1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *logoffsetp); 53 STATIC void 54 xlog_grant_push_ail( 55 struct xlog *log, 56 int need_bytes); 57 STATIC void 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog, 61 struct xlog_ticket *ticket); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_verify_grant_tail( 65 struct xlog *log); 66 STATIC void 67 xlog_verify_iclog( 68 struct xlog *log, 69 struct xlog_in_core *iclog, 70 int count); 71 STATIC void 72 xlog_verify_tail_lsn( 73 struct xlog *log, 74 struct xlog_in_core *iclog); 75 #else 76 #define xlog_verify_grant_tail(a) 77 #define xlog_verify_iclog(a,b,c) 78 #define xlog_verify_tail_lsn(a,b) 79 #endif 80 81 STATIC int 82 xlog_iclogs_empty( 83 struct xlog *log); 84 85 static int 86 xfs_log_cover(struct xfs_mount *); 87 88 /* 89 * We need to make sure the buffer pointer returned is naturally aligned for the 90 * biggest basic data type we put into it. We have already accounted for this 91 * padding when sizing the buffer. 92 * 93 * However, this padding does not get written into the log, and hence we have to 94 * track the space used by the log vectors separately to prevent log space hangs 95 * due to inaccurate accounting (i.e. a leak) of the used log space through the 96 * CIL context ticket. 97 * 98 * We also add space for the xlog_op_header that describes this region in the 99 * log. This prepends the data region we return to the caller to copy their data 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr 101 * is not 8 byte aligned, we have to be careful to ensure that we align the 102 * start of the buffer such that the region we return to the call is 8 byte 103 * aligned and packed against the tail of the ophdr. 104 */ 105 void * 106 xlog_prepare_iovec( 107 struct xfs_log_vec *lv, 108 struct xfs_log_iovec **vecp, 109 uint type) 110 { 111 struct xfs_log_iovec *vec = *vecp; 112 struct xlog_op_header *oph; 113 uint32_t len; 114 void *buf; 115 116 if (vec) { 117 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 118 vec++; 119 } else { 120 vec = &lv->lv_iovecp[0]; 121 } 122 123 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 124 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 125 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 126 sizeof(struct xlog_op_header); 127 } 128 129 vec->i_type = type; 130 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 131 132 oph = vec->i_addr; 133 oph->oh_clientid = XFS_TRANSACTION; 134 oph->oh_res2 = 0; 135 oph->oh_flags = 0; 136 137 buf = vec->i_addr + sizeof(struct xlog_op_header); 138 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 139 140 *vecp = vec; 141 return buf; 142 } 143 144 static void 145 xlog_grant_sub_space( 146 struct xlog *log, 147 atomic64_t *head, 148 int bytes) 149 { 150 int64_t head_val = atomic64_read(head); 151 int64_t new, old; 152 153 do { 154 int cycle, space; 155 156 xlog_crack_grant_head_val(head_val, &cycle, &space); 157 158 space -= bytes; 159 if (space < 0) { 160 space += log->l_logsize; 161 cycle--; 162 } 163 164 old = head_val; 165 new = xlog_assign_grant_head_val(cycle, space); 166 head_val = atomic64_cmpxchg(head, old, new); 167 } while (head_val != old); 168 } 169 170 static void 171 xlog_grant_add_space( 172 struct xlog *log, 173 atomic64_t *head, 174 int bytes) 175 { 176 int64_t head_val = atomic64_read(head); 177 int64_t new, old; 178 179 do { 180 int tmp; 181 int cycle, space; 182 183 xlog_crack_grant_head_val(head_val, &cycle, &space); 184 185 tmp = log->l_logsize - space; 186 if (tmp > bytes) 187 space += bytes; 188 else { 189 space = bytes - tmp; 190 cycle++; 191 } 192 193 old = head_val; 194 new = xlog_assign_grant_head_val(cycle, space); 195 head_val = atomic64_cmpxchg(head, old, new); 196 } while (head_val != old); 197 } 198 199 STATIC void 200 xlog_grant_head_init( 201 struct xlog_grant_head *head) 202 { 203 xlog_assign_grant_head(&head->grant, 1, 0); 204 INIT_LIST_HEAD(&head->waiters); 205 spin_lock_init(&head->lock); 206 } 207 208 STATIC void 209 xlog_grant_head_wake_all( 210 struct xlog_grant_head *head) 211 { 212 struct xlog_ticket *tic; 213 214 spin_lock(&head->lock); 215 list_for_each_entry(tic, &head->waiters, t_queue) 216 wake_up_process(tic->t_task); 217 spin_unlock(&head->lock); 218 } 219 220 static inline int 221 xlog_ticket_reservation( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 struct xlog_ticket *tic) 225 { 226 if (head == &log->l_write_head) { 227 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 228 return tic->t_unit_res; 229 } 230 231 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 232 return tic->t_unit_res * tic->t_cnt; 233 234 return tic->t_unit_res; 235 } 236 237 STATIC bool 238 xlog_grant_head_wake( 239 struct xlog *log, 240 struct xlog_grant_head *head, 241 int *free_bytes) 242 { 243 struct xlog_ticket *tic; 244 int need_bytes; 245 bool woken_task = false; 246 247 list_for_each_entry(tic, &head->waiters, t_queue) { 248 249 /* 250 * There is a chance that the size of the CIL checkpoints in 251 * progress at the last AIL push target calculation resulted in 252 * limiting the target to the log head (l_last_sync_lsn) at the 253 * time. This may not reflect where the log head is now as the 254 * CIL checkpoints may have completed. 255 * 256 * Hence when we are woken here, it may be that the head of the 257 * log that has moved rather than the tail. As the tail didn't 258 * move, there still won't be space available for the 259 * reservation we require. However, if the AIL has already 260 * pushed to the target defined by the old log head location, we 261 * will hang here waiting for something else to update the AIL 262 * push target. 263 * 264 * Therefore, if there isn't space to wake the first waiter on 265 * the grant head, we need to push the AIL again to ensure the 266 * target reflects both the current log tail and log head 267 * position before we wait for the tail to move again. 268 */ 269 270 need_bytes = xlog_ticket_reservation(log, head, tic); 271 if (*free_bytes < need_bytes) { 272 if (!woken_task) 273 xlog_grant_push_ail(log, need_bytes); 274 return false; 275 } 276 277 *free_bytes -= need_bytes; 278 trace_xfs_log_grant_wake_up(log, tic); 279 wake_up_process(tic->t_task); 280 woken_task = true; 281 } 282 283 return true; 284 } 285 286 STATIC int 287 xlog_grant_head_wait( 288 struct xlog *log, 289 struct xlog_grant_head *head, 290 struct xlog_ticket *tic, 291 int need_bytes) __releases(&head->lock) 292 __acquires(&head->lock) 293 { 294 list_add_tail(&tic->t_queue, &head->waiters); 295 296 do { 297 if (xlog_is_shutdown(log)) 298 goto shutdown; 299 xlog_grant_push_ail(log, need_bytes); 300 301 __set_current_state(TASK_UNINTERRUPTIBLE); 302 spin_unlock(&head->lock); 303 304 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 305 306 trace_xfs_log_grant_sleep(log, tic); 307 schedule(); 308 trace_xfs_log_grant_wake(log, tic); 309 310 spin_lock(&head->lock); 311 if (xlog_is_shutdown(log)) 312 goto shutdown; 313 } while (xlog_space_left(log, &head->grant) < need_bytes); 314 315 list_del_init(&tic->t_queue); 316 return 0; 317 shutdown: 318 list_del_init(&tic->t_queue); 319 return -EIO; 320 } 321 322 /* 323 * Atomically get the log space required for a log ticket. 324 * 325 * Once a ticket gets put onto head->waiters, it will only return after the 326 * needed reservation is satisfied. 327 * 328 * This function is structured so that it has a lock free fast path. This is 329 * necessary because every new transaction reservation will come through this 330 * path. Hence any lock will be globally hot if we take it unconditionally on 331 * every pass. 332 * 333 * As tickets are only ever moved on and off head->waiters under head->lock, we 334 * only need to take that lock if we are going to add the ticket to the queue 335 * and sleep. We can avoid taking the lock if the ticket was never added to 336 * head->waiters because the t_queue list head will be empty and we hold the 337 * only reference to it so it can safely be checked unlocked. 338 */ 339 STATIC int 340 xlog_grant_head_check( 341 struct xlog *log, 342 struct xlog_grant_head *head, 343 struct xlog_ticket *tic, 344 int *need_bytes) 345 { 346 int free_bytes; 347 int error = 0; 348 349 ASSERT(!xlog_in_recovery(log)); 350 351 /* 352 * If there are other waiters on the queue then give them a chance at 353 * logspace before us. Wake up the first waiters, if we do not wake 354 * up all the waiters then go to sleep waiting for more free space, 355 * otherwise try to get some space for this transaction. 356 */ 357 *need_bytes = xlog_ticket_reservation(log, head, tic); 358 free_bytes = xlog_space_left(log, &head->grant); 359 if (!list_empty_careful(&head->waiters)) { 360 spin_lock(&head->lock); 361 if (!xlog_grant_head_wake(log, head, &free_bytes) || 362 free_bytes < *need_bytes) { 363 error = xlog_grant_head_wait(log, head, tic, 364 *need_bytes); 365 } 366 spin_unlock(&head->lock); 367 } else if (free_bytes < *need_bytes) { 368 spin_lock(&head->lock); 369 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 370 spin_unlock(&head->lock); 371 } 372 373 return error; 374 } 375 376 bool 377 xfs_log_writable( 378 struct xfs_mount *mp) 379 { 380 /* 381 * Do not write to the log on norecovery mounts, if the data or log 382 * devices are read-only, or if the filesystem is shutdown. Read-only 383 * mounts allow internal writes for log recovery and unmount purposes, 384 * so don't restrict that case. 385 */ 386 if (xfs_has_norecovery(mp)) 387 return false; 388 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 389 return false; 390 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 391 return false; 392 if (xlog_is_shutdown(mp->m_log)) 393 return false; 394 return true; 395 } 396 397 /* 398 * Replenish the byte reservation required by moving the grant write head. 399 */ 400 int 401 xfs_log_regrant( 402 struct xfs_mount *mp, 403 struct xlog_ticket *tic) 404 { 405 struct xlog *log = mp->m_log; 406 int need_bytes; 407 int error = 0; 408 409 if (xlog_is_shutdown(log)) 410 return -EIO; 411 412 XFS_STATS_INC(mp, xs_try_logspace); 413 414 /* 415 * This is a new transaction on the ticket, so we need to change the 416 * transaction ID so that the next transaction has a different TID in 417 * the log. Just add one to the existing tid so that we can see chains 418 * of rolling transactions in the log easily. 419 */ 420 tic->t_tid++; 421 422 xlog_grant_push_ail(log, tic->t_unit_res); 423 424 tic->t_curr_res = tic->t_unit_res; 425 if (tic->t_cnt > 0) 426 return 0; 427 428 trace_xfs_log_regrant(log, tic); 429 430 error = xlog_grant_head_check(log, &log->l_write_head, tic, 431 &need_bytes); 432 if (error) 433 goto out_error; 434 435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 436 trace_xfs_log_regrant_exit(log, tic); 437 xlog_verify_grant_tail(log); 438 return 0; 439 440 out_error: 441 /* 442 * If we are failing, make sure the ticket doesn't have any current 443 * reservations. We don't want to add this back when the ticket/ 444 * transaction gets cancelled. 445 */ 446 tic->t_curr_res = 0; 447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 448 return error; 449 } 450 451 /* 452 * Reserve log space and return a ticket corresponding to the reservation. 453 * 454 * Each reservation is going to reserve extra space for a log record header. 455 * When writes happen to the on-disk log, we don't subtract the length of the 456 * log record header from any reservation. By wasting space in each 457 * reservation, we prevent over allocation problems. 458 */ 459 int 460 xfs_log_reserve( 461 struct xfs_mount *mp, 462 int unit_bytes, 463 int cnt, 464 struct xlog_ticket **ticp, 465 bool permanent) 466 { 467 struct xlog *log = mp->m_log; 468 struct xlog_ticket *tic; 469 int need_bytes; 470 int error = 0; 471 472 if (xlog_is_shutdown(log)) 473 return -EIO; 474 475 XFS_STATS_INC(mp, xs_try_logspace); 476 477 ASSERT(*ticp == NULL); 478 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 479 *ticp = tic; 480 481 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 482 : tic->t_unit_res); 483 484 trace_xfs_log_reserve(log, tic); 485 486 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 487 &need_bytes); 488 if (error) 489 goto out_error; 490 491 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 492 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 493 trace_xfs_log_reserve_exit(log, tic); 494 xlog_verify_grant_tail(log); 495 return 0; 496 497 out_error: 498 /* 499 * If we are failing, make sure the ticket doesn't have any current 500 * reservations. We don't want to add this back when the ticket/ 501 * transaction gets cancelled. 502 */ 503 tic->t_curr_res = 0; 504 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 505 return error; 506 } 507 508 /* 509 * Run all the pending iclog callbacks and wake log force waiters and iclog 510 * space waiters so they can process the newly set shutdown state. We really 511 * don't care what order we process callbacks here because the log is shut down 512 * and so state cannot change on disk anymore. However, we cannot wake waiters 513 * until the callbacks have been processed because we may be in unmount and 514 * we must ensure that all AIL operations the callbacks perform have completed 515 * before we tear down the AIL. 516 * 517 * We avoid processing actively referenced iclogs so that we don't run callbacks 518 * while the iclog owner might still be preparing the iclog for IO submssion. 519 * These will be caught by xlog_state_iclog_release() and call this function 520 * again to process any callbacks that may have been added to that iclog. 521 */ 522 static void 523 xlog_state_shutdown_callbacks( 524 struct xlog *log) 525 { 526 struct xlog_in_core *iclog; 527 LIST_HEAD(cb_list); 528 529 iclog = log->l_iclog; 530 do { 531 if (atomic_read(&iclog->ic_refcnt)) { 532 /* Reference holder will re-run iclog callbacks. */ 533 continue; 534 } 535 list_splice_init(&iclog->ic_callbacks, &cb_list); 536 spin_unlock(&log->l_icloglock); 537 538 xlog_cil_process_committed(&cb_list); 539 540 spin_lock(&log->l_icloglock); 541 wake_up_all(&iclog->ic_write_wait); 542 wake_up_all(&iclog->ic_force_wait); 543 } while ((iclog = iclog->ic_next) != log->l_iclog); 544 545 wake_up_all(&log->l_flush_wait); 546 } 547 548 /* 549 * Flush iclog to disk if this is the last reference to the given iclog and the 550 * it is in the WANT_SYNC state. 551 * 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 554 * written to stable storage, and implies that a commit record is contained 555 * within the iclog. We need to ensure that the log tail does not move beyond 556 * the tail that the first commit record in the iclog ordered against, otherwise 557 * correct recovery of that checkpoint becomes dependent on future operations 558 * performed on this iclog. 