1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_log_recover.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_rw.h" 39 #include "xfs_trace.h" 40 41 kmem_zone_t *xfs_log_ticket_zone; 42 43 /* Local miscellaneous function prototypes */ 44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket, 45 xlog_in_core_t **, xfs_lsn_t *); 46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp, 47 xfs_buftarg_t *log_target, 48 xfs_daddr_t blk_offset, 49 int num_bblks); 50 STATIC int xlog_space_left(struct log *log, atomic64_t *head); 51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog); 52 STATIC void xlog_dealloc_log(xlog_t *log); 53 54 /* local state machine functions */ 55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog); 57 STATIC int xlog_state_get_iclog_space(xlog_t *log, 58 int len, 59 xlog_in_core_t **iclog, 60 xlog_ticket_t *ticket, 61 int *continued_write, 62 int *logoffsetp); 63 STATIC int xlog_state_release_iclog(xlog_t *log, 64 xlog_in_core_t *iclog); 65 STATIC void xlog_state_switch_iclogs(xlog_t *log, 66 xlog_in_core_t *iclog, 67 int eventual_size); 68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog); 69 70 /* local functions to manipulate grant head */ 71 STATIC int xlog_grant_log_space(xlog_t *log, 72 xlog_ticket_t *xtic); 73 STATIC void xlog_grant_push_ail(struct log *log, 74 int need_bytes); 75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log, 76 xlog_ticket_t *ticket); 77 STATIC int xlog_regrant_write_log_space(xlog_t *log, 78 xlog_ticket_t *ticket); 79 STATIC void xlog_ungrant_log_space(xlog_t *log, 80 xlog_ticket_t *ticket); 81 82 #if defined(DEBUG) 83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr); 84 STATIC void xlog_verify_grant_tail(struct log *log); 85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog, 86 int count, boolean_t syncing); 87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog, 88 xfs_lsn_t tail_lsn); 89 #else 90 #define xlog_verify_dest_ptr(a,b) 91 #define xlog_verify_grant_tail(a) 92 #define xlog_verify_iclog(a,b,c,d) 93 #define xlog_verify_tail_lsn(a,b,c) 94 #endif 95 96 STATIC int xlog_iclogs_empty(xlog_t *log); 97 98 static void 99 xlog_grant_sub_space( 100 struct log *log, 101 atomic64_t *head, 102 int bytes) 103 { 104 int64_t head_val = atomic64_read(head); 105 int64_t new, old; 106 107 do { 108 int cycle, space; 109 110 xlog_crack_grant_head_val(head_val, &cycle, &space); 111 112 space -= bytes; 113 if (space < 0) { 114 space += log->l_logsize; 115 cycle--; 116 } 117 118 old = head_val; 119 new = xlog_assign_grant_head_val(cycle, space); 120 head_val = atomic64_cmpxchg(head, old, new); 121 } while (head_val != old); 122 } 123 124 static void 125 xlog_grant_add_space( 126 struct log *log, 127 atomic64_t *head, 128 int bytes) 129 { 130 int64_t head_val = atomic64_read(head); 131 int64_t new, old; 132 133 do { 134 int tmp; 135 int cycle, space; 136 137 xlog_crack_grant_head_val(head_val, &cycle, &space); 138 139 tmp = log->l_logsize - space; 140 if (tmp > bytes) 141 space += bytes; 142 else { 143 space = bytes - tmp; 144 cycle++; 145 } 146 147 old = head_val; 148 new = xlog_assign_grant_head_val(cycle, space); 149 head_val = atomic64_cmpxchg(head, old, new); 150 } while (head_val != old); 151 } 152 153 static void 154 xlog_tic_reset_res(xlog_ticket_t *tic) 155 { 156 tic->t_res_num = 0; 157 tic->t_res_arr_sum = 0; 158 tic->t_res_num_ophdrs = 0; 159 } 160 161 static void 162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 163 { 164 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 165 /* add to overflow and start again */ 166 tic->t_res_o_flow += tic->t_res_arr_sum; 167 tic->t_res_num = 0; 168 tic->t_res_arr_sum = 0; 169 } 170 171 tic->t_res_arr[tic->t_res_num].r_len = len; 172 tic->t_res_arr[tic->t_res_num].r_type = type; 173 tic->t_res_arr_sum += len; 174 tic->t_res_num++; 175 } 176 177 /* 178 * NOTES: 179 * 180 * 1. currblock field gets updated at startup and after in-core logs 181 * marked as with WANT_SYNC. 182 */ 183 184 /* 185 * This routine is called when a user of a log manager ticket is done with 186 * the reservation. If the ticket was ever used, then a commit record for 187 * the associated transaction is written out as a log operation header with 188 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 189 * a given ticket. If the ticket was one with a permanent reservation, then 190 * a few operations are done differently. Permanent reservation tickets by 191 * default don't release the reservation. They just commit the current 192 * transaction with the belief that the reservation is still needed. A flag 193 * must be passed in before permanent reservations are actually released. 194 * When these type of tickets are not released, they need to be set into 195 * the inited state again. By doing this, a start record will be written 196 * out when the next write occurs. 197 */ 198 xfs_lsn_t 199 xfs_log_done( 200 struct xfs_mount *mp, 201 struct xlog_ticket *ticket, 202 struct xlog_in_core **iclog, 203 uint flags) 204 { 205 struct log *log = mp->m_log; 206 xfs_lsn_t lsn = 0; 207 208 if (XLOG_FORCED_SHUTDOWN(log) || 209 /* 210 * If nothing was ever written, don't write out commit record. 211 * If we get an error, just continue and give back the log ticket. 212 */ 213 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 214 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 215 lsn = (xfs_lsn_t) -1; 216 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 217 flags |= XFS_LOG_REL_PERM_RESERV; 218 } 219 } 220 221 222 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 223 (flags & XFS_LOG_REL_PERM_RESERV)) { 224 trace_xfs_log_done_nonperm(log, ticket); 225 226 /* 227 * Release ticket if not permanent reservation or a specific 228 * request has been made to release a permanent reservation. 229 */ 230 xlog_ungrant_log_space(log, ticket); 231 xfs_log_ticket_put(ticket); 232 } else { 233 trace_xfs_log_done_perm(log, ticket); 234 235 xlog_regrant_reserve_log_space(log, ticket); 236 /* If this ticket was a permanent reservation and we aren't 237 * trying to release it, reset the inited flags; so next time 238 * we write, a start record will be written out. 239 */ 240 ticket->t_flags |= XLOG_TIC_INITED; 241 } 242 243 return lsn; 244 } 245 246 /* 247 * Attaches a new iclog I/O completion callback routine during 248 * transaction commit. If the log is in error state, a non-zero 249 * return code is handed back and the caller is responsible for 250 * executing the callback at an appropriate time. 251 */ 252 int 253 xfs_log_notify( 254 struct xfs_mount *mp, 255 struct xlog_in_core *iclog, 256 xfs_log_callback_t *cb) 257 { 258 int abortflg; 259 260 spin_lock(&iclog->ic_callback_lock); 261 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 262 if (!abortflg) { 263 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 264 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 265 cb->cb_next = NULL; 266 *(iclog->ic_callback_tail) = cb; 267 iclog->ic_callback_tail = &(cb->cb_next); 268 } 269 spin_unlock(&iclog->ic_callback_lock); 270 return abortflg; 271 } 272 273 int 274 xfs_log_release_iclog( 275 struct xfs_mount *mp, 276 struct xlog_in_core *iclog) 277 { 278 if (xlog_state_release_iclog(mp->m_log, iclog)) { 279 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 280 return EIO; 281 } 282 283 return 0; 284 } 285 286 /* 287 * 1. Reserve an amount of on-disk log space and return a ticket corresponding 288 * to the reservation. 289 * 2. Potentially, push buffers at tail of log to disk. 290 * 291 * Each reservation is going to reserve extra space for a log record header. 292 * When writes happen to the on-disk log, we don't subtract the length of the 293 * log record header from any reservation. By wasting space in each 294 * reservation, we prevent over allocation problems. 295 */ 296 int 297 xfs_log_reserve( 298 struct xfs_mount *mp, 299 int unit_bytes, 300 int cnt, 301 struct xlog_ticket **ticket, 302 __uint8_t client, 303 uint flags, 304 uint t_type) 305 { 306 struct log *log = mp->m_log; 307 struct xlog_ticket *internal_ticket; 308 int retval = 0; 309 310 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 311 312 if (XLOG_FORCED_SHUTDOWN(log)) 313 return XFS_ERROR(EIO); 314 315 XFS_STATS_INC(xs_try_logspace); 316 317 318 if (*ticket != NULL) { 319 ASSERT(flags & XFS_LOG_PERM_RESERV); 320 internal_ticket = *ticket; 321 322 /* 323 * this is a new transaction on the ticket, so we need to 324 * change the transaction ID so that the next transaction has a 325 * different TID in the log. Just add one to the existing tid 326 * so that we can see chains of rolling transactions in the log 327 * easily. 328 */ 329 internal_ticket->t_tid++; 330 331 trace_xfs_log_reserve(log, internal_ticket); 332 333 xlog_grant_push_ail(log, internal_ticket->t_unit_res); 334 retval = xlog_regrant_write_log_space(log, internal_ticket); 335 } else { 336 /* may sleep if need to allocate more tickets */ 337 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt, 338 client, flags, 339 KM_SLEEP|KM_MAYFAIL); 340 if (!internal_ticket) 341 return XFS_ERROR(ENOMEM); 342 internal_ticket->t_trans_type = t_type; 343 *ticket = internal_ticket; 344 345 trace_xfs_log_reserve(log, internal_ticket); 346 347 xlog_grant_push_ail(log, 348 (internal_ticket->t_unit_res * 349 internal_ticket->t_cnt)); 350 retval = xlog_grant_log_space(log, internal_ticket); 351 } 352 353 return retval; 354 } /* xfs_log_reserve */ 355 356 357 /* 358 * Mount a log filesystem 359 * 360 * mp - ubiquitous xfs mount point structure 361 * log_target - buftarg of on-disk log device 362 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 363 * num_bblocks - Number of BBSIZE blocks in on-disk log 364 * 365 * Return error or zero. 366 */ 367 int 368 xfs_log_mount( 369 xfs_mount_t *mp, 370 xfs_buftarg_t *log_target, 371 xfs_daddr_t blk_offset, 372 int num_bblks) 373 { 374 int error; 375 376 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 377 xfs_notice(mp, "Mounting Filesystem"); 378 else { 379 xfs_notice(mp, 380 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent."); 381 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 382 } 383 384 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 385 if (IS_ERR(mp->m_log)) { 386 error = -PTR_ERR(mp->m_log); 387 goto out; 388 } 389 390 /* 391 * Initialize the AIL now we have a log. 392 */ 393 error = xfs_trans_ail_init(mp); 394 if (error) { 395 xfs_warn(mp, "AIL initialisation failed: error %d", error); 396 goto out_free_log; 397 } 398 mp->m_log->l_ailp = mp->m_ail; 399 400 /* 401 * skip log recovery on a norecovery mount. pretend it all 402 * just worked. 403 */ 404 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 405 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 406 407 if (readonly) 408 mp->m_flags &= ~XFS_MOUNT_RDONLY; 409 410 error = xlog_recover(mp->m_log); 411 412 if (readonly) 413 mp->m_flags |= XFS_MOUNT_RDONLY; 414 if (error) { 415 xfs_warn(mp, "log mount/recovery failed: error %d", 416 error); 417 goto out_destroy_ail; 418 } 419 } 420 421 /* Normal transactions can now occur */ 422 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 423 424 /* 425 * Now the log has been fully initialised and we know were our 426 * space grant counters are, we can initialise the permanent ticket 427 * needed for delayed logging to work. 428 */ 429 xlog_cil_init_post_recovery(mp->m_log); 430 431 return 0; 432 433 out_destroy_ail: 434 xfs_trans_ail_destroy(mp); 435 out_free_log: 436 xlog_dealloc_log(mp->m_log); 437 out: 438 return error; 439 } 440 441 /* 442 * Finish the recovery of the file system. This is separate from 443 * the xfs_log_mount() call, because it depends on the code in 444 * xfs_mountfs() to read in the root and real-time bitmap inodes 445 * between calling xfs_log_mount() and here. 446 * 447 * mp - ubiquitous xfs mount point structure 448 */ 449 int 450 xfs_log_mount_finish(xfs_mount_t *mp) 451 { 452 int error; 453 454 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 455 error = xlog_recover_finish(mp->m_log); 456 else { 457 error = 0; 458 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 459 } 460 461 return error; 462 } 463 464 /* 465 * Final log writes as part of unmount. 466 * 467 * Mark the filesystem clean as unmount happens. Note that during relocation 468 * this routine needs to be executed as part of source-bag while the 469 * deallocation must not be done until source-end. 470 */ 471 472 /* 473 * Unmount record used to have a string "Unmount filesystem--" in the 474 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 475 * We just write the magic number now since that particular field isn't 476 * currently architecture converted and "nUmount" is a bit foo. 477 * As far as I know, there weren't any dependencies on the old behaviour. 478 */ 479 480 int 481 xfs_log_unmount_write(xfs_mount_t *mp) 482 { 483 xlog_t *log = mp->m_log; 484 xlog_in_core_t *iclog; 485 #ifdef DEBUG 486 xlog_in_core_t *first_iclog; 487 #endif 488 xlog_ticket_t *tic = NULL; 489 xfs_lsn_t lsn; 490 int error; 491 492 /* 493 * Don't write out unmount record on read-only mounts. 494 * Or, if we are doing a forced umount (typically because of IO errors). 495 */ 496 if (mp->m_flags & XFS_MOUNT_RDONLY) 497 return 0; 498 499 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 500 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 501 502 #ifdef DEBUG 503 first_iclog = iclog = log->l_iclog; 504 do { 505 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 506 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 507 ASSERT(iclog->ic_offset == 0); 508 } 509 iclog = iclog->ic_next; 510 } while (iclog != first_iclog); 511 #endif 512 if (! (XLOG_FORCED_SHUTDOWN(log))) { 513 error = xfs_log_reserve(mp, 600, 1, &tic, 514 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 515 if (!error) { 516 /* the data section must be 32 bit size aligned */ 517 struct { 518 __uint16_t magic; 519 __uint16_t pad1; 520 __uint32_t pad2; /* may as well make it 64 bits */ 521 } magic = { 522 .magic = XLOG_UNMOUNT_TYPE, 523 }; 524 struct xfs_log_iovec reg = { 525 .i_addr = &magic, 526 .i_len = sizeof(magic), 527 .i_type = XLOG_REG_TYPE_UNMOUNT, 528 }; 529 struct xfs_log_vec vec = { 530 .lv_niovecs = 1, 531 .lv_iovecp = ®, 532 }; 533 534 /* remove inited flag */ 535 tic->t_flags = 0; 536 error = xlog_write(log, &vec, tic, &lsn, 537 NULL, XLOG_UNMOUNT_TRANS); 538 /* 539 * At this point, we're umounting anyway, 540 * so there's no point in transitioning log state 541 * to IOERROR. Just continue... 