, that's how many blocks 3033 * must be written. 3034 */ 3035 if (log_offset == 0) { 3036 ticket->t_curr_res -= log->l_iclog_hsize; 3037 xlog_tic_add_region(ticket, 3038 log->l_iclog_hsize, 3039 XLOG_REG_TYPE_LRHEADER); 3040 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 3041 head->h_lsn = cpu_to_be64( 3042 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 3043 ASSERT(log->l_curr_block >= 0); 3044 } 3045 3046 /* If there is enough room to write everything, then do it. Otherwise, 3047 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 3048 * bit is on, so this will get flushed out. Don't update ic_offset 3049 * until you know exactly how many bytes get copied. Therefore, wait 3050 * until later to update ic_offset. 3051 * 3052 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 3053 * can fit into remaining data section. 3054 */ 3055 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3056 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3057 3058 /* 3059 * If I'm the only one writing to this iclog, sync it to disk. 3060 * We need to do an atomic compare and decrement here to avoid 3061 * racing with concurrent atomic_dec_and_lock() calls in 3062 * xlog_state_release_iclog() when there is more than one 3063 * reference to the iclog. 3064 */ 3065 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 3066 /* we are the only one */ 3067 spin_unlock(&log->l_icloglock); 3068 error = xlog_state_release_iclog(log, iclog); 3069 if (error) 3070 return error; 3071 } else { 3072 spin_unlock(&log->l_icloglock); 3073 } 3074 goto restart; 3075 } 3076 3077 /* Do we have enough room to write the full amount in the remainder 3078 * of this iclog? Or must we continue a write on the next iclog and 3079 * mark this iclog as completely taken? In the case where we switch 3080 * iclogs (to mark it taken), this particular iclog will release/sync 3081 * to disk in xlog_write(). 3082 */ 3083 if (len <= iclog->ic_size - iclog->ic_offset) { 3084 *continued_write = 0; 3085 iclog->ic_offset += len; 3086 } else { 3087 *continued_write = 1; 3088 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3089 } 3090 *iclogp = iclog; 3091 3092 ASSERT(iclog->ic_offset <= iclog->ic_size); 3093 spin_unlock(&log->l_icloglock); 3094 3095 *logoffsetp = log_offset; 3096 return 0; 3097 } /* xlog_state_get_iclog_space */ 3098 3099 /* The first cnt-1 times through here we don't need to 3100 * move the grant write head because the permanent 3101 * reservation has reserved cnt times the unit amount. 3102 * Release part of current permanent unit reservation and 3103 * reset current reservation to be one units worth. Also 3104 * move grant reservation head forward. 3105 */ 3106 STATIC void 3107 xlog_regrant_reserve_log_space( 3108 struct xlog *log, 3109 struct xlog_ticket *ticket) 3110 { 3111 trace_xfs_log_regrant_reserve_enter(log, ticket); 3112 3113 if (ticket->t_cnt > 0) 3114 ticket->t_cnt--; 3115 3116 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3117 ticket->t_curr_res); 3118 xlog_grant_sub_space(log, &log->l_write_head.grant, 3119 ticket->t_curr_res); 3120 ticket->t_curr_res = ticket->t_unit_res; 3121 xlog_tic_reset_res(ticket); 3122 3123 trace_xfs_log_regrant_reserve_sub(log, ticket); 3124 3125 /* just return if we still have some of the pre-reserved space */ 3126 if (ticket->t_cnt > 0) 3127 return; 3128 3129 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3130 ticket->t_unit_res); 3131 3132 trace_xfs_log_regrant_reserve_exit(log, ticket); 3133 3134 ticket->t_curr_res = ticket->t_unit_res; 3135 xlog_tic_reset_res(ticket); 3136 } /* xlog_regrant_reserve_log_space */ 3137 3138 3139 /* 3140 * Give back the space left from a reservation. 3141 * 3142 * All the information we need to make a correct determination of space left 3143 * is present. For non-permanent reservations, things are quite easy. The 3144 * count should have been decremented to zero. We only need to deal with the 3145 * space remaining in the current reservation part of the ticket. If the 3146 * ticket contains a permanent reservation, there may be left over space which 3147 * needs to be released. A count of N means that N-1 refills of the current 3148 * reservation can be done before we need to ask for more space. The first 3149 * one goes to fill up the first current reservation. Once we run out of 3150 * space, the count will stay at zero and the only space remaining will be 3151 * in the current reservation field. 