559 * 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 561 * current tail into iclog. Once the iclog tail is set, future operations must 562 * not modify it, otherwise they potentially violate ordering constraints for 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 564 * the iclog will get zeroed on activation of the iclog after sync, so we 565 * always capture the tail lsn on the iclog on the first NEED_FUA release 566 * regardless of the number of active reference counts on this iclog. 567 */ 568 int 569 xlog_state_release_iclog( 570 struct xlog *log, 571 struct xlog_in_core *iclog, 572 struct xlog_ticket *ticket) 573 { 574 xfs_lsn_t tail_lsn; 575 bool last_ref; 576 577 lockdep_assert_held(&log->l_icloglock); 578 579 trace_xlog_iclog_release(iclog, _RET_IP_); 580 /* 581 * Grabbing the current log tail needs to be atomic w.r.t. the writing 582 * of the tail LSN into the iclog so we guarantee that the log tail does 583 * not move between the first time we know that the iclog needs to be 584 * made stable and when we eventually submit it. 585 */ 586 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 587 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 588 !iclog->ic_header.h_tail_lsn) { 589 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 590 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 591 } 592 593 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 594 595 if (xlog_is_shutdown(log)) { 596 /* 597 * If there are no more references to this iclog, process the 598 * pending iclog callbacks that were waiting on the release of 599 * this iclog. 600 */ 601 if (last_ref) 602 xlog_state_shutdown_callbacks(log); 603 return -EIO; 604 } 605 606 if (!last_ref) 607 return 0; 608 609 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 610 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 611 return 0; 612 } 613 614 iclog->ic_state = XLOG_STATE_SYNCING; 615 xlog_verify_tail_lsn(log, iclog); 616 trace_xlog_iclog_syncing(iclog, _RET_IP_); 617 618 spin_unlock(&log->l_icloglock); 619 xlog_sync(log, iclog, ticket); 620 spin_lock(&log->l_icloglock); 621 return 0; 622 } 623 624 /* 625 * Mount a log filesystem 626 * 627 * mp - ubiquitous xfs mount point structure 628 * log_target - buftarg of on-disk log device 629 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 630 * num_bblocks - Number of BBSIZE blocks in on-disk log 631 * 632 * Return error or zero. 633 */ 634 int 635 xfs_log_mount( 636 xfs_mount_t *mp, 637 xfs_buftarg_t *log_target, 638 xfs_daddr_t blk_offset, 639 int num_bblks) 640 { 641 struct xlog *log; 642 int error = 0; 643 int min_logfsbs; 644 645 if (!xfs_has_norecovery(mp)) { 646 xfs_notice(mp, "Mounting V%d Filesystem %pU", 647 XFS_SB_VERSION_NUM(&mp->m_sb), 648 &mp->m_sb.sb_uuid); 649 } else { 650 xfs_notice(mp, 651 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 652 XFS_SB_VERSION_NUM(&mp->m_sb), 653 &mp->m_sb.sb_uuid); 654 ASSERT(xfs_is_readonly(mp)); 655 } 656 657 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 658 if (IS_ERR(log)) { 659 error = PTR_ERR(log); 660 goto out; 661 } 662 mp->m_log = log; 663 664 /* 665 * Now that we have set up the log and it's internal geometry 666 * parameters, we can validate the given log space and drop a critical 667 * message via syslog if the log size is too small. A log that is too 668 * small can lead to unexpected situations in transaction log space 669 * reservation stage. The superblock verifier has already validated all 670 * the other log geometry constraints, so we don't have to check those 671 * here. 672 * 673 * Note: For v4 filesystems, we can't just reject the mount if the 674 * validation fails. This would mean that people would have to 675 * downgrade their kernel just to remedy the situation as there is no 676 * way to grow the log (short of black magic surgery with xfs_db). 677 * 678 * We can, however, reject mounts for V5 format filesystems, as the 679 * mkfs binary being used to make the filesystem should never create a 680 * filesystem with a log that is too small. 681 */ 682 min_logfsbs = xfs_log_calc_minimum_size(mp); 683 if (mp->m_sb.sb_logblocks < min_logfsbs) { 684 xfs_warn(mp, 685 "Log size %d blocks too small, minimum size is %d blocks", 686 mp->m_sb.sb_logblocks, min_logfsbs); 687 688 /* 689 * Log check errors are always fatal on v5; or whenever bad 690 * metadata leads to a crash. 691 */ 692 if (xfs_has_crc(mp)) { 693 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 694 ASSERT(0); 695 error = -EINVAL; 696 goto out_free_log; 697 } 698 xfs_crit(mp, "Log size out of supported range."); 699 xfs_crit(mp, 700 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 701 } 702 703 /* 704 * Initialize the AIL now we have a log. 705 */ 706 error = xfs_trans_ail_init(mp); 707 if (error) { 708 xfs_warn(mp, "AIL initialisation failed: error %d", error); 709 goto out_free_log; 710 } 711 log->l_ailp = mp->m_ail; 712 713 /* 714 * skip log recovery on a norecovery mount. pretend it all 715 * just worked. 716 */ 717 if (!xfs_has_norecovery(mp)) { 718 error = xlog_recover(log); 719 if (error) { 720 xfs_warn(mp, "log mount/recovery failed: error %d", 721 error); 722 xlog_recover_cancel(log); 723 goto out_destroy_ail; 724 } 725 } 726 727 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 728 "log"); 729 if (error) 730 goto out_destroy_ail; 731 732 /* Normal transactions can now occur */ 733 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 734 735 /* 736 * Now the log has been fully initialised and we know were our 737 * space grant counters are, we can initialise the permanent ticket 738 * needed for delayed logging to work. 739 */ 740 xlog_cil_init_post_recovery(log); 741 742 return 0; 743 744 out_destroy_ail: 745 xfs_trans_ail_destroy(mp); 746 out_free_log: 747 xlog_dealloc_log(log); 748 out: 749 return error; 750 } 751 752 /* 753 * Finish the recovery of the file system. This is separate from the 754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 756 * here. 757 * 758 * If we finish recovery successfully, start the background log work. If we are 759 * not doing recovery, then we have a RO filesystem and we don't need to start 760 * it. 761 */ 762 int 763 xfs_log_mount_finish( 764 struct xfs_mount *mp) 765 { 766 struct xlog *log = mp->m_log; 767 int error = 0; 768 769 if (xfs_has_norecovery(mp)) { 770 ASSERT(xfs_is_readonly(mp)); 771 return 0; 772 } 773 774 /* 775 * During the second phase of log recovery, we need iget and 776 * iput to behave like they do for an active filesystem. 777 * xfs_fs_drop_inode needs to be able to prevent the deletion 778 * of inodes before we're done replaying log items on those 779 * inodes. Turn it off immediately after recovery finishes 780 * so that we don't leak the quota inodes if subsequent mount 781 * activities fail. 782 * 783 * We let all inodes involved in redo item processing end up on 784 * the LRU instead of being evicted immediately so that if we do 785 * something to an unlinked inode, the irele won't cause 786 * premature truncation and freeing of the inode, which results 787 * in log recovery failure. We have to evict the unreferenced 788 * lru inodes after clearing SB_ACTIVE because we don't 789 * otherwise clean up the lru if there's a subsequent failure in 790 * xfs_mountfs, which leads to us leaking the inodes if nothing 791 * else (e.g. quotacheck) references the inodes before the 792 * mount failure occurs. 793 */ 794 mp->m_super->s_flags |= SB_ACTIVE; 795 xfs_log_work_queue(mp); 796 if (xlog_recovery_needed(log)) 797 error = xlog_recover_finish(log); 798 mp->m_super->s_flags &= ~SB_ACTIVE; 799 evict_inodes(mp->m_super); 800 801 /* 802 * Drain the buffer LRU after log recovery. This is required for v4 803 * filesystems to avoid leaving around buffers with NULL verifier ops, 804 * but we do it unconditionally to make sure we're always in a clean 805 * cache state after mount. 806 * 807 * Don't push in the error case because the AIL may have pending intents 808 * that aren't removed until recovery is cancelled. 809 */ 810 if (xlog_recovery_needed(log)) { 811 if (!error) { 812 xfs_log_force(mp, XFS_LOG_SYNC); 813 xfs_ail_push_all_sync(mp->m_ail); 814 } 815 xfs_notice(mp, "Ending recovery (logdev: %s)", 816 mp->m_logname ? mp->m_logname : "internal"); 817 } else { 818 xfs_info(mp, "Ending clean mount"); 819 } 820 xfs_buftarg_drain(mp->m_ddev_targp); 821 822 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 823 824 /* Make sure the log is dead if we're returning failure. */ 825 ASSERT(!error || xlog_is_shutdown(log)); 826 827 return error; 828 } 829 830 /* 831 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 832 * the log. 833 */ 834 void 835 xfs_log_mount_cancel( 836 struct xfs_mount *mp) 837 { 838 xlog_recover_cancel(mp->m_log); 839 xfs_log_unmount(mp); 840 } 841 842 /* 843 * Flush out the iclog to disk ensuring that device caches are flushed and 844 * the iclog hits stable storage before any completion waiters are woken. 845 */ 846 static inline int 847 xlog_force_iclog( 848 struct xlog_in_core *iclog) 849 { 850 atomic_inc(&iclog->ic_refcnt); 851 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 852 if (iclog->ic_state == XLOG_STATE_ACTIVE) 853 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 854 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 855 } 856 857 /* 858 * Cycle all the iclogbuf locks to make sure all log IO completion 859 * is done before we tear down these buffers. 860 */ 861 static void 862 xlog_wait_iclog_completion(struct xlog *log) 863 { 864 int i; 865 struct xlog_in_core *iclog = log->l_iclog; 866 867 for (i = 0; i < log->l_iclog_bufs; i++) { 868 down(&iclog->ic_sema); 869 up(&iclog->ic_sema); 870 iclog = iclog->ic_next; 871 } 872 } 873 874 /* 875 * Wait for the iclog and all prior iclogs to be written disk as required by the 876 * log force state machine. Waiting on ic_force_wait ensures iclog completions 877 * have been ordered and callbacks run before we are woken here, hence 878 * guaranteeing that all the iclogs up to this one are on stable storage. 879 */ 880 int 881 xlog_wait_on_iclog( 882 struct xlog_in_core *iclog) 883 __releases(iclog->ic_log->l_icloglock) 884 { 885 struct xlog *log = iclog->ic_log; 886 887 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 888 if (!xlog_is_shutdown(log) && 889 iclog->ic_state != XLOG_STATE_ACTIVE && 890 iclog->ic_state != XLOG_STATE_DIRTY) { 891 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 892 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 893 } else { 894 spin_unlock(&log->l_icloglock); 895 } 896 897 if (xlog_is_shutdown(log)) 898 return -EIO; 899 return 0; 900 } 901 902 /* 903 * Write out an unmount record using the ticket provided. We have to account for 904 * the data space used in the unmount ticket as this write is not done from a 905 * transaction context that has already done the accounting for us. 906 */ 907 static int 908 xlog_write_unmount_record( 909 struct xlog *log, 910 struct xlog_ticket *ticket) 911 { 912 struct { 913 struct xlog_op_header ophdr; 914 struct xfs_unmount_log_format ulf; 915 } unmount_rec = { 916 .ophdr = { 917 .oh_clientid = XFS_LOG, 918 .oh_tid = cpu_to_be32(ticket->t_tid), 919 .oh_flags = XLOG_UNMOUNT_TRANS, 920 }, 921 .ulf = { 922 .magic = XLOG_UNMOUNT_TYPE, 923 }, 924 }; 925 struct xfs_log_iovec reg = { 926 .i_addr = &unmount_rec, 927 .i_len = sizeof(unmount_rec), 928 .i_type = XLOG_REG_TYPE_UNMOUNT, 929 }; 930 struct xfs_log_vec vec = { 931 .lv_niovecs = 1, 932 .lv_iovecp = ®, 933 }; 934 LIST_HEAD(lv_chain); 935 list_add(&vec.lv_list, &lv_chain); 936 937 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 938 sizeof(struct xfs_unmount_log_format)) != 939 sizeof(unmount_rec)); 940 941 /* account for space used by record data */ 942 ticket->t_curr_res -= sizeof(unmount_rec); 943 944 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 945 } 946 947 /* 948 * Mark the filesystem clean by writing an unmount record to the head of the 949 * log. 950 */ 951 static void 952 xlog_unmount_write( 953 struct xlog *log) 954 { 955 struct xfs_mount *mp = log->l_mp; 956 struct xlog_in_core *iclog; 957 struct xlog_ticket *tic = NULL; 958 int error; 959 960 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 961 if (error) 962 goto out_err; 963 964 error = xlog_write_unmount_record(log, tic); 965 /* 966 * At this point, we're umounting anyway, so there's no point in 967 * transitioning log state to shutdown. Just continue... 968 */ 969 out_err: 970 if (error) 971 xfs_alert(mp, "%s: unmount record failed", __func__); 972 973 spin_lock(&log->l_icloglock); 974 iclog = log->l_iclog; 975 error = xlog_force_iclog(iclog); 976 xlog_wait_on_iclog(iclog); 977 978 if (tic) { 979 trace_xfs_log_umount_write(log, tic); 980 xfs_log_ticket_ungrant(log, tic); 981 } 982 } 983 984 static void 985 xfs_log_unmount_verify_iclog( 986 struct xlog *log) 987 { 988 struct xlog_in_core *iclog = log->l_iclog; 989 990 do { 991 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 992 ASSERT(iclog->ic_offset == 0); 993 } while ((iclog = iclog->ic_next) != log->l_iclog); 994 } 995 996 /* 997 * Unmount record used to have a string "Unmount filesystem--" in the 998 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 999 * We just write the magic number now since that particular field isn't 1000 * currently architecture converted and "Unmount" is a bit foo. 1001 * As far as I know, there weren't any dependencies on the old behaviour. 1002 */ 1003 static void 1004 xfs_log_unmount_write( 1005 struct xfs_mount *mp) 1006 { 1007 struct xlog *log = mp->m_log; 1008 1009 if (!xfs_log_writable(mp)) 1010 return; 1011 1012 xfs_log_force(mp, XFS_LOG_SYNC); 1013 1014 if (xlog_is_shutdown(log)) 1015 return; 1016 1017 /* 1018 * If we think the summary counters are bad, avoid writing the unmount 1019 * record to force log recovery at next mount, after which the summary 1020 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1021 * more details. 1022 */ 1023 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1024 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1025 xfs_alert(mp, "%s: will fix summary counters at next mount", 1026 __func__); 1027 return; 1028 } 1029 1030 xfs_log_unmount_verify_iclog(log); 1031 xlog_unmount_write(log); 1032 } 1033 1034 /* 1035 * Empty the log for unmount/freeze. 1036 * 1037 * To do this, we first need to shut down the background log work so it is not 1038 * trying to cover the log as we clean up. We then need to unpin all objects in 1039 * the log so we can then flush them out. Once they have completed their IO and 1040 * run the callbacks removing themselves from the AIL, we can cover the log. 1041 */ 1042 int 1043 xfs_log_quiesce( 1044 struct xfs_mount *mp) 1045 { 1046 /* 1047 * Clear log incompat features since we're quiescing the log. Report 1048 * failures, though it's not fatal to have a higher log feature 1049 * protection level than the log contents actually require. 