xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 171f1bc7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40 
41 kmem_zone_t	*xfs_log_ticket_zone;
42 
43 /* Local miscellaneous function prototypes */
44 STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 				    xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
47 				xfs_buftarg_t	*log_target,
48 				xfs_daddr_t	blk_offset,
49 				int		num_bblks);
50 STATIC int	 xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void	 xlog_dealloc_log(xlog_t *log);
53 
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
58 				       int		len,
59 				       xlog_in_core_t	**iclog,
60 				       xlog_ticket_t	*ticket,
61 				       int		*continued_write,
62 				       int		*logoffsetp);
63 STATIC int  xlog_state_release_iclog(xlog_t		*log,
64 				     xlog_in_core_t	*iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t		*log,
66 				     xlog_in_core_t *iclog,
67 				     int		eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
69 
70 /* local functions to manipulate grant head */
71 STATIC int  xlog_grant_log_space(xlog_t		*log,
72 				 xlog_ticket_t	*xtic);
73 STATIC void xlog_grant_push_ail(struct log	*log,
74 				int		need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
76 					   xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t		*log,
78 					 xlog_ticket_t  *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t	 *log,
80 				   xlog_ticket_t *ticket);
81 
82 #if defined(DEBUG)
83 STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void	xlog_verify_grant_tail(struct log *log);
85 STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 				  int count, boolean_t syncing);
87 STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 				     xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95 
96 STATIC int	xlog_iclogs_empty(xlog_t *log);
97 
98 static void
99 xlog_grant_sub_space(
100 	struct log	*log,
101 	atomic64_t	*head,
102 	int		bytes)
103 {
104 	int64_t	head_val = atomic64_read(head);
105 	int64_t new, old;
106 
107 	do {
108 		int	cycle, space;
109 
110 		xlog_crack_grant_head_val(head_val, &cycle, &space);
111 
112 		space -= bytes;
113 		if (space < 0) {
114 			space += log->l_logsize;
115 			cycle--;
116 		}
117 
118 		old = head_val;
119 		new = xlog_assign_grant_head_val(cycle, space);
120 		head_val = atomic64_cmpxchg(head, old, new);
121 	} while (head_val != old);
122 }
123 
124 static void
125 xlog_grant_add_space(
126 	struct log	*log,
127 	atomic64_t	*head,
128 	int		bytes)
129 {
130 	int64_t	head_val = atomic64_read(head);
131 	int64_t new, old;
132 
133 	do {
134 		int		tmp;
135 		int		cycle, space;
136 
137 		xlog_crack_grant_head_val(head_val, &cycle, &space);
138 
139 		tmp = log->l_logsize - space;
140 		if (tmp > bytes)
141 			space += bytes;
142 		else {
143 			space = bytes - tmp;
144 			cycle++;
145 		}
146 
147 		old = head_val;
148 		new = xlog_assign_grant_head_val(cycle, space);
149 		head_val = atomic64_cmpxchg(head, old, new);
150 	} while (head_val != old);
151 }
152 
153 static void
154 xlog_tic_reset_res(xlog_ticket_t *tic)
155 {
156 	tic->t_res_num = 0;
157 	tic->t_res_arr_sum = 0;
158 	tic->t_res_num_ophdrs = 0;
159 }
160 
161 static void
162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
163 {
164 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
165 		/* add to overflow and start again */
166 		tic->t_res_o_flow += tic->t_res_arr_sum;
167 		tic->t_res_num = 0;
168 		tic->t_res_arr_sum = 0;
169 	}
170 
171 	tic->t_res_arr[tic->t_res_num].r_len = len;
172 	tic->t_res_arr[tic->t_res_num].r_type = type;
173 	tic->t_res_arr_sum += len;
174 	tic->t_res_num++;
175 }
176 
177 /*
178  * NOTES:
179  *
180  *	1. currblock field gets updated at startup and after in-core logs
181  *		marked as with WANT_SYNC.
182  */
183 
184 /*
185  * This routine is called when a user of a log manager ticket is done with
186  * the reservation.  If the ticket was ever used, then a commit record for
187  * the associated transaction is written out as a log operation header with
188  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
189  * a given ticket.  If the ticket was one with a permanent reservation, then
190  * a few operations are done differently.  Permanent reservation tickets by
191  * default don't release the reservation.  They just commit the current
192  * transaction with the belief that the reservation is still needed.  A flag
193  * must be passed in before permanent reservations are actually released.
194  * When these type of tickets are not released, they need to be set into
195  * the inited state again.  By doing this, a start record will be written
196  * out when the next write occurs.
197  */
198 xfs_lsn_t
199 xfs_log_done(
200 	struct xfs_mount	*mp,
201 	struct xlog_ticket	*ticket,
202 	struct xlog_in_core	**iclog,
203 	uint			flags)
204 {
205 	struct log		*log = mp->m_log;
206 	xfs_lsn_t		lsn = 0;
207 
208 	if (XLOG_FORCED_SHUTDOWN(log) ||
209 	    /*
210 	     * If nothing was ever written, don't write out commit record.
211 	     * If we get an error, just continue and give back the log ticket.
212 	     */
213 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
214 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
215 		lsn = (xfs_lsn_t) -1;
216 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
217 			flags |= XFS_LOG_REL_PERM_RESERV;
218 		}
219 	}
220 
221 
222 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
223 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
224 		trace_xfs_log_done_nonperm(log, ticket);
225 
226 		/*
227 		 * Release ticket if not permanent reservation or a specific
228 		 * request has been made to release a permanent reservation.
229 		 */
230 		xlog_ungrant_log_space(log, ticket);
231 		xfs_log_ticket_put(ticket);
232 	} else {
233 		trace_xfs_log_done_perm(log, ticket);
234 
235 		xlog_regrant_reserve_log_space(log, ticket);
236 		/* If this ticket was a permanent reservation and we aren't
237 		 * trying to release it, reset the inited flags; so next time
238 		 * we write, a start record will be written out.
239 		 */
240 		ticket->t_flags |= XLOG_TIC_INITED;
241 	}
242 
243 	return lsn;
244 }
245 
246 /*
247  * Attaches a new iclog I/O completion callback routine during
248  * transaction commit.  If the log is in error state, a non-zero
249  * return code is handed back and the caller is responsible for
250  * executing the callback at an appropriate time.
251  */
252 int
253 xfs_log_notify(
254 	struct xfs_mount	*mp,
255 	struct xlog_in_core	*iclog,
256 	xfs_log_callback_t	*cb)
257 {
258 	int	abortflg;
259 
260 	spin_lock(&iclog->ic_callback_lock);
261 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
262 	if (!abortflg) {
263 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
264 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
265 		cb->cb_next = NULL;
266 		*(iclog->ic_callback_tail) = cb;
267 		iclog->ic_callback_tail = &(cb->cb_next);
268 	}
269 	spin_unlock(&iclog->ic_callback_lock);
270 	return abortflg;
271 }
272 
273 int
274 xfs_log_release_iclog(
275 	struct xfs_mount	*mp,
276 	struct xlog_in_core	*iclog)
277 {
278 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
279 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
280 		return EIO;
281 	}
282 
283 	return 0;
284 }
285 
286 /*
287  *  1. Reserve an amount of on-disk log space and return a ticket corresponding
288  *	to the reservation.
289  *  2. Potentially, push buffers at tail of log to disk.
290  *
291  * Each reservation is going to reserve extra space for a log record header.
292  * When writes happen to the on-disk log, we don't subtract the length of the
293  * log record header from any reservation.  By wasting space in each
294  * reservation, we prevent over allocation problems.
295  */
296 int
297 xfs_log_reserve(
298 	struct xfs_mount	*mp,
299 	int		 	unit_bytes,
300 	int		 	cnt,
301 	struct xlog_ticket	**ticket,
302 	__uint8_t	 	client,
303 	uint		 	flags,
304 	uint		 	t_type)
305 {
306 	struct log		*log = mp->m_log;
307 	struct xlog_ticket	*internal_ticket;
308 	int			retval = 0;
309 
310 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
311 
312 	if (XLOG_FORCED_SHUTDOWN(log))
313 		return XFS_ERROR(EIO);
314 
315 	XFS_STATS_INC(xs_try_logspace);
316 
317 
318 	if (*ticket != NULL) {
319 		ASSERT(flags & XFS_LOG_PERM_RESERV);
320 		internal_ticket = *ticket;
321 
322 		/*
323 		 * this is a new transaction on the ticket, so we need to
324 		 * change the transaction ID so that the next transaction has a
325 		 * different TID in the log. Just add one to the existing tid
326 		 * so that we can see chains of rolling transactions in the log
327 		 * easily.
328 		 */
329 		internal_ticket->t_tid++;
330 
331 		trace_xfs_log_reserve(log, internal_ticket);
332 
333 		xlog_grant_push_ail(log, internal_ticket->t_unit_res);
334 		retval = xlog_regrant_write_log_space(log, internal_ticket);
335 	} else {
336 		/* may sleep if need to allocate more tickets */
337 		internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
338 						  client, flags,
339 						  KM_SLEEP|KM_MAYFAIL);
340 		if (!internal_ticket)
341 			return XFS_ERROR(ENOMEM);
342 		internal_ticket->t_trans_type = t_type;
343 		*ticket = internal_ticket;
344 
345 		trace_xfs_log_reserve(log, internal_ticket);
346 
347 		xlog_grant_push_ail(log,
348 				    (internal_ticket->t_unit_res *
349 				     internal_ticket->t_cnt));
350 		retval = xlog_grant_log_space(log, internal_ticket);
351 	}
352 
353 	return retval;
354 }	/* xfs_log_reserve */
355 
356 
357 /*
358  * Mount a log filesystem
359  *
360  * mp		- ubiquitous xfs mount point structure
361  * log_target	- buftarg of on-disk log device
362  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
363  * num_bblocks	- Number of BBSIZE blocks in on-disk log
364  *
365  * Return error or zero.
366  */
367 int
368 xfs_log_mount(
369 	xfs_mount_t	*mp,
370 	xfs_buftarg_t	*log_target,
371 	xfs_daddr_t	blk_offset,
372 	int		num_bblks)
373 {
374 	int		error;
375 
376 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
377 		xfs_notice(mp, "Mounting Filesystem");
378 	else {
379 		xfs_notice(mp,
380 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
381 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
382 	}
383 
384 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
385 	if (IS_ERR(mp->m_log)) {
386 		error = -PTR_ERR(mp->m_log);
387 		goto out;
388 	}
389 
390 	/*
391 	 * Initialize the AIL now we have a log.
392 	 */
393 	error = xfs_trans_ail_init(mp);
394 	if (error) {
395 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
396 		goto out_free_log;
397 	}
398 	mp->m_log->l_ailp = mp->m_ail;
399 
400 	/*
401 	 * skip log recovery on a norecovery mount.  pretend it all
402 	 * just worked.
403 	 */
404 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
405 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
406 
407 		if (readonly)
408 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
409 
410 		error = xlog_recover(mp->m_log);
411 
412 		if (readonly)
413 			mp->m_flags |= XFS_MOUNT_RDONLY;
414 		if (error) {
415 			xfs_warn(mp, "log mount/recovery failed: error %d",
416 				error);
417 			goto out_destroy_ail;
418 		}
419 	}
420 
421 	/* Normal transactions can now occur */
422 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
423 
424 	/*
425 	 * Now the log has been fully initialised and we know were our
426 	 * space grant counters are, we can initialise the permanent ticket
427 	 * needed for delayed logging to work.
428 	 */
429 	xlog_cil_init_post_recovery(mp->m_log);
430 
431 	return 0;
432 
433 out_destroy_ail:
434 	xfs_trans_ail_destroy(mp);
435 out_free_log:
436 	xlog_dealloc_log(mp->m_log);
437 out:
438 	return error;
439 }
440 
441 /*
442  * Finish the recovery of the file system.  This is separate from
443  * the xfs_log_mount() call, because it depends on the code in
444  * xfs_mountfs() to read in the root and real-time bitmap inodes
445  * between calling xfs_log_mount() and here.
446  *
447  * mp		- ubiquitous xfs mount point structure
448  */
449 int
450 xfs_log_mount_finish(xfs_mount_t *mp)
451 {
452 	int	error;
453 
454 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
455 		error = xlog_recover_finish(mp->m_log);
456 	else {
457 		error = 0;
458 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
459 	}
460 
461 	return error;
462 }
463 
464 /*
465  * Final log writes as part of unmount.
466  *
467  * Mark the filesystem clean as unmount happens.  Note that during relocation
468  * this routine needs to be executed as part of source-bag while the
469  * deallocation must not be done until source-end.
470  */
471 
472 /*
473  * Unmount record used to have a string "Unmount filesystem--" in the
474  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475  * We just write the magic number now since that particular field isn't
476  * currently architecture converted and "nUmount" is a bit foo.
477  * As far as I know, there weren't any dependencies on the old behaviour.
478  */
479 
480 int
481 xfs_log_unmount_write(xfs_mount_t *mp)
482 {
483 	xlog_t		 *log = mp->m_log;
484 	xlog_in_core_t	 *iclog;
485 #ifdef DEBUG
486 	xlog_in_core_t	 *first_iclog;
487 #endif
488 	xlog_ticket_t	*tic = NULL;
489 	xfs_lsn_t	 lsn;
490 	int		 error;
491 
492 	/*
493 	 * Don't write out unmount record on read-only mounts.
494 	 * Or, if we are doing a forced umount (typically because of IO errors).
495 	 */
496 	if (mp->m_flags & XFS_MOUNT_RDONLY)
497 		return 0;
498 
499 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
500 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
501 
502 #ifdef DEBUG
503 	first_iclog = iclog = log->l_iclog;
504 	do {
505 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
506 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
507 			ASSERT(iclog->ic_offset == 0);
508 		}
509 		iclog = iclog->ic_next;
510 	} while (iclog != first_iclog);
511 #endif
512 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
513 		error = xfs_log_reserve(mp, 600, 1, &tic,
514 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
515 		if (!error) {
516 			/* the data section must be 32 bit size aligned */
517 			struct {
518 			    __uint16_t magic;
519 			    __uint16_t pad1;
520 			    __uint32_t pad2; /* may as well make it 64 bits */
521 			} magic = {
522 				.magic = XLOG_UNMOUNT_TYPE,
523 			};
524 			struct xfs_log_iovec reg = {
525 				.i_addr = &magic,
526 				.i_len = sizeof(magic),
527 				.i_type = XLOG_REG_TYPE_UNMOUNT,
528 			};
529 			struct xfs_log_vec vec = {
530 				.lv_niovecs = 1,
531 				.lv_iovecp = &reg,
532 			};
533 
534 			/* remove inited flag */
535 			tic->t_flags = 0;
536 			error = xlog_write(log, &vec, tic, &lsn,
537 					   NULL, XLOG_UNMOUNT_TRANS);
538 			/*
539 			 * At this point, we're umounting anyway,
540 			 * so there's no point in transitioning log state
541 			 * to IOERROR. Just continue...