3152 */ 3153 STATIC void 3154 xlog_ungrant_log_space( 3155 struct xlog *log, 3156 struct xlog_ticket *ticket) 3157 { 3158 int bytes; 3159 3160 if (ticket->t_cnt > 0) 3161 ticket->t_cnt--; 3162 3163 trace_xfs_log_ungrant_enter(log, ticket); 3164 trace_xfs_log_ungrant_sub(log, ticket); 3165 3166 /* 3167 * If this is a permanent reservation ticket, we may be able to free 3168 * up more space based on the remaining count. 3169 */ 3170 bytes = ticket->t_curr_res; 3171 if (ticket->t_cnt > 0) { 3172 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3173 bytes += ticket->t_unit_res*ticket->t_cnt; 3174 } 3175 3176 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3177 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3178 3179 trace_xfs_log_ungrant_exit(log, ticket); 3180 3181 xfs_log_space_wake(log->l_mp); 3182 } 3183 3184 /* 3185 * Flush iclog to disk if this is the last reference to the given iclog and 3186 * the WANT_SYNC bit is set. 3187 * 3188 * When this function is entered, the iclog is not necessarily in the 3189 * WANT_SYNC state. It may be sitting around waiting to get filled. 3190 * 3191 * 3192 */ 3193 STATIC int 3194 xlog_state_release_iclog( 3195 struct xlog *log, 3196 struct xlog_in_core *iclog) 3197 { 3198 int sync = 0; /* do we sync? */ 3199 3200 if (iclog->ic_state & XLOG_STATE_IOERROR) 3201 return -EIO; 3202 3203 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3204 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3205 return 0; 3206 3207 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3208 spin_unlock(&log->l_icloglock); 3209 return -EIO; 3210 } 3211 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3212 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3213 3214 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3215 /* update tail before writing to iclog */ 3216 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3217 sync++; 3218 iclog->ic_state = XLOG_STATE_SYNCING; 3219 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3220 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3221 /* cycle incremented when incrementing curr_block */ 3222 } 3223 spin_unlock(&log->l_icloglock); 3224 3225 /* 3226 * We let the log lock go, so it's possible that we hit a log I/O 3227 * error or some other SHUTDOWN condition that marks the iclog 3228 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3229 * this iclog has consistent data, so we ignore IOERROR 3230 * flags after this point. 3231 */ 3232 if (sync) 3233 return xlog_sync(log, iclog); 3234 return 0; 3235 } /* xlog_state_release_iclog */ 3236 3237 3238 /* 3239 * This routine will mark the current iclog in the ring as WANT_SYNC 3240 * and move the current iclog pointer to the next iclog in the ring. 3241 * When this routine is called from xlog_state_get_iclog_space(), the 3242 * exact size of the iclog has not yet been determined. All we know is 3243 * that every data block. We have run out of space in this log record. 3244 */ 3245 STATIC void 3246 xlog_state_switch_iclogs( 3247 struct xlog *log, 3248 struct xlog_in_core *iclog, 3249 int eventual_size) 3250 { 3251 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3252 if (!eventual_size) 3253 eventual_size = iclog->ic_offset; 3254 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3255 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3256 log->l_prev_block = log->l_curr_block; 3257 log->l_prev_cycle = log->l_curr_cycle; 3258 3259 /* roll log?: ic_offset changed later */ 3260 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3261 3262 /* Round up to next log-sunit */ 3263 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3264 log->l_mp->m_sb.sb_logsunit > 1) { 3265 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3266 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3267 } 3268 3269 if (log->l_curr_block >= log->l_logBBsize) { 3270 /* 3271 * Rewind the current block before the cycle is bumped to make 3272 * sure that the combined LSN never transiently moves forward 3273 * when the log wraps to the next cycle. This is to support the 3274 * unlocked sample of these fields from xlog_valid_lsn(). Most 3275 * other cases should acquire l_icloglock. 