542 */ 543 } 544 545 if (error) 546 xfs_alert(mp, "%s: unmount record failed", __func__); 547 548 549 spin_lock(&log->l_icloglock); 550 iclog = log->l_iclog; 551 atomic_inc(&iclog->ic_refcnt); 552 xlog_state_want_sync(log, iclog); 553 spin_unlock(&log->l_icloglock); 554 error = xlog_state_release_iclog(log, iclog); 555 556 spin_lock(&log->l_icloglock); 557 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 558 iclog->ic_state == XLOG_STATE_DIRTY)) { 559 if (!XLOG_FORCED_SHUTDOWN(log)) { 560 xlog_wait(&iclog->ic_force_wait, 561 &log->l_icloglock); 562 } else { 563 spin_unlock(&log->l_icloglock); 564 } 565 } else { 566 spin_unlock(&log->l_icloglock); 567 } 568 if (tic) { 569 trace_xfs_log_umount_write(log, tic); 570 xlog_ungrant_log_space(log, tic); 571 xfs_log_ticket_put(tic); 572 } 573 } else { 574 /* 575 * We're already in forced_shutdown mode, couldn't 576 * even attempt to write out the unmount transaction. 577 * 578 * Go through the motions of sync'ing and releasing 579 * the iclog, even though no I/O will actually happen, 580 * we need to wait for other log I/Os that may already 581 * be in progress. Do this as a separate section of 582 * code so we'll know if we ever get stuck here that 583 * we're in this odd situation of trying to unmount 584 * a file system that went into forced_shutdown as 585 * the result of an unmount.. 586 */ 587 spin_lock(&log->l_icloglock); 588 iclog = log->l_iclog; 589 atomic_inc(&iclog->ic_refcnt); 590 591 xlog_state_want_sync(log, iclog); 592 spin_unlock(&log->l_icloglock); 593 error = xlog_state_release_iclog(log, iclog); 594 595 spin_lock(&log->l_icloglock); 596 597 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 598 || iclog->ic_state == XLOG_STATE_DIRTY 599 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 600 601 xlog_wait(&iclog->ic_force_wait, 602 &log->l_icloglock); 603 } else { 604 spin_unlock(&log->l_icloglock); 605 } 606 } 607 608 return error; 609 } /* xfs_log_unmount_write */ 610 611 /* 612 * Deallocate log structures for unmount/relocation. 613 * 614 * We need to stop the aild from running before we destroy 615 * and deallocate the log as the aild references the log. 616 */ 617 void 618 xfs_log_unmount(xfs_mount_t *mp) 619 { 620 xfs_trans_ail_destroy(mp); 621 xlog_dealloc_log(mp->m_log); 622 } 623 624 void 625 xfs_log_item_init( 626 struct xfs_mount *mp, 627 struct xfs_log_item *item, 628 int type, 629 const struct xfs_item_ops *ops) 630 { 631 item->li_mountp = mp; 632 item->li_ailp = mp->m_ail; 633 item->li_type = type; 634 item->li_ops = ops; 635 item->li_lv = NULL; 636 637 INIT_LIST_HEAD(&item->li_ail); 638 INIT_LIST_HEAD(&item->li_cil); 639 } 640 641 /* 642 * Write region vectors to log. The write happens using the space reservation 643 * of the ticket (tic). It is not a requirement that all writes for a given 644 * transaction occur with one call to xfs_log_write(). However, it is important 645 * to note that the transaction reservation code makes an assumption about the 646 * number of log headers a transaction requires that may be violated if you 647 * don't pass all the transaction vectors in one call.... 648 */ 649 int 650 xfs_log_write( 651 struct xfs_mount *mp, 652 struct xfs_log_iovec reg[], 653 int nentries, 654 struct xlog_ticket *tic, 655 xfs_lsn_t *start_lsn) 656 { 657 struct log *log = mp->m_log; 658 int error; 659 struct xfs_log_vec vec = { 660 .lv_niovecs = nentries, 661 .lv_iovecp = reg, 662 }; 663 664 if (XLOG_FORCED_SHUTDOWN(log)) 665 return XFS_ERROR(EIO); 666 667 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0); 668 if (error) 669 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 670 return error; 671 } 672 673 void 674 xfs_log_move_tail(xfs_mount_t *mp, 675 xfs_lsn_t tail_lsn) 676 { 677 xlog_ticket_t *tic; 678 xlog_t *log = mp->m_log; 679 int need_bytes, free_bytes; 680 681 if (XLOG_FORCED_SHUTDOWN(log)) 682 return; 683 684 if (tail_lsn == 0) 685 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 686 687 /* tail_lsn == 1 implies that we weren't passed a valid value. */ 688 if (tail_lsn != 1) 689 atomic64_set(&log->l_tail_lsn, tail_lsn); 690 691 if (!list_empty_careful(&log->l_writeq)) { 692 #ifdef DEBUG 693 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 694 panic("Recovery problem"); 695 #endif 696 spin_lock(&log->l_grant_write_lock); 697 free_bytes = xlog_space_left(log, &log->l_grant_write_head); 698 list_for_each_entry(tic, &log->l_writeq, t_queue) { 699 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 700 701 if (free_bytes < tic->t_unit_res && tail_lsn != 1) 702 break; 703 tail_lsn = 0; 704 free_bytes -= tic->t_unit_res; 705 trace_xfs_log_regrant_write_wake_up(log, tic); 706 wake_up(&tic->t_wait); 707 } 708 spin_unlock(&log->l_grant_write_lock); 709 } 710 711 if (!list_empty_careful(&log->l_reserveq)) { 712 #ifdef DEBUG 713 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 714 panic("Recovery problem"); 715 #endif 716 spin_lock(&log->l_grant_reserve_lock); 717 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); 718 list_for_each_entry(tic, &log->l_reserveq, t_queue) { 719 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 720 need_bytes = tic->t_unit_res*tic->t_cnt; 721 else 722 need_bytes = tic->t_unit_res; 723 if (free_bytes < need_bytes && tail_lsn != 1) 724 break; 725 tail_lsn = 0; 726 free_bytes -= need_bytes; 727 trace_xfs_log_grant_wake_up(log, tic); 728 wake_up(&tic->t_wait); 729 } 730 spin_unlock(&log->l_grant_reserve_lock); 731 } 732 } 733 734 /* 735 * Determine if we have a transaction that has gone to disk 736 * that needs to be covered. To begin the transition to the idle state 737 * firstly the log needs to be idle (no AIL and nothing in the iclogs). 738 * If we are then in a state where covering is needed, the caller is informed 739 * that dummy transactions are required to move the log into the idle state. 740 * 741 * Because this is called as part of the sync process, we should also indicate 742 * that dummy transactions should be issued in anything but the covered or 743 * idle states. This ensures that the log tail is accurately reflected in 744 * the log at the end of the sync, hence if a crash occurrs avoids replay 745 * of transactions where the metadata is already on disk. 746 */ 747 int 748 xfs_log_need_covered(xfs_mount_t *mp) 749 { 750 int needed = 0; 751 xlog_t *log = mp->m_log; 752 753 if (!xfs_fs_writable(mp)) 754 return 0; 755 756 spin_lock(&log->l_icloglock); 757 switch (log->l_covered_state) { 758 case XLOG_STATE_COVER_DONE: 759 case XLOG_STATE_COVER_DONE2: 760 case XLOG_STATE_COVER_IDLE: 761 break; 762 case XLOG_STATE_COVER_NEED: 763 case XLOG_STATE_COVER_NEED2: 764 if (!xfs_ail_min_lsn(log->l_ailp) && 765 xlog_iclogs_empty(log)) { 766 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 767 log->l_covered_state = XLOG_STATE_COVER_DONE; 768 else 769 log->l_covered_state = XLOG_STATE_COVER_DONE2; 770 } 771 /* FALLTHRU */ 772 default: 773 needed = 1; 774 break; 775 } 776 spin_unlock(&log->l_icloglock); 777 return needed; 778 } 779 780 /****************************************************************************** 781 * 782 * local routines 783 * 784 ****************************************************************************** 785 */ 786 787 /* xfs_trans_tail_ail returns 0 when there is nothing in the list. 788 * The log manager must keep track of the last LR which was committed 789 * to disk. The lsn of this LR will become the new tail_lsn whenever 790 * xfs_trans_tail_ail returns 0. If we don't do this, we run into 791 * the situation where stuff could be written into the log but nothing 792 * was ever in the AIL when asked. Eventually, we panic since the 793 * tail hits the head. 794 * 795 * We may be holding the log iclog lock upon entering this routine. 796 */ 797 xfs_lsn_t 798 xlog_assign_tail_lsn( 799 struct xfs_mount *mp) 800 { 801 xfs_lsn_t tail_lsn; 802 struct log *log = mp->m_log; 803 804 tail_lsn = xfs_ail_min_lsn(mp->m_ail); 805 if (!tail_lsn) 806 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 807 808 atomic64_set(&log->l_tail_lsn, tail_lsn); 809 return tail_lsn; 810 } 811 812 /* 813 * Return the space in the log between the tail and the head. The head 814 * is passed in the cycle/bytes formal parms. In the special case where 815 * the reserve head has wrapped passed the tail, this calculation is no 816 * longer valid. In this case, just return 0 which means there is no space 817 * in the log. This works for all places where this function is called 818 * with the reserve head. Of course, if the write head were to ever 819 * wrap the tail, we should blow up. Rather than catch this case here, 820 * we depend on other ASSERTions in other parts of the code. XXXmiken 821 * 822 * This code also handles the case where the reservation head is behind 823 * the tail. The details of this case are described below, but the end 824 * result is that we return the size of the log as the amount of space left. 825 */ 826 STATIC int 827 xlog_space_left( 828 struct log *log, 829 atomic64_t *head) 830 { 831 int free_bytes; 832 int tail_bytes; 833 int tail_cycle; 834 int head_cycle; 835 int head_bytes; 836 837 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 838 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 839 tail_bytes = BBTOB(tail_bytes); 840 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 841 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 842 else if (tail_cycle + 1 < head_cycle) 843 return 0; 844 else if (tail_cycle < head_cycle) { 845 ASSERT(tail_cycle == (head_cycle - 1)); 846 free_bytes = tail_bytes - head_bytes; 847 } else { 848 /* 849 * The reservation head is behind the tail. 850 * In this case we just want to return the size of the 851 * log as the amount of space left. 852 */ 853 xfs_alert(log->l_mp, 854 "xlog_space_left: head behind tail\n" 855 " tail_cycle = %d, tail_bytes = %d\n" 856 " GH cycle = %d, GH bytes = %d", 857 tail_cycle, tail_bytes, head_cycle, head_bytes); 858 ASSERT(0); 859 free_bytes = log->l_logsize; 860 } 861 return free_bytes; 862 } 863 864 865 /* 866 * Log function which is called when an io completes. 867 * 868 * The log manager needs its own routine, in order to control what 869 * happens with the buffer after the write completes. 870 */ 871 void 872 xlog_iodone(xfs_buf_t *bp) 873 { 874 xlog_in_core_t *iclog = bp->b_fspriv; 875 xlog_t *l = iclog->ic_log; 876 int aborted = 0; 877 878 /* 879 * Race to shutdown the filesystem if we see an error. 880 */ 881 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp, 882 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 883 xfs_buf_ioerror_alert(bp, __func__); 884 xfs_buf_stale(bp); 885 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 886 /* 887 * This flag will be propagated to the trans-committed 888 * callback routines to let them know that the log-commit 889 * didn't succeed. 890 */ 891 aborted = XFS_LI_ABORTED; 892 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 893 aborted = XFS_LI_ABORTED; 894 } 895 896 /* log I/O is always issued ASYNC */ 897 ASSERT(XFS_BUF_ISASYNC(bp)); 898 xlog_state_done_syncing(iclog, aborted); 899 /* 900 * do not reference the buffer (bp) here as we could race 901 * with it being freed after writing the unmount record to the 902 * log. 903 */ 904 905 } /* xlog_iodone */ 906 907 /* 908 * Return size of each in-core log record buffer. 909 * 910 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 911 * 912 * If the filesystem blocksize is too large, we may need to choose a 913 * larger size since the directory code currently logs entire blocks. 914 */ 915 916 STATIC void 917 xlog_get_iclog_buffer_size(xfs_mount_t *mp, 918 xlog_t *log) 919 { 920 int size; 921 int xhdrs; 922 923 if (mp->m_logbufs <= 0) 924 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 925 else 926 log->l_iclog_bufs = mp->m_logbufs; 927 928 /* 929 * Buffer size passed in from mount system call. 930 */ 931 if (mp->m_logbsize > 0) { 932 size = log->l_iclog_size = mp->m_logbsize; 933 log->l_iclog_size_log = 0; 934 while (size != 1) { 935 log->l_iclog_size_log++; 936 size >>= 1; 937 } 938 939 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 940 /* # headers = size / 32k 941 * one header holds cycles from 32k of data 942 */ 943 944 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 945 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 946 xhdrs++; 947 log->l_iclog_hsize = xhdrs << BBSHIFT; 948 log->l_iclog_heads = xhdrs; 949 } else { 950 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 951 log->l_iclog_hsize = BBSIZE; 952 log->l_iclog_heads = 1; 953 } 954 goto done; 955 } 956 957 /* All machines use 32kB buffers by default. */ 958 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 959 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 960 961 /* the default log size is 16k or 32k which is one header sector */ 962 log->l_iclog_hsize = BBSIZE; 963 log->l_iclog_heads = 1; 964 965 done: 966 /* are we being asked to make the sizes selected above visible? */ 967 if (mp->m_logbufs == 0) 968 mp->m_logbufs = log->l_iclog_bufs; 969 if (mp->m_logbsize == 0) 970 mp->m_logbsize = log->l_iclog_size; 971 } /* xlog_get_iclog_buffer_size */ 972 973 974 /* 975 * This routine initializes some of the log structure for a given mount point. 