542 			 */
543 		}
544 
545 		if (error)
546 			xfs_alert(mp, "%s: unmount record failed", __func__);
547 
548 
549 		spin_lock(&log->l_icloglock);
550 		iclog = log->l_iclog;
551 		atomic_inc(&iclog->ic_refcnt);
552 		xlog_state_want_sync(log, iclog);
553 		spin_unlock(&log->l_icloglock);
554 		error = xlog_state_release_iclog(log, iclog);
555 
556 		spin_lock(&log->l_icloglock);
557 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
558 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
559 			if (!XLOG_FORCED_SHUTDOWN(log)) {
560 				xlog_wait(&iclog->ic_force_wait,
561 							&log->l_icloglock);
562 			} else {
563 				spin_unlock(&log->l_icloglock);
564 			}
565 		} else {
566 			spin_unlock(&log->l_icloglock);
567 		}
568 		if (tic) {
569 			trace_xfs_log_umount_write(log, tic);
570 			xlog_ungrant_log_space(log, tic);
571 			xfs_log_ticket_put(tic);
572 		}
573 	} else {
574 		/*
575 		 * We're already in forced_shutdown mode, couldn't
576 		 * even attempt to write out the unmount transaction.
577 		 *
578 		 * Go through the motions of sync'ing and releasing
579 		 * the iclog, even though no I/O will actually happen,
580 		 * we need to wait for other log I/Os that may already
581 		 * be in progress.  Do this as a separate section of
582 		 * code so we'll know if we ever get stuck here that
583 		 * we're in this odd situation of trying to unmount
584 		 * a file system that went into forced_shutdown as
585 		 * the result of an unmount..
586 		 */
587 		spin_lock(&log->l_icloglock);
588 		iclog = log->l_iclog;
589 		atomic_inc(&iclog->ic_refcnt);
590 
591 		xlog_state_want_sync(log, iclog);
592 		spin_unlock(&log->l_icloglock);
593 		error =  xlog_state_release_iclog(log, iclog);
594 
595 		spin_lock(&log->l_icloglock);
596 
597 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
598 			|| iclog->ic_state == XLOG_STATE_DIRTY
599 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
600 
601 				xlog_wait(&iclog->ic_force_wait,
602 							&log->l_icloglock);
603 		} else {
604 			spin_unlock(&log->l_icloglock);
605 		}
606 	}
607 
608 	return error;
609 }	/* xfs_log_unmount_write */
610 
611 /*
612  * Deallocate log structures for unmount/relocation.
613  *
614  * We need to stop the aild from running before we destroy
615  * and deallocate the log as the aild references the log.
616  */
617 void
618 xfs_log_unmount(xfs_mount_t *mp)
619 {
620 	xfs_trans_ail_destroy(mp);
621 	xlog_dealloc_log(mp->m_log);
622 }
623 
624 void
625 xfs_log_item_init(
626 	struct xfs_mount	*mp,
627 	struct xfs_log_item	*item,
628 	int			type,
629 	const struct xfs_item_ops *ops)
630 {
631 	item->li_mountp = mp;
632 	item->li_ailp = mp->m_ail;
633 	item->li_type = type;
634 	item->li_ops = ops;
635 	item->li_lv = NULL;
636 
637 	INIT_LIST_HEAD(&item->li_ail);
638 	INIT_LIST_HEAD(&item->li_cil);
639 }
640 
641 /*
642  * Write region vectors to log.  The write happens using the space reservation
643  * of the ticket (tic).  It is not a requirement that all writes for a given
644  * transaction occur with one call to xfs_log_write(). However, it is important
645  * to note that the transaction reservation code makes an assumption about the
646  * number of log headers a transaction requires that may be violated if you
647  * don't pass all the transaction vectors in one call....
648  */
649 int
650 xfs_log_write(
651 	struct xfs_mount	*mp,
652 	struct xfs_log_iovec	reg[],
653 	int			nentries,
654 	struct xlog_ticket	*tic,
655 	xfs_lsn_t		*start_lsn)
656 {
657 	struct log		*log = mp->m_log;
658 	int			error;
659 	struct xfs_log_vec	vec = {
660 		.lv_niovecs = nentries,
661 		.lv_iovecp = reg,
662 	};
663 
664 	if (XLOG_FORCED_SHUTDOWN(log))
665 		return XFS_ERROR(EIO);
666 
667 	error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
668 	if (error)
669 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
670 	return error;
671 }
672 
673 void
674 xfs_log_move_tail(xfs_mount_t	*mp,
675 		  xfs_lsn_t	tail_lsn)
676 {
677 	xlog_ticket_t	*tic;
678 	xlog_t		*log = mp->m_log;
679 	int		need_bytes, free_bytes;
680 
681 	if (XLOG_FORCED_SHUTDOWN(log))
682 		return;
683 
684 	if (tail_lsn == 0)
685 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
686 
687 	/* tail_lsn == 1 implies that we weren't passed a valid value.  */
688 	if (tail_lsn != 1)
689 		atomic64_set(&log->l_tail_lsn, tail_lsn);
690 
691 	if (!list_empty_careful(&log->l_writeq)) {
692 #ifdef DEBUG
693 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
694 			panic("Recovery problem");
695 #endif
696 		spin_lock(&log->l_grant_write_lock);
697 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
698 		list_for_each_entry(tic, &log->l_writeq, t_queue) {
699 			ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
700 
701 			if (free_bytes < tic->t_unit_res && tail_lsn != 1)
702 				break;
703 			tail_lsn = 0;
704 			free_bytes -= tic->t_unit_res;
705 			trace_xfs_log_regrant_write_wake_up(log, tic);
706 			wake_up(&tic->t_wait);
707 		}
708 		spin_unlock(&log->l_grant_write_lock);
709 	}
710 
711 	if (!list_empty_careful(&log->l_reserveq)) {
712 #ifdef DEBUG
713 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
714 			panic("Recovery problem");
715 #endif
716 		spin_lock(&log->l_grant_reserve_lock);
717 		free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
718 		list_for_each_entry(tic, &log->l_reserveq, t_queue) {
719 			if (tic->t_flags & XLOG_TIC_PERM_RESERV)
720 				need_bytes = tic->t_unit_res*tic->t_cnt;
721 			else
722 				need_bytes = tic->t_unit_res;
723 			if (free_bytes < need_bytes && tail_lsn != 1)
724 				break;
725 			tail_lsn = 0;
726 			free_bytes -= need_bytes;
727 			trace_xfs_log_grant_wake_up(log, tic);
728 			wake_up(&tic->t_wait);
729 		}
730 		spin_unlock(&log->l_grant_reserve_lock);
731 	}
732 }
733 
734 /*
735  * Determine if we have a transaction that has gone to disk
736  * that needs to be covered. To begin the transition to the idle state
737  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
738  * If we are then in a state where covering is needed, the caller is informed
739  * that dummy transactions are required to move the log into the idle state.
740  *
741  * Because this is called as part of the sync process, we should also indicate
742  * that dummy transactions should be issued in anything but the covered or
743  * idle states. This ensures that the log tail is accurately reflected in
744  * the log at the end of the sync, hence if a crash occurrs avoids replay
745  * of transactions where the metadata is already on disk.
746  */
747 int
748 xfs_log_need_covered(xfs_mount_t *mp)
749 {
750 	int		needed = 0;
751 	xlog_t		*log = mp->m_log;
752 
753 	if (!xfs_fs_writable(mp))
754 		return 0;
755 
756 	spin_lock(&log->l_icloglock);
757 	switch (log->l_covered_state) {
758 	case XLOG_STATE_COVER_DONE:
759 	case XLOG_STATE_COVER_DONE2:
760 	case XLOG_STATE_COVER_IDLE:
761 		break;
762 	case XLOG_STATE_COVER_NEED:
763 	case XLOG_STATE_COVER_NEED2:
764 		if (!xfs_ail_min_lsn(log->l_ailp) &&
765 		    xlog_iclogs_empty(log)) {
766 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
767 				log->l_covered_state = XLOG_STATE_COVER_DONE;
768 			else
769 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
770 		}
771 		/* FALLTHRU */
772 	default:
773 		needed = 1;
774 		break;
775 	}
776 	spin_unlock(&log->l_icloglock);
777 	return needed;
778 }
779 
780 /******************************************************************************
781  *
782  *	local routines
783  *
784  ******************************************************************************
785  */
786 
787 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
788  * The log manager must keep track of the last LR which was committed
789  * to disk.  The lsn of this LR will become the new tail_lsn whenever
790  * xfs_trans_tail_ail returns 0.  If we don't do this, we run into
791  * the situation where stuff could be written into the log but nothing
792  * was ever in the AIL when asked.  Eventually, we panic since the
793  * tail hits the head.
794  *
795  * We may be holding the log iclog lock upon entering this routine.
796  */
797 xfs_lsn_t
798 xlog_assign_tail_lsn(
799 	struct xfs_mount	*mp)
800 {
801 	xfs_lsn_t		tail_lsn;
802 	struct log		*log = mp->m_log;
803 
804 	tail_lsn = xfs_ail_min_lsn(mp->m_ail);
805 	if (!tail_lsn)
806 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
807 
808 	atomic64_set(&log->l_tail_lsn, tail_lsn);
809 	return tail_lsn;
810 }
811 
812 /*
813  * Return the space in the log between the tail and the head.  The head
814  * is passed in the cycle/bytes formal parms.  In the special case where
815  * the reserve head has wrapped passed the tail, this calculation is no
816  * longer valid.  In this case, just return 0 which means there is no space
817  * in the log.  This works for all places where this function is called
818  * with the reserve head.  Of course, if the write head were to ever
819  * wrap the tail, we should blow up.  Rather than catch this case here,
820  * we depend on other ASSERTions in other parts of the code.   XXXmiken
821  *
822  * This code also handles the case where the reservation head is behind
823  * the tail.  The details of this case are described below, but the end
824  * result is that we return the size of the log as the amount of space left.
825  */
826 STATIC int
827 xlog_space_left(
828 	struct log	*log,
829 	atomic64_t	*head)
830 {
831 	int		free_bytes;
832 	int		tail_bytes;
833 	int		tail_cycle;
834 	int		head_cycle;
835 	int		head_bytes;
836 
837 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
838 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
839 	tail_bytes = BBTOB(tail_bytes);
840 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
841 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
842 	else if (tail_cycle + 1 < head_cycle)
843 		return 0;
844 	else if (tail_cycle < head_cycle) {
845 		ASSERT(tail_cycle == (head_cycle - 1));
846 		free_bytes = tail_bytes - head_bytes;
847 	} else {
848 		/*
849 		 * The reservation head is behind the tail.
850 		 * In this case we just want to return the size of the
851 		 * log as the amount of space left.
852 		 */
853 		xfs_alert(log->l_mp,
854 			"xlog_space_left: head behind tail\n"
855 			"  tail_cycle = %d, tail_bytes = %d\n"
856 			"  GH   cycle = %d, GH   bytes = %d",
857 			tail_cycle, tail_bytes, head_cycle, head_bytes);
858 		ASSERT(0);
859 		free_bytes = log->l_logsize;
860 	}
861 	return free_bytes;
862 }
863 
864 
865 /*
866  * Log function which is called when an io completes.
867  *
868  * The log manager needs its own routine, in order to control what
869  * happens with the buffer after the write completes.
870  */
871 void
872 xlog_iodone(xfs_buf_t *bp)
873 {
874 	xlog_in_core_t	*iclog = bp->b_fspriv;
875 	xlog_t		*l = iclog->ic_log;
876 	int		aborted = 0;
877 
878 	/*
879 	 * Race to shutdown the filesystem if we see an error.
880 	 */
881 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
882 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
883 		xfs_buf_ioerror_alert(bp, __func__);
884 		xfs_buf_stale(bp);
885 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
886 		/*
887 		 * This flag will be propagated to the trans-committed
888 		 * callback routines to let them know that the log-commit
889 		 * didn't succeed.
890 		 */
891 		aborted = XFS_LI_ABORTED;
892 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
893 		aborted = XFS_LI_ABORTED;
894 	}
895 
896 	/* log I/O is always issued ASYNC */
897 	ASSERT(XFS_BUF_ISASYNC(bp));
898 	xlog_state_done_syncing(iclog, aborted);
899 	/*
900 	 * do not reference the buffer (bp) here as we could race
901 	 * with it being freed after writing the unmount record to the
902 	 * log.
903 	 */
904 
905 }	/* xlog_iodone */
906 
907 /*
908  * Return size of each in-core log record buffer.
909  *
910  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
911  *
912  * If the filesystem blocksize is too large, we may need to choose a
913  * larger size since the directory code currently logs entire blocks.
914  */
915 
916 STATIC void
917 xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
918 			   xlog_t	*log)
919 {
920 	int size;
921 	int xhdrs;
922 
923 	if (mp->m_logbufs <= 0)
924 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
925 	else
926 		log->l_iclog_bufs = mp->m_logbufs;
927 
928 	/*
929 	 * Buffer size passed in from mount system call.
930 	 */
931 	if (mp->m_logbsize > 0) {
932 		size = log->l_iclog_size = mp->m_logbsize;
933 		log->l_iclog_size_log = 0;
934 		while (size != 1) {
935 			log->l_iclog_size_log++;
936 			size >>= 1;
937 		}
938 
939 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
940 			/* # headers = size / 32k
941 			 * one header holds cycles from 32k of data
942 			 */
943 
944 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
945 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
946 				xhdrs++;
947 			log->l_iclog_hsize = xhdrs << BBSHIFT;
948 			log->l_iclog_heads = xhdrs;
949 		} else {
950 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
951 			log->l_iclog_hsize = BBSIZE;
952 			log->l_iclog_heads = 1;
953 		}
954 		goto done;
955 	}
956 
957 	/* All machines use 32kB buffers by default. */
958 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
959 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
960 
961 	/* the default log size is 16k or 32k which is one header sector */
962 	log->l_iclog_hsize = BBSIZE;
963 	log->l_iclog_heads = 1;
964 
965 done:
966 	/* are we being asked to make the sizes selected above visible? */
967 	if (mp->m_logbufs == 0)
968 		mp->m_logbufs = log->l_iclog_bufs;
969 	if (mp->m_logbsize == 0)
970 		mp->m_logbsize = log->l_iclog_size;
971 }	/* xlog_get_iclog_buffer_size */
972 
973 
974 /*
975  * This routine initializes some of the log structure for a given mount point.
976  * Its primary purpose is to fill in enough, so recovery can occur.  However,
977  * some other stuff may be filled in too.