3276 */ 3277 log->l_curr_block -= log->l_logBBsize; 3278 ASSERT(log->l_curr_block >= 0); 3279 smp_wmb(); 3280 log->l_curr_cycle++; 3281 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3282 log->l_curr_cycle++; 3283 } 3284 ASSERT(iclog == log->l_iclog); 3285 log->l_iclog = iclog->ic_next; 3286 } /* xlog_state_switch_iclogs */ 3287 3288 /* 3289 * Write out all data in the in-core log as of this exact moment in time. 3290 * 3291 * Data may be written to the in-core log during this call. However, 3292 * we don't guarantee this data will be written out. A change from past 3293 * implementation means this routine will *not* write out zero length LRs. 3294 * 3295 * Basically, we try and perform an intelligent scan of the in-core logs. 3296 * If we determine there is no flushable data, we just return. There is no 3297 * flushable data if: 3298 * 3299 * 1. the current iclog is active and has no data; the previous iclog 3300 * is in the active or dirty state. 3301 * 2. the current iclog is drity, and the previous iclog is in the 3302 * active or dirty state. 3303 * 3304 * We may sleep if: 3305 * 3306 * 1. the current iclog is not in the active nor dirty state. 3307 * 2. the current iclog dirty, and the previous iclog is not in the 3308 * active nor dirty state. 3309 * 3. the current iclog is active, and there is another thread writing 3310 * to this particular iclog. 3311 * 4. a) the current iclog is active and has no other writers 3312 * b) when we return from flushing out this iclog, it is still 3313 * not in the active nor dirty state. 3314 */ 3315 int 3316 xfs_log_force( 3317 struct xfs_mount *mp, 3318 uint flags) 3319 { 3320 struct xlog *log = mp->m_log; 3321 struct xlog_in_core *iclog; 3322 xfs_lsn_t lsn; 3323 3324 XFS_STATS_INC(mp, xs_log_force); 3325 trace_xfs_log_force(mp, 0, _RET_IP_); 3326 3327 xlog_cil_force(log); 3328 3329 spin_lock(&log->l_icloglock); 3330 iclog = log->l_iclog; 3331 if (iclog->ic_state & XLOG_STATE_IOERROR) 3332 goto out_error; 3333 3334 if (iclog->ic_state == XLOG_STATE_DIRTY || 3335 (iclog->ic_state == XLOG_STATE_ACTIVE && 3336 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3337 /* 3338 * If the head is dirty or (active and empty), then we need to 3339 * look at the previous iclog. 3340 * 3341 * If the previous iclog is active or dirty we are done. There 3342 * is nothing to sync out. Otherwise, we attach ourselves to the 3343 * previous iclog and go to sleep. 3344 */ 3345 iclog = iclog->ic_prev; 3346 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3347 iclog->ic_state == XLOG_STATE_DIRTY) 3348 goto out_unlock; 3349 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3350 if (atomic_read(&iclog->ic_refcnt) == 0) { 3351 /* 3352 * We are the only one with access to this iclog. 3353 * 3354 * Flush it out now. There should be a roundoff of zero 3355 * to show that someone has already taken care of the 3356 * roundoff from the previous sync. 3357 */ 3358 atomic_inc(&iclog->ic_refcnt); 3359 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3360 xlog_state_switch_iclogs(log, iclog, 0); 3361 spin_unlock(&log->l_icloglock); 3362 3363 if (xlog_state_release_iclog(log, iclog)) 3364 return -EIO; 3365 3366 spin_lock(&log->l_icloglock); 3367 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn || 3368 iclog->ic_state == XLOG_STATE_DIRTY) 3369 goto out_unlock; 3370 } else { 3371 /* 3372 * Someone else is writing to this iclog. 3373 * 3374 * Use its call to flush out the data. However, the 3375 * other thread may not force out this LR, so we mark 3376 * it WANT_SYNC. 3377 */ 3378 xlog_state_switch_iclogs(log, iclog, 0); 3379 } 3380 } else { 3381 /* 3382 * If the head iclog is not active nor dirty, we just attach 3383 * ourselves to the head and go to sleep if necessary. 3384 */ 3385 ; 3386 } 3387 3388 if (!(flags & XFS_LOG_SYNC)) 3389 goto out_unlock; 3390 3391 if (iclog->ic_state & XLOG_STATE_IOERROR) 3392 goto out_error; 3393 XFS_STATS_INC(mp, xs_log_force_sleep); 3394 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3395 if (iclog->ic_state & XLOG_STATE_IOERROR) 3396 return -EIO; 3397 return 0; 3398 3399 out_unlock: 3400 spin_unlock(&log->l_icloglock); 3401 return 0; 3402 out_error: 3403 spin_unlock(&log->l_icloglock); 3404 return -EIO; 3405 } 3406 3407 static int 3408 __xfs_log_force_lsn( 3409 struct xfs_mount *mp, 3410 xfs_lsn_t lsn, 3411 uint flags, 3412 int *log_flushed, 3413 bool already_slept) 3414 { 3415 struct xlog *log = mp->m_log; 3416 struct xlog_in_core *iclog; 3417 3418 spin_lock(&log->l_icloglock); 3419 iclog = log->l_iclog; 3420 if (iclog->ic_state & XLOG_STATE_IOERROR) 3421 goto out_error; 3422 