976 * Its primary purpose is to fill in enough, so recovery can occur. However, 977 * some other stuff may be filled in too. 978 */ 979 STATIC xlog_t * 980 xlog_alloc_log(xfs_mount_t *mp, 981 xfs_buftarg_t *log_target, 982 xfs_daddr_t blk_offset, 983 int num_bblks) 984 { 985 xlog_t *log; 986 xlog_rec_header_t *head; 987 xlog_in_core_t **iclogp; 988 xlog_in_core_t *iclog, *prev_iclog=NULL; 989 xfs_buf_t *bp; 990 int i; 991 int error = ENOMEM; 992 uint log2_size = 0; 993 994 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL); 995 if (!log) { 996 xfs_warn(mp, "Log allocation failed: No memory!"); 997 goto out; 998 } 999 1000 log->l_mp = mp; 1001 log->l_targ = log_target; 1002 log->l_logsize = BBTOB(num_bblks); 1003 log->l_logBBstart = blk_offset; 1004 log->l_logBBsize = num_bblks; 1005 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1006 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1007 1008 log->l_prev_block = -1; 1009 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1010 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1011 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1012 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1013 xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0); 1014 xlog_assign_grant_head(&log->l_grant_write_head, 1, 0); 1015 INIT_LIST_HEAD(&log->l_reserveq); 1016 INIT_LIST_HEAD(&log->l_writeq); 1017 spin_lock_init(&log->l_grant_reserve_lock); 1018 spin_lock_init(&log->l_grant_write_lock); 1019 1020 error = EFSCORRUPTED; 1021 if (xfs_sb_version_hassector(&mp->m_sb)) { 1022 log2_size = mp->m_sb.sb_logsectlog; 1023 if (log2_size < BBSHIFT) { 1024 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1025 log2_size, BBSHIFT); 1026 goto out_free_log; 1027 } 1028 1029 log2_size -= BBSHIFT; 1030 if (log2_size > mp->m_sectbb_log) { 1031 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1032 log2_size, mp->m_sectbb_log); 1033 goto out_free_log; 1034 } 1035 1036 /* for larger sector sizes, must have v2 or external log */ 1037 if (log2_size && log->l_logBBstart > 0 && 1038 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1039 xfs_warn(mp, 1040 "log sector size (0x%x) invalid for configuration.", 1041 log2_size); 1042 goto out_free_log; 1043 } 1044 } 1045 log->l_sectBBsize = 1 << log2_size; 1046 1047 xlog_get_iclog_buffer_size(mp, log); 1048 1049 error = ENOMEM; 1050 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, log->l_iclog_size, 0); 1051 if (!bp) 1052 goto out_free_log; 1053 bp->b_iodone = xlog_iodone; 1054 ASSERT(xfs_buf_islocked(bp)); 1055 log->l_xbuf = bp; 1056 1057 spin_lock_init(&log->l_icloglock); 1058 init_waitqueue_head(&log->l_flush_wait); 1059 1060 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */ 1061 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0); 1062 1063 iclogp = &log->l_iclog; 1064 /* 1065 * The amount of memory to allocate for the iclog structure is 1066 * rather funky due to the way the structure is defined. It is 1067 * done this way so that we can use different sizes for machines 1068 * with different amounts of memory. See the definition of 1069 * xlog_in_core_t in xfs_log_priv.h for details. 1070 */ 1071 ASSERT(log->l_iclog_size >= 4096); 1072 for (i=0; i < log->l_iclog_bufs; i++) { 1073 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1074 if (!*iclogp) 1075 goto out_free_iclog; 1076 1077 iclog = *iclogp; 1078 iclog->ic_prev = prev_iclog; 1079 prev_iclog = iclog; 1080 1081 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1082 log->l_iclog_size, 0); 1083 if (!bp) 1084 goto out_free_iclog; 1085 1086 bp->b_iodone = xlog_iodone; 1087 iclog->ic_bp = bp; 1088 iclog->ic_data = bp->b_addr; 1089 #ifdef DEBUG 1090 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1091 #endif 1092 head = &iclog->ic_header; 1093 memset(head, 0, sizeof(xlog_rec_header_t)); 1094 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1095 head->h_version = cpu_to_be32( 1096 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1097 head->h_size = cpu_to_be32(log->l_iclog_size); 1098 /* new fields */ 1099 head->h_fmt = cpu_to_be32(XLOG_FMT); 1100 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1101 1102 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize; 1103 iclog->ic_state = XLOG_STATE_ACTIVE; 1104 iclog->ic_log = log; 1105 atomic_set(&iclog->ic_refcnt, 0); 1106 spin_lock_init(&iclog->ic_callback_lock); 1107 iclog->ic_callback_tail = &(iclog->ic_callback); 1108 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1109 1110 ASSERT(xfs_buf_islocked(iclog->ic_bp)); 1111 init_waitqueue_head(&iclog->ic_force_wait); 1112 init_waitqueue_head(&iclog->ic_write_wait); 1113 1114 iclogp = &iclog->ic_next; 1115 } 1116 *iclogp = log->l_iclog; /* complete ring */ 1117 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1118 1119 error = xlog_cil_init(log); 1120 if (error) 1121 goto out_free_iclog; 1122 return log; 1123 1124 out_free_iclog: 1125 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1126 prev_iclog = iclog->ic_next; 1127 if (iclog->ic_bp) 1128 xfs_buf_free(iclog->ic_bp); 1129 kmem_free(iclog); 1130 } 1131 spinlock_destroy(&log->l_icloglock); 1132 xfs_buf_free(log->l_xbuf); 1133 out_free_log: 1134 kmem_free(log); 1135 out: 1136 return ERR_PTR(-error); 1137 } /* xlog_alloc_log */ 1138 1139 1140 /* 1141 * Write out the commit record of a transaction associated with the given 1142 * ticket. Return the lsn of the commit record. 1143 */ 1144 STATIC int 1145 xlog_commit_record( 1146 struct log *log, 1147 struct xlog_ticket *ticket, 1148 struct xlog_in_core **iclog, 1149 xfs_lsn_t *commitlsnp) 1150 { 1151 struct xfs_mount *mp = log->l_mp; 1152 int error; 1153 struct xfs_log_iovec reg = { 1154 .i_addr = NULL, 1155 .i_len = 0, 1156 .i_type = XLOG_REG_TYPE_COMMIT, 1157 }; 1158 struct xfs_log_vec vec = { 1159 .lv_niovecs = 1, 1160 .lv_iovecp = ®, 1161 }; 1162 1163 ASSERT_ALWAYS(iclog); 1164 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1165 XLOG_COMMIT_TRANS); 1166 if (error) 1167 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1168 return error; 1169 } 1170 1171 /* 1172 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1173 * log space. This code pushes on the lsn which would supposedly free up 1174 * the 25% which we want to leave free. We may need to adopt a policy which 1175 * pushes on an lsn which is further along in the log once we reach the high 1176 * water mark. In this manner, we would be creating a low water mark. 1177 */ 1178 STATIC void 1179 xlog_grant_push_ail( 1180 struct log *log, 1181 int need_bytes) 1182 { 1183 xfs_lsn_t threshold_lsn = 0; 1184 xfs_lsn_t last_sync_lsn; 1185 int free_blocks; 1186 int free_bytes; 1187 int threshold_block; 1188 int threshold_cycle; 1189 int free_threshold; 1190 1191 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1192 1193 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); 1194 free_blocks = BTOBBT(free_bytes); 1195 1196 /* 1197 * Set the threshold for the minimum number of free blocks in the 1198 * log to the maximum of what the caller needs, one quarter of the 1199 * log, and 256 blocks. 1200 */ 1201 free_threshold = BTOBB(need_bytes); 1202 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1203 free_threshold = MAX(free_threshold, 256); 1204 if (free_blocks >= free_threshold) 1205 return; 1206 1207 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1208 &threshold_block); 1209 threshold_block += free_threshold; 1210 if (threshold_block >= log->l_logBBsize) { 1211 threshold_block -= log->l_logBBsize; 1212 threshold_cycle += 1; 1213 } 1214 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1215 threshold_block); 1216 /* 1217 * Don't pass in an lsn greater than the lsn of the last 1218 * log record known to be on disk. Use a snapshot of the last sync lsn 1219 * so that it doesn't change between the compare and the set. 1220 */ 1221 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1222 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1223 threshold_lsn = last_sync_lsn; 1224 1225 /* 1226 * Get the transaction layer to kick the dirty buffers out to 1227 * disk asynchronously. No point in trying to do this if 1228 * the filesystem is shutting down. 1229 */ 1230 if (!XLOG_FORCED_SHUTDOWN(log)) 1231 xfs_ail_push(log->l_ailp, threshold_lsn); 1232 } 1233 1234 /* 1235 * The bdstrat callback function for log bufs. This gives us a central 1236 * place to trap bufs in case we get hit by a log I/O error and need to 1237 * shutdown. Actually, in practice, even when we didn't get a log error, 1238 * we transition the iclogs to IOERROR state *after* flushing all existing 1239 * iclogs to disk. This is because we don't want anymore new transactions to be 1240 * started or completed afterwards. 1241 */ 1242 STATIC int 1243 xlog_bdstrat( 1244 struct xfs_buf *bp) 1245 { 1246 struct xlog_in_core *iclog = bp->b_fspriv; 1247 1248 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1249 xfs_buf_ioerror(bp, EIO); 1250 xfs_buf_stale(bp); 1251 xfs_buf_ioend(bp, 0); 1252 /* 1253 * It would seem logical to return EIO here, but we rely on 1254 * the log state machine to propagate I/O errors instead of 1255 * doing it here. 1256 */ 1257 return 0; 1258 } 1259 1260 xfs_buf_iorequest(bp); 1261 return 0; 1262 } 1263 1264 /* 1265 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1266 * fashion. Previously, we should have moved the current iclog 1267 * ptr in the log to point to the next available iclog. This allows further 1268 * write to continue while this code syncs out an iclog ready to go. 1269 * Before an in-core log can be written out, the data section must be scanned 1270 * to save away the 1st word of each BBSIZE block into the header. We replace 1271 * it with the current cycle count. Each BBSIZE block is tagged with the 1272 * cycle count because there in an implicit assumption that drives will 1273 * guarantee that entire 512 byte blocks get written at once. In other words, 1274 * we can't have part of a 512 byte block written and part not written. By 1275 * tagging each block, we will know which blocks are valid when recovering 1276 * after an unclean shutdown. 1277 * 1278 * This routine is single threaded on the iclog. No other thread can be in 1279 * this routine with the same iclog. Changing contents of iclog can there- 1280 * fore be done without grabbing the state machine lock. Updating the global 1281 * log will require grabbing the lock though. 1282 * 1283 * The entire log manager uses a logical block numbering scheme. Only 1284 * log_sync (and then only bwrite()) know about the fact that the log may 1285 * not start with block zero on a given device. The log block start offset 1286 * is added immediately before calling bwrite(). 1287 */ 1288 1289 STATIC int 1290 xlog_sync(xlog_t *log, 1291 xlog_in_core_t *iclog) 1292 { 1293 xfs_caddr_t dptr; /* pointer to byte sized element */ 1294 xfs_buf_t *bp; 1295 int i; 1296 uint count; /* byte count of bwrite */ 1297 uint count_init; /* initial count before roundup */ 1298 int roundoff; /* roundoff to BB or stripe */ 1299 int split = 0; /* split write into two regions */ 1300 int error; 1301 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1302 1303 XFS_STATS_INC(xs_log_writes); 1304 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1305 1306 /* Add for LR header */ 1307 count_init = log->l_iclog_hsize + iclog->ic_offset; 1308 1309 /* Round out the log write size */ 1310 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1311 /* we have a v2 stripe unit to use */ 1312 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1313 } else { 1314 count = BBTOB(BTOBB(count_init)); 1315 } 1316 roundoff = count - count_init; 1317 ASSERT(roundoff >= 0); 1318 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1319 roundoff < log->l_mp->m_sb.sb_logsunit) 1320 || 1321 (log->l_mp->m_sb.sb_logsunit <= 1 && 1322 roundoff < BBTOB(1))); 1323 1324 /* move grant heads by roundoff in sync */ 1325 xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff); 1326 xlog_grant_add_space(log, &log->l_grant_write_head, roundoff); 1327 1328 /* put cycle number in every block */ 1329 xlog_pack_data(log, iclog, roundoff); 1330 1331 /* real byte length */ 1332 if (v2) { 1333 iclog->ic_header.h_len = 1334 cpu_to_be32(iclog->ic_offset + roundoff); 1335 } else { 1336 iclog->ic_header.h_len = 1337 cpu_to_be32(iclog->ic_offset); 1338 } 1339 1340 bp = iclog->ic_bp; 1341 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1342 1343 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1344 1345 /* Do we need to split this write into 2 parts? */ 1346 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1347 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1348 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1349 iclog->ic_bwritecnt = 2; /* split into 2 writes */ 1350 } else { 1351 iclog->ic_bwritecnt = 1; 1352 } 1353 XFS_BUF_SET_COUNT(bp, count); 1354 bp->b_fspriv = iclog; 1355 XFS_BUF_ZEROFLAGS(bp); 1356 XFS_BUF_ASYNC(bp); 1357 bp->b_flags |= XBF_SYNCIO; 1358 1359 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1360 bp->b_flags |= XBF_FUA; 1361 1362 /* 1363 * Flush the data device before flushing the log to make 1364 * sure all meta data written back from the AIL actually made 1365 * it to disk before stamping the new log tail LSN into the 1366 * log buffer. For an external log we need to issue the 1367 * flush explicitly, and unfortunately synchronously here; 1368 * for an internal log we can simply use the block layer 1369 * state machine for preflushes. 1370 */ 1371 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1372 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1373 else 1374 bp->b_flags |= XBF_FLUSH; 1375 } 1376 1377 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1378 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1379 1380 xlog_verify_iclog(log, iclog, count, B_TRUE); 1381 1382 /* account for log which doesn't start at block #0 */ 1383 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1384 /* 1385 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1386 * is shutting down. 1387 */ 1388 XFS_BUF_WRITE(bp); 1389 1390 error = xlog_bdstrat(bp); 1391 if (error) { 1392 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1393 return error; 1394 } 1395 if (split) { 1396 bp = iclog->ic_log->l_xbuf; 1397 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1398 xfs_buf_associate_memory(bp, 1399 (char *)&iclog->ic_header + count, split); 1400 bp->b_fspriv = iclog; 1401 XFS_BUF_ZEROFLAGS(bp); 1402 XFS_BUF_ASYNC(bp); 1403 bp->b_flags |= XBF_SYNCIO; 1404 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1405 bp->b_flags |= XBF_FUA; 1406 dptr = bp->b_addr; 1407 /* 1408 * Bump the cycle numbers at the start of each block 1409 * since this part of the buffer is at the start of 1410 * a new cycle. Watch out for the header magic number 1411 * case, though. 