1050 */ 1051 if (xfs_clear_incompat_log_features(mp)) { 1052 int error; 1053 1054 error = xfs_sync_sb(mp, false); 1055 if (error) 1056 xfs_warn(mp, 1057 "Failed to clear log incompat features on quiesce"); 1058 } 1059 1060 cancel_delayed_work_sync(&mp->m_log->l_work); 1061 xfs_log_force(mp, XFS_LOG_SYNC); 1062 1063 /* 1064 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1065 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1066 * xfs_buf_iowait() cannot be used because it was pushed with the 1067 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1068 * the IO to complete. 1069 */ 1070 xfs_ail_push_all_sync(mp->m_ail); 1071 xfs_buftarg_wait(mp->m_ddev_targp); 1072 xfs_buf_lock(mp->m_sb_bp); 1073 xfs_buf_unlock(mp->m_sb_bp); 1074 1075 return xfs_log_cover(mp); 1076 } 1077 1078 void 1079 xfs_log_clean( 1080 struct xfs_mount *mp) 1081 { 1082 xfs_log_quiesce(mp); 1083 xfs_log_unmount_write(mp); 1084 } 1085 1086 /* 1087 * Shut down and release the AIL and Log. 1088 * 1089 * During unmount, we need to ensure we flush all the dirty metadata objects 1090 * from the AIL so that the log is empty before we write the unmount record to 1091 * the log. Once this is done, we can tear down the AIL and the log. 1092 */ 1093 void 1094 xfs_log_unmount( 1095 struct xfs_mount *mp) 1096 { 1097 xfs_log_clean(mp); 1098 1099 /* 1100 * If shutdown has come from iclog IO context, the log 1101 * cleaning will have been skipped and so we need to wait 1102 * for the iclog to complete shutdown processing before we 1103 * tear anything down. 1104 */ 1105 xlog_wait_iclog_completion(mp->m_log); 1106 1107 xfs_buftarg_drain(mp->m_ddev_targp); 1108 1109 xfs_trans_ail_destroy(mp); 1110 1111 xfs_sysfs_del(&mp->m_log->l_kobj); 1112 1113 xlog_dealloc_log(mp->m_log); 1114 } 1115 1116 void 1117 xfs_log_item_init( 1118 struct xfs_mount *mp, 1119 struct xfs_log_item *item, 1120 int type, 1121 const struct xfs_item_ops *ops) 1122 { 1123 item->li_log = mp->m_log; 1124 item->li_ailp = mp->m_ail; 1125 item->li_type = type; 1126 item->li_ops = ops; 1127 item->li_lv = NULL; 1128 1129 INIT_LIST_HEAD(&item->li_ail); 1130 INIT_LIST_HEAD(&item->li_cil); 1131 INIT_LIST_HEAD(&item->li_bio_list); 1132 INIT_LIST_HEAD(&item->li_trans); 1133 } 1134 1135 /* 1136 * Wake up processes waiting for log space after we have moved the log tail. 1137 */ 1138 void 1139 xfs_log_space_wake( 1140 struct xfs_mount *mp) 1141 { 1142 struct xlog *log = mp->m_log; 1143 int free_bytes; 1144 1145 if (xlog_is_shutdown(log)) 1146 return; 1147 1148 if (!list_empty_careful(&log->l_write_head.waiters)) { 1149 ASSERT(!xlog_in_recovery(log)); 1150 1151 spin_lock(&log->l_write_head.lock); 1152 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1153 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1154 spin_unlock(&log->l_write_head.lock); 1155 } 1156 1157 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1158 ASSERT(!xlog_in_recovery(log)); 1159 1160 spin_lock(&log->l_reserve_head.lock); 1161 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1162 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1163 spin_unlock(&log->l_reserve_head.lock); 1164 } 1165 } 1166 1167 /* 1168 * Determine if we have a transaction that has gone to disk that needs to be 1169 * covered. To begin the transition to the idle state firstly the log needs to 1170 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1171 * we start attempting to cover the log. 1172 * 1173 * Only if we are then in a state where covering is needed, the caller is 1174 * informed that dummy transactions are required to move the log into the idle 1175 * state. 1176 * 1177 * If there are any items in the AIl or CIL, then we do not want to attempt to 1178 * cover the log as we may be in a situation where there isn't log space 1179 * available to run a dummy transaction and this can lead to deadlocks when the 1180 * tail of the log is pinned by an item that is modified in the CIL. Hence 1181 * there's no point in running a dummy transaction at this point because we 1182 * can't start trying to idle the log until both the CIL and AIL are empty. 1183 */ 1184 static bool 1185 xfs_log_need_covered( 1186 struct xfs_mount *mp) 1187 { 1188 struct xlog *log = mp->m_log; 1189 bool needed = false; 1190 1191 if (!xlog_cil_empty(log)) 1192 return false; 1193 1194 spin_lock(&log->l_icloglock); 1195 switch (log->l_covered_state) { 1196 case XLOG_STATE_COVER_DONE: 1197 case XLOG_STATE_COVER_DONE2: 1198 case XLOG_STATE_COVER_IDLE: 1199 break; 1200 case XLOG_STATE_COVER_NEED: 1201 case XLOG_STATE_COVER_NEED2: 1202 if (xfs_ail_min_lsn(log->l_ailp)) 1203 break; 1204 if (!xlog_iclogs_empty(log)) 1205 break; 1206 1207 needed = true; 1208 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1209 log->l_covered_state = XLOG_STATE_COVER_DONE; 1210 else 1211 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1212 break; 1213 default: 1214 needed = true; 1215 break; 1216 } 1217 spin_unlock(&log->l_icloglock); 1218 return needed; 1219 } 1220 1221 /* 1222 * Explicitly cover the log. This is similar to background log covering but 1223 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1224 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1225 * must all be empty. 1226 */ 1227 static int 1228 xfs_log_cover( 1229 struct xfs_mount *mp) 1230 { 1231 int error = 0; 1232 bool need_covered; 1233 1234 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1235 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1236 xlog_is_shutdown(mp->m_log)); 1237 1238 if (!xfs_log_writable(mp)) 1239 return 0; 1240 1241 /* 1242 * xfs_log_need_covered() is not idempotent because it progresses the 1243 * state machine if the log requires covering. Therefore, we must call 1244 * this function once and use the result until we've issued an sb sync. 1245 * Do so first to make that abundantly clear. 1246 * 1247 * Fall into the covering sequence if the log needs covering or the 1248 * mount has lazy superblock accounting to sync to disk. The sb sync 1249 * used for covering accumulates the in-core counters, so covering 1250 * handles this for us. 1251 */ 1252 need_covered = xfs_log_need_covered(mp); 1253 if (!need_covered && !xfs_has_lazysbcount(mp)) 1254 return 0; 1255 1256 /* 1257 * To cover the log, commit the superblock twice (at most) in 1258 * independent checkpoints. The first serves as a reference for the 1259 * tail pointer. The sync transaction and AIL push empties the AIL and 1260 * updates the in-core tail to the LSN of the first checkpoint. The 1261 * second commit updates the on-disk tail with the in-core LSN, 1262 * covering the log. Push the AIL one more time to leave it empty, as 1263 * we found it. 1264 */ 1265 do { 1266 error = xfs_sync_sb(mp, true); 1267 if (error) 1268 break; 1269 xfs_ail_push_all_sync(mp->m_ail); 1270 } while (xfs_log_need_covered(mp)); 1271 1272 return error; 1273 } 1274 1275 /* 1276 * We may be holding the log iclog lock upon entering this routine. 1277 */ 1278 xfs_lsn_t 1279 xlog_assign_tail_lsn_locked( 1280 struct xfs_mount *mp) 1281 { 1282 struct xlog *log = mp->m_log; 1283 struct xfs_log_item *lip; 1284 xfs_lsn_t tail_lsn; 1285 1286 assert_spin_locked(&mp->m_ail->ail_lock); 1287 1288 /* 1289 * To make sure we always have a valid LSN for the log tail we keep 1290 * track of the last LSN which was committed in log->l_last_sync_lsn, 1291 * and use that when the AIL was empty. 1292 */ 1293 lip = xfs_ail_min(mp->m_ail); 1294 if (lip) 1295 tail_lsn = lip->li_lsn; 1296 else 1297 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1298 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1299 atomic64_set(&log->l_tail_lsn, tail_lsn); 1300 return tail_lsn; 1301 } 1302 1303 xfs_lsn_t 1304 xlog_assign_tail_lsn( 1305 struct xfs_mount *mp) 1306 { 1307 xfs_lsn_t tail_lsn; 1308 1309 spin_lock(&mp->m_ail->ail_lock); 1310 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1311 spin_unlock(&mp->m_ail->ail_lock); 1312 1313 return tail_lsn; 1314 } 1315 1316 /* 1317 * Return the space in the log between the tail and the head. The head 1318 * is passed in the cycle/bytes formal parms. In the special case where 1319 * the reserve head has wrapped passed the tail, this calculation is no 1320 * longer valid. In this case, just return 0 which means there is no space 1321 * in the log. This works for all places where this function is called 1322 * with the reserve head. Of course, if the write head were to ever 1323 * wrap the tail, we should blow up. Rather than catch this case here, 1324 * we depend on other ASSERTions in other parts of the code. XXXmiken 1325 * 1326 * If reservation head is behind the tail, we have a problem. Warn about it, 1327 * but then treat it as if the log is empty. 1328 * 1329 * If the log is shut down, the head and tail may be invalid or out of whack, so 1330 * shortcut invalidity asserts in this case so that we don't trigger them 1331 * falsely. 1332 */ 1333 STATIC int 1334 xlog_space_left( 1335 struct xlog *log, 1336 atomic64_t *head) 1337 { 1338 int tail_bytes; 1339 int tail_cycle; 1340 int head_cycle; 1341 int head_bytes; 1342 1343 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1344 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1345 tail_bytes = BBTOB(tail_bytes); 1346 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1347 return log->l_logsize - (head_bytes - tail_bytes); 1348 if (tail_cycle + 1 < head_cycle) 1349 return 0; 1350 1351 /* Ignore potential inconsistency when shutdown. */ 1352 if (xlog_is_shutdown(log)) 1353 return log->l_logsize; 1354 1355 if (tail_cycle < head_cycle) { 1356 ASSERT(tail_cycle == (head_cycle - 1)); 1357 return tail_bytes - head_bytes; 1358 } 1359 1360 /* 1361 * The reservation head is behind the tail. In this case we just want to 1362 * return the size of the log as the amount of space left. 1363 */ 1364 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1365 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1366 tail_cycle, tail_bytes); 1367 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1368 head_cycle, head_bytes); 1369 ASSERT(0); 1370 return log->l_logsize; 1371 } 1372 1373 1374 static void 1375 xlog_ioend_work( 1376 struct work_struct *work) 1377 { 1378 struct xlog_in_core *iclog = 1379 container_of(work, struct xlog_in_core, ic_end_io_work); 1380 struct xlog *log = iclog->ic_log; 1381 int error; 1382 1383 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1384 #ifdef DEBUG 1385 /* treat writes with injected CRC errors as failed */ 1386 if (iclog->ic_fail_crc) 1387 error = -EIO; 1388 #endif 1389 1390 /* 1391 * Race to shutdown the filesystem if we see an error. 1392 */ 1393 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1394 xfs_alert(log->l_mp, "log I/O error %d", error); 1395 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1396 } 1397 1398 xlog_state_done_syncing(iclog); 1399 bio_uninit(&iclog->ic_bio); 1400 1401 /* 1402 * Drop the lock to signal that we are done. Nothing references the 1403 * iclog after this, so an unmount waiting on this lock can now tear it 1404 * down safely. As such, it is unsafe to reference the iclog after the 1405 * unlock as we could race with it being freed. 1406 */ 1407 up(&iclog->ic_sema); 1408 } 1409 1410 /* 1411 * Return size of each in-core log record buffer. 1412 * 1413 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1414 * 1415 * If the filesystem blocksize is too large, we may need to choose a 1416 * larger size since the directory code currently logs entire blocks. 1417 */ 1418 STATIC void 1419 xlog_get_iclog_buffer_size( 1420 struct xfs_mount *mp, 1421 struct xlog *log) 1422 { 1423 if (mp->m_logbufs <= 0) 1424 mp->m_logbufs = XLOG_MAX_ICLOGS; 1425 if (mp->m_logbsize <= 0) 1426 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1427 1428 log->l_iclog_bufs = mp->m_logbufs; 1429 log->l_iclog_size = mp->m_logbsize; 1430 1431 /* 1432 * # headers = size / 32k - one header holds cycles from 32k of data. 1433 */ 1434 log->l_iclog_heads = 1435 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1436 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1437 } 1438 1439 void 1440 xfs_log_work_queue( 1441 struct xfs_mount *mp) 1442 { 1443 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1444 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1445 } 1446 1447 /* 1448 * Clear the log incompat flags if we have the opportunity. 1449 * 1450 * This only happens if we're about to log the second dummy transaction as part 1451 * of covering the log and we can get the log incompat feature usage lock. 1452 */ 1453 static inline void 1454 xlog_clear_incompat( 1455 struct xlog *log) 1456 { 1457 struct xfs_mount *mp = log->l_mp; 1458 1459 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1460 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1461 return; 1462 1463 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1464 return; 1465 1466 if (!down_write_trylock(&log->l_incompat_users)) 1467 return; 1468 1469 xfs_clear_incompat_log_features(mp); 1470 up_write(&log->l_incompat_users); 1471 } 1472 1473 /* 1474 * Every sync period we need to unpin all items in the AIL and push them to 1475 * disk. If there is nothing dirty, then we might need to cover the log to 1476 * indicate that the filesystem is idle. 1477 */ 1478 static void 1479 xfs_log_worker( 1480 struct work_struct *work) 1481 { 1482 struct xlog *log = container_of(to_delayed_work(work), 1483 struct xlog, l_work); 1484 struct xfs_mount *mp = log->l_mp; 1485 1486 /* dgc: errors ignored - not fatal and nowhere to report them */ 1487 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1488 /* 1489 * Dump a transaction into the log that contains no real change. 1490 * This is needed to stamp the current tail LSN into the log 1491 * during the covering operation. 1492 * 1493 * We cannot use an inode here for this - that will push dirty 1494 * state back up into the VFS and then periodic inode flushing 1495 * will prevent log covering from making progress. Hence we 1496 * synchronously log the superblock instead to ensure the 1497 * superblock is immediately unpinned and can be written back. 1498 */ 1499 xlog_clear_incompat(log); 1500 xfs_sync_sb(mp, true); 1501 } else 1502 xfs_log_force(mp, 0); 1503 1504 /* start pushing all the metadata that is currently dirty */ 1505 xfs_ail_push_all(mp->m_ail); 1506 1507 /* queue us up again */ 1508 xfs_log_work_queue(mp); 1509 } 1510 1511 /* 1512 * This routine initializes some of the log structure for a given mount point. 