3423 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3424 iclog = iclog->ic_next; 3425 if (iclog == log->l_iclog) 3426 goto out_unlock; 3427 } 3428 3429 if (iclog->ic_state == XLOG_STATE_DIRTY) 3430 goto out_unlock; 3431 3432 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3433 /* 3434 * We sleep here if we haven't already slept (e.g. this is the 3435 * first time we've looked at the correct iclog buf) and the 3436 * buffer before us is going to be sync'ed. The reason for this 3437 * is that if we are doing sync transactions here, by waiting 3438 * for the previous I/O to complete, we can allow a few more 3439 * transactions into this iclog before we close it down. 3440 * 3441 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3442 * refcnt so we can release the log (which drops the ref count). 3443 * The state switch keeps new transaction commits from using 3444 * this buffer. When the current commits finish writing into 3445 * the buffer, the refcount will drop to zero and the buffer 3446 * will go out then. 3447 */ 3448 if (!already_slept && 3449 (iclog->ic_prev->ic_state & 3450 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3451 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3452 3453 XFS_STATS_INC(mp, xs_log_force_sleep); 3454 3455 xlog_wait(&iclog->ic_prev->ic_write_wait, 3456 &log->l_icloglock); 3457 return -EAGAIN; 3458 } 3459 atomic_inc(&iclog->ic_refcnt); 3460 xlog_state_switch_iclogs(log, iclog, 0); 3461 spin_unlock(&log->l_icloglock); 3462 if (xlog_state_release_iclog(log, iclog)) 3463 return -EIO; 3464 if (log_flushed) 3465 *log_flushed = 1; 3466 spin_lock(&log->l_icloglock); 3467 } 3468 3469 if (!(flags & XFS_LOG_SYNC) || 3470 (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) 3471 goto out_unlock; 3472 3473 if (iclog->ic_state & XLOG_STATE_IOERROR) 3474 goto out_error; 3475 3476 XFS_STATS_INC(mp, xs_log_force_sleep); 3477 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3478 if (iclog->ic_state & XLOG_STATE_IOERROR) 3479 return -EIO; 3480 return 0; 3481 3482 out_unlock: 3483 spin_unlock(&log->l_icloglock); 3484 return 0; 3485 out_error: 3486 spin_unlock(&log->l_icloglock); 3487 return -EIO; 3488 } 3489 3490 /* 3491 * Force the in-core log to disk for a specific LSN. 3492 * 3493 * Find in-core log with lsn. 3494 * If it is in the DIRTY state, just return. 3495 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3496 * state and go to sleep or return. 3497 * If it is in any other state, go to sleep or return. 3498 * 3499 * Synchronous forces are implemented with a wait queue. All callers trying 3500 * to force a given lsn to disk must wait on the queue attached to the 3501 * specific in-core log. When given in-core log finally completes its write 3502 * to disk, that thread will wake up all threads waiting on the queue. 3503 */ 3504 int 3505 xfs_log_force_lsn( 3506 struct xfs_mount *mp, 3507 xfs_lsn_t lsn, 3508 uint flags, 3509 int *log_flushed) 3510 { 3511 int ret; 3512 ASSERT(lsn != 0); 3513 3514 XFS_STATS_INC(mp, xs_log_force); 3515 trace_xfs_log_force(mp, lsn, _RET_IP_); 3516 3517 lsn = xlog_cil_force_lsn(mp->m_log, lsn); 3518 if (lsn == NULLCOMMITLSN) 3519 return 0; 3520 3521 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false); 3522 if (ret == -EAGAIN) 3523 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true); 3524 return ret; 3525 } 3526 3527 /* 3528 * Called when we want to mark the current iclog as being ready to sync to 3529 * disk. 3530 */ 3531 STATIC void 3532 xlog_state_want_sync( 3533 struct xlog *log, 3534 struct xlog_in_core *iclog) 3535 { 3536 assert_spin_locked(&log->l_icloglock); 3537 3538 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3539 xlog_state_switch_iclogs(log, iclog, 0); 3540 } else { 3541 ASSERT(iclog->ic_state & 3542 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3543 } 3544 } 3545 3546 3547 /***************************************************************************** 3548 * 3549 * TICKET functions 3550 * 3551 ***************************************************************************** 3552 */ 3553 3554 /* 3555 * Free a used ticket when its refcount falls to zero. 3556 */ 3557 void 3558 xfs_log_ticket_put( 3559 xlog_ticket_t *ticket) 3560 { 3561 ASSERT(atomic_read(&ticket->t_ref) > 0); 3562 if (atomic_dec_and_test(&ticket->t_ref)) 3563 kmem_zone_free(xfs_log_ticket_zone, ticket); 3564 } 3565 3566 xlog_ticket_t * 3567 xfs_log_ticket_get( 3568 xlog_ticket_t *ticket) 3569 { 3570 ASSERT(atomic_read(&ticket->t_ref) > 0); 3571 atomic_inc(&ticket->t_ref); 3572 return ticket; 3573 } 3574 3575 /* 3576 * Figure out the total log space unit (in bytes) that would be 3577 * required for a log ticket. 