1412 */ 1413 for (i = 0; i < split; i += BBSIZE) { 1414 be32_add_cpu((__be32 *)dptr, 1); 1415 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM) 1416 be32_add_cpu((__be32 *)dptr, 1); 1417 dptr += BBSIZE; 1418 } 1419 1420 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1421 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1422 1423 /* account for internal log which doesn't start at block #0 */ 1424 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1425 XFS_BUF_WRITE(bp); 1426 error = xlog_bdstrat(bp); 1427 if (error) { 1428 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1429 return error; 1430 } 1431 } 1432 return 0; 1433 } /* xlog_sync */ 1434 1435 1436 /* 1437 * Deallocate a log structure 1438 */ 1439 STATIC void 1440 xlog_dealloc_log(xlog_t *log) 1441 { 1442 xlog_in_core_t *iclog, *next_iclog; 1443 int i; 1444 1445 xlog_cil_destroy(log); 1446 1447 /* 1448 * always need to ensure that the extra buffer does not point to memory 1449 * owned by another log buffer before we free it. 1450 */ 1451 xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size); 1452 xfs_buf_free(log->l_xbuf); 1453 1454 iclog = log->l_iclog; 1455 for (i=0; i<log->l_iclog_bufs; i++) { 1456 xfs_buf_free(iclog->ic_bp); 1457 next_iclog = iclog->ic_next; 1458 kmem_free(iclog); 1459 iclog = next_iclog; 1460 } 1461 spinlock_destroy(&log->l_icloglock); 1462 1463 log->l_mp->m_log = NULL; 1464 kmem_free(log); 1465 } /* xlog_dealloc_log */ 1466 1467 /* 1468 * Update counters atomically now that memcpy is done. 1469 */ 1470 /* ARGSUSED */ 1471 static inline void 1472 xlog_state_finish_copy(xlog_t *log, 1473 xlog_in_core_t *iclog, 1474 int record_cnt, 1475 int copy_bytes) 1476 { 1477 spin_lock(&log->l_icloglock); 1478 1479 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1480 iclog->ic_offset += copy_bytes; 1481 1482 spin_unlock(&log->l_icloglock); 1483 } /* xlog_state_finish_copy */ 1484 1485 1486 1487 1488 /* 1489 * print out info relating to regions written which consume 1490 * the reservation 1491 */ 1492 void 1493 xlog_print_tic_res( 1494 struct xfs_mount *mp, 1495 struct xlog_ticket *ticket) 1496 { 1497 uint i; 1498 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1499 1500 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1501 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1502 "bformat", 1503 "bchunk", 1504 "efi_format", 1505 "efd_format", 1506 "iformat", 1507 "icore", 1508 "iext", 1509 "ibroot", 1510 "ilocal", 1511 "iattr_ext", 1512 "iattr_broot", 1513 "iattr_local", 1514 "qformat", 1515 "dquot", 1516 "quotaoff", 1517 "LR header", 1518 "unmount", 1519 "commit", 1520 "trans header" 1521 }; 1522 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1523 "SETATTR_NOT_SIZE", 1524 "SETATTR_SIZE", 1525 "INACTIVE", 1526 "CREATE", 1527 "CREATE_TRUNC", 1528 "TRUNCATE_FILE", 1529 "REMOVE", 1530 "LINK", 1531 "RENAME", 1532 "MKDIR", 1533 "RMDIR", 1534 "SYMLINK", 1535 "SET_DMATTRS", 1536 "GROWFS", 1537 "STRAT_WRITE", 1538 "DIOSTRAT", 1539 "WRITE_SYNC", 1540 "WRITEID", 1541 "ADDAFORK", 1542 "ATTRINVAL", 1543 "ATRUNCATE", 1544 "ATTR_SET", 1545 "ATTR_RM", 1546 "ATTR_FLAG", 1547 "CLEAR_AGI_BUCKET", 1548 "QM_SBCHANGE", 1549 "DUMMY1", 1550 "DUMMY2", 1551 "QM_QUOTAOFF", 1552 "QM_DQALLOC", 1553 "QM_SETQLIM", 1554 "QM_DQCLUSTER", 1555 "QM_QINOCREATE", 1556 "QM_QUOTAOFF_END", 1557 "SB_UNIT", 1558 "FSYNC_TS", 1559 "GROWFSRT_ALLOC", 1560 "GROWFSRT_ZERO", 1561 "GROWFSRT_FREE", 1562 "SWAPEXT" 1563 }; 1564 1565 xfs_warn(mp, 1566 "xfs_log_write: reservation summary:\n" 1567 " trans type = %s (%u)\n" 1568 " unit res = %d bytes\n" 1569 " current res = %d bytes\n" 1570 " total reg = %u bytes (o/flow = %u bytes)\n" 1571 " ophdrs = %u (ophdr space = %u bytes)\n" 1572 " ophdr + reg = %u bytes\n" 1573 " num regions = %u\n", 1574 ((ticket->t_trans_type <= 0 || 1575 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 1576 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 1577 ticket->t_trans_type, 1578 ticket->t_unit_res, 1579 ticket->t_curr_res, 1580 ticket->t_res_arr_sum, ticket->t_res_o_flow, 1581 ticket->t_res_num_ophdrs, ophdr_spc, 1582 ticket->t_res_arr_sum + 1583 ticket->t_res_o_flow + ophdr_spc, 1584 ticket->t_res_num); 1585 1586 for (i = 0; i < ticket->t_res_num; i++) { 1587 uint r_type = ticket->t_res_arr[i].r_type; 1588 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i, 1589 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 1590 "bad-rtype" : res_type_str[r_type-1]), 1591 ticket->t_res_arr[i].r_len); 1592 } 1593 1594 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 1595 "xfs_log_write: reservation ran out. Need to up reservation"); 1596 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1597 } 1598 1599 /* 1600 * Calculate the potential space needed by the log vector. Each region gets 1601 * its own xlog_op_header_t and may need to be double word aligned. 1602 */ 1603 static int 1604 xlog_write_calc_vec_length( 1605 struct xlog_ticket *ticket, 1606 struct xfs_log_vec *log_vector) 1607 { 1608 struct xfs_log_vec *lv; 1609 int headers = 0; 1610 int len = 0; 1611 int i; 1612 1613 /* acct for start rec of xact */ 1614 if (ticket->t_flags & XLOG_TIC_INITED) 1615 headers++; 1616 1617 for (lv = log_vector; lv; lv = lv->lv_next) { 1618 headers += lv->lv_niovecs; 1619 1620 for (i = 0; i < lv->lv_niovecs; i++) { 1621 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 1622 1623 len += vecp->i_len; 1624 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 1625 } 1626 } 1627 1628 ticket->t_res_num_ophdrs += headers; 1629 len += headers * sizeof(struct xlog_op_header); 1630 1631 return len; 1632 } 1633 1634 /* 1635 * If first write for transaction, insert start record We can't be trying to 1636 * commit if we are inited. We can't have any "partial_copy" if we are inited. 1637 */ 1638 static int 1639 xlog_write_start_rec( 1640 struct xlog_op_header *ophdr, 1641 struct xlog_ticket *ticket) 1642 { 1643 if (!(ticket->t_flags & XLOG_TIC_INITED)) 1644 return 0; 1645 1646 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1647 ophdr->oh_clientid = ticket->t_clientid; 1648 ophdr->oh_len = 0; 1649 ophdr->oh_flags = XLOG_START_TRANS; 1650 ophdr->oh_res2 = 0; 1651 1652 ticket->t_flags &= ~XLOG_TIC_INITED; 1653 1654 return sizeof(struct xlog_op_header); 1655 } 1656 1657 static xlog_op_header_t * 1658 xlog_write_setup_ophdr( 1659 struct log *log, 1660 struct xlog_op_header *ophdr, 1661 struct xlog_ticket *ticket, 1662 uint flags) 1663 { 1664 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1665 ophdr->oh_clientid = ticket->t_clientid; 1666 ophdr->oh_res2 = 0; 1667 1668 /* are we copying a commit or unmount record? */ 1669 ophdr->oh_flags = flags; 1670 1671 /* 1672 * We've seen logs corrupted with bad transaction client ids. This 1673 * makes sure that XFS doesn't generate them on. Turn this into an EIO 1674 * and shut down the filesystem. 1675 */ 1676 switch (ophdr->oh_clientid) { 1677 case XFS_TRANSACTION: 1678 case XFS_VOLUME: 1679 case XFS_LOG: 1680 break; 1681 default: 1682 xfs_warn(log->l_mp, 1683 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 1684 ophdr->oh_clientid, ticket); 1685 return NULL; 1686 } 1687 1688 return ophdr; 1689 } 1690 1691 /* 1692 * Set up the parameters of the region copy into the log. This has 1693 * to handle region write split across multiple log buffers - this 1694 * state is kept external to this function so that this code can 1695 * can be written in an obvious, self documenting manner. 1696 */ 1697 static int 1698 xlog_write_setup_copy( 1699 struct xlog_ticket *ticket, 1700 struct xlog_op_header *ophdr, 1701 int space_available, 1702 int space_required, 1703 int *copy_off, 1704 int *copy_len, 1705 int *last_was_partial_copy, 1706 int *bytes_consumed) 1707 { 1708 int still_to_copy; 1709 1710 still_to_copy = space_required - *bytes_consumed; 1711 *copy_off = *bytes_consumed; 1712 1713 if (still_to_copy <= space_available) { 1714 /* write of region completes here */ 1715 *copy_len = still_to_copy; 1716 ophdr->oh_len = cpu_to_be32(*copy_len); 1717 if (*last_was_partial_copy) 1718 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 1719 *last_was_partial_copy = 0; 1720 *bytes_consumed = 0; 1721 return 0; 1722 } 1723 1724 /* partial write of region, needs extra log op header reservation */ 1725 *copy_len = space_available; 1726 ophdr->oh_len = cpu_to_be32(*copy_len); 1727 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 1728 if (*last_was_partial_copy) 1729 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 1730 *bytes_consumed += *copy_len; 1731 (*last_was_partial_copy)++; 1732 1733 /* account for new log op header */ 1734 ticket->t_curr_res -= sizeof(struct xlog_op_header); 1735 ticket->t_res_num_ophdrs++; 1736 1737 return sizeof(struct xlog_op_header); 1738 } 1739 1740 static int 1741 xlog_write_copy_finish( 1742 struct log *log, 1743 struct xlog_in_core *iclog, 1744 uint flags, 1745 int *record_cnt, 1746 int *data_cnt, 1747 int *partial_copy, 1748 int *partial_copy_len, 1749 int log_offset, 1750 struct xlog_in_core **commit_iclog) 1751 { 1752 if (*partial_copy) { 1753 /* 1754 * This iclog has already been marked WANT_SYNC by 1755 * xlog_state_get_iclog_space. 1756 */ 1757 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1758 *record_cnt = 0; 1759 *data_cnt = 0; 1760 return xlog_state_release_iclog(log, iclog); 1761 } 1762 1763 *partial_copy = 0; 1764 *partial_copy_len = 0; 1765 1766 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 1767 /* no more space in this iclog - push it. */ 1768 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1769 *record_cnt = 0; 1770 *data_cnt = 0; 1771 1772 spin_lock(&log->l_icloglock); 1773 xlog_state_want_sync(log, iclog); 1774 spin_unlock(&log->l_icloglock); 1775 1776 if (!commit_iclog) 1777 return xlog_state_release_iclog(log, iclog); 1778 ASSERT(flags & XLOG_COMMIT_TRANS); 1779 *commit_iclog = iclog; 1780 } 1781 1782 return 0; 1783 } 1784 1785 /* 1786 * Write some region out to in-core log 1787 * 1788 * This will be called when writing externally provided regions or when 1789 * writing out a commit record for a given transaction. 1790 * 1791 * General algorithm: 1792 * 1. Find total length of this write. This may include adding to the 1793 * lengths passed in. 1794 * 2. Check whether we violate the tickets reservation. 1795 * 3. While writing to this iclog 1796 * A. Reserve as much space in this iclog as can get 1797 * B. If this is first write, save away start lsn 1798 * C. While writing this region: 1799 * 1. If first write of transaction, write start record 1800 * 2. Write log operation header (header per region) 1801 * 3. Find out if we can fit entire region into this iclog 1802 * 4. Potentially, verify destination memcpy ptr 1803 * 5. Memcpy (partial) region 1804 * 6. If partial copy, release iclog; otherwise, continue 1805 * copying more regions into current iclog 1806 * 4. Mark want sync bit (in simulation mode) 1807 * 5. Release iclog for potential flush to on-disk log. 1808 * 1809 * ERRORS: 1810 * 1. Panic if reservation is overrun. This should never happen since 1811 * reservation amounts are generated internal to the filesystem. 1812 * NOTES: 1813 * 1. Tickets are single threaded data structures. 1814 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 1815 * syncing routine. When a single log_write region needs to span 1816 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 1817 * on all log operation writes which don't contain the end of the 1818 * region. The XLOG_END_TRANS bit is used for the in-core log 1819 * operation which contains the end of the continued log_write region. 1820 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 1821 * we don't really know exactly how much space will be used. As a result, 1822 * we don't update ic_offset until the end when we know exactly how many 1823 * bytes have been written out. 1824 */ 1825 int 1826 xlog_write( 1827 struct log *log, 1828 struct xfs_log_vec *log_vector, 1829 struct xlog_ticket *ticket, 1830 xfs_lsn_t *start_lsn, 1831 struct xlog_in_core **commit_iclog, 1832 uint flags) 1833 { 1834 struct xlog_in_core *iclog = NULL; 1835 struct xfs_log_iovec *vecp; 1836 struct xfs_log_vec *lv; 1837 int len; 1838 int index; 1839 int partial_copy = 0; 1840 int partial_copy_len = 0; 1841 int contwr = 0; 1842 int record_cnt = 0; 1843 int data_cnt = 0; 1844 int error; 1845 1846 *start_lsn = 0; 1847 1848 len = xlog_write_calc_vec_length(ticket, log_vector); 1849 if (log->l_cilp) { 1850 /* 1851 * Region headers and bytes are already accounted for. 1852 * We only need to take into account start records and 1853 * split regions in this function. 1854 */ 1855 if (ticket->t_flags & XLOG_TIC_INITED) 1856 ticket->t_curr_res -= sizeof(xlog_op_header_t); 1857 1858 /* 1859 * Commit record headers need to be accounted for. These 1860 * come in as separate writes so are easy to detect. 1861 */ 1862 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 1863 ticket->t_curr_res -= sizeof(xlog_op_header_t); 1864 } else 1865 ticket->t_curr_res -= len; 1866 1867 if (ticket->t_curr_res < 0) 1868 xlog_print_tic_res(log->l_mp, ticket); 1869 1870 index = 0; 1871 lv = log_vector; 1872 vecp = lv->lv_iovecp; 1873 while (lv && index < lv->lv_niovecs) { 1874 void *ptr; 1875 int log_offset; 1876 1877 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 1878 &contwr, &log_offset); 1879 if (error) 1880 return error; 1881 1882 ASSERT(log_offset <= iclog->ic_size - 1); 1883 ptr = iclog->ic_datap + log_offset; 1884 1885 /* start_lsn is the first lsn written to. That's all we need. */ 1886 if (!*start_lsn) 1887 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 1888 1889 /* 1890 * This loop writes out as many regions as can fit in the amount 1891 * of space which was allocated by xlog_state_get_iclog_space(). 1892 */ 1893 while (lv && index < lv->lv_niovecs) { 1894 struct xfs_log_iovec *reg = &vecp[index]; 1895 struct xlog_op_header *ophdr; 1896 int start_rec_copy; 1897 int copy_len; 1898 int copy_off; 1899 1900 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 1901 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 1902 1903 start_rec_copy = xlog_write_start_rec(ptr, ticket); 1904 if (start_rec_copy) { 1905 record_cnt++; 1906 xlog_write_adv_cnt(&ptr, &len, &log_offset, 1907 start_rec_copy); 1908 } 1909 1910 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 1911 if (!ophdr) 1912 return XFS_ERROR(EIO); 1913 1914 xlog_write_adv_cnt(&ptr, &len, &log_offset, 1915 sizeof(struct xlog_op_header)); 1916 1917 len += xlog_write_setup_copy(ticket, ophdr, 1918 iclog->ic_size-log_offset, 1919 reg->i_len, 1920 ©_off, ©_len, 1921 &partial_copy, 1922 &partial_copy_len); 1923 xlog_verify_dest_ptr(log, ptr); 1924 1925 /* copy region */ 1926 ASSERT(copy_len >= 0); 1927 memcpy(ptr, reg->i_addr + copy_off, copy_len); 1928 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 1929 1930 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 1931 record_cnt++; 1932 data_cnt += contwr ? copy_len : 0; 1933 1934 error = xlog_write_copy_finish(log, iclog, flags, 1935 &record_cnt, &data_cnt, 1936 &partial_copy, 1937 &partial_copy_len, 1938 log_offset, 1939 commit_iclog); 1940 if (error) 1941 return error; 1942 1943 /* 1944 * if we had a partial copy, we need to get more iclog 1945 * space but we don't want to increment the region 1946 * index because there is still more is this region to 1947 * write. 