978  */
979 STATIC xlog_t *
980 xlog_alloc_log(xfs_mount_t	*mp,
981 	       xfs_buftarg_t	*log_target,
982 	       xfs_daddr_t	blk_offset,
983 	       int		num_bblks)
984 {
985 	xlog_t			*log;
986 	xlog_rec_header_t	*head;
987 	xlog_in_core_t		**iclogp;
988 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
989 	xfs_buf_t		*bp;
990 	int			i;
991 	int			error = ENOMEM;
992 	uint			log2_size = 0;
993 
994 	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
995 	if (!log) {
996 		xfs_warn(mp, "Log allocation failed: No memory!");
997 		goto out;
998 	}
999 
1000 	log->l_mp	   = mp;
1001 	log->l_targ	   = log_target;
1002 	log->l_logsize     = BBTOB(num_bblks);
1003 	log->l_logBBstart  = blk_offset;
1004 	log->l_logBBsize   = num_bblks;
1005 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1006 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1007 
1008 	log->l_prev_block  = -1;
1009 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1010 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1011 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1012 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1013 	xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1014 	xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1015 	INIT_LIST_HEAD(&log->l_reserveq);
1016 	INIT_LIST_HEAD(&log->l_writeq);
1017 	spin_lock_init(&log->l_grant_reserve_lock);
1018 	spin_lock_init(&log->l_grant_write_lock);
1019 
1020 	error = EFSCORRUPTED;
1021 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1022 	        log2_size = mp->m_sb.sb_logsectlog;
1023 		if (log2_size < BBSHIFT) {
1024 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1025 				log2_size, BBSHIFT);
1026 			goto out_free_log;
1027 		}
1028 
1029 	        log2_size -= BBSHIFT;
1030 		if (log2_size > mp->m_sectbb_log) {
1031 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1032 				log2_size, mp->m_sectbb_log);
1033 			goto out_free_log;
1034 		}
1035 
1036 		/* for larger sector sizes, must have v2 or external log */
1037 		if (log2_size && log->l_logBBstart > 0 &&
1038 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1039 			xfs_warn(mp,
1040 		"log sector size (0x%x) invalid for configuration.",
1041 				log2_size);
1042 			goto out_free_log;
1043 		}
1044 	}
1045 	log->l_sectBBsize = 1 << log2_size;
1046 
1047 	xlog_get_iclog_buffer_size(mp, log);
1048 
1049 	error = ENOMEM;
1050 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, log->l_iclog_size, 0);
1051 	if (!bp)
1052 		goto out_free_log;
1053 	bp->b_iodone = xlog_iodone;
1054 	ASSERT(xfs_buf_islocked(bp));
1055 	log->l_xbuf = bp;
1056 
1057 	spin_lock_init(&log->l_icloglock);
1058 	init_waitqueue_head(&log->l_flush_wait);
1059 
1060 	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1061 	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1062 
1063 	iclogp = &log->l_iclog;
1064 	/*
1065 	 * The amount of memory to allocate for the iclog structure is
1066 	 * rather funky due to the way the structure is defined.  It is
1067 	 * done this way so that we can use different sizes for machines
1068 	 * with different amounts of memory.  See the definition of
1069 	 * xlog_in_core_t in xfs_log_priv.h for details.
1070 	 */
1071 	ASSERT(log->l_iclog_size >= 4096);
1072 	for (i=0; i < log->l_iclog_bufs; i++) {
1073 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1074 		if (!*iclogp)
1075 			goto out_free_iclog;
1076 
1077 		iclog = *iclogp;
1078 		iclog->ic_prev = prev_iclog;
1079 		prev_iclog = iclog;
1080 
1081 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1082 						log->l_iclog_size, 0);
1083 		if (!bp)
1084 			goto out_free_iclog;
1085 
1086 		bp->b_iodone = xlog_iodone;
1087 		iclog->ic_bp = bp;
1088 		iclog->ic_data = bp->b_addr;
1089 #ifdef DEBUG
1090 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1091 #endif
1092 		head = &iclog->ic_header;
1093 		memset(head, 0, sizeof(xlog_rec_header_t));
1094 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1095 		head->h_version = cpu_to_be32(
1096 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1097 		head->h_size = cpu_to_be32(log->l_iclog_size);
1098 		/* new fields */
1099 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1100 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1101 
1102 		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1103 		iclog->ic_state = XLOG_STATE_ACTIVE;
1104 		iclog->ic_log = log;
1105 		atomic_set(&iclog->ic_refcnt, 0);
1106 		spin_lock_init(&iclog->ic_callback_lock);
1107 		iclog->ic_callback_tail = &(iclog->ic_callback);
1108 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1109 
1110 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1111 		init_waitqueue_head(&iclog->ic_force_wait);
1112 		init_waitqueue_head(&iclog->ic_write_wait);
1113 
1114 		iclogp = &iclog->ic_next;
1115 	}
1116 	*iclogp = log->l_iclog;			/* complete ring */
1117 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1118 
1119 	error = xlog_cil_init(log);
1120 	if (error)
1121 		goto out_free_iclog;
1122 	return log;
1123 
1124 out_free_iclog:
1125 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1126 		prev_iclog = iclog->ic_next;
1127 		if (iclog->ic_bp)
1128 			xfs_buf_free(iclog->ic_bp);
1129 		kmem_free(iclog);
1130 	}
1131 	spinlock_destroy(&log->l_icloglock);
1132 	xfs_buf_free(log->l_xbuf);
1133 out_free_log:
1134 	kmem_free(log);
1135 out:
1136 	return ERR_PTR(-error);
1137 }	/* xlog_alloc_log */
1138 
1139 
1140 /*
1141  * Write out the commit record of a transaction associated with the given
1142  * ticket.  Return the lsn of the commit record.
1143  */
1144 STATIC int
1145 xlog_commit_record(
1146 	struct log		*log,
1147 	struct xlog_ticket	*ticket,
1148 	struct xlog_in_core	**iclog,
1149 	xfs_lsn_t		*commitlsnp)
1150 {
1151 	struct xfs_mount *mp = log->l_mp;
1152 	int	error;
1153 	struct xfs_log_iovec reg = {
1154 		.i_addr = NULL,
1155 		.i_len = 0,
1156 		.i_type = XLOG_REG_TYPE_COMMIT,
1157 	};
1158 	struct xfs_log_vec vec = {
1159 		.lv_niovecs = 1,
1160 		.lv_iovecp = &reg,
1161 	};
1162 
1163 	ASSERT_ALWAYS(iclog);
1164 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1165 					XLOG_COMMIT_TRANS);
1166 	if (error)
1167 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1168 	return error;
1169 }
1170 
1171 /*
1172  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1173  * log space.  This code pushes on the lsn which would supposedly free up
1174  * the 25% which we want to leave free.  We may need to adopt a policy which
1175  * pushes on an lsn which is further along in the log once we reach the high
1176  * water mark.  In this manner, we would be creating a low water mark.
1177  */
1178 STATIC void
1179 xlog_grant_push_ail(
1180 	struct log	*log,
1181 	int		need_bytes)
1182 {
1183 	xfs_lsn_t	threshold_lsn = 0;
1184 	xfs_lsn_t	last_sync_lsn;
1185 	int		free_blocks;
1186 	int		free_bytes;
1187 	int		threshold_block;
1188 	int		threshold_cycle;
1189 	int		free_threshold;
1190 
1191 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1192 
1193 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1194 	free_blocks = BTOBBT(free_bytes);
1195 
1196 	/*
1197 	 * Set the threshold for the minimum number of free blocks in the
1198 	 * log to the maximum of what the caller needs, one quarter of the
1199 	 * log, and 256 blocks.
1200 	 */
1201 	free_threshold = BTOBB(need_bytes);
1202 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1203 	free_threshold = MAX(free_threshold, 256);
1204 	if (free_blocks >= free_threshold)
1205 		return;
1206 
1207 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1208 						&threshold_block);
1209 	threshold_block += free_threshold;
1210 	if (threshold_block >= log->l_logBBsize) {
1211 		threshold_block -= log->l_logBBsize;
1212 		threshold_cycle += 1;
1213 	}
1214 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1215 					threshold_block);
1216 	/*
1217 	 * Don't pass in an lsn greater than the lsn of the last
1218 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1219 	 * so that it doesn't change between the compare and the set.
1220 	 */
1221 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1222 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1223 		threshold_lsn = last_sync_lsn;
1224 
1225 	/*
1226 	 * Get the transaction layer to kick the dirty buffers out to
1227 	 * disk asynchronously. No point in trying to do this if
1228 	 * the filesystem is shutting down.
1229 	 */
1230 	if (!XLOG_FORCED_SHUTDOWN(log))
1231 		xfs_ail_push(log->l_ailp, threshold_lsn);
1232 }
1233 
1234 /*
1235  * The bdstrat callback function for log bufs. This gives us a central
1236  * place to trap bufs in case we get hit by a log I/O error and need to
1237  * shutdown. Actually, in practice, even when we didn't get a log error,
1238  * we transition the iclogs to IOERROR state *after* flushing all existing
1239  * iclogs to disk. This is because we don't want anymore new transactions to be
1240  * started or completed afterwards.
1241  */
1242 STATIC int
1243 xlog_bdstrat(
1244 	struct xfs_buf		*bp)
1245 {
1246 	struct xlog_in_core	*iclog = bp->b_fspriv;
1247 
1248 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1249 		xfs_buf_ioerror(bp, EIO);
1250 		xfs_buf_stale(bp);
1251 		xfs_buf_ioend(bp, 0);
1252 		/*
1253 		 * It would seem logical to return EIO here, but we rely on
1254 		 * the log state machine to propagate I/O errors instead of
1255 		 * doing it here.
1256 		 */
1257 		return 0;
1258 	}
1259 
1260 	xfs_buf_iorequest(bp);
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1266  * fashion.  Previously, we should have moved the current iclog
1267  * ptr in the log to point to the next available iclog.  This allows further
1268  * write to continue while this code syncs out an iclog ready to go.
1269  * Before an in-core log can be written out, the data section must be scanned
1270  * to save away the 1st word of each BBSIZE block into the header.  We replace
1271  * it with the current cycle count.  Each BBSIZE block is tagged with the
1272  * cycle count because there in an implicit assumption that drives will
1273  * guarantee that entire 512 byte blocks get written at once.  In other words,
1274  * we can't have part of a 512 byte block written and part not written.  By
1275  * tagging each block, we will know which blocks are valid when recovering
1276  * after an unclean shutdown.
1277  *
1278  * This routine is single threaded on the iclog.  No other thread can be in
1279  * this routine with the same iclog.  Changing contents of iclog can there-
1280  * fore be done without grabbing the state machine lock.  Updating the global
1281  * log will require grabbing the lock though.
1282  *
1283  * The entire log manager uses a logical block numbering scheme.  Only
1284  * log_sync (and then only bwrite()) know about the fact that the log may
1285  * not start with block zero on a given device.  The log block start offset
1286  * is added immediately before calling bwrite().
1287  */
1288 
1289 STATIC int
1290 xlog_sync(xlog_t		*log,
1291 	  xlog_in_core_t	*iclog)
1292 {
1293 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1294 	xfs_buf_t	*bp;
1295 	int		i;
1296 	uint		count;		/* byte count of bwrite */
1297 	uint		count_init;	/* initial count before roundup */
1298 	int		roundoff;       /* roundoff to BB or stripe */
1299 	int		split = 0;	/* split write into two regions */
1300 	int		error;
1301 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1302 
1303 	XFS_STATS_INC(xs_log_writes);
1304 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1305 
1306 	/* Add for LR header */
1307 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1308 
1309 	/* Round out the log write size */
1310 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1311 		/* we have a v2 stripe unit to use */
1312 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1313 	} else {
1314 		count = BBTOB(BTOBB(count_init));
1315 	}
1316 	roundoff = count - count_init;
1317 	ASSERT(roundoff >= 0);
1318 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1319                 roundoff < log->l_mp->m_sb.sb_logsunit)
1320 		||
1321 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1322 		 roundoff < BBTOB(1)));
1323 
1324 	/* move grant heads by roundoff in sync */
1325 	xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1326 	xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1327 
1328 	/* put cycle number in every block */
1329 	xlog_pack_data(log, iclog, roundoff);
1330 
1331 	/* real byte length */
1332 	if (v2) {
1333 		iclog->ic_header.h_len =
1334 			cpu_to_be32(iclog->ic_offset + roundoff);
1335 	} else {
1336 		iclog->ic_header.h_len =
1337 			cpu_to_be32(iclog->ic_offset);
1338 	}
1339 
1340 	bp = iclog->ic_bp;
1341 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1342 
1343 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1344 
1345 	/* Do we need to split this write into 2 parts? */
1346 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1347 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1348 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1349 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1350 	} else {
1351 		iclog->ic_bwritecnt = 1;
1352 	}
1353 	XFS_BUF_SET_COUNT(bp, count);
1354 	bp->b_fspriv = iclog;
1355 	XFS_BUF_ZEROFLAGS(bp);
1356 	XFS_BUF_ASYNC(bp);
1357 	bp->b_flags |= XBF_SYNCIO;
1358 
1359 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1360 		bp->b_flags |= XBF_FUA;
1361 
1362 		/*
1363 		 * Flush the data device before flushing the log to make
1364 		 * sure all meta data written back from the AIL actually made
1365 		 * it to disk before stamping the new log tail LSN into the
1366 		 * log buffer.  For an external log we need to issue the
1367 		 * flush explicitly, and unfortunately synchronously here;
1368 		 * for an internal log we can simply use the block layer
1369 		 * state machine for preflushes.
1370 		 */
1371 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1372 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1373 		else
1374 			bp->b_flags |= XBF_FLUSH;
1375 	}
1376 
1377 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1378 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1379 
1380 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1381 
1382 	/* account for log which doesn't start at block #0 */
1383 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1384 	/*
1385 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1386 	 * is shutting down.
1387 	 */
1388 	XFS_BUF_WRITE(bp);
1389 
1390 	error = xlog_bdstrat(bp);
1391 	if (error) {
1392 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1393 		return error;
1394 	}
1395 	if (split) {
1396 		bp = iclog->ic_log->l_xbuf;
1397 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1398 		xfs_buf_associate_memory(bp,
1399 				(char *)&iclog->ic_header + count, split);
1400 		bp->b_fspriv = iclog;
1401 		XFS_BUF_ZEROFLAGS(bp);
1402 		XFS_BUF_ASYNC(bp);
1403 		bp->b_flags |= XBF_SYNCIO;
1404 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1405 			bp->b_flags |= XBF_FUA;
1406 		dptr = bp->b_addr;
1407 		/*
1408 		 * Bump the cycle numbers at the start of each block
1409 		 * since this part of the buffer is at the start of
1410 		 * a new cycle.  Watch out for the header magic number
1411 		 * case, though.
1412 		 */
1413 		for (i = 0; i < split; i += BBSIZE) {
1414 			be32_add_cpu((__be32 *)dptr, 1);
1415 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1416 				be32_add_cpu((__be32 *)dptr, 1);
1417 			dptr += BBSIZE;
1418 		}
1419 
1420 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1421 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1422 
1423 		/* account for internal log which doesn't start at block #0 */
1424 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1425 		XFS_BUF_WRITE(bp);
1426 		error = xlog_bdstrat(bp);
1427 		if (error) {
1428 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1429 			return error;
1430 		}
1431 	}
1432 	return 0;
1433 }	/* xlog_sync */
1434 
1435 
1436 /*
1437  * Deallocate a log structure
1438  */
1439 STATIC void
1440 xlog_dealloc_log(xlog_t *log)
1441 {
1442 	xlog_in_core_t	*iclog, *next_iclog;
1443 	int		i;
1444 
1445 	xlog_cil_destroy(log);
1446 
1447 	/*
1448 	 * always need to ensure that the extra buffer does not point to memory
1449 	 * owned by another log buffer before we free it.
1450 	 */
1451 	xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1452 	xfs_buf_free(log->l_xbuf);
1453 
1454 	iclog = log->l_iclog;
1455 	for (i=0; i<log->l_iclog_bufs; i++) {
1456 		xfs_buf_free(iclog->ic_bp);
1457 		next_iclog = iclog->ic_next;
1458 		kmem_free(iclog);
1459 		iclog = next_iclog;
1460 	}
1461 	spinlock_destroy(&log->l_icloglock);
1462 
1463 	log->l_mp->m_log = NULL;
1464 	kmem_free(log);
1465 }	/* xlog_dealloc_log */
1466 
1467 /*
1468  * Update counters atomically now that memcpy is done.