3578 */ 3579 int 3580 xfs_log_calc_unit_res( 3581 struct xfs_mount *mp, 3582 int unit_bytes) 3583 { 3584 struct xlog *log = mp->m_log; 3585 int iclog_space; 3586 uint num_headers; 3587 3588 /* 3589 * Permanent reservations have up to 'cnt'-1 active log operations 3590 * in the log. A unit in this case is the amount of space for one 3591 * of these log operations. Normal reservations have a cnt of 1 3592 * and their unit amount is the total amount of space required. 3593 * 3594 * The following lines of code account for non-transaction data 3595 * which occupy space in the on-disk log. 3596 * 3597 * Normal form of a transaction is: 3598 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3599 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3600 * 3601 * We need to account for all the leadup data and trailer data 3602 * around the transaction data. 3603 * And then we need to account for the worst case in terms of using 3604 * more space. 3605 * The worst case will happen if: 3606 * - the placement of the transaction happens to be such that the 3607 * roundoff is at its maximum 3608 * - the transaction data is synced before the commit record is synced 3609 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3610 * Therefore the commit record is in its own Log Record. 3611 * This can happen as the commit record is called with its 3612 * own region to xlog_write(). 3613 * This then means that in the worst case, roundoff can happen for 3614 * the commit-rec as well. 3615 * The commit-rec is smaller than padding in this scenario and so it is 3616 * not added separately. 3617 */ 3618 3619 /* for trans header */ 3620 unit_bytes += sizeof(xlog_op_header_t); 3621 unit_bytes += sizeof(xfs_trans_header_t); 3622 3623 /* for start-rec */ 3624 unit_bytes += sizeof(xlog_op_header_t); 3625 3626 /* 3627 * for LR headers - the space for data in an iclog is the size minus 3628 * the space used for the headers. If we use the iclog size, then we 3629 * undercalculate the number of headers required. 3630 * 3631 * Furthermore - the addition of op headers for split-recs might 3632 * increase the space required enough to require more log and op 3633 * headers, so take that into account too. 3634 * 3635 * IMPORTANT: This reservation makes the assumption that if this 3636 * transaction is the first in an iclog and hence has the LR headers 3637 * accounted to it, then the remaining space in the iclog is 3638 * exclusively for this transaction. i.e. if the transaction is larger 3639 * than the iclog, it will be the only thing in that iclog. 3640 * Fundamentally, this means we must pass the entire log vector to 3641 * xlog_write to guarantee this. 3642 */ 3643 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3644 num_headers = howmany(unit_bytes, iclog_space); 3645 3646 /* for split-recs - ophdrs added when data split over LRs */ 3647 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3648 3649 /* add extra header reservations if we overrun */ 3650 while (!num_headers || 3651 howmany(unit_bytes, iclog_space) > num_headers) { 3652 unit_bytes += sizeof(xlog_op_header_t); 3653 num_headers++; 3654 } 3655 unit_bytes += log->l_iclog_hsize * num_headers; 3656 3657 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3658 unit_bytes += log->l_iclog_hsize; 3659 3660 /* for roundoff padding for transaction data and one for commit record */ 3661 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3662 /* log su roundoff */ 3663 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3664 } else { 3665 /* BB roundoff */ 3666 unit_bytes += 2 * BBSIZE; 3667 } 3668 3669 return unit_bytes; 3670 } 3671 3672 /* 3673 * Allocate and initialise a new log ticket. 