1948 * 1949 * If we completed writing this region, and we flushed 1950 * the iclog (indicated by resetting of the record 1951 * count), then we also need to get more log space. If 1952 * this was the last record, though, we are done and 1953 * can just return. 1954 */ 1955 if (partial_copy) 1956 break; 1957 1958 if (++index == lv->lv_niovecs) { 1959 lv = lv->lv_next; 1960 index = 0; 1961 if (lv) 1962 vecp = lv->lv_iovecp; 1963 } 1964 if (record_cnt == 0) { 1965 if (!lv) 1966 return 0; 1967 break; 1968 } 1969 } 1970 } 1971 1972 ASSERT(len == 0); 1973 1974 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 1975 if (!commit_iclog) 1976 return xlog_state_release_iclog(log, iclog); 1977 1978 ASSERT(flags & XLOG_COMMIT_TRANS); 1979 *commit_iclog = iclog; 1980 return 0; 1981 } 1982 1983 1984 /***************************************************************************** 1985 * 1986 * State Machine functions 1987 * 1988 ***************************************************************************** 1989 */ 1990 1991 /* Clean iclogs starting from the head. This ordering must be 1992 * maintained, so an iclog doesn't become ACTIVE beyond one that 1993 * is SYNCING. This is also required to maintain the notion that we use 1994 * a ordered wait queue to hold off would be writers to the log when every 1995 * iclog is trying to sync to disk. 1996 * 1997 * State Change: DIRTY -> ACTIVE 1998 */ 1999 STATIC void 2000 xlog_state_clean_log(xlog_t *log) 2001 { 2002 xlog_in_core_t *iclog; 2003 int changed = 0; 2004 2005 iclog = log->l_iclog; 2006 do { 2007 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2008 iclog->ic_state = XLOG_STATE_ACTIVE; 2009 iclog->ic_offset = 0; 2010 ASSERT(iclog->ic_callback == NULL); 2011 /* 2012 * If the number of ops in this iclog indicate it just 2013 * contains the dummy transaction, we can 2014 * change state into IDLE (the second time around). 2015 * Otherwise we should change the state into 2016 * NEED a dummy. 2017 * We don't need to cover the dummy. 2018 */ 2019 if (!changed && 2020 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2021 XLOG_COVER_OPS)) { 2022 changed = 1; 2023 } else { 2024 /* 2025 * We have two dirty iclogs so start over 2026 * This could also be num of ops indicates 2027 * this is not the dummy going out. 2028 */ 2029 changed = 2; 2030 } 2031 iclog->ic_header.h_num_logops = 0; 2032 memset(iclog->ic_header.h_cycle_data, 0, 2033 sizeof(iclog->ic_header.h_cycle_data)); 2034 iclog->ic_header.h_lsn = 0; 2035 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2036 /* do nothing */; 2037 else 2038 break; /* stop cleaning */ 2039 iclog = iclog->ic_next; 2040 } while (iclog != log->l_iclog); 2041 2042 /* log is locked when we are called */ 2043 /* 2044 * Change state for the dummy log recording. 2045 * We usually go to NEED. But we go to NEED2 if the changed indicates 2046 * we are done writing the dummy record. 2047 * If we are done with the second dummy recored (DONE2), then 2048 * we go to IDLE. 2049 */ 2050 if (changed) { 2051 switch (log->l_covered_state) { 2052 case XLOG_STATE_COVER_IDLE: 2053 case XLOG_STATE_COVER_NEED: 2054 case XLOG_STATE_COVER_NEED2: 2055 log->l_covered_state = XLOG_STATE_COVER_NEED; 2056 break; 2057 2058 case XLOG_STATE_COVER_DONE: 2059 if (changed == 1) 2060 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2061 else 2062 log->l_covered_state = XLOG_STATE_COVER_NEED; 2063 break; 2064 2065 case XLOG_STATE_COVER_DONE2: 2066 if (changed == 1) 2067 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2068 else 2069 log->l_covered_state = XLOG_STATE_COVER_NEED; 2070 break; 2071 2072 default: 2073 ASSERT(0); 2074 } 2075 } 2076 } /* xlog_state_clean_log */ 2077 2078 STATIC xfs_lsn_t 2079 xlog_get_lowest_lsn( 2080 xlog_t *log) 2081 { 2082 xlog_in_core_t *lsn_log; 2083 xfs_lsn_t lowest_lsn, lsn; 2084 2085 lsn_log = log->l_iclog; 2086 lowest_lsn = 0; 2087 do { 2088 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2089 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2090 if ((lsn && !lowest_lsn) || 2091 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2092 lowest_lsn = lsn; 2093 } 2094 } 2095 lsn_log = lsn_log->ic_next; 2096 } while (lsn_log != log->l_iclog); 2097 return lowest_lsn; 2098 } 2099 2100 2101 STATIC void 2102 xlog_state_do_callback( 2103 xlog_t *log, 2104 int aborted, 2105 xlog_in_core_t *ciclog) 2106 { 2107 xlog_in_core_t *iclog; 2108 xlog_in_core_t *first_iclog; /* used to know when we've 2109 * processed all iclogs once */ 2110 xfs_log_callback_t *cb, *cb_next; 2111 int flushcnt = 0; 2112 xfs_lsn_t lowest_lsn; 2113 int ioerrors; /* counter: iclogs with errors */ 2114 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2115 int funcdidcallbacks; /* flag: function did callbacks */ 2116 int repeats; /* for issuing console warnings if 2117 * looping too many times */ 2118 int wake = 0; 2119 2120 spin_lock(&log->l_icloglock); 2121 first_iclog = iclog = log->l_iclog; 2122 ioerrors = 0; 2123 funcdidcallbacks = 0; 2124 repeats = 0; 2125 2126 do { 2127 /* 2128 * Scan all iclogs starting with the one pointed to by the 2129 * log. Reset this starting point each time the log is 2130 * unlocked (during callbacks). 2131 * 2132 * Keep looping through iclogs until one full pass is made 2133 * without running any callbacks. 2134 */ 2135 first_iclog = log->l_iclog; 2136 iclog = log->l_iclog; 2137 loopdidcallbacks = 0; 2138 repeats++; 2139 2140 do { 2141 2142 /* skip all iclogs in the ACTIVE & DIRTY states */ 2143 if (iclog->ic_state & 2144 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2145 iclog = iclog->ic_next; 2146 continue; 2147 } 2148 2149 /* 2150 * Between marking a filesystem SHUTDOWN and stopping 2151 * the log, we do flush all iclogs to disk (if there 2152 * wasn't a log I/O error). So, we do want things to 2153 * go smoothly in case of just a SHUTDOWN w/o a 2154 * LOG_IO_ERROR. 2155 */ 2156 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2157 /* 2158 * Can only perform callbacks in order. Since 2159 * this iclog is not in the DONE_SYNC/ 2160 * DO_CALLBACK state, we skip the rest and 2161 * just try to clean up. If we set our iclog 2162 * to DO_CALLBACK, we will not process it when 2163 * we retry since a previous iclog is in the 2164 * CALLBACK and the state cannot change since 2165 * we are holding the l_icloglock. 2166 */ 2167 if (!(iclog->ic_state & 2168 (XLOG_STATE_DONE_SYNC | 2169 XLOG_STATE_DO_CALLBACK))) { 2170 if (ciclog && (ciclog->ic_state == 2171 XLOG_STATE_DONE_SYNC)) { 2172 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2173 } 2174 break; 2175 } 2176 /* 2177 * We now have an iclog that is in either the 2178 * DO_CALLBACK or DONE_SYNC states. The other 2179 * states (WANT_SYNC, SYNCING, or CALLBACK were 2180 * caught by the above if and are going to 2181 * clean (i.e. we aren't doing their callbacks) 2182 * see the above if. 2183 */ 2184 2185 /* 2186 * We will do one more check here to see if we 2187 * have chased our tail around. 2188 */ 2189 2190 lowest_lsn = xlog_get_lowest_lsn(log); 2191 if (lowest_lsn && 2192 XFS_LSN_CMP(lowest_lsn, 2193 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2194 iclog = iclog->ic_next; 2195 continue; /* Leave this iclog for 2196 * another thread */ 2197 } 2198 2199 iclog->ic_state = XLOG_STATE_CALLBACK; 2200 2201 2202 /* 2203 * update the last_sync_lsn before we drop the 2204 * icloglock to ensure we are the only one that 2205 * can update it. 2206 */ 2207 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2208 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2209 atomic64_set(&log->l_last_sync_lsn, 2210 be64_to_cpu(iclog->ic_header.h_lsn)); 2211 2212 } else 2213 ioerrors++; 2214 2215 spin_unlock(&log->l_icloglock); 2216 2217 /* 2218 * Keep processing entries in the callback list until 2219 * we come around and it is empty. We need to 2220 * atomically see that the list is empty and change the 2221 * state to DIRTY so that we don't miss any more 2222 * callbacks being added. 2223 */ 2224 spin_lock(&iclog->ic_callback_lock); 2225 cb = iclog->ic_callback; 2226 while (cb) { 2227 iclog->ic_callback_tail = &(iclog->ic_callback); 2228 iclog->ic_callback = NULL; 2229 spin_unlock(&iclog->ic_callback_lock); 2230 2231 /* perform callbacks in the order given */ 2232 for (; cb; cb = cb_next) { 2233 cb_next = cb->cb_next; 2234 cb->cb_func(cb->cb_arg, aborted); 2235 } 2236 spin_lock(&iclog->ic_callback_lock); 2237 cb = iclog->ic_callback; 2238 } 2239 2240 loopdidcallbacks++; 2241 funcdidcallbacks++; 2242 2243 spin_lock(&log->l_icloglock); 2244 ASSERT(iclog->ic_callback == NULL); 2245 spin_unlock(&iclog->ic_callback_lock); 2246 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2247 iclog->ic_state = XLOG_STATE_DIRTY; 2248 2249 /* 2250 * Transition from DIRTY to ACTIVE if applicable. 2251 * NOP if STATE_IOERROR. 2252 */ 2253 xlog_state_clean_log(log); 2254 2255 /* wake up threads waiting in xfs_log_force() */ 2256 wake_up_all(&iclog->ic_force_wait); 2257 2258 iclog = iclog->ic_next; 2259 } while (first_iclog != iclog); 2260 2261 if (repeats > 5000) { 2262 flushcnt += repeats; 2263 repeats = 0; 2264 xfs_warn(log->l_mp, 2265 "%s: possible infinite loop (%d iterations)", 2266 __func__, flushcnt); 2267 } 2268 } while (!ioerrors && loopdidcallbacks); 2269 2270 /* 2271 * make one last gasp attempt to see if iclogs are being left in 2272 * limbo.. 2273 */ 2274 #ifdef DEBUG 2275 if (funcdidcallbacks) { 2276 first_iclog = iclog = log->l_iclog; 2277 do { 2278 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2279 /* 2280 * Terminate the loop if iclogs are found in states 2281 * which will cause other threads to clean up iclogs. 2282 * 2283 * SYNCING - i/o completion will go through logs 2284 * DONE_SYNC - interrupt thread should be waiting for 2285 * l_icloglock 2286 * IOERROR - give up hope all ye who enter here 2287 */ 2288 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2289 iclog->ic_state == XLOG_STATE_SYNCING || 2290 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2291 iclog->ic_state == XLOG_STATE_IOERROR ) 2292 break; 2293 iclog = iclog->ic_next; 2294 } while (first_iclog != iclog); 2295 } 2296 #endif 2297 2298 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2299 wake = 1; 2300 spin_unlock(&log->l_icloglock); 2301 2302 if (wake) 2303 wake_up_all(&log->l_flush_wait); 2304 } 2305 2306 2307 /* 2308 * Finish transitioning this iclog to the dirty state. 2309 * 2310 * Make sure that we completely execute this routine only when this is 2311 * the last call to the iclog. There is a good chance that iclog flushes, 2312 * when we reach the end of the physical log, get turned into 2 separate 2313 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2314 * routine. By using the reference count bwritecnt, we guarantee that only 2315 * the second completion goes through. 2316 * 2317 * Callbacks could take time, so they are done outside the scope of the 2318 * global state machine log lock. 2319 */ 2320 STATIC void 2321 xlog_state_done_syncing( 2322 xlog_in_core_t *iclog, 2323 int aborted) 2324 { 2325 xlog_t *log = iclog->ic_log; 2326 2327 spin_lock(&log->l_icloglock); 2328 2329 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2330 iclog->ic_state == XLOG_STATE_IOERROR); 2331 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2332 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2333 2334 2335 /* 2336 * If we got an error, either on the first buffer, or in the case of 2337 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2338 * and none should ever be attempted to be written to disk 2339 * again. 2340 */ 2341 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2342 if (--iclog->ic_bwritecnt == 1) { 2343 spin_unlock(&log->l_icloglock); 2344 return; 2345 } 2346 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2347 } 2348 2349 /* 2350 * Someone could be sleeping prior to writing out the next 2351 * iclog buffer, we wake them all, one will get to do the 2352 * I/O, the others get to wait for the result. 2353 */ 2354 wake_up_all(&iclog->ic_write_wait); 2355 spin_unlock(&log->l_icloglock); 2356 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2357 } /* xlog_state_done_syncing */ 2358 2359 2360 /* 2361 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2362 * sleep. We wait on the flush queue on the head iclog as that should be 2363 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2364 * we will wait here and all new writes will sleep until a sync completes. 2365 * 2366 * The in-core logs are used in a circular fashion. They are not used 2367 * out-of-order even when an iclog past the head is free. 2368 * 2369 * return: 2370 * * log_offset where xlog_write() can start writing into the in-core 2371 * log's data space. 2372 * * in-core log pointer to which xlog_write() should write. 2373 * * boolean indicating this is a continued write to an in-core log. 2374 * If this is the last write, then the in-core log's offset field 2375 * needs to be incremented, depending on the amount of data which 2376 * is copied. 2377 */ 2378 STATIC int 2379 xlog_state_get_iclog_space(xlog_t *log, 2380 int len, 2381 xlog_in_core_t **iclogp, 2382 xlog_ticket_t *ticket, 2383 int *continued_write, 2384 int *logoffsetp) 2385 { 2386 int log_offset; 2387 xlog_rec_header_t *head; 2388 xlog_in_core_t *iclog; 2389 int error; 2390 2391 restart: 2392 spin_lock(&log->l_icloglock); 2393 if (XLOG_FORCED_SHUTDOWN(log)) { 2394 spin_unlock(&log->l_icloglock); 2395 return XFS_ERROR(EIO); 2396 } 2397 2398 iclog = log->l_iclog; 2399 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2400 XFS_STATS_INC(xs_log_noiclogs); 2401 2402 /* Wait for log writes to have flushed */ 2403 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2404 goto restart; 2405 } 2406 2407 head = &iclog->ic_header; 2408 2409 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2410 log_offset = iclog->ic_offset; 2411 2412 /* On the 1st write to an iclog, figure out lsn. This works 2413 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2414 * committing to. If the offset is set, that's how many blocks 2415 * must be written. 