1469  */
1470 /* ARGSUSED */
1471 static inline void
1472 xlog_state_finish_copy(xlog_t		*log,
1473 		       xlog_in_core_t	*iclog,
1474 		       int		record_cnt,
1475 		       int		copy_bytes)
1476 {
1477 	spin_lock(&log->l_icloglock);
1478 
1479 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1480 	iclog->ic_offset += copy_bytes;
1481 
1482 	spin_unlock(&log->l_icloglock);
1483 }	/* xlog_state_finish_copy */
1484 
1485 
1486 
1487 
1488 /*
1489  * print out info relating to regions written which consume
1490  * the reservation
1491  */
1492 void
1493 xlog_print_tic_res(
1494 	struct xfs_mount	*mp,
1495 	struct xlog_ticket	*ticket)
1496 {
1497 	uint i;
1498 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1499 
1500 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1501 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1502 	    "bformat",
1503 	    "bchunk",
1504 	    "efi_format",
1505 	    "efd_format",
1506 	    "iformat",
1507 	    "icore",
1508 	    "iext",
1509 	    "ibroot",
1510 	    "ilocal",
1511 	    "iattr_ext",
1512 	    "iattr_broot",
1513 	    "iattr_local",
1514 	    "qformat",
1515 	    "dquot",
1516 	    "quotaoff",
1517 	    "LR header",
1518 	    "unmount",
1519 	    "commit",
1520 	    "trans header"
1521 	};
1522 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1523 	    "SETATTR_NOT_SIZE",
1524 	    "SETATTR_SIZE",
1525 	    "INACTIVE",
1526 	    "CREATE",
1527 	    "CREATE_TRUNC",
1528 	    "TRUNCATE_FILE",
1529 	    "REMOVE",
1530 	    "LINK",
1531 	    "RENAME",
1532 	    "MKDIR",
1533 	    "RMDIR",
1534 	    "SYMLINK",
1535 	    "SET_DMATTRS",
1536 	    "GROWFS",
1537 	    "STRAT_WRITE",
1538 	    "DIOSTRAT",
1539 	    "WRITE_SYNC",
1540 	    "WRITEID",
1541 	    "ADDAFORK",
1542 	    "ATTRINVAL",
1543 	    "ATRUNCATE",
1544 	    "ATTR_SET",
1545 	    "ATTR_RM",
1546 	    "ATTR_FLAG",
1547 	    "CLEAR_AGI_BUCKET",
1548 	    "QM_SBCHANGE",
1549 	    "DUMMY1",
1550 	    "DUMMY2",
1551 	    "QM_QUOTAOFF",
1552 	    "QM_DQALLOC",
1553 	    "QM_SETQLIM",
1554 	    "QM_DQCLUSTER",
1555 	    "QM_QINOCREATE",
1556 	    "QM_QUOTAOFF_END",
1557 	    "SB_UNIT",
1558 	    "FSYNC_TS",
1559 	    "GROWFSRT_ALLOC",
1560 	    "GROWFSRT_ZERO",
1561 	    "GROWFSRT_FREE",
1562 	    "SWAPEXT"
1563 	};
1564 
1565 	xfs_warn(mp,
1566 		"xfs_log_write: reservation summary:\n"
1567 		"  trans type  = %s (%u)\n"
1568 		"  unit res    = %d bytes\n"
1569 		"  current res = %d bytes\n"
1570 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1571 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1572 		"  ophdr + reg = %u bytes\n"
1573 		"  num regions = %u\n",
1574 		((ticket->t_trans_type <= 0 ||
1575 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1576 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1577 		ticket->t_trans_type,
1578 		ticket->t_unit_res,
1579 		ticket->t_curr_res,
1580 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1581 		ticket->t_res_num_ophdrs, ophdr_spc,
1582 		ticket->t_res_arr_sum +
1583 		ticket->t_res_o_flow + ophdr_spc,
1584 		ticket->t_res_num);
1585 
1586 	for (i = 0; i < ticket->t_res_num; i++) {
1587 		uint r_type = ticket->t_res_arr[i].r_type;
1588 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1589 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1590 			    "bad-rtype" : res_type_str[r_type-1]),
1591 			    ticket->t_res_arr[i].r_len);
1592 	}
1593 
1594 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1595 		"xfs_log_write: reservation ran out. Need to up reservation");
1596 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1597 }
1598 
1599 /*
1600  * Calculate the potential space needed by the log vector.  Each region gets
1601  * its own xlog_op_header_t and may need to be double word aligned.
1602  */
1603 static int
1604 xlog_write_calc_vec_length(
1605 	struct xlog_ticket	*ticket,
1606 	struct xfs_log_vec	*log_vector)
1607 {
1608 	struct xfs_log_vec	*lv;
1609 	int			headers = 0;
1610 	int			len = 0;
1611 	int			i;
1612 
1613 	/* acct for start rec of xact */
1614 	if (ticket->t_flags & XLOG_TIC_INITED)
1615 		headers++;
1616 
1617 	for (lv = log_vector; lv; lv = lv->lv_next) {
1618 		headers += lv->lv_niovecs;
1619 
1620 		for (i = 0; i < lv->lv_niovecs; i++) {
1621 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1622 
1623 			len += vecp->i_len;
1624 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1625 		}
1626 	}
1627 
1628 	ticket->t_res_num_ophdrs += headers;
1629 	len += headers * sizeof(struct xlog_op_header);
1630 
1631 	return len;
1632 }
1633 
1634 /*
1635  * If first write for transaction, insert start record  We can't be trying to
1636  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1637  */
1638 static int
1639 xlog_write_start_rec(
1640 	struct xlog_op_header	*ophdr,
1641 	struct xlog_ticket	*ticket)
1642 {
1643 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1644 		return 0;
1645 
1646 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1647 	ophdr->oh_clientid = ticket->t_clientid;
1648 	ophdr->oh_len = 0;
1649 	ophdr->oh_flags = XLOG_START_TRANS;
1650 	ophdr->oh_res2 = 0;
1651 
1652 	ticket->t_flags &= ~XLOG_TIC_INITED;
1653 
1654 	return sizeof(struct xlog_op_header);
1655 }
1656 
1657 static xlog_op_header_t *
1658 xlog_write_setup_ophdr(
1659 	struct log		*log,
1660 	struct xlog_op_header	*ophdr,
1661 	struct xlog_ticket	*ticket,
1662 	uint			flags)
1663 {
1664 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1665 	ophdr->oh_clientid = ticket->t_clientid;
1666 	ophdr->oh_res2 = 0;
1667 
1668 	/* are we copying a commit or unmount record? */
1669 	ophdr->oh_flags = flags;
1670 
1671 	/*
1672 	 * We've seen logs corrupted with bad transaction client ids.  This
1673 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1674 	 * and shut down the filesystem.
1675 	 */
1676 	switch (ophdr->oh_clientid)  {
1677 	case XFS_TRANSACTION:
1678 	case XFS_VOLUME:
1679 	case XFS_LOG:
1680 		break;
1681 	default:
1682 		xfs_warn(log->l_mp,
1683 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1684 			ophdr->oh_clientid, ticket);
1685 		return NULL;
1686 	}
1687 
1688 	return ophdr;
1689 }
1690 
1691 /*
1692  * Set up the parameters of the region copy into the log. This has
1693  * to handle region write split across multiple log buffers - this
1694  * state is kept external to this function so that this code can
1695  * can be written in an obvious, self documenting manner.
1696  */
1697 static int
1698 xlog_write_setup_copy(
1699 	struct xlog_ticket	*ticket,
1700 	struct xlog_op_header	*ophdr,
1701 	int			space_available,
1702 	int			space_required,
1703 	int			*copy_off,
1704 	int			*copy_len,
1705 	int			*last_was_partial_copy,
1706 	int			*bytes_consumed)
1707 {
1708 	int			still_to_copy;
1709 
1710 	still_to_copy = space_required - *bytes_consumed;
1711 	*copy_off = *bytes_consumed;
1712 
1713 	if (still_to_copy <= space_available) {
1714 		/* write of region completes here */
1715 		*copy_len = still_to_copy;
1716 		ophdr->oh_len = cpu_to_be32(*copy_len);
1717 		if (*last_was_partial_copy)
1718 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1719 		*last_was_partial_copy = 0;
1720 		*bytes_consumed = 0;
1721 		return 0;
1722 	}
1723 
1724 	/* partial write of region, needs extra log op header reservation */
1725 	*copy_len = space_available;
1726 	ophdr->oh_len = cpu_to_be32(*copy_len);
1727 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1728 	if (*last_was_partial_copy)
1729 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1730 	*bytes_consumed += *copy_len;
1731 	(*last_was_partial_copy)++;
1732 
1733 	/* account for new log op header */
1734 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1735 	ticket->t_res_num_ophdrs++;
1736 
1737 	return sizeof(struct xlog_op_header);
1738 }
1739 
1740 static int
1741 xlog_write_copy_finish(
1742 	struct log		*log,
1743 	struct xlog_in_core	*iclog,
1744 	uint			flags,
1745 	int			*record_cnt,
1746 	int			*data_cnt,
1747 	int			*partial_copy,
1748 	int			*partial_copy_len,
1749 	int			log_offset,
1750 	struct xlog_in_core	**commit_iclog)
1751 {
1752 	if (*partial_copy) {
1753 		/*
1754 		 * This iclog has already been marked WANT_SYNC by
1755 		 * xlog_state_get_iclog_space.
1756 		 */
1757 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1758 		*record_cnt = 0;
1759 		*data_cnt = 0;
1760 		return xlog_state_release_iclog(log, iclog);
1761 	}
1762 
1763 	*partial_copy = 0;
1764 	*partial_copy_len = 0;
1765 
1766 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1767 		/* no more space in this iclog - push it. */
1768 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1769 		*record_cnt = 0;
1770 		*data_cnt = 0;
1771 
1772 		spin_lock(&log->l_icloglock);
1773 		xlog_state_want_sync(log, iclog);
1774 		spin_unlock(&log->l_icloglock);
1775 
1776 		if (!commit_iclog)
1777 			return xlog_state_release_iclog(log, iclog);
1778 		ASSERT(flags & XLOG_COMMIT_TRANS);
1779 		*commit_iclog = iclog;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 /*
1786  * Write some region out to in-core log
1787  *
1788  * This will be called when writing externally provided regions or when
1789  * writing out a commit record for a given transaction.
1790  *
1791  * General algorithm:
1792  *	1. Find total length of this write.  This may include adding to the
1793  *		lengths passed in.
1794  *	2. Check whether we violate the tickets reservation.
1795  *	3. While writing to this iclog
1796  *	    A. Reserve as much space in this iclog as can get
1797  *	    B. If this is first write, save away start lsn
1798  *	    C. While writing this region:
1799  *		1. If first write of transaction, write start record
1800  *		2. Write log operation header (header per region)
1801  *		3. Find out if we can fit entire region into this iclog
1802  *		4. Potentially, verify destination memcpy ptr
1803  *		5. Memcpy (partial) region
1804  *		6. If partial copy, release iclog; otherwise, continue
1805  *			copying more regions into current iclog
1806  *	4. Mark want sync bit (in simulation mode)
1807  *	5. Release iclog for potential flush to on-disk log.
1808  *
1809  * ERRORS:
1810  * 1.	Panic if reservation is overrun.  This should never happen since
1811  *	reservation amounts are generated internal to the filesystem.
1812  * NOTES:
1813  * 1. Tickets are single threaded data structures.
1814  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1815  *	syncing routine.  When a single log_write region needs to span
1816  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1817  *	on all log operation writes which don't contain the end of the
1818  *	region.  The XLOG_END_TRANS bit is used for the in-core log
1819  *	operation which contains the end of the continued log_write region.
1820  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1821  *	we don't really know exactly how much space will be used.  As a result,
1822  *	we don't update ic_offset until the end when we know exactly how many
1823  *	bytes have been written out.
1824  */
1825 int
1826 xlog_write(
1827 	struct log		*log,
1828 	struct xfs_log_vec	*log_vector,
1829 	struct xlog_ticket	*ticket,
1830 	xfs_lsn_t		*start_lsn,
1831 	struct xlog_in_core	**commit_iclog,
1832 	uint			flags)
1833 {
1834 	struct xlog_in_core	*iclog = NULL;
1835 	struct xfs_log_iovec	*vecp;
1836 	struct xfs_log_vec	*lv;
1837 	int			len;
1838 	int			index;
1839 	int			partial_copy = 0;
1840 	int			partial_copy_len = 0;
1841 	int			contwr = 0;
1842 	int			record_cnt = 0;
1843 	int			data_cnt = 0;
1844 	int			error;
1845 
1846 	*start_lsn = 0;
1847 
1848 	len = xlog_write_calc_vec_length(ticket, log_vector);
1849 	if (log->l_cilp) {
1850 		/*
1851 		 * Region headers and bytes are already accounted for.
1852 		 * We only need to take into account start records and
1853 		 * split regions in this function.
1854 		 */
1855 		if (ticket->t_flags & XLOG_TIC_INITED)
1856 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1857 
1858 		/*
1859 		 * Commit record headers need to be accounted for. These
1860 		 * come in as separate writes so are easy to detect.
1861 		 */
1862 		if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1863 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1864 	} else
1865 		ticket->t_curr_res -= len;
1866 
1867 	if (ticket->t_curr_res < 0)
1868 		xlog_print_tic_res(log->l_mp, ticket);
1869 
1870 	index = 0;
1871 	lv = log_vector;
1872 	vecp = lv->lv_iovecp;
1873 	while (lv && index < lv->lv_niovecs) {
1874 		void		*ptr;
1875 		int		log_offset;
1876 
1877 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1878 						   &contwr, &log_offset);
1879 		if (error)
1880 			return error;
1881 
1882 		ASSERT(log_offset <= iclog->ic_size - 1);
1883 		ptr = iclog->ic_datap + log_offset;
1884 
1885 		/* start_lsn is the first lsn written to. That's all we need. */
1886 		if (!*start_lsn)
1887 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1888 
1889 		/*
1890 		 * This loop writes out as many regions as can fit in the amount
1891 		 * of space which was allocated by xlog_state_get_iclog_space().
1892 		 */
1893 		while (lv && index < lv->lv_niovecs) {
1894 			struct xfs_log_iovec	*reg = &vecp[index];
1895 			struct xlog_op_header	*ophdr;
1896 			int			start_rec_copy;
1897 			int			copy_len;
1898 			int			copy_off;
1899 
1900 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1901 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1902 
1903 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
1904 			if (start_rec_copy) {
1905 				record_cnt++;
1906 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
1907 						   start_rec_copy);
1908 			}
1909 
1910 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1911 			if (!ophdr)
1912 				return XFS_ERROR(EIO);
1913 
1914 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
1915 					   sizeof(struct xlog_op_header));
1916 
1917 			len += xlog_write_setup_copy(ticket, ophdr,
1918 						     iclog->ic_size-log_offset,
1919 						     reg->i_len,
1920 						     &copy_off, &copy_len,
1921 						     &partial_copy,
1922 						     &partial_copy_len);
1923 			xlog_verify_dest_ptr(log, ptr);
1924 
1925 			/* copy region */
1926 			ASSERT(copy_len >= 0);
1927 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
1928 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1929 
1930 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1931 			record_cnt++;
1932 			data_cnt += contwr ? copy_len : 0;
1933 
1934 			error = xlog_write_copy_finish(log, iclog, flags,
1935 						       &record_cnt, &data_cnt,
1936 						       &partial_copy,
1937 						       &partial_copy_len,
1938 						       log_offset,
1939 						       commit_iclog);
1940 			if (error)
1941 				return error;
1942 
1943 			/*
1944 			 * if we had a partial copy, we need to get more iclog
1945 			 * space but we don't want to increment the region
1946 			 * index because there is still more is this region to
1947 			 * write.