1513 * Its primary purpose is to fill in enough, so recovery can occur. However, 1514 * some other stuff may be filled in too. 1515 */ 1516 STATIC struct xlog * 1517 xlog_alloc_log( 1518 struct xfs_mount *mp, 1519 struct xfs_buftarg *log_target, 1520 xfs_daddr_t blk_offset, 1521 int num_bblks) 1522 { 1523 struct xlog *log; 1524 xlog_rec_header_t *head; 1525 xlog_in_core_t **iclogp; 1526 xlog_in_core_t *iclog, *prev_iclog=NULL; 1527 int i; 1528 int error = -ENOMEM; 1529 uint log2_size = 0; 1530 1531 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1532 if (!log) { 1533 xfs_warn(mp, "Log allocation failed: No memory!"); 1534 goto out; 1535 } 1536 1537 log->l_mp = mp; 1538 log->l_targ = log_target; 1539 log->l_logsize = BBTOB(num_bblks); 1540 log->l_logBBstart = blk_offset; 1541 log->l_logBBsize = num_bblks; 1542 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1543 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1544 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1545 1546 log->l_prev_block = -1; 1547 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1548 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1549 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1550 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1551 1552 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1553 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1554 else 1555 log->l_iclog_roundoff = BBSIZE; 1556 1557 xlog_grant_head_init(&log->l_reserve_head); 1558 xlog_grant_head_init(&log->l_write_head); 1559 1560 error = -EFSCORRUPTED; 1561 if (xfs_has_sector(mp)) { 1562 log2_size = mp->m_sb.sb_logsectlog; 1563 if (log2_size < BBSHIFT) { 1564 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1565 log2_size, BBSHIFT); 1566 goto out_free_log; 1567 } 1568 1569 log2_size -= BBSHIFT; 1570 if (log2_size > mp->m_sectbb_log) { 1571 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1572 log2_size, mp->m_sectbb_log); 1573 goto out_free_log; 1574 } 1575 1576 /* for larger sector sizes, must have v2 or external log */ 1577 if (log2_size && log->l_logBBstart > 0 && 1578 !xfs_has_logv2(mp)) { 1579 xfs_warn(mp, 1580 "log sector size (0x%x) invalid for configuration.", 1581 log2_size); 1582 goto out_free_log; 1583 } 1584 } 1585 log->l_sectBBsize = 1 << log2_size; 1586 1587 init_rwsem(&log->l_incompat_users); 1588 1589 xlog_get_iclog_buffer_size(mp, log); 1590 1591 spin_lock_init(&log->l_icloglock); 1592 init_waitqueue_head(&log->l_flush_wait); 1593 1594 iclogp = &log->l_iclog; 1595 /* 1596 * The amount of memory to allocate for the iclog structure is 1597 * rather funky due to the way the structure is defined. It is 1598 * done this way so that we can use different sizes for machines 1599 * with different amounts of memory. See the definition of 1600 * xlog_in_core_t in xfs_log_priv.h for details. 1601 */ 1602 ASSERT(log->l_iclog_size >= 4096); 1603 for (i = 0; i < log->l_iclog_bufs; i++) { 1604 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1605 sizeof(struct bio_vec); 1606 1607 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1608 if (!iclog) 1609 goto out_free_iclog; 1610 1611 *iclogp = iclog; 1612 iclog->ic_prev = prev_iclog; 1613 prev_iclog = iclog; 1614 1615 iclog->ic_data = kvzalloc(log->l_iclog_size, 1616 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1617 if (!iclog->ic_data) 1618 goto out_free_iclog; 1619 head = &iclog->ic_header; 1620 memset(head, 0, sizeof(xlog_rec_header_t)); 1621 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1622 head->h_version = cpu_to_be32( 1623 xfs_has_logv2(log->l_mp) ? 2 : 1); 1624 head->h_size = cpu_to_be32(log->l_iclog_size); 1625 /* new fields */ 1626 head->h_fmt = cpu_to_be32(XLOG_FMT); 1627 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1628 1629 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1630 iclog->ic_state = XLOG_STATE_ACTIVE; 1631 iclog->ic_log = log; 1632 atomic_set(&iclog->ic_refcnt, 0); 1633 INIT_LIST_HEAD(&iclog->ic_callbacks); 1634 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1635 1636 init_waitqueue_head(&iclog->ic_force_wait); 1637 init_waitqueue_head(&iclog->ic_write_wait); 1638 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1639 sema_init(&iclog->ic_sema, 1); 1640 1641 iclogp = &iclog->ic_next; 1642 } 1643 *iclogp = log->l_iclog; /* complete ring */ 1644 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1645 1646 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1647 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1648 WQ_HIGHPRI), 1649 0, mp->m_super->s_id); 1650 if (!log->l_ioend_workqueue) 1651 goto out_free_iclog; 1652 1653 error = xlog_cil_init(log); 1654 if (error) 1655 goto out_destroy_workqueue; 1656 return log; 1657 1658 out_destroy_workqueue: 1659 destroy_workqueue(log->l_ioend_workqueue); 1660 out_free_iclog: 1661 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1662 prev_iclog = iclog->ic_next; 1663 kmem_free(iclog->ic_data); 1664 kmem_free(iclog); 1665 if (prev_iclog == log->l_iclog) 1666 break; 1667 } 1668 out_free_log: 1669 kmem_free(log); 1670 out: 1671 return ERR_PTR(error); 1672 } /* xlog_alloc_log */ 1673 1674 /* 1675 * Compute the LSN that we'd need to push the log tail towards in order to have 1676 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1677 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1678 * log free space already meets all three thresholds, this function returns 1679 * NULLCOMMITLSN. 1680 */ 1681 xfs_lsn_t 1682 xlog_grant_push_threshold( 1683 struct xlog *log, 1684 int need_bytes) 1685 { 1686 xfs_lsn_t threshold_lsn = 0; 1687 xfs_lsn_t last_sync_lsn; 1688 int free_blocks; 1689 int free_bytes; 1690 int threshold_block; 1691 int threshold_cycle; 1692 int free_threshold; 1693 1694 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1695 1696 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1697 free_blocks = BTOBBT(free_bytes); 1698 1699 /* 1700 * Set the threshold for the minimum number of free blocks in the 1701 * log to the maximum of what the caller needs, one quarter of the 1702 * log, and 256 blocks. 1703 */ 1704 free_threshold = BTOBB(need_bytes); 1705 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1706 free_threshold = max(free_threshold, 256); 1707 if (free_blocks >= free_threshold) 1708 return NULLCOMMITLSN; 1709 1710 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1711 &threshold_block); 1712 threshold_block += free_threshold; 1713 if (threshold_block >= log->l_logBBsize) { 1714 threshold_block -= log->l_logBBsize; 1715 threshold_cycle += 1; 1716 } 1717 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1718 threshold_block); 1719 /* 1720 * Don't pass in an lsn greater than the lsn of the last 1721 * log record known to be on disk. Use a snapshot of the last sync lsn 1722 * so that it doesn't change between the compare and the set. 1723 */ 1724 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1725 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1726 threshold_lsn = last_sync_lsn; 1727 1728 return threshold_lsn; 1729 } 1730 1731 /* 1732 * Push the tail of the log if we need to do so to maintain the free log space 1733 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1734 * policy which pushes on an lsn which is further along in the log once we 1735 * reach the high water mark. In this manner, we would be creating a low water 1736 * mark. 1737 */ 1738 STATIC void 1739 xlog_grant_push_ail( 1740 struct xlog *log, 1741 int need_bytes) 1742 { 1743 xfs_lsn_t threshold_lsn; 1744 1745 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1746 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1747 return; 1748 1749 /* 1750 * Get the transaction layer to kick the dirty buffers out to 1751 * disk asynchronously. No point in trying to do this if 1752 * the filesystem is shutting down. 1753 */ 1754 xfs_ail_push(log->l_ailp, threshold_lsn); 1755 } 1756 1757 /* 1758 * Stamp cycle number in every block 1759 */ 1760 STATIC void 1761 xlog_pack_data( 1762 struct xlog *log, 1763 struct xlog_in_core *iclog, 1764 int roundoff) 1765 { 1766 int i, j, k; 1767 int size = iclog->ic_offset + roundoff; 1768 __be32 cycle_lsn; 1769 char *dp; 1770 1771 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1772 1773 dp = iclog->ic_datap; 1774 for (i = 0; i < BTOBB(size); i++) { 1775 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1776 break; 1777 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1778 *(__be32 *)dp = cycle_lsn; 1779 dp += BBSIZE; 1780 } 1781 1782 if (xfs_has_logv2(log->l_mp)) { 1783 xlog_in_core_2_t *xhdr = iclog->ic_data; 1784 1785 for ( ; i < BTOBB(size); i++) { 1786 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1787 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1788 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1789 *(__be32 *)dp = cycle_lsn; 1790 dp += BBSIZE; 1791 } 1792 1793 for (i = 1; i < log->l_iclog_heads; i++) 1794 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1795 } 1796 } 1797 1798 /* 1799 * Calculate the checksum for a log buffer. 1800 * 1801 * This is a little more complicated than it should be because the various 1802 * headers and the actual data are non-contiguous. 1803 */ 1804 __le32 1805 xlog_cksum( 1806 struct xlog *log, 1807 struct xlog_rec_header *rhead, 1808 char *dp, 1809 int size) 1810 { 1811 uint32_t crc; 1812 1813 /* first generate the crc for the record header ... */ 1814 crc = xfs_start_cksum_update((char *)rhead, 1815 sizeof(struct xlog_rec_header), 1816 offsetof(struct xlog_rec_header, h_crc)); 1817 1818 /* ... then for additional cycle data for v2 logs ... */ 1819 if (xfs_has_logv2(log->l_mp)) { 1820 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1821 int i; 1822 int xheads; 1823 1824 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1825 1826 for (i = 1; i < xheads; i++) { 1827 crc = crc32c(crc, &xhdr[i].hic_xheader, 1828 sizeof(struct xlog_rec_ext_header)); 1829 } 1830 } 1831 1832 /* ... and finally for the payload */ 1833 crc = crc32c(crc, dp, size); 1834 1835 return xfs_end_cksum(crc); 1836 } 1837 1838 static void 1839 xlog_bio_end_io( 1840 struct bio *bio) 1841 { 1842 struct xlog_in_core *iclog = bio->bi_private; 1843 1844 queue_work(iclog->ic_log->l_ioend_workqueue, 1845 &iclog->ic_end_io_work); 1846 } 1847 1848 static int 1849 xlog_map_iclog_data( 1850 struct bio *bio, 1851 void *data, 1852 size_t count) 1853 { 1854 do { 1855 struct page *page = kmem_to_page(data); 1856 unsigned int off = offset_in_page(data); 1857 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1858 1859 if (bio_add_page(bio, page, len, off) != len) 1860 return -EIO; 1861 1862 data += len; 1863 count -= len; 1864 } while (count); 1865 1866 return 0; 1867 } 1868 1869 STATIC void 1870 xlog_write_iclog( 1871 struct xlog *log, 1872 struct xlog_in_core *iclog, 1873 uint64_t bno, 1874 unsigned int count) 1875 { 1876 ASSERT(bno < log->l_logBBsize); 1877 trace_xlog_iclog_write(iclog, _RET_IP_); 1878 1879 /* 1880 * We lock the iclogbufs here so that we can serialise against I/O 1881 * completion during unmount. We might be processing a shutdown 1882 * triggered during unmount, and that can occur asynchronously to the 1883 * unmount thread, and hence we need to ensure that completes before 1884 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1885 * across the log IO to archieve that. 1886 */ 1887 down(&iclog->ic_sema); 1888 if (xlog_is_shutdown(log)) { 1889 /* 1890 * It would seem logical to return EIO here, but we rely on 1891 * the log state machine to propagate I/O errors instead of 1892 * doing it here. We kick of the state machine and unlock 1893 * the buffer manually, the code needs to be kept in sync 1894 * with the I/O completion path. 1895 */ 1896 xlog_state_done_syncing(iclog); 1897 up(&iclog->ic_sema); 1898 return; 1899 } 1900 1901 /* 1902 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1903 * IOs coming immediately after this one. This prevents the block layer 1904 * writeback throttle from throttling log writes behind background 1905 * metadata writeback and causing priority inversions. 1906 */ 1907 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1908 howmany(count, PAGE_SIZE), 1909 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1910 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1911 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1912 iclog->ic_bio.bi_private = iclog; 1913 1914 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1915 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1916 /* 1917 * For external log devices, we also need to flush the data 1918 * device cache first to ensure all metadata writeback covered 1919 * by the LSN in this iclog is on stable storage. This is slow, 1920 * but it *must* complete before we issue the external log IO. 1921 * 1922 * If the flush fails, we cannot conclude that past metadata 1923 * writeback from the log succeeded. Repeating the flush is 1924 * not possible, hence we must shut down with log IO error to 1925 * avoid shutdown re-entering this path and erroring out again. 1926 */ 1927 if (log->l_targ != log->l_mp->m_ddev_targp && 1928 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) { 1929 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1930 return; 1931 } 1932 } 1933 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1934 iclog->ic_bio.bi_opf |= REQ_FUA; 1935 1936 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1937 1938 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1939 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1940 return; 1941 } 1942 if (is_vmalloc_addr(iclog->ic_data)) 1943 flush_kernel_vmap_range(iclog->ic_data, count); 1944 1945 /* 1946 * If this log buffer would straddle the end of the log we will have 1947 * to split it up into two bios, so that we can continue at the start. 1948 */ 1949 if (bno + BTOBB(count) > log->l_logBBsize) { 1950 struct bio *split; 1951 1952 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1953 GFP_NOIO, &fs_bio_set); 1954 bio_chain(split, &iclog->ic_bio); 1955 submit_bio(split); 1956 1957 /* restart at logical offset zero for the remainder */ 1958 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1959 } 1960 1961 submit_bio(&iclog->ic_bio); 1962 } 1963 1964 /* 1965 * We need to bump cycle number for the part of the iclog that is 1966 * written to the start of the log. Watch out for the header magic 1967 * number case, though. 1968 */ 1969 static void 1970 xlog_split_iclog( 1971 struct xlog *log, 1972 void *data, 1973 uint64_t bno, 1974 unsigned int count) 1975 { 1976 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1977 unsigned int i; 1978 1979 for (i = split_offset; i < count; i += BBSIZE) { 1980 uint32_t cycle = get_unaligned_be32(data + i); 1981 1982 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1983 cycle++; 1984 put_unaligned_be32(cycle, data + i); 1985 } 1986 } 1987 1988 static int 1989 xlog_calc_iclog_size( 1990 struct xlog *log, 1991 struct xlog_in_core *iclog, 1992 uint32_t *roundoff) 1993 { 1994 uint32_t count_init, count; 1995 1996 /* Add for LR header */ 1997 count_init = log->l_iclog_hsize + iclog->ic_offset; 1998 count = roundup(count_init, log->l_iclog_roundoff); 1999 2000 *roundoff = count - count_init; 2001 2002 ASSERT(count >= count_init); 2003 ASSERT(*roundoff < log->l_iclog_roundoff); 2004 return count; 2005 } 2006 2007 /* 2008 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 2009 * fashion. Previously, we should have moved the current iclog 2010 * ptr in the log to point to the next available iclog. This allows further 2011 * write to continue while this code syncs out an iclog ready to go. 2012 * Before an in-core log can be written out, the data section must be scanned 2013 * to save away the 1st word of each BBSIZE block into the header. We replace 2014 * it with the current cycle count. Each BBSIZE block is tagged with the 2015 * cycle count because there in an implicit assumption that drives will 2016 * guarantee that entire 512 byte blocks get written at once. In other words, 2017 * we can't have part of a 512 byte block written and part not written. By 2018 * tagging each block, we will know which blocks are valid when recovering 2019 * after an unclean shutdown. 