3674 */ 3675 struct xlog_ticket * 3676 xlog_ticket_alloc( 3677 struct xlog *log, 3678 int unit_bytes, 3679 int cnt, 3680 char client, 3681 bool permanent, 3682 xfs_km_flags_t alloc_flags) 3683 { 3684 struct xlog_ticket *tic; 3685 int unit_res; 3686 3687 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3688 if (!tic) 3689 return NULL; 3690 3691 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3692 3693 atomic_set(&tic->t_ref, 1); 3694 tic->t_task = current; 3695 INIT_LIST_HEAD(&tic->t_queue); 3696 tic->t_unit_res = unit_res; 3697 tic->t_curr_res = unit_res; 3698 tic->t_cnt = cnt; 3699 tic->t_ocnt = cnt; 3700 tic->t_tid = prandom_u32(); 3701 tic->t_clientid = client; 3702 tic->t_flags = XLOG_TIC_INITED; 3703 if (permanent) 3704 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3705 3706 xlog_tic_reset_res(tic); 3707 3708 return tic; 3709 } 3710 3711 3712 /****************************************************************************** 3713 * 3714 * Log debug routines 3715 * 3716 ****************************************************************************** 3717 */ 3718 #if defined(DEBUG) 3719 /* 3720 * Make sure that the destination ptr is within the valid data region of 3721 * one of the iclogs. This uses backup pointers stored in a different 3722 * part of the log in case we trash the log structure. 3723 */ 3724 STATIC void 3725 xlog_verify_dest_ptr( 3726 struct xlog *log, 3727 void *ptr) 3728 { 3729 int i; 3730 int good_ptr = 0; 3731 3732 for (i = 0; i < log->l_iclog_bufs; i++) { 3733 if (ptr >= log->l_iclog_bak[i] && 3734 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3735 good_ptr++; 3736 } 3737 3738 if (!good_ptr) 3739 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3740 } 3741 3742 /* 3743 * Check to make sure the grant write head didn't just over lap the tail. If 3744 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3745 * the cycles differ by exactly one and check the byte count. 3746 * 3747 * This check is run unlocked, so can give false positives. Rather than assert 3748 * on failures, use a warn-once flag and a panic tag to allow the admin to 3749 * determine if they want to panic the machine when such an error occurs. For 3750 * debug kernels this will have the same effect as using an assert but, unlinke 3751 * an assert, it can be turned off at runtime. 3752 */ 3753 STATIC void 3754 xlog_verify_grant_tail( 3755 struct xlog *log) 3756 { 3757 int tail_cycle, tail_blocks; 3758 int cycle, space; 3759 3760 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3761 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3762 if (tail_cycle != cycle) { 3763 if (cycle - 1 != tail_cycle && 3764 !(log->l_flags & XLOG_TAIL_WARN)) { 3765 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3766 "%s: cycle - 1 != tail_cycle", __func__); 3767 log->l_flags |= XLOG_TAIL_WARN; 3768 } 3769 3770 if (space > BBTOB(tail_blocks) && 3771 !(log->l_flags & XLOG_TAIL_WARN)) { 3772 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3773 "%s: space > BBTOB(tail_blocks)", __func__); 3774 log->l_flags |= XLOG_TAIL_WARN; 3775 } 3776 } 3777 } 3778 3779 /* check if it will fit */ 3780 STATIC void 3781 xlog_verify_tail_lsn( 3782 struct xlog *log, 3783 struct xlog_in_core *iclog, 3784 xfs_lsn_t tail_lsn) 3785 { 3786 int blocks; 3787 3788 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3789 blocks = 3790 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3791 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3792 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3793 } else { 3794 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3795 3796 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3797 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3798 3799 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3800 if (blocks < BTOBB(iclog->ic_offset) + 1) 3801 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3802 } 3803 } /* xlog_verify_tail_lsn */ 3804 3805 /* 3806 * Perform a number of checks on the iclog before writing to disk. 3807 * 3808 * 1. Make sure the iclogs are still circular 3809 * 2. Make sure we have a good magic number 3810 * 3. Make sure we don't have magic numbers in the data 3811 * 4. Check fields of each log operation header for: 3812 * A. Valid client identifier 3813 * B. tid ptr value falls in valid ptr space (user space code) 3814 * C. Length in log record header is correct according to the 3815 * individual operation headers within record. 3816 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3817 * log, check the preceding blocks of the physical log to make sure all 3818 * the cycle numbers agree with the current cycle number. 