1948 			 *
1949 			 * If we completed writing this region, and we flushed
1950 			 * the iclog (indicated by resetting of the record
1951 			 * count), then we also need to get more log space. If
1952 			 * this was the last record, though, we are done and
1953 			 * can just return.
1954 			 */
1955 			if (partial_copy)
1956 				break;
1957 
1958 			if (++index == lv->lv_niovecs) {
1959 				lv = lv->lv_next;
1960 				index = 0;
1961 				if (lv)
1962 					vecp = lv->lv_iovecp;
1963 			}
1964 			if (record_cnt == 0) {
1965 				if (!lv)
1966 					return 0;
1967 				break;
1968 			}
1969 		}
1970 	}
1971 
1972 	ASSERT(len == 0);
1973 
1974 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1975 	if (!commit_iclog)
1976 		return xlog_state_release_iclog(log, iclog);
1977 
1978 	ASSERT(flags & XLOG_COMMIT_TRANS);
1979 	*commit_iclog = iclog;
1980 	return 0;
1981 }
1982 
1983 
1984 /*****************************************************************************
1985  *
1986  *		State Machine functions
1987  *
1988  *****************************************************************************
1989  */
1990 
1991 /* Clean iclogs starting from the head.  This ordering must be
1992  * maintained, so an iclog doesn't become ACTIVE beyond one that
1993  * is SYNCING.  This is also required to maintain the notion that we use
1994  * a ordered wait queue to hold off would be writers to the log when every
1995  * iclog is trying to sync to disk.
1996  *
1997  * State Change: DIRTY -> ACTIVE
1998  */
1999 STATIC void
2000 xlog_state_clean_log(xlog_t *log)
2001 {
2002 	xlog_in_core_t	*iclog;
2003 	int changed = 0;
2004 
2005 	iclog = log->l_iclog;
2006 	do {
2007 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2008 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2009 			iclog->ic_offset       = 0;
2010 			ASSERT(iclog->ic_callback == NULL);
2011 			/*
2012 			 * If the number of ops in this iclog indicate it just
2013 			 * contains the dummy transaction, we can
2014 			 * change state into IDLE (the second time around).
2015 			 * Otherwise we should change the state into
2016 			 * NEED a dummy.
2017 			 * We don't need to cover the dummy.
2018 			 */
2019 			if (!changed &&
2020 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2021 			   		XLOG_COVER_OPS)) {
2022 				changed = 1;
2023 			} else {
2024 				/*
2025 				 * We have two dirty iclogs so start over
2026 				 * This could also be num of ops indicates
2027 				 * this is not the dummy going out.
2028 				 */
2029 				changed = 2;
2030 			}
2031 			iclog->ic_header.h_num_logops = 0;
2032 			memset(iclog->ic_header.h_cycle_data, 0,
2033 			      sizeof(iclog->ic_header.h_cycle_data));
2034 			iclog->ic_header.h_lsn = 0;
2035 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2036 			/* do nothing */;
2037 		else
2038 			break;	/* stop cleaning */
2039 		iclog = iclog->ic_next;
2040 	} while (iclog != log->l_iclog);
2041 
2042 	/* log is locked when we are called */
2043 	/*
2044 	 * Change state for the dummy log recording.
2045 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2046 	 * we are done writing the dummy record.
2047 	 * If we are done with the second dummy recored (DONE2), then
2048 	 * we go to IDLE.
2049 	 */
2050 	if (changed) {
2051 		switch (log->l_covered_state) {
2052 		case XLOG_STATE_COVER_IDLE:
2053 		case XLOG_STATE_COVER_NEED:
2054 		case XLOG_STATE_COVER_NEED2:
2055 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2056 			break;
2057 
2058 		case XLOG_STATE_COVER_DONE:
2059 			if (changed == 1)
2060 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2061 			else
2062 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2063 			break;
2064 
2065 		case XLOG_STATE_COVER_DONE2:
2066 			if (changed == 1)
2067 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2068 			else
2069 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2070 			break;
2071 
2072 		default:
2073 			ASSERT(0);
2074 		}
2075 	}
2076 }	/* xlog_state_clean_log */
2077 
2078 STATIC xfs_lsn_t
2079 xlog_get_lowest_lsn(
2080 	xlog_t		*log)
2081 {
2082 	xlog_in_core_t  *lsn_log;
2083 	xfs_lsn_t	lowest_lsn, lsn;
2084 
2085 	lsn_log = log->l_iclog;
2086 	lowest_lsn = 0;
2087 	do {
2088 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2089 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2090 		if ((lsn && !lowest_lsn) ||
2091 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2092 			lowest_lsn = lsn;
2093 		}
2094 	    }
2095 	    lsn_log = lsn_log->ic_next;
2096 	} while (lsn_log != log->l_iclog);
2097 	return lowest_lsn;
2098 }
2099 
2100 
2101 STATIC void
2102 xlog_state_do_callback(
2103 	xlog_t		*log,
2104 	int		aborted,
2105 	xlog_in_core_t	*ciclog)
2106 {
2107 	xlog_in_core_t	   *iclog;
2108 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2109 						 * processed all iclogs once */
2110 	xfs_log_callback_t *cb, *cb_next;
2111 	int		   flushcnt = 0;
2112 	xfs_lsn_t	   lowest_lsn;
2113 	int		   ioerrors;	/* counter: iclogs with errors */
2114 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2115 	int		   funcdidcallbacks; /* flag: function did callbacks */
2116 	int		   repeats;	/* for issuing console warnings if
2117 					 * looping too many times */
2118 	int		   wake = 0;
2119 
2120 	spin_lock(&log->l_icloglock);
2121 	first_iclog = iclog = log->l_iclog;
2122 	ioerrors = 0;
2123 	funcdidcallbacks = 0;
2124 	repeats = 0;
2125 
2126 	do {
2127 		/*
2128 		 * Scan all iclogs starting with the one pointed to by the
2129 		 * log.  Reset this starting point each time the log is
2130 		 * unlocked (during callbacks).
2131 		 *
2132 		 * Keep looping through iclogs until one full pass is made
2133 		 * without running any callbacks.
2134 		 */
2135 		first_iclog = log->l_iclog;
2136 		iclog = log->l_iclog;
2137 		loopdidcallbacks = 0;
2138 		repeats++;
2139 
2140 		do {
2141 
2142 			/* skip all iclogs in the ACTIVE & DIRTY states */
2143 			if (iclog->ic_state &
2144 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2145 				iclog = iclog->ic_next;
2146 				continue;
2147 			}
2148 
2149 			/*
2150 			 * Between marking a filesystem SHUTDOWN and stopping
2151 			 * the log, we do flush all iclogs to disk (if there
2152 			 * wasn't a log I/O error). So, we do want things to
2153 			 * go smoothly in case of just a SHUTDOWN  w/o a
2154 			 * LOG_IO_ERROR.
2155 			 */
2156 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2157 				/*
2158 				 * Can only perform callbacks in order.  Since
2159 				 * this iclog is not in the DONE_SYNC/
2160 				 * DO_CALLBACK state, we skip the rest and
2161 				 * just try to clean up.  If we set our iclog
2162 				 * to DO_CALLBACK, we will not process it when
2163 				 * we retry since a previous iclog is in the
2164 				 * CALLBACK and the state cannot change since
2165 				 * we are holding the l_icloglock.
2166 				 */
2167 				if (!(iclog->ic_state &
2168 					(XLOG_STATE_DONE_SYNC |
2169 						 XLOG_STATE_DO_CALLBACK))) {
2170 					if (ciclog && (ciclog->ic_state ==
2171 							XLOG_STATE_DONE_SYNC)) {
2172 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2173 					}
2174 					break;
2175 				}
2176 				/*
2177 				 * We now have an iclog that is in either the
2178 				 * DO_CALLBACK or DONE_SYNC states. The other
2179 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2180 				 * caught by the above if and are going to
2181 				 * clean (i.e. we aren't doing their callbacks)
2182 				 * see the above if.
2183 				 */
2184 
2185 				/*
2186 				 * We will do one more check here to see if we
2187 				 * have chased our tail around.
2188 				 */
2189 
2190 				lowest_lsn = xlog_get_lowest_lsn(log);
2191 				if (lowest_lsn &&
2192 				    XFS_LSN_CMP(lowest_lsn,
2193 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2194 					iclog = iclog->ic_next;
2195 					continue; /* Leave this iclog for
2196 						   * another thread */
2197 				}
2198 
2199 				iclog->ic_state = XLOG_STATE_CALLBACK;
2200 
2201 
2202 				/*
2203 				 * update the last_sync_lsn before we drop the
2204 				 * icloglock to ensure we are the only one that
2205 				 * can update it.
2206 				 */
2207 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2208 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2209 				atomic64_set(&log->l_last_sync_lsn,
2210 					be64_to_cpu(iclog->ic_header.h_lsn));
2211 
2212 			} else
2213 				ioerrors++;
2214 
2215 			spin_unlock(&log->l_icloglock);
2216 
2217 			/*
2218 			 * Keep processing entries in the callback list until
2219 			 * we come around and it is empty.  We need to
2220 			 * atomically see that the list is empty and change the
2221 			 * state to DIRTY so that we don't miss any more
2222 			 * callbacks being added.
2223 			 */
2224 			spin_lock(&iclog->ic_callback_lock);
2225 			cb = iclog->ic_callback;
2226 			while (cb) {
2227 				iclog->ic_callback_tail = &(iclog->ic_callback);
2228 				iclog->ic_callback = NULL;
2229 				spin_unlock(&iclog->ic_callback_lock);
2230 
2231 				/* perform callbacks in the order given */
2232 				for (; cb; cb = cb_next) {
2233 					cb_next = cb->cb_next;
2234 					cb->cb_func(cb->cb_arg, aborted);
2235 				}
2236 				spin_lock(&iclog->ic_callback_lock);
2237 				cb = iclog->ic_callback;
2238 			}
2239 
2240 			loopdidcallbacks++;
2241 			funcdidcallbacks++;
2242 
2243 			spin_lock(&log->l_icloglock);
2244 			ASSERT(iclog->ic_callback == NULL);
2245 			spin_unlock(&iclog->ic_callback_lock);
2246 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2247 				iclog->ic_state = XLOG_STATE_DIRTY;
2248 
2249 			/*
2250 			 * Transition from DIRTY to ACTIVE if applicable.
2251 			 * NOP if STATE_IOERROR.
2252 			 */
2253 			xlog_state_clean_log(log);
2254 
2255 			/* wake up threads waiting in xfs_log_force() */
2256 			wake_up_all(&iclog->ic_force_wait);
2257 
2258 			iclog = iclog->ic_next;
2259 		} while (first_iclog != iclog);
2260 
2261 		if (repeats > 5000) {
2262 			flushcnt += repeats;
2263 			repeats = 0;
2264 			xfs_warn(log->l_mp,
2265 				"%s: possible infinite loop (%d iterations)",
2266 				__func__, flushcnt);
2267 		}
2268 	} while (!ioerrors && loopdidcallbacks);
2269 
2270 	/*
2271 	 * make one last gasp attempt to see if iclogs are being left in
2272 	 * limbo..
2273 	 */
2274 #ifdef DEBUG
2275 	if (funcdidcallbacks) {
2276 		first_iclog = iclog = log->l_iclog;
2277 		do {
2278 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2279 			/*
2280 			 * Terminate the loop if iclogs are found in states
2281 			 * which will cause other threads to clean up iclogs.
2282 			 *
2283 			 * SYNCING - i/o completion will go through logs
2284 			 * DONE_SYNC - interrupt thread should be waiting for
2285 			 *              l_icloglock
2286 			 * IOERROR - give up hope all ye who enter here
2287 			 */
2288 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2289 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2290 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2291 			    iclog->ic_state == XLOG_STATE_IOERROR )
2292 				break;
2293 			iclog = iclog->ic_next;
2294 		} while (first_iclog != iclog);
2295 	}
2296 #endif
2297 
2298 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2299 		wake = 1;
2300 	spin_unlock(&log->l_icloglock);
2301 
2302 	if (wake)
2303 		wake_up_all(&log->l_flush_wait);
2304 }
2305 
2306 
2307 /*
2308  * Finish transitioning this iclog to the dirty state.
2309  *
2310  * Make sure that we completely execute this routine only when this is
2311  * the last call to the iclog.  There is a good chance that iclog flushes,
2312  * when we reach the end of the physical log, get turned into 2 separate
2313  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2314  * routine.  By using the reference count bwritecnt, we guarantee that only
2315  * the second completion goes through.
2316  *
2317  * Callbacks could take time, so they are done outside the scope of the
2318  * global state machine log lock.
2319  */
2320 STATIC void
2321 xlog_state_done_syncing(
2322 	xlog_in_core_t	*iclog,
2323 	int		aborted)
2324 {
2325 	xlog_t		   *log = iclog->ic_log;
2326 
2327 	spin_lock(&log->l_icloglock);
2328 
2329 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2330 	       iclog->ic_state == XLOG_STATE_IOERROR);
2331 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2332 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2333 
2334 
2335 	/*
2336 	 * If we got an error, either on the first buffer, or in the case of
2337 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2338 	 * and none should ever be attempted to be written to disk
2339 	 * again.
2340 	 */
2341 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2342 		if (--iclog->ic_bwritecnt == 1) {
2343 			spin_unlock(&log->l_icloglock);
2344 			return;
2345 		}
2346 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2347 	}
2348 
2349 	/*
2350 	 * Someone could be sleeping prior to writing out the next
2351 	 * iclog buffer, we wake them all, one will get to do the
2352 	 * I/O, the others get to wait for the result.
2353 	 */
2354 	wake_up_all(&iclog->ic_write_wait);
2355 	spin_unlock(&log->l_icloglock);
2356 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2357 }	/* xlog_state_done_syncing */
2358 
2359 
2360 /*
2361  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2362  * sleep.  We wait on the flush queue on the head iclog as that should be
2363  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2364  * we will wait here and all new writes will sleep until a sync completes.
2365  *
2366  * The in-core logs are used in a circular fashion. They are not used
2367  * out-of-order even when an iclog past the head is free.
2368  *
2369  * return:
2370  *	* log_offset where xlog_write() can start writing into the in-core
2371  *		log's data space.
2372  *	* in-core log pointer to which xlog_write() should write.
2373  *	* boolean indicating this is a continued write to an in-core log.
2374  *		If this is the last write, then the in-core log's offset field
2375  *		needs to be incremented, depending on the amount of data which
2376  *		is copied.