2416 */ 2417 if (log_offset == 0) { 2418 ticket->t_curr_res -= log->l_iclog_hsize; 2419 xlog_tic_add_region(ticket, 2420 log->l_iclog_hsize, 2421 XLOG_REG_TYPE_LRHEADER); 2422 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2423 head->h_lsn = cpu_to_be64( 2424 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2425 ASSERT(log->l_curr_block >= 0); 2426 } 2427 2428 /* If there is enough room to write everything, then do it. Otherwise, 2429 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2430 * bit is on, so this will get flushed out. Don't update ic_offset 2431 * until you know exactly how many bytes get copied. Therefore, wait 2432 * until later to update ic_offset. 2433 * 2434 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2435 * can fit into remaining data section. 2436 */ 2437 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2438 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2439 2440 /* 2441 * If I'm the only one writing to this iclog, sync it to disk. 2442 * We need to do an atomic compare and decrement here to avoid 2443 * racing with concurrent atomic_dec_and_lock() calls in 2444 * xlog_state_release_iclog() when there is more than one 2445 * reference to the iclog. 2446 */ 2447 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2448 /* we are the only one */ 2449 spin_unlock(&log->l_icloglock); 2450 error = xlog_state_release_iclog(log, iclog); 2451 if (error) 2452 return error; 2453 } else { 2454 spin_unlock(&log->l_icloglock); 2455 } 2456 goto restart; 2457 } 2458 2459 /* Do we have enough room to write the full amount in the remainder 2460 * of this iclog? Or must we continue a write on the next iclog and 2461 * mark this iclog as completely taken? In the case where we switch 2462 * iclogs (to mark it taken), this particular iclog will release/sync 2463 * to disk in xlog_write(). 2464 */ 2465 if (len <= iclog->ic_size - iclog->ic_offset) { 2466 *continued_write = 0; 2467 iclog->ic_offset += len; 2468 } else { 2469 *continued_write = 1; 2470 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2471 } 2472 *iclogp = iclog; 2473 2474 ASSERT(iclog->ic_offset <= iclog->ic_size); 2475 spin_unlock(&log->l_icloglock); 2476 2477 *logoffsetp = log_offset; 2478 return 0; 2479 } /* xlog_state_get_iclog_space */ 2480 2481 /* 2482 * Atomically get the log space required for a log ticket. 2483 * 2484 * Once a ticket gets put onto the reserveq, it will only return after 2485 * the needed reservation is satisfied. 2486 * 2487 * This function is structured so that it has a lock free fast path. This is 2488 * necessary because every new transaction reservation will come through this 2489 * path. Hence any lock will be globally hot if we take it unconditionally on 2490 * every pass. 2491 * 2492 * As tickets are only ever moved on and off the reserveq under the 2493 * l_grant_reserve_lock, we only need to take that lock if we are going 2494 * to add the ticket to the queue and sleep. We can avoid taking the lock if the 2495 * ticket was never added to the reserveq because the t_queue list head will be 2496 * empty and we hold the only reference to it so it can safely be checked 2497 * unlocked. 2498 */ 2499 STATIC int 2500 xlog_grant_log_space(xlog_t *log, 2501 xlog_ticket_t *tic) 2502 { 2503 int free_bytes; 2504 int need_bytes; 2505 2506 #ifdef DEBUG 2507 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 2508 panic("grant Recovery problem"); 2509 #endif 2510 2511 trace_xfs_log_grant_enter(log, tic); 2512 2513 need_bytes = tic->t_unit_res; 2514 if (tic->t_flags & XFS_LOG_PERM_RESERV) 2515 need_bytes *= tic->t_ocnt; 2516 2517 /* something is already sleeping; insert new transaction at end */ 2518 if (!list_empty_careful(&log->l_reserveq)) { 2519 spin_lock(&log->l_grant_reserve_lock); 2520 /* recheck the queue now we are locked */ 2521 if (list_empty(&log->l_reserveq)) { 2522 spin_unlock(&log->l_grant_reserve_lock); 2523 goto redo; 2524 } 2525 list_add_tail(&tic->t_queue, &log->l_reserveq); 2526 2527 trace_xfs_log_grant_sleep1(log, tic); 2528 2529 /* 2530 * Gotta check this before going to sleep, while we're 2531 * holding the grant lock. 2532 */ 2533 if (XLOG_FORCED_SHUTDOWN(log)) 2534 goto error_return; 2535 2536 XFS_STATS_INC(xs_sleep_logspace); 2537 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock); 2538 2539 /* 2540 * If we got an error, and the filesystem is shutting down, 2541 * we'll catch it down below. So just continue... 2542 */ 2543 trace_xfs_log_grant_wake1(log, tic); 2544 } 2545 2546 redo: 2547 if (XLOG_FORCED_SHUTDOWN(log)) 2548 goto error_return_unlocked; 2549 2550 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); 2551 if (free_bytes < need_bytes) { 2552 spin_lock(&log->l_grant_reserve_lock); 2553 if (list_empty(&tic->t_queue)) 2554 list_add_tail(&tic->t_queue, &log->l_reserveq); 2555 2556 trace_xfs_log_grant_sleep2(log, tic); 2557 2558 if (XLOG_FORCED_SHUTDOWN(log)) 2559 goto error_return; 2560 2561 xlog_grant_push_ail(log, need_bytes); 2562 2563 XFS_STATS_INC(xs_sleep_logspace); 2564 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock); 2565 2566 trace_xfs_log_grant_wake2(log, tic); 2567 goto redo; 2568 } 2569 2570 if (!list_empty(&tic->t_queue)) { 2571 spin_lock(&log->l_grant_reserve_lock); 2572 list_del_init(&tic->t_queue); 2573 spin_unlock(&log->l_grant_reserve_lock); 2574 } 2575 2576 /* we've got enough space */ 2577 xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes); 2578 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes); 2579 trace_xfs_log_grant_exit(log, tic); 2580 xlog_verify_grant_tail(log); 2581 return 0; 2582 2583 error_return_unlocked: 2584 spin_lock(&log->l_grant_reserve_lock); 2585 error_return: 2586 list_del_init(&tic->t_queue); 2587 spin_unlock(&log->l_grant_reserve_lock); 2588 trace_xfs_log_grant_error(log, tic); 2589 2590 /* 2591 * If we are failing, make sure the ticket doesn't have any 2592 * current reservations. We don't want to add this back when 2593 * the ticket/transaction gets cancelled. 2594 */ 2595 tic->t_curr_res = 0; 2596 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 2597 return XFS_ERROR(EIO); 2598 } /* xlog_grant_log_space */ 2599 2600 2601 /* 2602 * Replenish the byte reservation required by moving the grant write head. 2603 * 2604 * Similar to xlog_grant_log_space, the function is structured to have a lock 2605 * free fast path. 2606 */ 2607 STATIC int 2608 xlog_regrant_write_log_space(xlog_t *log, 2609 xlog_ticket_t *tic) 2610 { 2611 int free_bytes, need_bytes; 2612 2613 tic->t_curr_res = tic->t_unit_res; 2614 xlog_tic_reset_res(tic); 2615 2616 if (tic->t_cnt > 0) 2617 return 0; 2618 2619 #ifdef DEBUG 2620 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 2621 panic("regrant Recovery problem"); 2622 #endif 2623 2624 trace_xfs_log_regrant_write_enter(log, tic); 2625 if (XLOG_FORCED_SHUTDOWN(log)) 2626 goto error_return_unlocked; 2627 2628 /* If there are other waiters on the queue then give them a 2629 * chance at logspace before us. Wake up the first waiters, 2630 * if we do not wake up all the waiters then go to sleep waiting 2631 * for more free space, otherwise try to get some space for 2632 * this transaction. 2633 */ 2634 need_bytes = tic->t_unit_res; 2635 if (!list_empty_careful(&log->l_writeq)) { 2636 struct xlog_ticket *ntic; 2637 2638 spin_lock(&log->l_grant_write_lock); 2639 free_bytes = xlog_space_left(log, &log->l_grant_write_head); 2640 list_for_each_entry(ntic, &log->l_writeq, t_queue) { 2641 ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV); 2642 2643 if (free_bytes < ntic->t_unit_res) 2644 break; 2645 free_bytes -= ntic->t_unit_res; 2646 wake_up(&ntic->t_wait); 2647 } 2648 2649 if (ntic != list_first_entry(&log->l_writeq, 2650 struct xlog_ticket, t_queue)) { 2651 if (list_empty(&tic->t_queue)) 2652 list_add_tail(&tic->t_queue, &log->l_writeq); 2653 trace_xfs_log_regrant_write_sleep1(log, tic); 2654 2655 xlog_grant_push_ail(log, need_bytes); 2656 2657 XFS_STATS_INC(xs_sleep_logspace); 2658 xlog_wait(&tic->t_wait, &log->l_grant_write_lock); 2659 trace_xfs_log_regrant_write_wake1(log, tic); 2660 } else 2661 spin_unlock(&log->l_grant_write_lock); 2662 } 2663 2664 redo: 2665 if (XLOG_FORCED_SHUTDOWN(log)) 2666 goto error_return_unlocked; 2667 2668 free_bytes = xlog_space_left(log, &log->l_grant_write_head); 2669 if (free_bytes < need_bytes) { 2670 spin_lock(&log->l_grant_write_lock); 2671 if (list_empty(&tic->t_queue)) 2672 list_add_tail(&tic->t_queue, &log->l_writeq); 2673 2674 if (XLOG_FORCED_SHUTDOWN(log)) 2675 goto error_return; 2676 2677 xlog_grant_push_ail(log, need_bytes); 2678 2679 XFS_STATS_INC(xs_sleep_logspace); 2680 trace_xfs_log_regrant_write_sleep2(log, tic); 2681 xlog_wait(&tic->t_wait, &log->l_grant_write_lock); 2682 2683 trace_xfs_log_regrant_write_wake2(log, tic); 2684 goto redo; 2685 } 2686 2687 if (!list_empty(&tic->t_queue)) { 2688 spin_lock(&log->l_grant_write_lock); 2689 list_del_init(&tic->t_queue); 2690 spin_unlock(&log->l_grant_write_lock); 2691 } 2692 2693 /* we've got enough space */ 2694 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes); 2695 trace_xfs_log_regrant_write_exit(log, tic); 2696 xlog_verify_grant_tail(log); 2697 return 0; 2698 2699 2700 error_return_unlocked: 2701 spin_lock(&log->l_grant_write_lock); 2702 error_return: 2703 list_del_init(&tic->t_queue); 2704 spin_unlock(&log->l_grant_write_lock); 2705 trace_xfs_log_regrant_write_error(log, tic); 2706 2707 /* 2708 * If we are failing, make sure the ticket doesn't have any 2709 * current reservations. We don't want to add this back when 2710 * the ticket/transaction gets cancelled. 2711 */ 2712 tic->t_curr_res = 0; 2713 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 2714 return XFS_ERROR(EIO); 2715 } /* xlog_regrant_write_log_space */ 2716 2717 2718 /* The first cnt-1 times through here we don't need to 2719 * move the grant write head because the permanent 2720 * reservation has reserved cnt times the unit amount. 2721 * Release part of current permanent unit reservation and 2722 * reset current reservation to be one units worth. Also 2723 * move grant reservation head forward. 2724 */ 2725 STATIC void 2726 xlog_regrant_reserve_log_space(xlog_t *log, 2727 xlog_ticket_t *ticket) 2728 { 2729 trace_xfs_log_regrant_reserve_enter(log, ticket); 2730 2731 if (ticket->t_cnt > 0) 2732 ticket->t_cnt--; 2733 2734 xlog_grant_sub_space(log, &log->l_grant_reserve_head, 2735 ticket->t_curr_res); 2736 xlog_grant_sub_space(log, &log->l_grant_write_head, 2737 ticket->t_curr_res); 2738 ticket->t_curr_res = ticket->t_unit_res; 2739 xlog_tic_reset_res(ticket); 2740 2741 trace_xfs_log_regrant_reserve_sub(log, ticket); 2742 2743 /* just return if we still have some of the pre-reserved space */ 2744 if (ticket->t_cnt > 0) 2745 return; 2746 2747 xlog_grant_add_space(log, &log->l_grant_reserve_head, 2748 ticket->t_unit_res); 2749 2750 trace_xfs_log_regrant_reserve_exit(log, ticket); 2751 2752 ticket->t_curr_res = ticket->t_unit_res; 2753 xlog_tic_reset_res(ticket); 2754 } /* xlog_regrant_reserve_log_space */ 2755 2756 2757 /* 2758 * Give back the space left from a reservation. 2759 * 2760 * All the information we need to make a correct determination of space left 2761 * is present. For non-permanent reservations, things are quite easy. The 2762 * count should have been decremented to zero. We only need to deal with the 2763 * space remaining in the current reservation part of the ticket. If the 2764 * ticket contains a permanent reservation, there may be left over space which 2765 * needs to be released. A count of N means that N-1 refills of the current 2766 * reservation can be done before we need to ask for more space. The first 2767 * one goes to fill up the first current reservation. Once we run out of 2768 * space, the count will stay at zero and the only space remaining will be 2769 * in the current reservation field. 2770 */ 2771 STATIC void 2772 xlog_ungrant_log_space(xlog_t *log, 2773 xlog_ticket_t *ticket) 2774 { 2775 int bytes; 2776 2777 if (ticket->t_cnt > 0) 2778 ticket->t_cnt--; 2779 2780 trace_xfs_log_ungrant_enter(log, ticket); 2781 trace_xfs_log_ungrant_sub(log, ticket); 2782 2783 /* 2784 * If this is a permanent reservation ticket, we may be able to free 2785 * up more space based on the remaining count. 2786 */ 2787 bytes = ticket->t_curr_res; 2788 if (ticket->t_cnt > 0) { 2789 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2790 bytes += ticket->t_unit_res*ticket->t_cnt; 2791 } 2792 2793 xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes); 2794 xlog_grant_sub_space(log, &log->l_grant_write_head, bytes); 2795 2796 trace_xfs_log_ungrant_exit(log, ticket); 2797 2798 xfs_log_move_tail(log->l_mp, 1); 2799 } /* xlog_ungrant_log_space */ 2800 2801 2802 /* 2803 * Flush iclog to disk if this is the last reference to the given iclog and 2804 * the WANT_SYNC bit is set. 2805 * 2806 * When this function is entered, the iclog is not necessarily in the 2807 * WANT_SYNC state. It may be sitting around waiting to get filled. 2808 * 2809 * 2810 */ 2811 STATIC int 2812 xlog_state_release_iclog( 2813 xlog_t *log, 2814 xlog_in_core_t *iclog) 2815 { 2816 int sync = 0; /* do we sync? */ 2817 2818 if (iclog->ic_state & XLOG_STATE_IOERROR) 2819 return XFS_ERROR(EIO); 2820 2821 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 2822 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 2823 return 0; 2824 2825 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2826 spin_unlock(&log->l_icloglock); 2827 return XFS_ERROR(EIO); 2828 } 2829 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 2830 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2831 2832 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 2833 /* update tail before writing to iclog */ 2834 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 2835 sync++; 2836 iclog->ic_state = XLOG_STATE_SYNCING; 2837 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 2838 xlog_verify_tail_lsn(log, iclog, tail_lsn); 2839 /* cycle incremented when incrementing curr_block */ 2840 } 2841 spin_unlock(&log->l_icloglock); 2842 2843 /* 2844 * We let the log lock go, so it's possible that we hit a log I/O 2845 * error or some other SHUTDOWN condition that marks the iclog 2846 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 2847 * this iclog has consistent data, so we ignore IOERROR 2848 * flags after this point. 2849 */ 2850 if (sync) 2851 return xlog_sync(log, iclog); 2852 return 0; 2853 } /* xlog_state_release_iclog */ 2854 2855 2856 /* 2857 * This routine will mark the current iclog in the ring as WANT_SYNC 2858 * and move the current iclog pointer to the next iclog in the ring. 2859 * When this routine is called from xlog_state_get_iclog_space(), the 2860 * exact size of the iclog has not yet been determined. All we know is 2861 * that every data block. We have run out of space in this log record. 