3819 */ 3820 STATIC void 3821 xlog_verify_iclog( 3822 struct xlog *log, 3823 struct xlog_in_core *iclog, 3824 int count, 3825 bool syncing) 3826 { 3827 xlog_op_header_t *ophead; 3828 xlog_in_core_t *icptr; 3829 xlog_in_core_2_t *xhdr; 3830 void *base_ptr, *ptr, *p; 3831 ptrdiff_t field_offset; 3832 uint8_t clientid; 3833 int len, i, j, k, op_len; 3834 int idx; 3835 3836 /* check validity of iclog pointers */ 3837 spin_lock(&log->l_icloglock); 3838 icptr = log->l_iclog; 3839 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3840 ASSERT(icptr); 3841 3842 if (icptr != log->l_iclog) 3843 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3844 spin_unlock(&log->l_icloglock); 3845 3846 /* check log magic numbers */ 3847 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3848 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3849 3850 base_ptr = ptr = &iclog->ic_header; 3851 p = &iclog->ic_header; 3852 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3853 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3854 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3855 __func__); 3856 } 3857 3858 /* check fields */ 3859 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3860 base_ptr = ptr = iclog->ic_datap; 3861 ophead = ptr; 3862 xhdr = iclog->ic_data; 3863 for (i = 0; i < len; i++) { 3864 ophead = ptr; 3865 3866 /* clientid is only 1 byte */ 3867 p = &ophead->oh_clientid; 3868 field_offset = p - base_ptr; 3869 if (!syncing || (field_offset & 0x1ff)) { 3870 clientid = ophead->oh_clientid; 3871 } else { 3872 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3873 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3874 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3875 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3876 clientid = xlog_get_client_id( 3877 xhdr[j].hic_xheader.xh_cycle_data[k]); 3878 } else { 3879 clientid = xlog_get_client_id( 3880 iclog->ic_header.h_cycle_data[idx]); 3881 } 3882 } 3883 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3884 xfs_warn(log->l_mp, 3885 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3886 __func__, clientid, ophead, 3887 (unsigned long)field_offset); 3888 3889 /* check length */ 3890 p = &ophead->oh_len; 3891 field_offset = p - base_ptr; 3892 if (!syncing || (field_offset & 0x1ff)) { 3893 op_len = be32_to_cpu(ophead->oh_len); 3894 } else { 3895 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3896 (uintptr_t)iclog->ic_datap); 3897 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3898 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3899 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3900 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3901 } else { 3902 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3903 } 3904 } 3905 ptr += sizeof(xlog_op_header_t) + op_len; 3906 } 3907 } /* xlog_verify_iclog */ 3908 #endif 3909 3910 /* 3911 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3912 */ 3913 STATIC int 3914 xlog_state_ioerror( 3915 struct xlog *log) 3916 { 3917 xlog_in_core_t *iclog, *ic; 3918 3919 iclog = log->l_iclog; 3920 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3921 /* 3922 * Mark all the incore logs IOERROR. 3923 * From now on, no log flushes will result. 3924 */ 3925 ic = iclog; 3926 do { 3927 ic->ic_state = XLOG_STATE_IOERROR; 3928 ic = ic->ic_next; 3929 } while (ic != iclog); 3930 return 0; 3931 } 3932 /* 3933 * Return non-zero, if state transition has already happened. 3934 */ 3935 return 1; 3936 } 3937 3938 /* 3939 * This is called from xfs_force_shutdown, when we're forcibly 3940 * shutting down the filesystem, typically because of an IO error. 3941 * Our main objectives here are to make sure that: 3942 * a. if !logerror, flush the logs to disk. Anything modified 3943 * after this is ignored. 3944 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3945 * parties to find out, 'atomically'. 3946 * c. those who're sleeping on log reservations, pinned objects and 3947 * other resources get woken up, and be told the bad news. 3948 * d. nothing new gets queued up after (b) and (c) are done. 3949 * 3950 * Note: for the !logerror case we need to flush the regions held in memory out 3951 * to disk first. This needs to be done before the log is marked as shutdown, 3952 * otherwise the iclog writes will fail. 3953 */ 3954 int 3955 xfs_log_force_umount( 3956 struct xfs_mount *mp, 3957 int logerror) 3958 { 3959 struct xlog *log; 3960 int retval; 3961 3962 log = mp->m_log; 3963 3964 /* 3965 * If this happens during log recovery, don't worry about 3966 * locking; the log isn't open for business yet. 3967 */ 3968 if (!log || 3969 