2377  */
2378 STATIC int
2379 xlog_state_get_iclog_space(xlog_t	  *log,
2380 			   int		  len,
2381 			   xlog_in_core_t **iclogp,
2382 			   xlog_ticket_t  *ticket,
2383 			   int		  *continued_write,
2384 			   int		  *logoffsetp)
2385 {
2386 	int		  log_offset;
2387 	xlog_rec_header_t *head;
2388 	xlog_in_core_t	  *iclog;
2389 	int		  error;
2390 
2391 restart:
2392 	spin_lock(&log->l_icloglock);
2393 	if (XLOG_FORCED_SHUTDOWN(log)) {
2394 		spin_unlock(&log->l_icloglock);
2395 		return XFS_ERROR(EIO);
2396 	}
2397 
2398 	iclog = log->l_iclog;
2399 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2400 		XFS_STATS_INC(xs_log_noiclogs);
2401 
2402 		/* Wait for log writes to have flushed */
2403 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2404 		goto restart;
2405 	}
2406 
2407 	head = &iclog->ic_header;
2408 
2409 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2410 	log_offset = iclog->ic_offset;
2411 
2412 	/* On the 1st write to an iclog, figure out lsn.  This works
2413 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2414 	 * committing to.  If the offset is set, that's how many blocks
2415 	 * must be written.
2416 	 */
2417 	if (log_offset == 0) {
2418 		ticket->t_curr_res -= log->l_iclog_hsize;
2419 		xlog_tic_add_region(ticket,
2420 				    log->l_iclog_hsize,
2421 				    XLOG_REG_TYPE_LRHEADER);
2422 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2423 		head->h_lsn = cpu_to_be64(
2424 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2425 		ASSERT(log->l_curr_block >= 0);
2426 	}
2427 
2428 	/* If there is enough room to write everything, then do it.  Otherwise,
2429 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2430 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2431 	 * until you know exactly how many bytes get copied.  Therefore, wait
2432 	 * until later to update ic_offset.
2433 	 *
2434 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2435 	 * can fit into remaining data section.
2436 	 */
2437 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2438 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2439 
2440 		/*
2441 		 * If I'm the only one writing to this iclog, sync it to disk.
2442 		 * We need to do an atomic compare and decrement here to avoid
2443 		 * racing with concurrent atomic_dec_and_lock() calls in
2444 		 * xlog_state_release_iclog() when there is more than one
2445 		 * reference to the iclog.
2446 		 */
2447 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2448 			/* we are the only one */
2449 			spin_unlock(&log->l_icloglock);
2450 			error = xlog_state_release_iclog(log, iclog);
2451 			if (error)
2452 				return error;
2453 		} else {
2454 			spin_unlock(&log->l_icloglock);
2455 		}
2456 		goto restart;
2457 	}
2458 
2459 	/* Do we have enough room to write the full amount in the remainder
2460 	 * of this iclog?  Or must we continue a write on the next iclog and
2461 	 * mark this iclog as completely taken?  In the case where we switch
2462 	 * iclogs (to mark it taken), this particular iclog will release/sync
2463 	 * to disk in xlog_write().
2464 	 */
2465 	if (len <= iclog->ic_size - iclog->ic_offset) {
2466 		*continued_write = 0;
2467 		iclog->ic_offset += len;
2468 	} else {
2469 		*continued_write = 1;
2470 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2471 	}
2472 	*iclogp = iclog;
2473 
2474 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2475 	spin_unlock(&log->l_icloglock);
2476 
2477 	*logoffsetp = log_offset;
2478 	return 0;
2479 }	/* xlog_state_get_iclog_space */
2480 
2481 /*
2482  * Atomically get the log space required for a log ticket.
2483  *
2484  * Once a ticket gets put onto the reserveq, it will only return after
2485  * the needed reservation is satisfied.
2486  *
2487  * This function is structured so that it has a lock free fast path. This is
2488  * necessary because every new transaction reservation will come through this
2489  * path. Hence any lock will be globally hot if we take it unconditionally on
2490  * every pass.
2491  *
2492  * As tickets are only ever moved on and off the reserveq under the
2493  * l_grant_reserve_lock, we only need to take that lock if we are going
2494  * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2495  * ticket was never added to the reserveq because the t_queue list head will be
2496  * empty and we hold the only reference to it so it can safely be checked
2497  * unlocked.
2498  */
2499 STATIC int
2500 xlog_grant_log_space(xlog_t	   *log,
2501 		     xlog_ticket_t *tic)
2502 {
2503 	int		 free_bytes;
2504 	int		 need_bytes;
2505 
2506 #ifdef DEBUG
2507 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2508 		panic("grant Recovery problem");
2509 #endif
2510 
2511 	trace_xfs_log_grant_enter(log, tic);
2512 
2513 	need_bytes = tic->t_unit_res;
2514 	if (tic->t_flags & XFS_LOG_PERM_RESERV)
2515 		need_bytes *= tic->t_ocnt;
2516 
2517 	/* something is already sleeping; insert new transaction at end */
2518 	if (!list_empty_careful(&log->l_reserveq)) {
2519 		spin_lock(&log->l_grant_reserve_lock);
2520 		/* recheck the queue now we are locked */
2521 		if (list_empty(&log->l_reserveq)) {
2522 			spin_unlock(&log->l_grant_reserve_lock);
2523 			goto redo;
2524 		}
2525 		list_add_tail(&tic->t_queue, &log->l_reserveq);
2526 
2527 		trace_xfs_log_grant_sleep1(log, tic);
2528 
2529 		/*
2530 		 * Gotta check this before going to sleep, while we're
2531 		 * holding the grant lock.
2532 		 */
2533 		if (XLOG_FORCED_SHUTDOWN(log))
2534 			goto error_return;
2535 
2536 		XFS_STATS_INC(xs_sleep_logspace);
2537 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2538 
2539 		/*
2540 		 * If we got an error, and the filesystem is shutting down,
2541 		 * we'll catch it down below. So just continue...
2542 		 */
2543 		trace_xfs_log_grant_wake1(log, tic);
2544 	}
2545 
2546 redo:
2547 	if (XLOG_FORCED_SHUTDOWN(log))
2548 		goto error_return_unlocked;
2549 
2550 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2551 	if (free_bytes < need_bytes) {
2552 		spin_lock(&log->l_grant_reserve_lock);
2553 		if (list_empty(&tic->t_queue))
2554 			list_add_tail(&tic->t_queue, &log->l_reserveq);
2555 
2556 		trace_xfs_log_grant_sleep2(log, tic);
2557 
2558 		if (XLOG_FORCED_SHUTDOWN(log))
2559 			goto error_return;
2560 
2561 		xlog_grant_push_ail(log, need_bytes);
2562 
2563 		XFS_STATS_INC(xs_sleep_logspace);
2564 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2565 
2566 		trace_xfs_log_grant_wake2(log, tic);
2567 		goto redo;
2568 	}
2569 
2570 	if (!list_empty(&tic->t_queue)) {
2571 		spin_lock(&log->l_grant_reserve_lock);
2572 		list_del_init(&tic->t_queue);
2573 		spin_unlock(&log->l_grant_reserve_lock);
2574 	}
2575 
2576 	/* we've got enough space */
2577 	xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2578 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2579 	trace_xfs_log_grant_exit(log, tic);
2580 	xlog_verify_grant_tail(log);
2581 	return 0;
2582 
2583 error_return_unlocked:
2584 	spin_lock(&log->l_grant_reserve_lock);
2585 error_return:
2586 	list_del_init(&tic->t_queue);
2587 	spin_unlock(&log->l_grant_reserve_lock);
2588 	trace_xfs_log_grant_error(log, tic);
2589 
2590 	/*
2591 	 * If we are failing, make sure the ticket doesn't have any
2592 	 * current reservations. We don't want to add this back when
2593 	 * the ticket/transaction gets cancelled.
2594 	 */
2595 	tic->t_curr_res = 0;
2596 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2597 	return XFS_ERROR(EIO);
2598 }	/* xlog_grant_log_space */
2599 
2600 
2601 /*
2602  * Replenish the byte reservation required by moving the grant write head.
2603  *
2604  * Similar to xlog_grant_log_space, the function is structured to have a lock
2605  * free fast path.
2606  */
2607 STATIC int
2608 xlog_regrant_write_log_space(xlog_t	   *log,
2609 			     xlog_ticket_t *tic)
2610 {
2611 	int		free_bytes, need_bytes;
2612 
2613 	tic->t_curr_res = tic->t_unit_res;
2614 	xlog_tic_reset_res(tic);
2615 
2616 	if (tic->t_cnt > 0)
2617 		return 0;
2618 
2619 #ifdef DEBUG
2620 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2621 		panic("regrant Recovery problem");
2622 #endif
2623 
2624 	trace_xfs_log_regrant_write_enter(log, tic);
2625 	if (XLOG_FORCED_SHUTDOWN(log))
2626 		goto error_return_unlocked;
2627 
2628 	/* If there are other waiters on the queue then give them a
2629 	 * chance at logspace before us. Wake up the first waiters,
2630 	 * if we do not wake up all the waiters then go to sleep waiting
2631 	 * for more free space, otherwise try to get some space for
2632 	 * this transaction.
2633 	 */
2634 	need_bytes = tic->t_unit_res;
2635 	if (!list_empty_careful(&log->l_writeq)) {
2636 		struct xlog_ticket *ntic;
2637 
2638 		spin_lock(&log->l_grant_write_lock);
2639 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2640 		list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2641 			ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2642 
2643 			if (free_bytes < ntic->t_unit_res)
2644 				break;
2645 			free_bytes -= ntic->t_unit_res;
2646 			wake_up(&ntic->t_wait);
2647 		}
2648 
2649 		if (ntic != list_first_entry(&log->l_writeq,
2650 						struct xlog_ticket, t_queue)) {
2651 			if (list_empty(&tic->t_queue))
2652 				list_add_tail(&tic->t_queue, &log->l_writeq);
2653 			trace_xfs_log_regrant_write_sleep1(log, tic);
2654 
2655 			xlog_grant_push_ail(log, need_bytes);
2656 
2657 			XFS_STATS_INC(xs_sleep_logspace);
2658 			xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2659 			trace_xfs_log_regrant_write_wake1(log, tic);
2660 		} else
2661 			spin_unlock(&log->l_grant_write_lock);
2662 	}
2663 
2664 redo:
2665 	if (XLOG_FORCED_SHUTDOWN(log))
2666 		goto error_return_unlocked;
2667 
2668 	free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2669 	if (free_bytes < need_bytes) {
2670 		spin_lock(&log->l_grant_write_lock);
2671 		if (list_empty(&tic->t_queue))
2672 			list_add_tail(&tic->t_queue, &log->l_writeq);
2673 
2674 		if (XLOG_FORCED_SHUTDOWN(log))
2675 			goto error_return;
2676 
2677 		xlog_grant_push_ail(log, need_bytes);
2678 
2679 		XFS_STATS_INC(xs_sleep_logspace);
2680 		trace_xfs_log_regrant_write_sleep2(log, tic);
2681 		xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2682 
2683 		trace_xfs_log_regrant_write_wake2(log, tic);
2684 		goto redo;
2685 	}
2686 
2687 	if (!list_empty(&tic->t_queue)) {
2688 		spin_lock(&log->l_grant_write_lock);
2689 		list_del_init(&tic->t_queue);
2690 		spin_unlock(&log->l_grant_write_lock);
2691 	}
2692 
2693 	/* we've got enough space */
2694 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2695 	trace_xfs_log_regrant_write_exit(log, tic);
2696 	xlog_verify_grant_tail(log);
2697 	return 0;
2698 
2699 
2700  error_return_unlocked:
2701 	spin_lock(&log->l_grant_write_lock);
2702  error_return:
2703 	list_del_init(&tic->t_queue);
2704 	spin_unlock(&log->l_grant_write_lock);
2705 	trace_xfs_log_regrant_write_error(log, tic);
2706 
2707 	/*
2708 	 * If we are failing, make sure the ticket doesn't have any
2709 	 * current reservations. We don't want to add this back when
2710 	 * the ticket/transaction gets cancelled.
2711 	 */
2712 	tic->t_curr_res = 0;
2713 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2714 	return XFS_ERROR(EIO);
2715 }	/* xlog_regrant_write_log_space */
2716 
2717 
2718 /* The first cnt-1 times through here we don't need to
2719  * move the grant write head because the permanent
2720  * reservation has reserved cnt times the unit amount.
2721  * Release part of current permanent unit reservation and
2722  * reset current reservation to be one units worth.  Also
2723  * move grant reservation head forward.
2724  */
2725 STATIC void
2726 xlog_regrant_reserve_log_space(xlog_t	     *log,
2727 			       xlog_ticket_t *ticket)
2728 {
2729 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2730 
2731 	if (ticket->t_cnt > 0)
2732 		ticket->t_cnt--;
2733 
2734 	xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2735 					ticket->t_curr_res);
2736 	xlog_grant_sub_space(log, &log->l_grant_write_head,
2737 					ticket->t_curr_res);
2738 	ticket->t_curr_res = ticket->t_unit_res;
2739 	xlog_tic_reset_res(ticket);
2740 
2741 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2742 
2743 	/* just return if we still have some of the pre-reserved space */
2744 	if (ticket->t_cnt > 0)
2745 		return;
2746 
2747 	xlog_grant_add_space(log, &log->l_grant_reserve_head,
2748 					ticket->t_unit_res);
2749 
2750 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2751 
2752 	ticket->t_curr_res = ticket->t_unit_res;
2753 	xlog_tic_reset_res(ticket);
2754 }	/* xlog_regrant_reserve_log_space */
2755 
2756 
2757 /*
2758  * Give back the space left from a reservation.
2759  *
2760  * All the information we need to make a correct determination of space left
2761  * is present.  For non-permanent reservations, things are quite easy.  The
2762  * count should have been decremented to zero.  We only need to deal with the
2763  * space remaining in the current reservation part of the ticket.  If the
2764  * ticket contains a permanent reservation, there may be left over space which
2765  * needs to be released.  A count of N means that N-1 refills of the current
2766  * reservation can be done before we need to ask for more space.  The first
2767  * one goes to fill up the first current reservation.  Once we run out of
2768  * space, the count will stay at zero and the only space remaining will be
2769  * in the current reservation field.
2770  */
2771 STATIC void
2772 xlog_ungrant_log_space(xlog_t	     *log,
2773 		       xlog_ticket_t *ticket)
2774 {
2775 	int	bytes;
2776 
2777 	if (ticket->t_cnt > 0)
2778 		ticket->t_cnt--;
2779 
2780 	trace_xfs_log_ungrant_enter(log, ticket);
2781 	trace_xfs_log_ungrant_sub(log, ticket);
2782 
2783 	/*
2784 	 * If this is a permanent reservation ticket, we may be able to free
2785 	 * up more space based on the remaining count.
2786 	 */
2787 	bytes = ticket->t_curr_res;
2788 	if (ticket->t_cnt > 0) {
2789 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2790 		bytes += ticket->t_unit_res*ticket->t_cnt;
2791 	}
2792 
2793 	xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2794 	xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2795 
2796 	trace_xfs_log_ungrant_exit(log, ticket);
2797 
2798 	xfs_log_move_tail(log->l_mp, 1);
2799 }	/* xlog_ungrant_log_space */
2800 
2801 
2802 /*
2803  * Flush iclog to disk if this is the last reference to the given iclog and
2804  * the WANT_SYNC bit is set.