2862 */ 2863 STATIC void 2864 xlog_state_switch_iclogs(xlog_t *log, 2865 xlog_in_core_t *iclog, 2866 int eventual_size) 2867 { 2868 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 2869 if (!eventual_size) 2870 eventual_size = iclog->ic_offset; 2871 iclog->ic_state = XLOG_STATE_WANT_SYNC; 2872 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 2873 log->l_prev_block = log->l_curr_block; 2874 log->l_prev_cycle = log->l_curr_cycle; 2875 2876 /* roll log?: ic_offset changed later */ 2877 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 2878 2879 /* Round up to next log-sunit */ 2880 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 2881 log->l_mp->m_sb.sb_logsunit > 1) { 2882 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 2883 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 2884 } 2885 2886 if (log->l_curr_block >= log->l_logBBsize) { 2887 log->l_curr_cycle++; 2888 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 2889 log->l_curr_cycle++; 2890 log->l_curr_block -= log->l_logBBsize; 2891 ASSERT(log->l_curr_block >= 0); 2892 } 2893 ASSERT(iclog == log->l_iclog); 2894 log->l_iclog = iclog->ic_next; 2895 } /* xlog_state_switch_iclogs */ 2896 2897 /* 2898 * Write out all data in the in-core log as of this exact moment in time. 2899 * 2900 * Data may be written to the in-core log during this call. However, 2901 * we don't guarantee this data will be written out. A change from past 2902 * implementation means this routine will *not* write out zero length LRs. 2903 * 2904 * Basically, we try and perform an intelligent scan of the in-core logs. 2905 * If we determine there is no flushable data, we just return. There is no 2906 * flushable data if: 2907 * 2908 * 1. the current iclog is active and has no data; the previous iclog 2909 * is in the active or dirty state. 2910 * 2. the current iclog is drity, and the previous iclog is in the 2911 * active or dirty state. 2912 * 2913 * We may sleep if: 2914 * 2915 * 1. the current iclog is not in the active nor dirty state. 2916 * 2. the current iclog dirty, and the previous iclog is not in the 2917 * active nor dirty state. 2918 * 3. the current iclog is active, and there is another thread writing 2919 * to this particular iclog. 2920 * 4. a) the current iclog is active and has no other writers 2921 * b) when we return from flushing out this iclog, it is still 2922 * not in the active nor dirty state. 2923 */ 2924 int 2925 _xfs_log_force( 2926 struct xfs_mount *mp, 2927 uint flags, 2928 int *log_flushed) 2929 { 2930 struct log *log = mp->m_log; 2931 struct xlog_in_core *iclog; 2932 xfs_lsn_t lsn; 2933 2934 XFS_STATS_INC(xs_log_force); 2935 2936 if (log->l_cilp) 2937 xlog_cil_force(log); 2938 2939 spin_lock(&log->l_icloglock); 2940 2941 iclog = log->l_iclog; 2942 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2943 spin_unlock(&log->l_icloglock); 2944 return XFS_ERROR(EIO); 2945 } 2946 2947 /* If the head iclog is not active nor dirty, we just attach 2948 * ourselves to the head and go to sleep. 2949 */ 2950 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2951 iclog->ic_state == XLOG_STATE_DIRTY) { 2952 /* 2953 * If the head is dirty or (active and empty), then 2954 * we need to look at the previous iclog. If the previous 2955 * iclog is active or dirty we are done. There is nothing 2956 * to sync out. Otherwise, we attach ourselves to the 2957 * previous iclog and go to sleep. 2958 */ 2959 if (iclog->ic_state == XLOG_STATE_DIRTY || 2960 (atomic_read(&iclog->ic_refcnt) == 0 2961 && iclog->ic_offset == 0)) { 2962 iclog = iclog->ic_prev; 2963 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2964 iclog->ic_state == XLOG_STATE_DIRTY) 2965 goto no_sleep; 2966 else 2967 goto maybe_sleep; 2968 } else { 2969 if (atomic_read(&iclog->ic_refcnt) == 0) { 2970 /* We are the only one with access to this 2971 * iclog. Flush it out now. There should 2972 * be a roundoff of zero to show that someone 2973 * has already taken care of the roundoff from 2974 * the previous sync. 2975 */ 2976 atomic_inc(&iclog->ic_refcnt); 2977 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2978 xlog_state_switch_iclogs(log, iclog, 0); 2979 spin_unlock(&log->l_icloglock); 2980 2981 if (xlog_state_release_iclog(log, iclog)) 2982 return XFS_ERROR(EIO); 2983 2984 if (log_flushed) 2985 *log_flushed = 1; 2986 spin_lock(&log->l_icloglock); 2987 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 2988 iclog->ic_state != XLOG_STATE_DIRTY) 2989 goto maybe_sleep; 2990 else 2991 goto no_sleep; 2992 } else { 2993 /* Someone else is writing to this iclog. 2994 * Use its call to flush out the data. However, 2995 * the other thread may not force out this LR, 2996 * so we mark it WANT_SYNC. 2997 */ 2998 xlog_state_switch_iclogs(log, iclog, 0); 2999 goto maybe_sleep; 3000 } 3001 } 3002 } 3003 3004 /* By the time we come around again, the iclog could've been filled 3005 * which would give it another lsn. If we have a new lsn, just 3006 * return because the relevant data has been flushed. 3007 */ 3008 maybe_sleep: 3009 if (flags & XFS_LOG_SYNC) { 3010 /* 3011 * We must check if we're shutting down here, before 3012 * we wait, while we're holding the l_icloglock. 3013 * Then we check again after waking up, in case our 3014 * sleep was disturbed by a bad news. 3015 */ 3016 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3017 spin_unlock(&log->l_icloglock); 3018 return XFS_ERROR(EIO); 3019 } 3020 XFS_STATS_INC(xs_log_force_sleep); 3021 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3022 /* 3023 * No need to grab the log lock here since we're 3024 * only deciding whether or not to return EIO 3025 * and the memory read should be atomic. 3026 */ 3027 if (iclog->ic_state & XLOG_STATE_IOERROR) 3028 return XFS_ERROR(EIO); 3029 if (log_flushed) 3030 *log_flushed = 1; 3031 } else { 3032 3033 no_sleep: 3034 spin_unlock(&log->l_icloglock); 3035 } 3036 return 0; 3037 } 3038 3039 /* 3040 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3041 * about errors or whether the log was flushed or not. This is the normal 3042 * interface to use when trying to unpin items or move the log forward. 3043 */ 3044 void 3045 xfs_log_force( 3046 xfs_mount_t *mp, 3047 uint flags) 3048 { 3049 int error; 3050 3051 error = _xfs_log_force(mp, flags, NULL); 3052 if (error) 3053 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3054 } 3055 3056 /* 3057 * Force the in-core log to disk for a specific LSN. 3058 * 3059 * Find in-core log with lsn. 3060 * If it is in the DIRTY state, just return. 3061 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3062 * state and go to sleep or return. 3063 * If it is in any other state, go to sleep or return. 3064 * 3065 * Synchronous forces are implemented with a signal variable. All callers 3066 * to force a given lsn to disk will wait on a the sv attached to the 3067 * specific in-core log. When given in-core log finally completes its 3068 * write to disk, that thread will wake up all threads waiting on the 3069 * sv. 3070 */ 3071 int 3072 _xfs_log_force_lsn( 3073 struct xfs_mount *mp, 3074 xfs_lsn_t lsn, 3075 uint flags, 3076 int *log_flushed) 3077 { 3078 struct log *log = mp->m_log; 3079 struct xlog_in_core *iclog; 3080 int already_slept = 0; 3081 3082 ASSERT(lsn != 0); 3083 3084 XFS_STATS_INC(xs_log_force); 3085 3086 if (log->l_cilp) { 3087 lsn = xlog_cil_force_lsn(log, lsn); 3088 if (lsn == NULLCOMMITLSN) 3089 return 0; 3090 } 3091 3092 try_again: 3093 spin_lock(&log->l_icloglock); 3094 iclog = log->l_iclog; 3095 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3096 spin_unlock(&log->l_icloglock); 3097 return XFS_ERROR(EIO); 3098 } 3099 3100 do { 3101 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3102 iclog = iclog->ic_next; 3103 continue; 3104 } 3105 3106 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3107 spin_unlock(&log->l_icloglock); 3108 return 0; 3109 } 3110 3111 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3112 /* 3113 * We sleep here if we haven't already slept (e.g. 3114 * this is the first time we've looked at the correct 3115 * iclog buf) and the buffer before us is going to 3116 * be sync'ed. The reason for this is that if we 3117 * are doing sync transactions here, by waiting for 3118 * the previous I/O to complete, we can allow a few 3119 * more transactions into this iclog before we close 3120 * it down. 3121 * 3122 * Otherwise, we mark the buffer WANT_SYNC, and bump 3123 * up the refcnt so we can release the log (which 3124 * drops the ref count). The state switch keeps new 3125 * transaction commits from using this buffer. When 3126 * the current commits finish writing into the buffer, 3127 * the refcount will drop to zero and the buffer will 3128 * go out then. 3129 */ 3130 if (!already_slept && 3131 (iclog->ic_prev->ic_state & 3132 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3133 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3134 3135 XFS_STATS_INC(xs_log_force_sleep); 3136 3137 xlog_wait(&iclog->ic_prev->ic_write_wait, 3138 &log->l_icloglock); 3139 if (log_flushed) 3140 *log_flushed = 1; 3141 already_slept = 1; 3142 goto try_again; 3143 } 3144 atomic_inc(&iclog->ic_refcnt); 3145 xlog_state_switch_iclogs(log, iclog, 0); 3146 spin_unlock(&log->l_icloglock); 3147 if (xlog_state_release_iclog(log, iclog)) 3148 return XFS_ERROR(EIO); 3149 if (log_flushed) 3150 *log_flushed = 1; 3151 spin_lock(&log->l_icloglock); 3152 } 3153 3154 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3155 !(iclog->ic_state & 3156 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3157 /* 3158 * Don't wait on completion if we know that we've 3159 * gotten a log write error. 3160 */ 3161 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3162 spin_unlock(&log->l_icloglock); 3163 return XFS_ERROR(EIO); 3164 } 3165 XFS_STATS_INC(xs_log_force_sleep); 3166 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3167 /* 3168 * No need to grab the log lock here since we're 3169 * only deciding whether or not to return EIO 3170 * and the memory read should be atomic. 3171 */ 3172 if (iclog->ic_state & XLOG_STATE_IOERROR) 3173 return XFS_ERROR(EIO); 3174 3175 if (log_flushed) 3176 *log_flushed = 1; 3177 } else { /* just return */ 3178 spin_unlock(&log->l_icloglock); 3179 } 3180 3181 return 0; 3182 } while (iclog != log->l_iclog); 3183 3184 spin_unlock(&log->l_icloglock); 3185 return 0; 3186 } 3187 3188 /* 3189 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3190 * about errors or whether the log was flushed or not. This is the normal 3191 * interface to use when trying to unpin items or move the log forward. 3192 */ 3193 void 3194 xfs_log_force_lsn( 3195 xfs_mount_t *mp, 3196 xfs_lsn_t lsn, 3197 uint flags) 3198 { 3199 int error; 3200 3201 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3202 if (error) 3203 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3204 } 3205 3206 /* 3207 * Called when we want to mark the current iclog as being ready to sync to 3208 * disk. 3209 */ 3210 STATIC void 3211 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog) 3212 { 3213 assert_spin_locked(&log->l_icloglock); 3214 3215 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3216 xlog_state_switch_iclogs(log, iclog, 0); 3217 } else { 3218 ASSERT(iclog->ic_state & 3219 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3220 } 3221 } 3222 3223 3224 /***************************************************************************** 3225 * 3226 * TICKET functions 3227 * 3228 ***************************************************************************** 3229 */ 3230 3231 /* 3232 * Free a used ticket when its refcount falls to zero. 3233 */ 3234 void 3235 xfs_log_ticket_put( 3236 xlog_ticket_t *ticket) 3237 { 3238 ASSERT(atomic_read(&ticket->t_ref) > 0); 3239 if (atomic_dec_and_test(&ticket->t_ref)) 3240 kmem_zone_free(xfs_log_ticket_zone, ticket); 3241 } 3242 3243 xlog_ticket_t * 3244 xfs_log_ticket_get( 3245 xlog_ticket_t *ticket) 3246 { 3247 ASSERT(atomic_read(&ticket->t_ref) > 0); 3248 atomic_inc(&ticket->t_ref); 3249 return ticket; 3250 } 3251 3252 /* 3253 * Allocate and initialise a new log ticket. 3254 */ 3255 xlog_ticket_t * 3256 xlog_ticket_alloc( 3257 struct log *log, 3258 int unit_bytes, 3259 int cnt, 3260 char client, 3261 uint xflags, 3262 int alloc_flags) 3263 { 3264 struct xlog_ticket *tic; 3265 uint num_headers; 3266 int iclog_space; 3267 3268 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3269 if (!tic) 3270 return NULL; 3271 3272 /* 3273 * Permanent reservations have up to 'cnt'-1 active log operations 3274 * in the log. A unit in this case is the amount of space for one 3275 * of these log operations. Normal reservations have a cnt of 1 3276 * and their unit amount is the total amount of space required. 3277 * 3278 * The following lines of code account for non-transaction data 3279 * which occupy space in the on-disk log. 3280 * 3281 * Normal form of a transaction is: 3282 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3283 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3284 * 3285 * We need to account for all the leadup data and trailer data 3286 * around the transaction data. 3287 * And then we need to account for the worst case in terms of using 3288 * more space. 3289 * The worst case will happen if: 3290 * - the placement of the transaction happens to be such that the 3291 * roundoff is at its maximum 3292 * - the transaction data is synced before the commit record is synced 3293 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3294 * Therefore the commit record is in its own Log Record. 3295 * This can happen as the commit record is called with its 3296 * own region to xlog_write(). 3297 * This then means that in the worst case, roundoff can happen for 3298 * the commit-rec as well. 3299 * The commit-rec is smaller than padding in this scenario and so it is 3300 * not added separately. 3301 */ 3302 3303 /* for trans header */ 3304 unit_bytes += sizeof(xlog_op_header_t); 3305 unit_bytes += sizeof(xfs_trans_header_t); 3306 3307 /* for start-rec */ 3308 unit_bytes += sizeof(xlog_op_header_t); 3309 3310 /* 3311 * for LR headers - the space for data in an iclog is the size minus 3312 * the space used for the headers. If we use the iclog size, then we 3313 * undercalculate the number of headers required. 