2020 * 2021 * This routine is single threaded on the iclog. No other thread can be in 2022 * this routine with the same iclog. Changing contents of iclog can there- 2023 * fore be done without grabbing the state machine lock. Updating the global 2024 * log will require grabbing the lock though. 2025 * 2026 * The entire log manager uses a logical block numbering scheme. Only 2027 * xlog_write_iclog knows about the fact that the log may not start with 2028 * block zero on a given device. 2029 */ 2030 STATIC void 2031 xlog_sync( 2032 struct xlog *log, 2033 struct xlog_in_core *iclog, 2034 struct xlog_ticket *ticket) 2035 { 2036 unsigned int count; /* byte count of bwrite */ 2037 unsigned int roundoff; /* roundoff to BB or stripe */ 2038 uint64_t bno; 2039 unsigned int size; 2040 2041 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2042 trace_xlog_iclog_sync(iclog, _RET_IP_); 2043 2044 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2045 2046 /* 2047 * If we have a ticket, account for the roundoff via the ticket 2048 * reservation to avoid touching the hot grant heads needlessly. 2049 * Otherwise, we have to move grant heads directly. 2050 */ 2051 if (ticket) { 2052 ticket->t_curr_res -= roundoff; 2053 } else { 2054 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2055 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2056 } 2057 2058 /* put cycle number in every block */ 2059 xlog_pack_data(log, iclog, roundoff); 2060 2061 /* real byte length */ 2062 size = iclog->ic_offset; 2063 if (xfs_has_logv2(log->l_mp)) 2064 size += roundoff; 2065 iclog->ic_header.h_len = cpu_to_be32(size); 2066 2067 XFS_STATS_INC(log->l_mp, xs_log_writes); 2068 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2069 2070 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2071 2072 /* Do we need to split this write into 2 parts? */ 2073 if (bno + BTOBB(count) > log->l_logBBsize) 2074 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2075 2076 /* calculcate the checksum */ 2077 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2078 iclog->ic_datap, size); 2079 /* 2080 * Intentionally corrupt the log record CRC based on the error injection 2081 * frequency, if defined. This facilitates testing log recovery in the 2082 * event of torn writes. Hence, set the IOABORT state to abort the log 2083 * write on I/O completion and shutdown the fs. The subsequent mount 2084 * detects the bad CRC and attempts to recover. 2085 */ 2086 #ifdef DEBUG 2087 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2088 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2089 iclog->ic_fail_crc = true; 2090 xfs_warn(log->l_mp, 2091 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2092 be64_to_cpu(iclog->ic_header.h_lsn)); 2093 } 2094 #endif 2095 xlog_verify_iclog(log, iclog, count); 2096 xlog_write_iclog(log, iclog, bno, count); 2097 } 2098 2099 /* 2100 * Deallocate a log structure 2101 */ 2102 STATIC void 2103 xlog_dealloc_log( 2104 struct xlog *log) 2105 { 2106 xlog_in_core_t *iclog, *next_iclog; 2107 int i; 2108 2109 /* 2110 * Destroy the CIL after waiting for iclog IO completion because an 2111 * iclog EIO error will try to shut down the log, which accesses the 2112 * CIL to wake up the waiters. 2113 */ 2114 xlog_cil_destroy(log); 2115 2116 iclog = log->l_iclog; 2117 for (i = 0; i < log->l_iclog_bufs; i++) { 2118 next_iclog = iclog->ic_next; 2119 kmem_free(iclog->ic_data); 2120 kmem_free(iclog); 2121 iclog = next_iclog; 2122 } 2123 2124 log->l_mp->m_log = NULL; 2125 destroy_workqueue(log->l_ioend_workqueue); 2126 kmem_free(log); 2127 } 2128 2129 /* 2130 * Update counters atomically now that memcpy is done. 2131 */ 2132 static inline void 2133 xlog_state_finish_copy( 2134 struct xlog *log, 2135 struct xlog_in_core *iclog, 2136 int record_cnt, 2137 int copy_bytes) 2138 { 2139 lockdep_assert_held(&log->l_icloglock); 2140 2141 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2142 iclog->ic_offset += copy_bytes; 2143 } 2144 2145 /* 2146 * print out info relating to regions written which consume 2147 * the reservation 2148 */ 2149 void 2150 xlog_print_tic_res( 2151 struct xfs_mount *mp, 2152 struct xlog_ticket *ticket) 2153 { 2154 xfs_warn(mp, "ticket reservation summary:"); 2155 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 2156 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 2157 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 2158 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 2159 } 2160 2161 /* 2162 * Print a summary of the transaction. 2163 */ 2164 void 2165 xlog_print_trans( 2166 struct xfs_trans *tp) 2167 { 2168 struct xfs_mount *mp = tp->t_mountp; 2169 struct xfs_log_item *lip; 2170 2171 /* dump core transaction and ticket info */ 2172 xfs_warn(mp, "transaction summary:"); 2173 xfs_warn(mp, " log res = %d", tp->t_log_res); 2174 xfs_warn(mp, " log count = %d", tp->t_log_count); 2175 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2176 2177 xlog_print_tic_res(mp, tp->t_ticket); 2178 2179 /* dump each log item */ 2180 list_for_each_entry(lip, &tp->t_items, li_trans) { 2181 struct xfs_log_vec *lv = lip->li_lv; 2182 struct xfs_log_iovec *vec; 2183 int i; 2184 2185 xfs_warn(mp, "log item: "); 2186 xfs_warn(mp, " type = 0x%x", lip->li_type); 2187 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2188 if (!lv) 2189 continue; 2190 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2191 xfs_warn(mp, " size = %d", lv->lv_size); 2192 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2193 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2194 2195 /* dump each iovec for the log item */ 2196 vec = lv->lv_iovecp; 2197 for (i = 0; i < lv->lv_niovecs; i++) { 2198 int dumplen = min(vec->i_len, 32); 2199 2200 xfs_warn(mp, " iovec[%d]", i); 2201 xfs_warn(mp, " type = 0x%x", vec->i_type); 2202 xfs_warn(mp, " len = %d", vec->i_len); 2203 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2204 xfs_hex_dump(vec->i_addr, dumplen); 2205 2206 vec++; 2207 } 2208 } 2209 } 2210 2211 static inline void 2212 xlog_write_iovec( 2213 struct xlog_in_core *iclog, 2214 uint32_t *log_offset, 2215 void *data, 2216 uint32_t write_len, 2217 int *bytes_left, 2218 uint32_t *record_cnt, 2219 uint32_t *data_cnt) 2220 { 2221 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 2222 ASSERT(*log_offset % sizeof(int32_t) == 0); 2223 ASSERT(write_len % sizeof(int32_t) == 0); 2224 2225 memcpy(iclog->ic_datap + *log_offset, data, write_len); 2226 *log_offset += write_len; 2227 *bytes_left -= write_len; 2228 (*record_cnt)++; 2229 *data_cnt += write_len; 2230 } 2231 2232 /* 2233 * Write log vectors into a single iclog which is guaranteed by the caller 2234 * to have enough space to write the entire log vector into. 2235 */ 2236 static void 2237 xlog_write_full( 2238 struct xfs_log_vec *lv, 2239 struct xlog_ticket *ticket, 2240 struct xlog_in_core *iclog, 2241 uint32_t *log_offset, 2242 uint32_t *len, 2243 uint32_t *record_cnt, 2244 uint32_t *data_cnt) 2245 { 2246 int index; 2247 2248 ASSERT(*log_offset + *len <= iclog->ic_size || 2249 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2250 2251 /* 2252 * Ordered log vectors have no regions to write so this 2253 * loop will naturally skip them. 2254 */ 2255 for (index = 0; index < lv->lv_niovecs; index++) { 2256 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2257 struct xlog_op_header *ophdr = reg->i_addr; 2258 2259 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2260 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2261 reg->i_len, len, record_cnt, data_cnt); 2262 } 2263 } 2264 2265 static int 2266 xlog_write_get_more_iclog_space( 2267 struct xlog_ticket *ticket, 2268 struct xlog_in_core **iclogp, 2269 uint32_t *log_offset, 2270 uint32_t len, 2271 uint32_t *record_cnt, 2272 uint32_t *data_cnt) 2273 { 2274 struct xlog_in_core *iclog = *iclogp; 2275 struct xlog *log = iclog->ic_log; 2276 int error; 2277 2278 spin_lock(&log->l_icloglock); 2279 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2280 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2281 error = xlog_state_release_iclog(log, iclog, ticket); 2282 spin_unlock(&log->l_icloglock); 2283 if (error) 2284 return error; 2285 2286 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2287 log_offset); 2288 if (error) 2289 return error; 2290 *record_cnt = 0; 2291 *data_cnt = 0; 2292 *iclogp = iclog; 2293 return 0; 2294 } 2295 2296 /* 2297 * Write log vectors into a single iclog which is smaller than the current chain 2298 * length. We write until we cannot fit a full record into the remaining space 2299 * and then stop. We return the log vector that is to be written that cannot 2300 * wholly fit in the iclog. 2301 */ 2302 static int 2303 xlog_write_partial( 2304 struct xfs_log_vec *lv, 2305 struct xlog_ticket *ticket, 2306 struct xlog_in_core **iclogp, 2307 uint32_t *log_offset, 2308 uint32_t *len, 2309 uint32_t *record_cnt, 2310 uint32_t *data_cnt) 2311 { 2312 struct xlog_in_core *iclog = *iclogp; 2313 struct xlog_op_header *ophdr; 2314 int index = 0; 2315 uint32_t rlen; 2316 int error; 2317 2318 /* walk the logvec, copying until we run out of space in the iclog */ 2319 for (index = 0; index < lv->lv_niovecs; index++) { 2320 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2321 uint32_t reg_offset = 0; 2322 2323 /* 2324 * The first region of a continuation must have a non-zero 2325 * length otherwise log recovery will just skip over it and 2326 * start recovering from the next opheader it finds. Because we 2327 * mark the next opheader as a continuation, recovery will then 2328 * incorrectly add the continuation to the previous region and 2329 * that breaks stuff. 2330 * 2331 * Hence if there isn't space for region data after the 2332 * opheader, then we need to start afresh with a new iclog. 2333 */ 2334 if (iclog->ic_size - *log_offset <= 2335 sizeof(struct xlog_op_header)) { 2336 error = xlog_write_get_more_iclog_space(ticket, 2337 &iclog, log_offset, *len, record_cnt, 2338 data_cnt); 2339 if (error) 2340 return error; 2341 } 2342 2343 ophdr = reg->i_addr; 2344 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2345 2346 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2347 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2348 if (rlen != reg->i_len) 2349 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2350 2351 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2352 rlen, len, record_cnt, data_cnt); 2353 2354 /* If we wrote the whole region, move to the next. */ 2355 if (rlen == reg->i_len) 2356 continue; 2357 2358 /* 2359 * We now have a partially written iovec, but it can span 2360 * multiple iclogs so we loop here. First we release the iclog 2361 * we currently have, then we get a new iclog and add a new 2362 * opheader. Then we continue copying from where we were until 2363 * we either complete the iovec or fill the iclog. If we 2364 * complete the iovec, then we increment the index and go right 2365 * back to the top of the outer loop. if we fill the iclog, we 2366 * run the inner loop again. 2367 * 2368 * This is complicated by the tail of a region using all the 2369 * space in an iclog and hence requiring us to release the iclog 2370 * and get a new one before returning to the outer loop. We must 2371 * always guarantee that we exit this inner loop with at least 2372 * space for log transaction opheaders left in the current 2373 * iclog, hence we cannot just terminate the loop at the end 2374 * of the of the continuation. So we loop while there is no 2375 * space left in the current iclog, and check for the end of the 2376 * continuation after getting a new iclog. 2377 */ 2378 do { 2379 /* 2380 * Ensure we include the continuation opheader in the 2381 * space we need in the new iclog by adding that size 2382 * to the length we require. This continuation opheader 2383 * needs to be accounted to the ticket as the space it 2384 * consumes hasn't been accounted to the lv we are 2385 * writing. 2386 */ 2387 error = xlog_write_get_more_iclog_space(ticket, 2388 &iclog, log_offset, 2389 *len + sizeof(struct xlog_op_header), 2390 record_cnt, data_cnt); 2391 if (error) 2392 return error; 2393 2394 ophdr = iclog->ic_datap + *log_offset; 2395 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2396 ophdr->oh_clientid = XFS_TRANSACTION; 2397 ophdr->oh_res2 = 0; 2398 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2399 2400 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2401 *log_offset += sizeof(struct xlog_op_header); 2402 *data_cnt += sizeof(struct xlog_op_header); 2403 2404 /* 2405 * If rlen fits in the iclog, then end the region 2406 * continuation. Otherwise we're going around again. 2407 */ 2408 reg_offset += rlen; 2409 rlen = reg->i_len - reg_offset; 2410 if (rlen <= iclog->ic_size - *log_offset) 2411 ophdr->oh_flags |= XLOG_END_TRANS; 2412 else 2413 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2414 2415 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2416 ophdr->oh_len = cpu_to_be32(rlen); 2417 2418 xlog_write_iovec(iclog, log_offset, 2419 reg->i_addr + reg_offset, 2420 rlen, len, record_cnt, data_cnt); 2421 2422 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2423 } 2424 2425 /* 2426 * No more iovecs remain in this logvec so return the next log vec to 2427 * the caller so it can go back to fast path copying. 2428 */ 2429 *iclogp = iclog; 2430 return 0; 2431 } 2432 2433 /* 2434 * Write some region out to in-core log 2435 * 2436 * This will be called when writing externally provided regions or when 2437 * writing out a commit record for a given transaction. 2438 * 2439 * General algorithm: 2440 * 1. Find total length of this write. This may include adding to the 2441 * lengths passed in. 2442 * 2. Check whether we violate the tickets reservation. 2443 * 3. While writing to this iclog 2444 * A. Reserve as much space in this iclog as can get 2445 * B. If this is first write, save away start lsn 2446 * C. While writing this region: 2447 * 1. If first write of transaction, write start record 2448 * 2. Write log operation header (header per region) 2449 * 3. Find out if we can fit entire region into this iclog 2450 * 4. Potentially, verify destination memcpy ptr 2451 * 5. Memcpy (partial) region 2452 * 6. If partial copy, release iclog; otherwise, continue 2453 * copying more regions into current iclog 2454 * 4. Mark want sync bit (in simulation mode) 2455 * 5. Release iclog for potential flush to on-disk log. 2456 * 2457 * ERRORS: 2458 * 1. Panic if reservation is overrun. This should never happen since 2459 * reservation amounts are generated internal to the filesystem. 