2805  *
2806  * When this function is entered, the iclog is not necessarily in the
2807  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2808  *
2809  *
2810  */
2811 STATIC int
2812 xlog_state_release_iclog(
2813 	xlog_t		*log,
2814 	xlog_in_core_t	*iclog)
2815 {
2816 	int		sync = 0;	/* do we sync? */
2817 
2818 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2819 		return XFS_ERROR(EIO);
2820 
2821 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2822 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2823 		return 0;
2824 
2825 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2826 		spin_unlock(&log->l_icloglock);
2827 		return XFS_ERROR(EIO);
2828 	}
2829 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2830 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2831 
2832 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2833 		/* update tail before writing to iclog */
2834 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2835 		sync++;
2836 		iclog->ic_state = XLOG_STATE_SYNCING;
2837 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2838 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2839 		/* cycle incremented when incrementing curr_block */
2840 	}
2841 	spin_unlock(&log->l_icloglock);
2842 
2843 	/*
2844 	 * We let the log lock go, so it's possible that we hit a log I/O
2845 	 * error or some other SHUTDOWN condition that marks the iclog
2846 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2847 	 * this iclog has consistent data, so we ignore IOERROR
2848 	 * flags after this point.
2849 	 */
2850 	if (sync)
2851 		return xlog_sync(log, iclog);
2852 	return 0;
2853 }	/* xlog_state_release_iclog */
2854 
2855 
2856 /*
2857  * This routine will mark the current iclog in the ring as WANT_SYNC
2858  * and move the current iclog pointer to the next iclog in the ring.
2859  * When this routine is called from xlog_state_get_iclog_space(), the
2860  * exact size of the iclog has not yet been determined.  All we know is
2861  * that every data block.  We have run out of space in this log record.
2862  */
2863 STATIC void
2864 xlog_state_switch_iclogs(xlog_t		*log,
2865 			 xlog_in_core_t *iclog,
2866 			 int		eventual_size)
2867 {
2868 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2869 	if (!eventual_size)
2870 		eventual_size = iclog->ic_offset;
2871 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2872 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2873 	log->l_prev_block = log->l_curr_block;
2874 	log->l_prev_cycle = log->l_curr_cycle;
2875 
2876 	/* roll log?: ic_offset changed later */
2877 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2878 
2879 	/* Round up to next log-sunit */
2880 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2881 	    log->l_mp->m_sb.sb_logsunit > 1) {
2882 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2883 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2884 	}
2885 
2886 	if (log->l_curr_block >= log->l_logBBsize) {
2887 		log->l_curr_cycle++;
2888 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2889 			log->l_curr_cycle++;
2890 		log->l_curr_block -= log->l_logBBsize;
2891 		ASSERT(log->l_curr_block >= 0);
2892 	}
2893 	ASSERT(iclog == log->l_iclog);
2894 	log->l_iclog = iclog->ic_next;
2895 }	/* xlog_state_switch_iclogs */
2896 
2897 /*
2898  * Write out all data in the in-core log as of this exact moment in time.
2899  *
2900  * Data may be written to the in-core log during this call.  However,
2901  * we don't guarantee this data will be written out.  A change from past
2902  * implementation means this routine will *not* write out zero length LRs.
2903  *
2904  * Basically, we try and perform an intelligent scan of the in-core logs.
2905  * If we determine there is no flushable data, we just return.  There is no
2906  * flushable data if:
2907  *
2908  *	1. the current iclog is active and has no data; the previous iclog
2909  *		is in the active or dirty state.
2910  *	2. the current iclog is drity, and the previous iclog is in the
2911  *		active or dirty state.
2912  *
2913  * We may sleep if:
2914  *
2915  *	1. the current iclog is not in the active nor dirty state.
2916  *	2. the current iclog dirty, and the previous iclog is not in the
2917  *		active nor dirty state.
2918  *	3. the current iclog is active, and there is another thread writing
2919  *		to this particular iclog.
2920  *	4. a) the current iclog is active and has no other writers
2921  *	   b) when we return from flushing out this iclog, it is still
2922  *		not in the active nor dirty state.
2923  */
2924 int
2925 _xfs_log_force(
2926 	struct xfs_mount	*mp,
2927 	uint			flags,
2928 	int			*log_flushed)
2929 {
2930 	struct log		*log = mp->m_log;
2931 	struct xlog_in_core	*iclog;
2932 	xfs_lsn_t		lsn;
2933 
2934 	XFS_STATS_INC(xs_log_force);
2935 
2936 	if (log->l_cilp)
2937 		xlog_cil_force(log);
2938 
2939 	spin_lock(&log->l_icloglock);
2940 
2941 	iclog = log->l_iclog;
2942 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2943 		spin_unlock(&log->l_icloglock);
2944 		return XFS_ERROR(EIO);
2945 	}
2946 
2947 	/* If the head iclog is not active nor dirty, we just attach
2948 	 * ourselves to the head and go to sleep.
2949 	 */
2950 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2951 	    iclog->ic_state == XLOG_STATE_DIRTY) {
2952 		/*
2953 		 * If the head is dirty or (active and empty), then
2954 		 * we need to look at the previous iclog.  If the previous
2955 		 * iclog is active or dirty we are done.  There is nothing
2956 		 * to sync out.  Otherwise, we attach ourselves to the
2957 		 * previous iclog and go to sleep.
2958 		 */
2959 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2960 		    (atomic_read(&iclog->ic_refcnt) == 0
2961 		     && iclog->ic_offset == 0)) {
2962 			iclog = iclog->ic_prev;
2963 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2964 			    iclog->ic_state == XLOG_STATE_DIRTY)
2965 				goto no_sleep;
2966 			else
2967 				goto maybe_sleep;
2968 		} else {
2969 			if (atomic_read(&iclog->ic_refcnt) == 0) {
2970 				/* We are the only one with access to this
2971 				 * iclog.  Flush it out now.  There should
2972 				 * be a roundoff of zero to show that someone
2973 				 * has already taken care of the roundoff from
2974 				 * the previous sync.
2975 				 */
2976 				atomic_inc(&iclog->ic_refcnt);
2977 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2978 				xlog_state_switch_iclogs(log, iclog, 0);
2979 				spin_unlock(&log->l_icloglock);
2980 
2981 				if (xlog_state_release_iclog(log, iclog))
2982 					return XFS_ERROR(EIO);
2983 
2984 				if (log_flushed)
2985 					*log_flushed = 1;
2986 				spin_lock(&log->l_icloglock);
2987 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2988 				    iclog->ic_state != XLOG_STATE_DIRTY)
2989 					goto maybe_sleep;
2990 				else
2991 					goto no_sleep;
2992 			} else {
2993 				/* Someone else is writing to this iclog.
2994 				 * Use its call to flush out the data.  However,
2995 				 * the other thread may not force out this LR,
2996 				 * so we mark it WANT_SYNC.
2997 				 */
2998 				xlog_state_switch_iclogs(log, iclog, 0);
2999 				goto maybe_sleep;
3000 			}
3001 		}
3002 	}
3003 
3004 	/* By the time we come around again, the iclog could've been filled
3005 	 * which would give it another lsn.  If we have a new lsn, just
3006 	 * return because the relevant data has been flushed.
3007 	 */
3008 maybe_sleep:
3009 	if (flags & XFS_LOG_SYNC) {
3010 		/*
3011 		 * We must check if we're shutting down here, before
3012 		 * we wait, while we're holding the l_icloglock.
3013 		 * Then we check again after waking up, in case our
3014 		 * sleep was disturbed by a bad news.
3015 		 */
3016 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3017 			spin_unlock(&log->l_icloglock);
3018 			return XFS_ERROR(EIO);
3019 		}
3020 		XFS_STATS_INC(xs_log_force_sleep);
3021 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3022 		/*
3023 		 * No need to grab the log lock here since we're
3024 		 * only deciding whether or not to return EIO
3025 		 * and the memory read should be atomic.
3026 		 */
3027 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3028 			return XFS_ERROR(EIO);
3029 		if (log_flushed)
3030 			*log_flushed = 1;
3031 	} else {
3032 
3033 no_sleep:
3034 		spin_unlock(&log->l_icloglock);
3035 	}
3036 	return 0;
3037 }
3038 
3039 /*
3040  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3041  * about errors or whether the log was flushed or not. This is the normal
3042  * interface to use when trying to unpin items or move the log forward.
3043  */
3044 void
3045 xfs_log_force(
3046 	xfs_mount_t	*mp,
3047 	uint		flags)
3048 {
3049 	int	error;
3050 
3051 	error = _xfs_log_force(mp, flags, NULL);
3052 	if (error)
3053 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3054 }
3055 
3056 /*
3057  * Force the in-core log to disk for a specific LSN.
3058  *
3059  * Find in-core log with lsn.
3060  *	If it is in the DIRTY state, just return.
3061  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3062  *		state and go to sleep or return.
3063  *	If it is in any other state, go to sleep or return.
3064  *
3065  * Synchronous forces are implemented with a signal variable. All callers
3066  * to force a given lsn to disk will wait on a the sv attached to the
3067  * specific in-core log.  When given in-core log finally completes its
3068  * write to disk, that thread will wake up all threads waiting on the
3069  * sv.
3070  */
3071 int
3072 _xfs_log_force_lsn(
3073 	struct xfs_mount	*mp,
3074 	xfs_lsn_t		lsn,
3075 	uint			flags,
3076 	int			*log_flushed)
3077 {
3078 	struct log		*log = mp->m_log;
3079 	struct xlog_in_core	*iclog;
3080 	int			already_slept = 0;
3081 
3082 	ASSERT(lsn != 0);
3083 
3084 	XFS_STATS_INC(xs_log_force);
3085 
3086 	if (log->l_cilp) {
3087 		lsn = xlog_cil_force_lsn(log, lsn);
3088 		if (lsn == NULLCOMMITLSN)
3089 			return 0;
3090 	}
3091 
3092 try_again:
3093 	spin_lock(&log->l_icloglock);
3094 	iclog = log->l_iclog;
3095 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3096 		spin_unlock(&log->l_icloglock);
3097 		return XFS_ERROR(EIO);
3098 	}
3099 
3100 	do {
3101 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3102 			iclog = iclog->ic_next;
3103 			continue;
3104 		}
3105 
3106 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3107 			spin_unlock(&log->l_icloglock);
3108 			return 0;
3109 		}
3110 
3111 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3112 			/*
3113 			 * We sleep here if we haven't already slept (e.g.
3114 			 * this is the first time we've looked at the correct
3115 			 * iclog buf) and the buffer before us is going to
3116 			 * be sync'ed. The reason for this is that if we
3117 			 * are doing sync transactions here, by waiting for
3118 			 * the previous I/O to complete, we can allow a few
3119 			 * more transactions into this iclog before we close
3120 			 * it down.
3121 			 *
3122 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3123 			 * up the refcnt so we can release the log (which
3124 			 * drops the ref count).  The state switch keeps new
3125 			 * transaction commits from using this buffer.  When
3126 			 * the current commits finish writing into the buffer,
3127 			 * the refcount will drop to zero and the buffer will
3128 			 * go out then.
3129 			 */
3130 			if (!already_slept &&
3131 			    (iclog->ic_prev->ic_state &
3132 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3133 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3134 
3135 				XFS_STATS_INC(xs_log_force_sleep);
3136 
3137 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3138 							&log->l_icloglock);
3139 				if (log_flushed)
3140 					*log_flushed = 1;
3141 				already_slept = 1;
3142 				goto try_again;
3143 			}
3144 			atomic_inc(&iclog->ic_refcnt);
3145 			xlog_state_switch_iclogs(log, iclog, 0);
3146 			spin_unlock(&log->l_icloglock);
3147 			if (xlog_state_release_iclog(log, iclog))
3148 				return XFS_ERROR(EIO);
3149 			if (log_flushed)
3150 				*log_flushed = 1;
3151 			spin_lock(&log->l_icloglock);
3152 		}
3153 
3154 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3155 		    !(iclog->ic_state &
3156 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3157 			/*
3158 			 * Don't wait on completion if we know that we've
3159 			 * gotten a log write error.
3160 			 */
3161 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3162 				spin_unlock(&log->l_icloglock);
3163 				return XFS_ERROR(EIO);
3164 			}
3165 			XFS_STATS_INC(xs_log_force_sleep);
3166 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3167 			/*
3168 			 * No need to grab the log lock here since we're
3169 			 * only deciding whether or not to return EIO
3170 			 * and the memory read should be atomic.
3171 			 */
3172 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3173 				return XFS_ERROR(EIO);
3174 
3175 			if (log_flushed)
3176 				*log_flushed = 1;
3177 		} else {		/* just return */
3178 			spin_unlock(&log->l_icloglock);
3179 		}
3180 
3181 		return 0;
3182 	} while (iclog != log->l_iclog);
3183 
3184 	spin_unlock(&log->l_icloglock);
3185 	return 0;
3186 }
3187 
3188 /*
3189  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3190  * about errors or whether the log was flushed or not. This is the normal
3191  * interface to use when trying to unpin items or move the log forward.
3192  */
3193 void
3194 xfs_log_force_lsn(
3195 	xfs_mount_t	*mp,
3196 	xfs_lsn_t	lsn,
3197 	uint		flags)
3198 {
3199 	int	error;
3200 
3201 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3202 	if (error)
3203 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3204 }
3205 
3206 /*
3207  * Called when we want to mark the current iclog as being ready to sync to
3208  * disk.
3209  */
3210 STATIC void
3211 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3212 {
3213 	assert_spin_locked(&log->l_icloglock);
3214 
3215 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3216 		xlog_state_switch_iclogs(log, iclog, 0);
3217 	} else {
3218 		ASSERT(iclog->ic_state &
3219 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3220 	}
3221 }
3222 
3223 
3224 /*****************************************************************************
3225  *
3226  *		TICKET functions
3227  *
3228  *****************************************************************************
3229  */
3230 
3231 /*
3232  * Free a used ticket when its refcount falls to zero.
3233  */
3234 void
3235 xfs_log_ticket_put(
3236 	xlog_ticket_t	*ticket)
3237 {
3238 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3239 	if (atomic_dec_and_test(&ticket->t_ref))
3240 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3241 }
3242 
3243 xlog_ticket_t *
3244 xfs_log_ticket_get(
3245 	xlog_ticket_t	*ticket)
3246 {
3247 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3248 	atomic_inc(&ticket->t_ref);
3249 	return ticket;
3250 }
3251 
3252 /*
3253  * Allocate and initialise a new log ticket.
3254  */
3255 xlog_ticket_t *
3256 xlog_ticket_alloc(
3257 	struct log	*log,
3258 	int		unit_bytes,
3259 	int		cnt,
3260 	char		client,
3261 	uint		xflags,
3262 	int		alloc_flags)
3263 {
3264 	struct xlog_ticket *tic;
3265 	uint		num_headers;
3266 	int		iclog_space;
3267 
3268 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3269 	if (!tic)
3270 		return NULL;
3271 
3272 	/*
3273 	 * Permanent reservations have up to 'cnt'-1 active log operations
3274 	 * in the log.  A unit in this case is the amount of space for one
3275 	 * of these log operations.  Normal reservations have a cnt of 1
3276 	 * and their unit amount is the total amount of space required.
3277 	 *
3278 	 * The following lines of code account for non-transaction data
3279 	 * which occupy space in the on-disk log.
3280 	 *
3281 	 * Normal form of a transaction is:
3282 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3283 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3284 	 *
3285 	 * We need to account for all the leadup data and trailer data
3286 	 * around the transaction data.
3287 	 * And then we need to account for the worst case in terms of using
3288 	 * more space.