3314 * 3315 * Furthermore - the addition of op headers for split-recs might 3316 * increase the space required enough to require more log and op 3317 * headers, so take that into account too. 3318 * 3319 * IMPORTANT: This reservation makes the assumption that if this 3320 * transaction is the first in an iclog and hence has the LR headers 3321 * accounted to it, then the remaining space in the iclog is 3322 * exclusively for this transaction. i.e. if the transaction is larger 3323 * than the iclog, it will be the only thing in that iclog. 3324 * Fundamentally, this means we must pass the entire log vector to 3325 * xlog_write to guarantee this. 3326 */ 3327 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3328 num_headers = howmany(unit_bytes, iclog_space); 3329 3330 /* for split-recs - ophdrs added when data split over LRs */ 3331 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3332 3333 /* add extra header reservations if we overrun */ 3334 while (!num_headers || 3335 howmany(unit_bytes, iclog_space) > num_headers) { 3336 unit_bytes += sizeof(xlog_op_header_t); 3337 num_headers++; 3338 } 3339 unit_bytes += log->l_iclog_hsize * num_headers; 3340 3341 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3342 unit_bytes += log->l_iclog_hsize; 3343 3344 /* for roundoff padding for transaction data and one for commit record */ 3345 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3346 log->l_mp->m_sb.sb_logsunit > 1) { 3347 /* log su roundoff */ 3348 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit; 3349 } else { 3350 /* BB roundoff */ 3351 unit_bytes += 2*BBSIZE; 3352 } 3353 3354 atomic_set(&tic->t_ref, 1); 3355 INIT_LIST_HEAD(&tic->t_queue); 3356 tic->t_unit_res = unit_bytes; 3357 tic->t_curr_res = unit_bytes; 3358 tic->t_cnt = cnt; 3359 tic->t_ocnt = cnt; 3360 tic->t_tid = random32(); 3361 tic->t_clientid = client; 3362 tic->t_flags = XLOG_TIC_INITED; 3363 tic->t_trans_type = 0; 3364 if (xflags & XFS_LOG_PERM_RESERV) 3365 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3366 init_waitqueue_head(&tic->t_wait); 3367 3368 xlog_tic_reset_res(tic); 3369 3370 return tic; 3371 } 3372 3373 3374 /****************************************************************************** 3375 * 3376 * Log debug routines 3377 * 3378 ****************************************************************************** 3379 */ 3380 #if defined(DEBUG) 3381 /* 3382 * Make sure that the destination ptr is within the valid data region of 3383 * one of the iclogs. This uses backup pointers stored in a different 3384 * part of the log in case we trash the log structure. 3385 */ 3386 void 3387 xlog_verify_dest_ptr( 3388 struct log *log, 3389 char *ptr) 3390 { 3391 int i; 3392 int good_ptr = 0; 3393 3394 for (i = 0; i < log->l_iclog_bufs; i++) { 3395 if (ptr >= log->l_iclog_bak[i] && 3396 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3397 good_ptr++; 3398 } 3399 3400 if (!good_ptr) 3401 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3402 } 3403 3404 /* 3405 * Check to make sure the grant write head didn't just over lap the tail. If 3406 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3407 * the cycles differ by exactly one and check the byte count. 3408 * 3409 * This check is run unlocked, so can give false positives. Rather than assert 3410 * on failures, use a warn-once flag and a panic tag to allow the admin to 3411 * determine if they want to panic the machine when such an error occurs. For 3412 * debug kernels this will have the same effect as using an assert but, unlinke 3413 * an assert, it can be turned off at runtime. 3414 */ 3415 STATIC void 3416 xlog_verify_grant_tail( 3417 struct log *log) 3418 { 3419 int tail_cycle, tail_blocks; 3420 int cycle, space; 3421 3422 xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space); 3423 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3424 if (tail_cycle != cycle) { 3425 if (cycle - 1 != tail_cycle && 3426 !(log->l_flags & XLOG_TAIL_WARN)) { 3427 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3428 "%s: cycle - 1 != tail_cycle", __func__); 3429 log->l_flags |= XLOG_TAIL_WARN; 3430 } 3431 3432 if (space > BBTOB(tail_blocks) && 3433 !(log->l_flags & XLOG_TAIL_WARN)) { 3434 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3435 "%s: space > BBTOB(tail_blocks)", __func__); 3436 log->l_flags |= XLOG_TAIL_WARN; 3437 } 3438 } 3439 } 3440 3441 /* check if it will fit */ 3442 STATIC void 3443 xlog_verify_tail_lsn(xlog_t *log, 3444 xlog_in_core_t *iclog, 3445 xfs_lsn_t tail_lsn) 3446 { 3447 int blocks; 3448 3449 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3450 blocks = 3451 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3452 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3453 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3454 } else { 3455 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3456 3457 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3458 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3459 3460 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3461 if (blocks < BTOBB(iclog->ic_offset) + 1) 3462 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3463 } 3464 } /* xlog_verify_tail_lsn */ 3465 3466 /* 3467 * Perform a number of checks on the iclog before writing to disk. 3468 * 3469 * 1. Make sure the iclogs are still circular 3470 * 2. Make sure we have a good magic number 3471 * 3. Make sure we don't have magic numbers in the data 3472 * 4. Check fields of each log operation header for: 3473 * A. Valid client identifier 3474 * B. tid ptr value falls in valid ptr space (user space code) 3475 * C. Length in log record header is correct according to the 3476 * individual operation headers within record. 3477 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3478 * log, check the preceding blocks of the physical log to make sure all 3479 * the cycle numbers agree with the current cycle number. 3480 */ 3481 STATIC void 3482 xlog_verify_iclog(xlog_t *log, 3483 xlog_in_core_t *iclog, 3484 int count, 3485 boolean_t syncing) 3486 { 3487 xlog_op_header_t *ophead; 3488 xlog_in_core_t *icptr; 3489 xlog_in_core_2_t *xhdr; 3490 xfs_caddr_t ptr; 3491 xfs_caddr_t base_ptr; 3492 __psint_t field_offset; 3493 __uint8_t clientid; 3494 int len, i, j, k, op_len; 3495 int idx; 3496 3497 /* check validity of iclog pointers */ 3498 spin_lock(&log->l_icloglock); 3499 icptr = log->l_iclog; 3500 for (i=0; i < log->l_iclog_bufs; i++) { 3501 if (icptr == NULL) 3502 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3503 icptr = icptr->ic_next; 3504 } 3505 if (icptr != log->l_iclog) 3506 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3507 spin_unlock(&log->l_icloglock); 3508 3509 /* check log magic numbers */ 3510 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3511 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3512 3513 ptr = (xfs_caddr_t) &iclog->ic_header; 3514 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3515 ptr += BBSIZE) { 3516 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3517 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3518 __func__); 3519 } 3520 3521 /* check fields */ 3522 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3523 ptr = iclog->ic_datap; 3524 base_ptr = ptr; 3525 ophead = (xlog_op_header_t *)ptr; 3526 xhdr = iclog->ic_data; 3527 for (i = 0; i < len; i++) { 3528 ophead = (xlog_op_header_t *)ptr; 3529 3530 /* clientid is only 1 byte */ 3531 field_offset = (__psint_t) 3532 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3533 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3534 clientid = ophead->oh_clientid; 3535 } else { 3536 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3537 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3538 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3539 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3540 clientid = xlog_get_client_id( 3541 xhdr[j].hic_xheader.xh_cycle_data[k]); 3542 } else { 3543 clientid = xlog_get_client_id( 3544 iclog->ic_header.h_cycle_data[idx]); 3545 } 3546 } 3547 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3548 xfs_warn(log->l_mp, 3549 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3550 __func__, clientid, ophead, 3551 (unsigned long)field_offset); 3552 3553 /* check length */ 3554 field_offset = (__psint_t) 3555 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3556 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3557 op_len = be32_to_cpu(ophead->oh_len); 3558 } else { 3559 idx = BTOBBT((__psint_t)&ophead->oh_len - 3560 (__psint_t)iclog->ic_datap); 3561 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3562 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3563 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3564 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3565 } else { 3566 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3567 } 3568 } 3569 ptr += sizeof(xlog_op_header_t) + op_len; 3570 } 3571 } /* xlog_verify_iclog */ 3572 #endif 3573 3574 /* 3575 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3576 */ 3577 STATIC int 3578 xlog_state_ioerror( 3579 xlog_t *log) 3580 { 3581 xlog_in_core_t *iclog, *ic; 3582 3583 iclog = log->l_iclog; 3584 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3585 /* 3586 * Mark all the incore logs IOERROR. 3587 * From now on, no log flushes will result. 3588 */ 3589 ic = iclog; 3590 do { 3591 ic->ic_state = XLOG_STATE_IOERROR; 3592 ic = ic->ic_next; 3593 } while (ic != iclog); 3594 return 0; 3595 } 3596 /* 3597 * Return non-zero, if state transition has already happened. 3598 */ 3599 return 1; 3600 } 3601 3602 /* 3603 * This is called from xfs_force_shutdown, when we're forcibly 3604 * shutting down the filesystem, typically because of an IO error. 3605 * Our main objectives here are to make sure that: 3606 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3607 * parties to find out, 'atomically'. 3608 * b. those who're sleeping on log reservations, pinned objects and 3609 * other resources get woken up, and be told the bad news. 3610 * c. nothing new gets queued up after (a) and (b) are done. 3611 * d. if !logerror, flush the iclogs to disk, then seal them off 3612 * for business. 3613 * 3614 * Note: for delayed logging the !logerror case needs to flush the regions 3615 * held in memory out to the iclogs before flushing them to disk. This needs 3616 * to be done before the log is marked as shutdown, otherwise the flush to the 3617 * iclogs will fail. 3618 */ 3619 int 3620 xfs_log_force_umount( 3621 struct xfs_mount *mp, 3622 int logerror) 3623 { 3624 xlog_ticket_t *tic; 3625 xlog_t *log; 3626 int retval; 3627 3628 log = mp->m_log; 3629 3630 /* 3631 * If this happens during log recovery, don't worry about 3632 * locking; the log isn't open for business yet. 3633 */ 3634 if (!log || 3635 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3636 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3637 if (mp->m_sb_bp) 3638 XFS_BUF_DONE(mp->m_sb_bp); 3639 return 0; 3640 } 3641 3642 /* 3643 * Somebody could've already done the hard work for us. 3644 * No need to get locks for this. 3645 */ 3646 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3647 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3648 return 1; 3649 } 3650 retval = 0; 3651 3652 /* 3653 * Flush the in memory commit item list before marking the log as 3654 * being shut down. We need to do it in this order to ensure all the 3655 * completed transactions are flushed to disk with the xfs_log_force() 3656 * call below. 3657 */ 3658 if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG)) 3659 xlog_cil_force(log); 3660 3661 /* 3662 * mark the filesystem and the as in a shutdown state and wake 3663 * everybody up to tell them the bad news. 3664 */ 3665 spin_lock(&log->l_icloglock); 3666 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3667 if (mp->m_sb_bp) 3668 XFS_BUF_DONE(mp->m_sb_bp); 3669 3670 /* 3671 * This flag is sort of redundant because of the mount flag, but 3672 * it's good to maintain the separation between the log and the rest 3673 * of XFS. 3674 */ 3675 log->l_flags |= XLOG_IO_ERROR; 3676 3677 /* 3678 * If we hit a log error, we want to mark all the iclogs IOERROR 3679 * while we're still holding the loglock. 3680 */ 3681 if (logerror) 3682 retval = xlog_state_ioerror(log); 3683 spin_unlock(&log->l_icloglock); 3684 3685 /* 3686 * We don't want anybody waiting for log reservations after this. That 3687 * means we have to wake up everybody queued up on reserveq as well as 3688 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3689 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3690 * action is protected by the grant locks. 3691 */ 3692 spin_lock(&log->l_grant_reserve_lock); 3693 list_for_each_entry(tic, &log->l_reserveq, t_queue) 3694 wake_up(&tic->t_wait); 3695 spin_unlock(&log->l_grant_reserve_lock); 3696 3697 spin_lock(&log->l_grant_write_lock); 3698 list_for_each_entry(tic, &log->l_writeq, t_queue) 3699 wake_up(&tic->t_wait); 3700 spin_unlock(&log->l_grant_write_lock); 3701 3702 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3703 ASSERT(!logerror); 3704 /* 3705 * Force the incore logs to disk before shutting the 3706 * log down completely. 3707 */ 3708 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3709 3710 spin_lock(&log->l_icloglock); 3711 retval = xlog_state_ioerror(log); 3712 spin_unlock(&log->l_icloglock); 3713 } 3714 /* 3715 * Wake up everybody waiting on xfs_log_force. 3716 * Callback all log item committed functions as if the 3717 * log writes were completed. 3718 */ 3719 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3720 3721 #ifdef XFSERRORDEBUG 3722 { 3723 xlog_in_core_t *iclog; 3724 3725 spin_lock(&log->l_icloglock); 3726 iclog = log->l_iclog; 3727 do { 3728 ASSERT(iclog->ic_callback == 0); 3729 iclog = iclog->ic_next; 3730 } while (iclog != log->l_iclog); 3731 spin_unlock(&log->l_icloglock); 3732 } 3733 #endif 3734 /* return non-zero if log IOERROR transition had already happened */ 3735 return retval; 3736 } 3737 3738 STATIC int 3739 xlog_iclogs_empty(xlog_t *log) 3740 { 3741 xlog_in_core_t *iclog; 3742 3743 iclog = log->l_iclog; 3744 do { 3745 /* endianness does not matter here, zero is zero in 3746 * any language. 3747 */ 3748 if (iclog->ic_header.h_num_logops) 3749 return 0; 3750 iclog = iclog->ic_next; 3751 } while (iclog != log->l_iclog); 3752 return 1; 3753 } 3754