2460 * NOTES: 2461 * 1. Tickets are single threaded data structures. 2462 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2463 * syncing routine. When a single log_write region needs to span 2464 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2465 * on all log operation writes which don't contain the end of the 2466 * region. The XLOG_END_TRANS bit is used for the in-core log 2467 * operation which contains the end of the continued log_write region. 2468 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2469 * we don't really know exactly how much space will be used. As a result, 2470 * we don't update ic_offset until the end when we know exactly how many 2471 * bytes have been written out. 2472 */ 2473 int 2474 xlog_write( 2475 struct xlog *log, 2476 struct xfs_cil_ctx *ctx, 2477 struct list_head *lv_chain, 2478 struct xlog_ticket *ticket, 2479 uint32_t len) 2480 2481 { 2482 struct xlog_in_core *iclog = NULL; 2483 struct xfs_log_vec *lv; 2484 uint32_t record_cnt = 0; 2485 uint32_t data_cnt = 0; 2486 int error = 0; 2487 int log_offset; 2488 2489 if (ticket->t_curr_res < 0) { 2490 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2491 "ctx ticket reservation ran out. Need to up reservation"); 2492 xlog_print_tic_res(log->l_mp, ticket); 2493 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2494 } 2495 2496 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2497 &log_offset); 2498 if (error) 2499 return error; 2500 2501 ASSERT(log_offset <= iclog->ic_size - 1); 2502 2503 /* 2504 * If we have a context pointer, pass it the first iclog we are 2505 * writing to so it can record state needed for iclog write 2506 * ordering. 2507 */ 2508 if (ctx) 2509 xlog_cil_set_ctx_write_state(ctx, iclog); 2510 2511 list_for_each_entry(lv, lv_chain, lv_list) { 2512 /* 2513 * If the entire log vec does not fit in the iclog, punt it to 2514 * the partial copy loop which can handle this case. 2515 */ 2516 if (lv->lv_niovecs && 2517 lv->lv_bytes > iclog->ic_size - log_offset) { 2518 error = xlog_write_partial(lv, ticket, &iclog, 2519 &log_offset, &len, &record_cnt, 2520 &data_cnt); 2521 if (error) { 2522 /* 2523 * We have no iclog to release, so just return 2524 * the error immediately. 2525 */ 2526 return error; 2527 } 2528 } else { 2529 xlog_write_full(lv, ticket, iclog, &log_offset, 2530 &len, &record_cnt, &data_cnt); 2531 } 2532 } 2533 ASSERT(len == 0); 2534 2535 /* 2536 * We've already been guaranteed that the last writes will fit inside 2537 * the current iclog, and hence it will already have the space used by 2538 * those writes accounted to it. Hence we do not need to update the 2539 * iclog with the number of bytes written here. 2540 */ 2541 spin_lock(&log->l_icloglock); 2542 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2543 error = xlog_state_release_iclog(log, iclog, ticket); 2544 spin_unlock(&log->l_icloglock); 2545 2546 return error; 2547 } 2548 2549 static void 2550 xlog_state_activate_iclog( 2551 struct xlog_in_core *iclog, 2552 int *iclogs_changed) 2553 { 2554 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2555 trace_xlog_iclog_activate(iclog, _RET_IP_); 2556 2557 /* 2558 * If the number of ops in this iclog indicate it just contains the 2559 * dummy transaction, we can change state into IDLE (the second time 2560 * around). Otherwise we should change the state into NEED a dummy. 2561 * We don't need to cover the dummy. 2562 */ 2563 if (*iclogs_changed == 0 && 2564 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2565 *iclogs_changed = 1; 2566 } else { 2567 /* 2568 * We have two dirty iclogs so start over. This could also be 2569 * num of ops indicating this is not the dummy going out. 2570 */ 2571 *iclogs_changed = 2; 2572 } 2573 2574 iclog->ic_state = XLOG_STATE_ACTIVE; 2575 iclog->ic_offset = 0; 2576 iclog->ic_header.h_num_logops = 0; 2577 memset(iclog->ic_header.h_cycle_data, 0, 2578 sizeof(iclog->ic_header.h_cycle_data)); 2579 iclog->ic_header.h_lsn = 0; 2580 iclog->ic_header.h_tail_lsn = 0; 2581 } 2582 2583 /* 2584 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2585 * ACTIVE after iclog I/O has completed. 2586 */ 2587 static void 2588 xlog_state_activate_iclogs( 2589 struct xlog *log, 2590 int *iclogs_changed) 2591 { 2592 struct xlog_in_core *iclog = log->l_iclog; 2593 2594 do { 2595 if (iclog->ic_state == XLOG_STATE_DIRTY) 2596 xlog_state_activate_iclog(iclog, iclogs_changed); 2597 /* 2598 * The ordering of marking iclogs ACTIVE must be maintained, so 2599 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2600 */ 2601 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2602 break; 2603 } while ((iclog = iclog->ic_next) != log->l_iclog); 2604 } 2605 2606 static int 2607 xlog_covered_state( 2608 int prev_state, 2609 int iclogs_changed) 2610 { 2611 /* 2612 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2613 * wrote the first covering record (DONE). We go to IDLE if we just 2614 * wrote the second covering record (DONE2) and remain in IDLE until a 2615 * non-covering write occurs. 2616 */ 2617 switch (prev_state) { 2618 case XLOG_STATE_COVER_IDLE: 2619 if (iclogs_changed == 1) 2620 return XLOG_STATE_COVER_IDLE; 2621 fallthrough; 2622 case XLOG_STATE_COVER_NEED: 2623 case XLOG_STATE_COVER_NEED2: 2624 break; 2625 case XLOG_STATE_COVER_DONE: 2626 if (iclogs_changed == 1) 2627 return XLOG_STATE_COVER_NEED2; 2628 break; 2629 case XLOG_STATE_COVER_DONE2: 2630 if (iclogs_changed == 1) 2631 return XLOG_STATE_COVER_IDLE; 2632 break; 2633 default: 2634 ASSERT(0); 2635 } 2636 2637 return XLOG_STATE_COVER_NEED; 2638 } 2639 2640 STATIC void 2641 xlog_state_clean_iclog( 2642 struct xlog *log, 2643 struct xlog_in_core *dirty_iclog) 2644 { 2645 int iclogs_changed = 0; 2646 2647 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2648 2649 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2650 2651 xlog_state_activate_iclogs(log, &iclogs_changed); 2652 wake_up_all(&dirty_iclog->ic_force_wait); 2653 2654 if (iclogs_changed) { 2655 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2656 iclogs_changed); 2657 } 2658 } 2659 2660 STATIC xfs_lsn_t 2661 xlog_get_lowest_lsn( 2662 struct xlog *log) 2663 { 2664 struct xlog_in_core *iclog = log->l_iclog; 2665 xfs_lsn_t lowest_lsn = 0, lsn; 2666 2667 do { 2668 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2669 iclog->ic_state == XLOG_STATE_DIRTY) 2670 continue; 2671 2672 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2673 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2674 lowest_lsn = lsn; 2675 } while ((iclog = iclog->ic_next) != log->l_iclog); 2676 2677 return lowest_lsn; 2678 } 2679 2680 /* 2681 * Completion of a iclog IO does not imply that a transaction has completed, as 2682 * transactions can be large enough to span many iclogs. We cannot change the 2683 * tail of the log half way through a transaction as this may be the only 2684 * transaction in the log and moving the tail to point to the middle of it 2685 * will prevent recovery from finding the start of the transaction. Hence we 2686 * should only update the last_sync_lsn if this iclog contains transaction 2687 * completion callbacks on it. 2688 * 2689 * We have to do this before we drop the icloglock to ensure we are the only one 2690 * that can update it. 2691 * 2692 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2693 * the reservation grant head pushing. This is due to the fact that the push 2694 * target is bound by the current last_sync_lsn value. Hence if we have a large 2695 * amount of log space bound up in this committing transaction then the 2696 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2697 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2698 * should push the AIL to ensure the push target (and hence the grant head) is 2699 * no longer bound by the old log head location and can move forwards and make 2700 * progress again. 2701 */ 2702 static void 2703 xlog_state_set_callback( 2704 struct xlog *log, 2705 struct xlog_in_core *iclog, 2706 xfs_lsn_t header_lsn) 2707 { 2708 trace_xlog_iclog_callback(iclog, _RET_IP_); 2709 iclog->ic_state = XLOG_STATE_CALLBACK; 2710 2711 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2712 header_lsn) <= 0); 2713 2714 if (list_empty_careful(&iclog->ic_callbacks)) 2715 return; 2716 2717 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2718 xlog_grant_push_ail(log, 0); 2719 } 2720 2721 /* 2722 * Return true if we need to stop processing, false to continue to the next 2723 * iclog. The caller will need to run callbacks if the iclog is returned in the 2724 * XLOG_STATE_CALLBACK state. 2725 */ 2726 static bool 2727 xlog_state_iodone_process_iclog( 2728 struct xlog *log, 2729 struct xlog_in_core *iclog) 2730 { 2731 xfs_lsn_t lowest_lsn; 2732 xfs_lsn_t header_lsn; 2733 2734 switch (iclog->ic_state) { 2735 case XLOG_STATE_ACTIVE: 2736 case XLOG_STATE_DIRTY: 2737 /* 2738 * Skip all iclogs in the ACTIVE & DIRTY states: 2739 */ 2740 return false; 2741 case XLOG_STATE_DONE_SYNC: 2742 /* 2743 * Now that we have an iclog that is in the DONE_SYNC state, do 2744 * one more check here to see if we have chased our tail around. 2745 * If this is not the lowest lsn iclog, then we will leave it 2746 * for another completion to process. 2747 */ 2748 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2749 lowest_lsn = xlog_get_lowest_lsn(log); 2750 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2751 return false; 2752 xlog_state_set_callback(log, iclog, header_lsn); 2753 return false; 2754 default: 2755 /* 2756 * Can only perform callbacks in order. Since this iclog is not 2757 * in the DONE_SYNC state, we skip the rest and just try to 2758 * clean up. 2759 */ 2760 return true; 2761 } 2762 } 2763 2764 /* 2765 * Loop over all the iclogs, running attached callbacks on them. Return true if 2766 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2767 * to handle transient shutdown state here at all because 2768 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2769 * cleanup of the callbacks. 2770 */ 2771 static bool 2772 xlog_state_do_iclog_callbacks( 2773 struct xlog *log) 2774 __releases(&log->l_icloglock) 2775 __acquires(&log->l_icloglock) 2776 { 2777 struct xlog_in_core *first_iclog = log->l_iclog; 2778 struct xlog_in_core *iclog = first_iclog; 2779 bool ran_callback = false; 2780 2781 do { 2782 LIST_HEAD(cb_list); 2783 2784 if (xlog_state_iodone_process_iclog(log, iclog)) 2785 break; 2786 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2787 iclog = iclog->ic_next; 2788 continue; 2789 } 2790 list_splice_init(&iclog->ic_callbacks, &cb_list); 2791 spin_unlock(&log->l_icloglock); 2792 2793 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2794 xlog_cil_process_committed(&cb_list); 2795 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2796 ran_callback = true; 2797 2798 spin_lock(&log->l_icloglock); 2799 xlog_state_clean_iclog(log, iclog); 2800 iclog = iclog->ic_next; 2801 } while (iclog != first_iclog); 2802 2803 return ran_callback; 2804 } 2805 2806 2807 /* 2808 * Loop running iclog completion callbacks until there are no more iclogs in a 2809 * state that can run callbacks. 2810 */ 2811 STATIC void 2812 xlog_state_do_callback( 2813 struct xlog *log) 2814 { 2815 int flushcnt = 0; 2816 int repeats = 0; 2817 2818 spin_lock(&log->l_icloglock); 2819 while (xlog_state_do_iclog_callbacks(log)) { 2820 if (xlog_is_shutdown(log)) 2821 break; 2822 2823 if (++repeats > 5000) { 2824 flushcnt += repeats; 2825 repeats = 0; 2826 xfs_warn(log->l_mp, 2827 "%s: possible infinite loop (%d iterations)", 2828 __func__, flushcnt); 2829 } 2830 } 2831 2832 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2833 wake_up_all(&log->l_flush_wait); 2834 2835 spin_unlock(&log->l_icloglock); 2836 } 2837 2838 2839 /* 2840 * Finish transitioning this iclog to the dirty state. 2841 * 2842 * Callbacks could take time, so they are done outside the scope of the 2843 * global state machine log lock. 2844 */ 2845 STATIC void 2846 xlog_state_done_syncing( 2847 struct xlog_in_core *iclog) 2848 { 2849 struct xlog *log = iclog->ic_log; 2850 2851 spin_lock(&log->l_icloglock); 2852 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2853 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2854 2855 /* 2856 * If we got an error, either on the first buffer, or in the case of 2857 * split log writes, on the second, we shut down the file system and 2858 * no iclogs should ever be attempted to be written to disk again. 2859 */ 2860 if (!xlog_is_shutdown(log)) { 2861 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2862 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2863 } 2864 2865 /* 2866 * Someone could be sleeping prior to writing out the next 2867 * iclog buffer, we wake them all, one will get to do the 2868 * I/O, the others get to wait for the result. 2869 */ 2870 wake_up_all(&iclog->ic_write_wait); 2871 spin_unlock(&log->l_icloglock); 2872 xlog_state_do_callback(log); 2873 } 2874 2875 /* 2876 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2877 * sleep. We wait on the flush queue on the head iclog as that should be 2878 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2879 * we will wait here and all new writes will sleep until a sync completes. 2880 * 2881 * The in-core logs are used in a circular fashion. They are not used 2882 * out-of-order even when an iclog past the head is free. 2883 * 2884 * return: 2885 * * log_offset where xlog_write() can start writing into the in-core 2886 * log's data space. 2887 * * in-core log pointer to which xlog_write() should write. 2888 * * boolean indicating this is a continued write to an in-core log. 2889 * If this is the last write, then the in-core log's offset field 2890 * needs to be incremented, depending on the amount of data which 2891 * is copied. 2892 */ 2893 STATIC int 2894 xlog_state_get_iclog_space( 2895 struct xlog *log, 2896 int len, 2897 struct xlog_in_core **iclogp, 2898 struct xlog_ticket *ticket, 2899 int *logoffsetp) 2900 { 2901 int log_offset; 2902 xlog_rec_header_t *head; 2903 xlog_in_core_t *iclog; 2904 2905 restart: 2906 spin_lock(&log->l_icloglock); 2907 if (xlog_is_shutdown(log)) { 2908 spin_unlock(&log->l_icloglock); 2909 return -EIO; 2910 } 2911 2912 iclog = log->l_iclog; 2913 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2914 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2915 2916 /* Wait for log writes to have flushed */ 2917 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2918 goto restart; 2919 } 2920 2921 head = &iclog->ic_header; 2922 2923 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2924 log_offset = iclog->ic_offset; 2925 2926 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2927 2928 /* On the 1st write to an iclog, figure out lsn. This works 2929 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2930 * committing to. If the offset is set, that's how many blocks 2931 * must be written. 