3289 	 * The worst case will happen if:
3290 	 * - the placement of the transaction happens to be such that the
3291 	 *   roundoff is at its maximum
3292 	 * - the transaction data is synced before the commit record is synced
3293 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3294 	 *   Therefore the commit record is in its own Log Record.
3295 	 *   This can happen as the commit record is called with its
3296 	 *   own region to xlog_write().
3297 	 *   This then means that in the worst case, roundoff can happen for
3298 	 *   the commit-rec as well.
3299 	 *   The commit-rec is smaller than padding in this scenario and so it is
3300 	 *   not added separately.
3301 	 */
3302 
3303 	/* for trans header */
3304 	unit_bytes += sizeof(xlog_op_header_t);
3305 	unit_bytes += sizeof(xfs_trans_header_t);
3306 
3307 	/* for start-rec */
3308 	unit_bytes += sizeof(xlog_op_header_t);
3309 
3310 	/*
3311 	 * for LR headers - the space for data in an iclog is the size minus
3312 	 * the space used for the headers. If we use the iclog size, then we
3313 	 * undercalculate the number of headers required.
3314 	 *
3315 	 * Furthermore - the addition of op headers for split-recs might
3316 	 * increase the space required enough to require more log and op
3317 	 * headers, so take that into account too.
3318 	 *
3319 	 * IMPORTANT: This reservation makes the assumption that if this
3320 	 * transaction is the first in an iclog and hence has the LR headers
3321 	 * accounted to it, then the remaining space in the iclog is
3322 	 * exclusively for this transaction.  i.e. if the transaction is larger
3323 	 * than the iclog, it will be the only thing in that iclog.
3324 	 * Fundamentally, this means we must pass the entire log vector to
3325 	 * xlog_write to guarantee this.
3326 	 */
3327 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3328 	num_headers = howmany(unit_bytes, iclog_space);
3329 
3330 	/* for split-recs - ophdrs added when data split over LRs */
3331 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3332 
3333 	/* add extra header reservations if we overrun */
3334 	while (!num_headers ||
3335 	       howmany(unit_bytes, iclog_space) > num_headers) {
3336 		unit_bytes += sizeof(xlog_op_header_t);
3337 		num_headers++;
3338 	}
3339 	unit_bytes += log->l_iclog_hsize * num_headers;
3340 
3341 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3342 	unit_bytes += log->l_iclog_hsize;
3343 
3344 	/* for roundoff padding for transaction data and one for commit record */
3345 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3346 	    log->l_mp->m_sb.sb_logsunit > 1) {
3347 		/* log su roundoff */
3348 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3349 	} else {
3350 		/* BB roundoff */
3351 		unit_bytes += 2*BBSIZE;
3352         }
3353 
3354 	atomic_set(&tic->t_ref, 1);
3355 	INIT_LIST_HEAD(&tic->t_queue);
3356 	tic->t_unit_res		= unit_bytes;
3357 	tic->t_curr_res		= unit_bytes;
3358 	tic->t_cnt		= cnt;
3359 	tic->t_ocnt		= cnt;
3360 	tic->t_tid		= random32();
3361 	tic->t_clientid		= client;
3362 	tic->t_flags		= XLOG_TIC_INITED;
3363 	tic->t_trans_type	= 0;
3364 	if (xflags & XFS_LOG_PERM_RESERV)
3365 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3366 	init_waitqueue_head(&tic->t_wait);
3367 
3368 	xlog_tic_reset_res(tic);
3369 
3370 	return tic;
3371 }
3372 
3373 
3374 /******************************************************************************
3375  *
3376  *		Log debug routines
3377  *
3378  ******************************************************************************
3379  */
3380 #if defined(DEBUG)
3381 /*
3382  * Make sure that the destination ptr is within the valid data region of
3383  * one of the iclogs.  This uses backup pointers stored in a different
3384  * part of the log in case we trash the log structure.
3385  */
3386 void
3387 xlog_verify_dest_ptr(
3388 	struct log	*log,
3389 	char		*ptr)
3390 {
3391 	int i;
3392 	int good_ptr = 0;
3393 
3394 	for (i = 0; i < log->l_iclog_bufs; i++) {
3395 		if (ptr >= log->l_iclog_bak[i] &&
3396 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3397 			good_ptr++;
3398 	}
3399 
3400 	if (!good_ptr)
3401 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3402 }
3403 
3404 /*
3405  * Check to make sure the grant write head didn't just over lap the tail.  If
3406  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3407  * the cycles differ by exactly one and check the byte count.
3408  *
3409  * This check is run unlocked, so can give false positives. Rather than assert
3410  * on failures, use a warn-once flag and a panic tag to allow the admin to
3411  * determine if they want to panic the machine when such an error occurs. For
3412  * debug kernels this will have the same effect as using an assert but, unlinke
3413  * an assert, it can be turned off at runtime.
3414  */
3415 STATIC void
3416 xlog_verify_grant_tail(
3417 	struct log	*log)
3418 {
3419 	int		tail_cycle, tail_blocks;
3420 	int		cycle, space;
3421 
3422 	xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3423 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3424 	if (tail_cycle != cycle) {
3425 		if (cycle - 1 != tail_cycle &&
3426 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3427 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3428 				"%s: cycle - 1 != tail_cycle", __func__);
3429 			log->l_flags |= XLOG_TAIL_WARN;
3430 		}
3431 
3432 		if (space > BBTOB(tail_blocks) &&
3433 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3434 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3435 				"%s: space > BBTOB(tail_blocks)", __func__);
3436 			log->l_flags |= XLOG_TAIL_WARN;
3437 		}
3438 	}
3439 }
3440 
3441 /* check if it will fit */
3442 STATIC void
3443 xlog_verify_tail_lsn(xlog_t	    *log,
3444 		     xlog_in_core_t *iclog,
3445 		     xfs_lsn_t	    tail_lsn)
3446 {
3447     int blocks;
3448 
3449     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3450 	blocks =
3451 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3452 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3453 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3454     } else {
3455 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3456 
3457 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3458 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3459 
3460 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3461 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3462 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3463     }
3464 }	/* xlog_verify_tail_lsn */
3465 
3466 /*
3467  * Perform a number of checks on the iclog before writing to disk.
3468  *
3469  * 1. Make sure the iclogs are still circular
3470  * 2. Make sure we have a good magic number
3471  * 3. Make sure we don't have magic numbers in the data
3472  * 4. Check fields of each log operation header for:
3473  *	A. Valid client identifier
3474  *	B. tid ptr value falls in valid ptr space (user space code)
3475  *	C. Length in log record header is correct according to the
3476  *		individual operation headers within record.
3477  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3478  *	log, check the preceding blocks of the physical log to make sure all
3479  *	the cycle numbers agree with the current cycle number.
3480  */
3481 STATIC void
3482 xlog_verify_iclog(xlog_t	 *log,
3483 		  xlog_in_core_t *iclog,
3484 		  int		 count,
3485 		  boolean_t	 syncing)
3486 {
3487 	xlog_op_header_t	*ophead;
3488 	xlog_in_core_t		*icptr;
3489 	xlog_in_core_2_t	*xhdr;
3490 	xfs_caddr_t		ptr;
3491 	xfs_caddr_t		base_ptr;
3492 	__psint_t		field_offset;
3493 	__uint8_t		clientid;
3494 	int			len, i, j, k, op_len;
3495 	int			idx;
3496 
3497 	/* check validity of iclog pointers */
3498 	spin_lock(&log->l_icloglock);
3499 	icptr = log->l_iclog;
3500 	for (i=0; i < log->l_iclog_bufs; i++) {
3501 		if (icptr == NULL)
3502 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3503 		icptr = icptr->ic_next;
3504 	}
3505 	if (icptr != log->l_iclog)
3506 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3507 	spin_unlock(&log->l_icloglock);
3508 
3509 	/* check log magic numbers */
3510 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3511 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3512 
3513 	ptr = (xfs_caddr_t) &iclog->ic_header;
3514 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3515 	     ptr += BBSIZE) {
3516 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3517 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3518 				__func__);
3519 	}
3520 
3521 	/* check fields */
3522 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3523 	ptr = iclog->ic_datap;
3524 	base_ptr = ptr;
3525 	ophead = (xlog_op_header_t *)ptr;
3526 	xhdr = iclog->ic_data;
3527 	for (i = 0; i < len; i++) {
3528 		ophead = (xlog_op_header_t *)ptr;
3529 
3530 		/* clientid is only 1 byte */
3531 		field_offset = (__psint_t)
3532 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3533 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3534 			clientid = ophead->oh_clientid;
3535 		} else {
3536 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3537 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3538 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3539 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3540 				clientid = xlog_get_client_id(
3541 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3542 			} else {
3543 				clientid = xlog_get_client_id(
3544 					iclog->ic_header.h_cycle_data[idx]);
3545 			}
3546 		}
3547 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3548 			xfs_warn(log->l_mp,
3549 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3550 				__func__, clientid, ophead,
3551 				(unsigned long)field_offset);
3552 
3553 		/* check length */
3554 		field_offset = (__psint_t)
3555 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3556 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3557 			op_len = be32_to_cpu(ophead->oh_len);
3558 		} else {
3559 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3560 				    (__psint_t)iclog->ic_datap);
3561 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3562 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3563 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3564 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3565 			} else {
3566 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3567 			}
3568 		}
3569 		ptr += sizeof(xlog_op_header_t) + op_len;
3570 	}
3571 }	/* xlog_verify_iclog */
3572 #endif
3573 
3574 /*
3575  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3576  */
3577 STATIC int
3578 xlog_state_ioerror(
3579 	xlog_t	*log)
3580 {
3581 	xlog_in_core_t	*iclog, *ic;
3582 
3583 	iclog = log->l_iclog;
3584 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3585 		/*
3586 		 * Mark all the incore logs IOERROR.
3587 		 * From now on, no log flushes will result.
3588 		 */
3589 		ic = iclog;
3590 		do {
3591 			ic->ic_state = XLOG_STATE_IOERROR;
3592 			ic = ic->ic_next;
3593 		} while (ic != iclog);
3594 		return 0;
3595 	}
3596 	/*
3597 	 * Return non-zero, if state transition has already happened.
3598 	 */
3599 	return 1;
3600 }
3601 
3602 /*
3603  * This is called from xfs_force_shutdown, when we're forcibly
3604  * shutting down the filesystem, typically because of an IO error.
3605  * Our main objectives here are to make sure that:
3606  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3607  *	   parties to find out, 'atomically'.
3608  *	b. those who're sleeping on log reservations, pinned objects and
3609  *	    other resources get woken up, and be told the bad news.
3610  *	c. nothing new gets queued up after (a) and (b) are done.
3611  *	d. if !logerror, flush the iclogs to disk, then seal them off
3612  *	   for business.
3613  *
3614  * Note: for delayed logging the !logerror case needs to flush the regions
3615  * held in memory out to the iclogs before flushing them to disk. This needs
3616  * to be done before the log is marked as shutdown, otherwise the flush to the
3617  * iclogs will fail.
3618  */
3619 int
3620 xfs_log_force_umount(
3621 	struct xfs_mount	*mp,
3622 	int			logerror)
3623 {
3624 	xlog_ticket_t	*tic;
3625 	xlog_t		*log;
3626 	int		retval;
3627 
3628 	log = mp->m_log;
3629 
3630 	/*
3631 	 * If this happens during log recovery, don't worry about
3632 	 * locking; the log isn't open for business yet.
3633 	 */
3634 	if (!log ||
3635 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3636 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3637 		if (mp->m_sb_bp)
3638 			XFS_BUF_DONE(mp->m_sb_bp);
3639 		return 0;
3640 	}
3641 
3642 	/*
3643 	 * Somebody could've already done the hard work for us.
3644 	 * No need to get locks for this.
3645 	 */
3646 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3647 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3648 		return 1;
3649 	}
3650 	retval = 0;
3651 
3652 	/*
3653 	 * Flush the in memory commit item list before marking the log as
3654 	 * being shut down. We need to do it in this order to ensure all the
3655 	 * completed transactions are flushed to disk with the xfs_log_force()
3656 	 * call below.
3657 	 */
3658 	if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3659 		xlog_cil_force(log);
3660 
3661 	/*
3662 	 * mark the filesystem and the as in a shutdown state and wake
3663 	 * everybody up to tell them the bad news.
3664 	 */
3665 	spin_lock(&log->l_icloglock);
3666 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3667 	if (mp->m_sb_bp)
3668 		XFS_BUF_DONE(mp->m_sb_bp);
3669 
3670 	/*
3671 	 * This flag is sort of redundant because of the mount flag, but
3672 	 * it's good to maintain the separation between the log and the rest
3673 	 * of XFS.
3674 	 */
3675 	log->l_flags |= XLOG_IO_ERROR;
3676 
3677 	/*
3678 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3679 	 * while we're still holding the loglock.
3680 	 */
3681 	if (logerror)
3682 		retval = xlog_state_ioerror(log);
3683 	spin_unlock(&log->l_icloglock);
3684 
3685 	/*
3686 	 * We don't want anybody waiting for log reservations after this. That
3687 	 * means we have to wake up everybody queued up on reserveq as well as
3688 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3689 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3690 	 * action is protected by the grant locks.
3691 	 */
3692 	spin_lock(&log->l_grant_reserve_lock);
3693 	list_for_each_entry(tic, &log->l_reserveq, t_queue)
3694 		wake_up(&tic->t_wait);
3695 	spin_unlock(&log->l_grant_reserve_lock);
3696 
3697 	spin_lock(&log->l_grant_write_lock);
3698 	list_for_each_entry(tic, &log->l_writeq, t_queue)
3699 		wake_up(&tic->t_wait);
3700 	spin_unlock(&log->l_grant_write_lock);
3701 
3702 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3703 		ASSERT(!logerror);
3704 		/*
3705 		 * Force the incore logs to disk before shutting the
3706 		 * log down completely.
3707 		 */
3708 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3709 
3710 		spin_lock(&log->l_icloglock);
3711 		retval = xlog_state_ioerror(log);
3712 		spin_unlock(&log->l_icloglock);
3713 	}
3714 	/*
3715 	 * Wake up everybody waiting on xfs_log_force.
3716 	 * Callback all log item committed functions as if the
3717 	 * log writes were completed.
3718 	 */
3719 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3720 
3721 #ifdef XFSERRORDEBUG
3722 	{
3723 		xlog_in_core_t	*iclog;
3724 
3725 		spin_lock(&log->l_icloglock);
3726 		iclog = log->l_iclog;
3727 		do {
3728 			ASSERT(iclog->ic_callback == 0);
3729 			iclog = iclog->ic_next;
3730 		} while (iclog != log->l_iclog);
3731 		spin_unlock(&log->l_icloglock);
3732 	}
3733 #endif
3734 	/* return non-zero if log IOERROR transition had already happened */
3735 	return retval;
3736 }
3737 
3738 STATIC int
3739 xlog_iclogs_empty(xlog_t *log)
3740 {
3741 	xlog_in_core_t	*iclog;
3742 
3743 	iclog = log->l_iclog;
3744 	do {
3745 		/* endianness does not matter here, zero is zero in
3746 		 * any language.
3747 		 */
3748 		if (iclog->ic_header.h_num_logops)
3749 			return 0;
3750 		iclog = iclog->ic_next;
3751 	} while (iclog != log->l_iclog);
3752 	return 1;
3753 }
3754