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3970 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3971 if (mp->m_sb_bp) 3972 mp->m_sb_bp->b_flags |= XBF_DONE; 3973 return 0; 3974 } 3975 3976 /* 3977 * Somebody could've already done the hard work for us. 3978 * No need to get locks for this. 3979 */ 3980 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3981 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3982 return 1; 3983 } 3984 3985 /* 3986 * Flush all the completed transactions to disk before marking the log 3987 * being shut down. We need to do it in this order to ensure that 3988 * completed operations are safely on disk before we shut down, and that 3989 * we don't have to issue any buffer IO after the shutdown flags are set 3990 * to guarantee this. 3991 */ 3992 if (!logerror) 3993 xfs_log_force(mp, XFS_LOG_SYNC); 3994 3995 /* 3996 * mark the filesystem and the as in a shutdown state and wake 3997 * everybody up to tell them the bad news. 3998 */ 3999 spin_lock(&log->l_icloglock); 4000 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 4001 if (mp->m_sb_bp) 4002 mp->m_sb_bp->b_flags |= XBF_DONE; 4003 4004 /* 4005 * Mark the log and the iclogs with IO error flags to prevent any 4006 * further log IO from being issued or completed. 4007 */ 4008 log->l_flags |= XLOG_IO_ERROR; 4009 retval = xlog_state_ioerror(log); 4010 spin_unlock(&log->l_icloglock); 4011 4012 /* 4013 * We don't want anybody waiting for log reservations after this. That 4014 * means we have to wake up everybody queued up on reserveq as well as 4015 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 4016 * we don't enqueue anything once the SHUTDOWN flag is set, and this 4017 * action is protected by the grant locks. 4018 */ 4019 xlog_grant_head_wake_all(&log->l_reserve_head); 4020 xlog_grant_head_wake_all(&log->l_write_head); 4021 4022 /* 4023 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4024 * as if the log writes were completed. The abort handling in the log 4025 * item committed callback functions will do this again under lock to 4026 * avoid races. 4027 */ 4028 wake_up_all(&log->l_cilp->xc_commit_wait); 4029 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4030 4031 #ifdef XFSERRORDEBUG 4032 { 4033 xlog_in_core_t *iclog; 4034 4035 spin_lock(&log->l_icloglock); 4036 iclog = log->l_iclog; 4037 do { 4038 ASSERT(iclog->ic_callback == 0); 4039 iclog = iclog->ic_next; 4040 } while (iclog != log->l_iclog); 4041 spin_unlock(&log->l_icloglock); 4042 } 4043 #endif 4044 /* return non-zero if log IOERROR transition had already happened */ 4045 return retval; 4046 } 4047 4048 STATIC int 4049 xlog_iclogs_empty( 4050 struct xlog *log) 4051 { 4052 xlog_in_core_t *iclog; 4053 4054 iclog = log->l_iclog; 4055 do { 4056 /* endianness does not matter here, zero is zero in 4057 * any language. 4058 */ 4059 if (iclog->ic_header.h_num_logops) 4060 return 0; 4061 iclog = iclog->ic_next; 4062 } while (iclog != log->l_iclog); 4063 return 1; 4064 } 4065 4066 /* 4067 * Verify that an LSN stamped into a piece of metadata is valid. This is 4068 * intended for use in read verifiers on v5 superblocks. 4069 */ 4070 bool 4071 xfs_log_check_lsn( 4072 struct xfs_mount *mp, 4073 xfs_lsn_t lsn) 4074 { 4075 struct xlog *log = mp->m_log; 4076 bool valid; 4077 4078 /* 4079 * norecovery mode skips mount-time log processing and unconditionally 4080 * resets the in-core LSN. We can't validate in this mode, but 4081 * modifications are not allowed anyways so just return true. 4082 */ 4083 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4084 return true; 4085 4086 /* 4087 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4088 * handled by recovery and thus safe to ignore here. 4089 */ 4090 if (lsn == NULLCOMMITLSN) 4091 return true; 4092 4093 valid = xlog_valid_lsn(mp->m_log, lsn); 4094 4095 /* warn the user about what's gone wrong before verifier failure */ 4096 if (!valid) { 4097 spin_lock(&log->l_icloglock); 4098 xfs_warn(mp, 4099 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4100 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4101 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4102 log->l_curr_cycle, log->l_curr_block); 4103 spin_unlock(&log->l_icloglock); 4104 } 4105 4106 return valid; 4107 } 4108 4109 bool 4110 xfs_log_in_recovery( 4111 struct xfs_mount *mp) 4112 { 4113 struct xlog *log = mp->m_log; 4114 4115 return log->l_flags & XLOG_ACTIVE_RECOVERY; 4116 } 4117