2932 */ 2933 if (log_offset == 0) { 2934 ticket->t_curr_res -= log->l_iclog_hsize; 2935 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2936 head->h_lsn = cpu_to_be64( 2937 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2938 ASSERT(log->l_curr_block >= 0); 2939 } 2940 2941 /* If there is enough room to write everything, then do it. Otherwise, 2942 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2943 * bit is on, so this will get flushed out. Don't update ic_offset 2944 * until you know exactly how many bytes get copied. Therefore, wait 2945 * until later to update ic_offset. 2946 * 2947 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2948 * can fit into remaining data section. 2949 */ 2950 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2951 int error = 0; 2952 2953 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2954 2955 /* 2956 * If we are the only one writing to this iclog, sync it to 2957 * disk. We need to do an atomic compare and decrement here to 2958 * avoid racing with concurrent atomic_dec_and_lock() calls in 2959 * xlog_state_release_iclog() when there is more than one 2960 * reference to the iclog. 2961 */ 2962 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2963 error = xlog_state_release_iclog(log, iclog, ticket); 2964 spin_unlock(&log->l_icloglock); 2965 if (error) 2966 return error; 2967 goto restart; 2968 } 2969 2970 /* Do we have enough room to write the full amount in the remainder 2971 * of this iclog? Or must we continue a write on the next iclog and 2972 * mark this iclog as completely taken? In the case where we switch 2973 * iclogs (to mark it taken), this particular iclog will release/sync 2974 * to disk in xlog_write(). 2975 */ 2976 if (len <= iclog->ic_size - iclog->ic_offset) 2977 iclog->ic_offset += len; 2978 else 2979 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2980 *iclogp = iclog; 2981 2982 ASSERT(iclog->ic_offset <= iclog->ic_size); 2983 spin_unlock(&log->l_icloglock); 2984 2985 *logoffsetp = log_offset; 2986 return 0; 2987 } 2988 2989 /* 2990 * The first cnt-1 times a ticket goes through here we don't need to move the 2991 * grant write head because the permanent reservation has reserved cnt times the 2992 * unit amount. Release part of current permanent unit reservation and reset 2993 * current reservation to be one units worth. Also move grant reservation head 2994 * forward. 2995 */ 2996 void 2997 xfs_log_ticket_regrant( 2998 struct xlog *log, 2999 struct xlog_ticket *ticket) 3000 { 3001 trace_xfs_log_ticket_regrant(log, ticket); 3002 3003 if (ticket->t_cnt > 0) 3004 ticket->t_cnt--; 3005 3006 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3007 ticket->t_curr_res); 3008 xlog_grant_sub_space(log, &log->l_write_head.grant, 3009 ticket->t_curr_res); 3010 ticket->t_curr_res = ticket->t_unit_res; 3011 3012 trace_xfs_log_ticket_regrant_sub(log, ticket); 3013 3014 /* just return if we still have some of the pre-reserved space */ 3015 if (!ticket->t_cnt) { 3016 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3017 ticket->t_unit_res); 3018 trace_xfs_log_ticket_regrant_exit(log, ticket); 3019 3020 ticket->t_curr_res = ticket->t_unit_res; 3021 } 3022 3023 xfs_log_ticket_put(ticket); 3024 } 3025 3026 /* 3027 * Give back the space left from a reservation. 3028 * 3029 * All the information we need to make a correct determination of space left 3030 * is present. For non-permanent reservations, things are quite easy. The 3031 * count should have been decremented to zero. We only need to deal with the 3032 * space remaining in the current reservation part of the ticket. If the 3033 * ticket contains a permanent reservation, there may be left over space which 3034 * needs to be released. A count of N means that N-1 refills of the current 3035 * reservation can be done before we need to ask for more space. The first 3036 * one goes to fill up the first current reservation. Once we run out of 3037 * space, the count will stay at zero and the only space remaining will be 3038 * in the current reservation field. 3039 */ 3040 void 3041 xfs_log_ticket_ungrant( 3042 struct xlog *log, 3043 struct xlog_ticket *ticket) 3044 { 3045 int bytes; 3046 3047 trace_xfs_log_ticket_ungrant(log, ticket); 3048 3049 if (ticket->t_cnt > 0) 3050 ticket->t_cnt--; 3051 3052 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3053 3054 /* 3055 * If this is a permanent reservation ticket, we may be able to free 3056 * up more space based on the remaining count. 3057 */ 3058 bytes = ticket->t_curr_res; 3059 if (ticket->t_cnt > 0) { 3060 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3061 bytes += ticket->t_unit_res*ticket->t_cnt; 3062 } 3063 3064 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3065 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3066 3067 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3068 3069 xfs_log_space_wake(log->l_mp); 3070 xfs_log_ticket_put(ticket); 3071 } 3072 3073 /* 3074 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3075 * the current iclog pointer to the next iclog in the ring. 3076 */ 3077 void 3078 xlog_state_switch_iclogs( 3079 struct xlog *log, 3080 struct xlog_in_core *iclog, 3081 int eventual_size) 3082 { 3083 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3084 assert_spin_locked(&log->l_icloglock); 3085 trace_xlog_iclog_switch(iclog, _RET_IP_); 3086 3087 if (!eventual_size) 3088 eventual_size = iclog->ic_offset; 3089 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3090 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3091 log->l_prev_block = log->l_curr_block; 3092 log->l_prev_cycle = log->l_curr_cycle; 3093 3094 /* roll log?: ic_offset changed later */ 3095 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3096 3097 /* Round up to next log-sunit */ 3098 if (log->l_iclog_roundoff > BBSIZE) { 3099 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3100 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3101 } 3102 3103 if (log->l_curr_block >= log->l_logBBsize) { 3104 /* 3105 * Rewind the current block before the cycle is bumped to make 3106 * sure that the combined LSN never transiently moves forward 3107 * when the log wraps to the next cycle. This is to support the 3108 * unlocked sample of these fields from xlog_valid_lsn(). Most 3109 * other cases should acquire l_icloglock. 3110 */ 3111 log->l_curr_block -= log->l_logBBsize; 3112 ASSERT(log->l_curr_block >= 0); 3113 smp_wmb(); 3114 log->l_curr_cycle++; 3115 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3116 log->l_curr_cycle++; 3117 } 3118 ASSERT(iclog == log->l_iclog); 3119 log->l_iclog = iclog->ic_next; 3120 } 3121 3122 /* 3123 * Force the iclog to disk and check if the iclog has been completed before 3124 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3125 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3126 * If completion has already occurred, tell the caller so that it can avoid an 3127 * unnecessary wait on the iclog. 3128 */ 3129 static int 3130 xlog_force_and_check_iclog( 3131 struct xlog_in_core *iclog, 3132 bool *completed) 3133 { 3134 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3135 int error; 3136 3137 *completed = false; 3138 error = xlog_force_iclog(iclog); 3139 if (error) 3140 return error; 3141 3142 /* 3143 * If the iclog has already been completed and reused the header LSN 3144 * will have been rewritten by completion 3145 */ 3146 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3147 *completed = true; 3148 return 0; 3149 } 3150 3151 /* 3152 * Write out all data in the in-core log as of this exact moment in time. 3153 * 3154 * Data may be written to the in-core log during this call. However, 3155 * we don't guarantee this data will be written out. A change from past 3156 * implementation means this routine will *not* write out zero length LRs. 3157 * 3158 * Basically, we try and perform an intelligent scan of the in-core logs. 3159 * If we determine there is no flushable data, we just return. There is no 3160 * flushable data if: 3161 * 3162 * 1. the current iclog is active and has no data; the previous iclog 3163 * is in the active or dirty state. 3164 * 2. the current iclog is drity, and the previous iclog is in the 3165 * active or dirty state. 3166 * 3167 * We may sleep if: 3168 * 3169 * 1. the current iclog is not in the active nor dirty state. 3170 * 2. the current iclog dirty, and the previous iclog is not in the 3171 * active nor dirty state. 3172 * 3. the current iclog is active, and there is another thread writing 3173 * to this particular iclog. 3174 * 4. a) the current iclog is active and has no other writers 3175 * b) when we return from flushing out this iclog, it is still 3176 * not in the active nor dirty state. 3177 */ 3178 int 3179 xfs_log_force( 3180 struct xfs_mount *mp, 3181 uint flags) 3182 { 3183 struct xlog *log = mp->m_log; 3184 struct xlog_in_core *iclog; 3185 3186 XFS_STATS_INC(mp, xs_log_force); 3187 trace_xfs_log_force(mp, 0, _RET_IP_); 3188 3189 xlog_cil_force(log); 3190 3191 spin_lock(&log->l_icloglock); 3192 if (xlog_is_shutdown(log)) 3193 goto out_error; 3194 3195 iclog = log->l_iclog; 3196 trace_xlog_iclog_force(iclog, _RET_IP_); 3197 3198 if (iclog->ic_state == XLOG_STATE_DIRTY || 3199 (iclog->ic_state == XLOG_STATE_ACTIVE && 3200 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3201 /* 3202 * If the head is dirty or (active and empty), then we need to 3203 * look at the previous iclog. 3204 * 3205 * If the previous iclog is active or dirty we are done. There 3206 * is nothing to sync out. Otherwise, we attach ourselves to the 3207 * previous iclog and go to sleep. 3208 */ 3209 iclog = iclog->ic_prev; 3210 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3211 if (atomic_read(&iclog->ic_refcnt) == 0) { 3212 /* We have exclusive access to this iclog. */ 3213 bool completed; 3214 3215 if (xlog_force_and_check_iclog(iclog, &completed)) 3216 goto out_error; 3217 3218 if (completed) 3219 goto out_unlock; 3220 } else { 3221 /* 3222 * Someone else is still writing to this iclog, so we 3223 * need to ensure that when they release the iclog it 3224 * gets synced immediately as we may be waiting on it. 3225 */ 3226 xlog_state_switch_iclogs(log, iclog, 0); 3227 } 3228 } 3229 3230 /* 3231 * The iclog we are about to wait on may contain the checkpoint pushed 3232 * by the above xlog_cil_force() call, but it may not have been pushed 3233 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3234 * are flushed when this iclog is written. 3235 */ 3236 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3237 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3238 3239 if (flags & XFS_LOG_SYNC) 3240 return xlog_wait_on_iclog(iclog); 3241 out_unlock: 3242 spin_unlock(&log->l_icloglock); 3243 return 0; 3244 out_error: 3245 spin_unlock(&log->l_icloglock); 3246 return -EIO; 3247 } 3248 3249 /* 3250 * Force the log to a specific LSN. 3251 * 3252 * If an iclog with that lsn can be found: 3253 * If it is in the DIRTY state, just return. 3254 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3255 * state and go to sleep or return. 3256 * If it is in any other state, go to sleep or return. 3257 * 3258 * Synchronous forces are implemented with a wait queue. All callers trying 3259 * to force a given lsn to disk must wait on the queue attached to the 3260 * specific in-core log. When given in-core log finally completes its write 3261 * to disk, that thread will wake up all threads waiting on the queue. 3262 */ 3263 static int 3264 xlog_force_lsn( 3265 struct xlog *log, 3266 xfs_lsn_t lsn, 3267 uint flags, 3268 int *log_flushed, 3269 bool already_slept) 3270 { 3271 struct xlog_in_core *iclog; 3272 bool completed; 3273 3274 spin_lock(&log->l_icloglock); 3275 if (xlog_is_shutdown(log)) 3276 goto out_error; 3277 3278 iclog = log->l_iclog; 3279 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3280 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3281 iclog = iclog->ic_next; 3282 if (iclog == log->l_iclog) 3283 goto out_unlock; 3284 } 3285 3286 switch (iclog->ic_state) { 3287 case XLOG_STATE_ACTIVE: 3288 /* 3289 * We sleep here if we haven't already slept (e.g. this is the 3290 * first time we've looked at the correct iclog buf) and the 3291 * buffer before us is going to be sync'ed. The reason for this 3292 * is that if we are doing sync transactions here, by waiting 3293 * for the previous I/O to complete, we can allow a few more 3294 * transactions into this iclog before we close it down. 3295 * 3296 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3297 * refcnt so we can release the log (which drops the ref count). 3298 * The state switch keeps new transaction commits from using 3299 * this buffer. When the current commits finish writing into 3300 * the buffer, the refcount will drop to zero and the buffer 3301 * will go out then. 3302 */ 3303 if (!already_slept && 3304 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3305 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3306 xlog_wait(&iclog->ic_prev->ic_write_wait, 3307 &log->l_icloglock); 3308 return -EAGAIN; 3309 } 3310 if (xlog_force_and_check_iclog(iclog, &completed)) 3311 goto out_error; 3312 if (log_flushed) 3313 *log_flushed = 1; 3314 if (completed) 3315 goto out_unlock; 3316 break; 3317 case XLOG_STATE_WANT_SYNC: 3318 /* 3319 * This iclog may contain the checkpoint pushed by the 3320 * xlog_cil_force_seq() call, but there are other writers still 3321 * accessing it so it hasn't been pushed to disk yet. Like the 3322 * ACTIVE case above, we need to make sure caches are flushed 3323 * when this iclog is written. 3324 */ 3325 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3326 break; 3327 default: 3328 /* 3329 * The entire checkpoint was written by the CIL force and is on 3330 * its way to disk already. It will be stable when it 3331 * completes, so we don't need to manipulate caches here at all. 3332 * We just need to wait for completion if necessary. 3333 */ 3334 break; 3335 } 3336 3337 if (flags & XFS_LOG_SYNC) 3338 return xlog_wait_on_iclog(iclog); 3339 out_unlock: 3340 spin_unlock(&log->l_icloglock); 3341 return 0; 3342 out_error: 3343 spin_unlock(&log->l_icloglock); 3344 return -EIO; 3345 } 3346 3347 /* 3348 * Force the log to a specific checkpoint sequence. 3349 * 3350 * First force the CIL so that all the required changes have been flushed to the 3351 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3352 * the iclog that needs to be flushed to stable storage. If the caller needs 3353 * a synchronous log force, we will wait on the iclog with the LSN returned by 3354 * xlog_cil_force_seq() to be completed. 3355 */ 3356 int 3357 xfs_log_force_seq( 3358 struct xfs_mount *mp, 3359 xfs_csn_t seq, 3360 uint flags, 3361 int *log_flushed) 3362 { 3363 struct xlog *log = mp->m_log; 3364 xfs_lsn_t lsn; 3365 int ret; 3366 ASSERT(seq != 0); 3367 3368 XFS_STATS_INC(mp, xs_log_force); 3369 trace_xfs_log_force(mp, seq, _RET_IP_); 3370 3371 lsn = xlog_cil_force_seq(log, seq); 3372 if (lsn == NULLCOMMITLSN) 3373 return 0; 3374 3375 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3376 if (ret == -EAGAIN) { 3377 XFS_STATS_INC(mp, xs_log_force_sleep); 3378 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3379 } 3380 return ret; 3381 } 3382 3383 /* 3384 * Free a used ticket when its refcount falls to zero. 3385 */ 3386 void 3387 xfs_log_ticket_put( 3388 xlog_ticket_t *ticket) 3389 { 3390 ASSERT(atomic_read(&ticket->t_ref) > 0); 3391 if (atomic_dec_and_test(&ticket->t_ref)) 3392 kmem_cache_free(xfs_log_ticket_cache, ticket); 3393 } 3394 3395 xlog_ticket_t * 3396 xfs_log_ticket_get( 3397 xlog_ticket_t *ticket) 3398 { 3399 ASSERT(atomic_read(&ticket->t_ref) > 0); 3400 atomic_inc(&ticket->t_ref); 3401 return ticket; 3402 } 3403 3404 /* 3405 * Figure out the total log space unit (in bytes) that would be 3406 * required for a log ticket. 3407 */ 3408 static int 3409 xlog_calc_unit_res( 3410 struct xlog *log, 3411 int unit_bytes, 3412 int *niclogs) 3413 { 3414 int iclog_space; 3415 uint num_headers; 3416 3417 /* 3418 * Permanent reservations have up to 'cnt'-1 active log operations 3419 * in the log. A unit in this case is the amount of space for one 3420 * of these log operations. Normal reservations have a cnt of 1 3421 * and their unit amount is the total amount of space required. 3422 * 3423 * The following lines of code account for non-transaction data 3424 * which occupy space in the on-disk log. 3425 * 3426 * Normal form of a transaction is: 3427 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3428 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3429 * 3430 * We need to account for all the leadup data and trailer data 3431 * around the transaction data. 3432 * And then we need to account for the worst case in terms of using 3433 * more space. 3434 * The worst case will happen if: 3435 * - the placement of the transaction happens to be such that the 3436 * roundoff is at its maximum 3437 * - the transaction data is synced before the commit record is synced 3438 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3439 * Therefore the commit record is in its own Log Record. 3440 * This can happen as the commit record is called with its 3441 * own region to xlog_write(). 3442 * This then means that in the worst case, roundoff can happen for 3443 * the commit-rec as well. 3444 * The commit-rec is smaller than padding in this scenario and so it is 3445 * not added separately. 3446 */ 3447 3448 /* for trans header */ 3449 unit_bytes += sizeof(xlog_op_header_t); 3450 unit_bytes += sizeof(xfs_trans_header_t); 3451 3452 /* for start-rec */ 3453 unit_bytes += sizeof(xlog_op_header_t); 3454 3455 /* 3456 * for LR headers - the space for data in an iclog is the size minus 3457 * the space used for the headers. If we use the iclog size, then we 3458 * undercalculate the number of headers required. 3459 * 3460 * Furthermore - the addition of op headers for split-recs might 3461 * increase the space required enough to require more log and op 3462 * headers, so take that into account too. 3463 * 3464 * IMPORTANT: This reservation makes the assumption that if this 3465 * transaction is the first in an iclog and hence has the LR headers 3466 * accounted to it, then the remaining space in the iclog is 3467 * exclusively for this transaction. i.e. if the transaction is larger 3468 * than the iclog, it will be the only thing in that iclog. 3469 * Fundamentally, this means we must pass the entire log vector to 3470 * xlog_write to guarantee this. 3471 */ 3472 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3473 num_headers = howmany(unit_bytes, iclog_space); 3474 3475 /* for split-recs - ophdrs added when data split over LRs */ 3476 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3477 3478 /* add extra header reservations if we overrun */ 3479 while (!num_headers || 3480 howmany(unit_bytes, iclog_space) > num_headers) { 3481 unit_bytes += sizeof(xlog_op_header_t); 3482 num_headers++; 3483 } 3484 unit_bytes += log->l_iclog_hsize * num_headers; 3485 3486 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3487 unit_bytes += log->l_iclog_hsize; 3488 3489 /* roundoff padding for transaction data and one for commit record */ 3490 unit_bytes += 2 * log->l_iclog_roundoff; 3491 3492 if (niclogs) 3493 *niclogs = num_headers; 3494 return unit_bytes; 3495 } 3496 3497 int 3498 xfs_log_calc_unit_res( 3499 struct xfs_mount *mp, 3500 int unit_bytes) 3501 { 3502 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3503 } 3504 3505 /* 3506 * Allocate and initialise a new log ticket. 3507 */ 3508 struct xlog_ticket * 3509 xlog_ticket_alloc( 3510 struct xlog *log, 3511 int unit_bytes, 3512 int cnt, 3513 bool permanent) 3514 { 3515 struct xlog_ticket *tic; 3516 int unit_res; 3517 3518 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3519 3520 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3521 3522 atomic_set(&tic->t_ref, 1); 3523 tic->t_task = current; 3524 INIT_LIST_HEAD(&tic->t_queue); 3525 tic->t_unit_res = unit_res; 3526 tic->t_curr_res = unit_res; 3527 tic->t_cnt = cnt; 3528 tic->t_ocnt = cnt; 3529 tic->t_tid = get_random_u32(); 3530 if (permanent) 3531 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3532 3533 return tic; 3534 } 3535 3536 #if defined(DEBUG) 3537 /* 3538 * Check to make sure the grant write head didn't just over lap the tail. If 3539 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3540 * the cycles differ by exactly one and check the byte count. 3541 * 3542 * This check is run unlocked, so can give false positives. Rather than assert 3543 * on failures, use a warn-once flag and a panic tag to allow the admin to 3544 * determine if they want to panic the machine when such an error occurs. For 3545 * debug kernels this will have the same effect as using an assert but, unlinke 3546 * an assert, it can be turned off at runtime. 3547 */ 3548 STATIC void 3549 xlog_verify_grant_tail( 3550 struct xlog *log) 3551 { 3552 int tail_cycle, tail_blocks; 3553 int cycle, space; 3554 3555 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3556 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3557 if (tail_cycle != cycle) { 3558 if (cycle - 1 != tail_cycle && 3559 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3560 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3561 "%s: cycle - 1 != tail_cycle", __func__); 3562 } 3563 3564 if (space > BBTOB(tail_blocks) && 3565 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3566 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3567 "%s: space > BBTOB(tail_blocks)", __func__); 3568 } 3569 } 3570 } 3571 3572 /* check if it will fit */ 3573 STATIC void 3574 xlog_verify_tail_lsn( 3575 struct xlog *log, 3576 struct xlog_in_core *iclog) 3577 { 3578 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3579 int blocks; 3580 3581 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3582 blocks = 3583 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3584 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3585 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3586 } else { 3587 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3588 3589 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3590 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3591 3592 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3593 if (blocks < BTOBB(iclog->ic_offset) + 1) 3594 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3595 } 3596 } 3597 3598 /* 3599 * Perform a number of checks on the iclog before writing to disk. 3600 * 3601 * 1. Make sure the iclogs are still circular 3602 * 2. Make sure we have a good magic number 3603 * 3. Make sure we don't have magic numbers in the data 3604 * 4. Check fields of each log operation header for: 3605 * A. Valid client identifier 3606 * B. tid ptr value falls in valid ptr space (user space code) 3607 * C. Length in log record header is correct according to the 3608 * individual operation headers within record. 3609 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3610 * log, check the preceding blocks of the physical log to make sure all 3611 * the cycle numbers agree with the current cycle number. 3612 */ 3613 STATIC void 3614 xlog_verify_iclog( 3615 struct xlog *log, 3616 struct xlog_in_core *iclog, 3617 int count) 3618 { 3619 xlog_op_header_t *ophead; 3620 xlog_in_core_t *icptr; 3621 xlog_in_core_2_t *xhdr; 3622 void *base_ptr, *ptr, *p; 3623 ptrdiff_t field_offset; 3624 uint8_t clientid; 3625 int len, i, j, k, op_len; 3626 int idx; 3627 3628 /* check validity of iclog pointers */ 3629 spin_lock(&log->l_icloglock); 3630 icptr = log->l_iclog; 3631 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3632 ASSERT(icptr); 3633 3634 if (icptr != log->l_iclog) 3635 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3636 spin_unlock(&log->l_icloglock); 3637 3638 /* check log magic numbers */ 3639 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3640 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3641 3642 base_ptr = ptr = &iclog->ic_header; 3643 p = &iclog->ic_header; 3644 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3645 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3646 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3647 __func__); 3648 } 3649 3650 /* check fields */ 3651 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3652 base_ptr = ptr = iclog->ic_datap; 3653 ophead = ptr; 3654 xhdr = iclog->ic_data; 3655 for (i = 0; i < len; i++) { 3656 ophead = ptr; 3657 3658 /* clientid is only 1 byte */ 3659 p = &ophead->oh_clientid; 3660 field_offset = p - base_ptr; 3661 if (field_offset & 0x1ff) { 3662 clientid = ophead->oh_clientid; 3663 } else { 3664 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3665 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3666 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3667 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3668 clientid = xlog_get_client_id( 3669 xhdr[j].hic_xheader.xh_cycle_data[k]); 3670 } else { 3671 clientid = xlog_get_client_id( 3672 iclog->ic_header.h_cycle_data[idx]); 3673 } 3674 } 3675 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3676 xfs_warn(log->l_mp, 3677 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3678 __func__, i, clientid, ophead, 3679 (unsigned long)field_offset); 3680 } 3681 3682 /* check length */ 3683 p = &ophead->oh_len; 3684 field_offset = p - base_ptr; 3685 if (field_offset & 0x1ff) { 3686 op_len = be32_to_cpu(ophead->oh_len); 3687 } else { 3688 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3689 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3690 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3691 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3692 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3693 } else { 3694 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3695 } 3696 } 3697 ptr += sizeof(xlog_op_header_t) + op_len; 3698 } 3699 } 3700 #endif 3701 3702 /* 3703 * Perform a forced shutdown on the log. 3704 * 3705 * This can be called from low level log code to trigger a shutdown, or from the 3706 * high level mount shutdown code when the mount shuts down. 3707 * 3708 * Our main objectives here are to make sure that: 3709 * a. if the shutdown was not due to a log IO error, flush the logs to 3710 * disk. Anything modified after this is ignored. 3711 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3712 * parties to find out. Nothing new gets queued after this is done. 3713 * c. Tasks sleeping on log reservations, pinned objects and 3714 * other resources get woken up. 3715 * d. The mount is also marked as shut down so that log triggered shutdowns 3716 * still behave the same as if they called xfs_forced_shutdown(). 3717 * 3718 * Return true if the shutdown cause was a log IO error and we actually shut the 3719 * log down. 3720 */ 3721 bool 3722 xlog_force_shutdown( 3723 struct xlog *log, 3724 uint32_t shutdown_flags) 3725 { 3726 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3727 3728 if (!log) 3729 return false; 3730 3731 /* 3732 * Flush all the completed transactions to disk before marking the log 3733 * being shut down. We need to do this first as shutting down the log 3734 * before the force will prevent the log force from flushing the iclogs 3735 * to disk. 3736 * 3737 * When we are in recovery, there are no transactions to flush, and 3738 * we don't want to touch the log because we don't want to perturb the 3739 * current head/tail for future recovery attempts. Hence we need to 3740 * avoid a log force in this case. 3741 * 3742 * If we are shutting down due to a log IO error, then we must avoid 3743 * trying to write the log as that may just result in more IO errors and 3744 * an endless shutdown/force loop. 3745 */ 3746 if (!log_error && !xlog_in_recovery(log)) 3747 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3748 3749 /* 3750 * Atomically set the shutdown state. If the shutdown state is already 3751 * set, there someone else is performing the shutdown and so we are done 3752 * here. This should never happen because we should only ever get called 3753 * once by the first shutdown caller. 3754 * 3755 * Much of the log state machine transitions assume that shutdown state 3756 * cannot change once they hold the log->l_icloglock. Hence we need to 3757 * hold that lock here, even though we use the atomic test_and_set_bit() 3758 * operation to set the shutdown state. 3759 */ 3760 spin_lock(&log->l_icloglock); 3761 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3762 spin_unlock(&log->l_icloglock); 3763 return false; 3764 } 3765 spin_unlock(&log->l_icloglock); 3766 3767 /* 3768 * If this log shutdown also sets the mount shutdown state, issue a 3769 * shutdown warning message. 3770 */ 3771 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) { 3772 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3773 "Filesystem has been shut down due to log error (0x%x).", 3774 shutdown_flags); 3775 xfs_alert(log->l_mp, 3776 "Please unmount the filesystem and rectify the problem(s)."); 3777 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3778 xfs_stack_trace(); 3779 } 3780 3781 /* 3782 * We don't want anybody waiting for log reservations after this. That 3783 * means we have to wake up everybody queued up on reserveq as well as 3784 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3785 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3786 * action is protected by the grant locks. 3787 */ 3788 xlog_grant_head_wake_all(&log->l_reserve_head); 3789 xlog_grant_head_wake_all(&log->l_write_head); 3790 3791 /* 3792 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3793 * as if the log writes were completed. The abort handling in the log 3794 * item committed callback functions will do this again under lock to 3795 * avoid races. 3796 */ 3797 spin_lock(&log->l_cilp->xc_push_lock); 3798 wake_up_all(&log->l_cilp->xc_start_wait); 3799 wake_up_all(&log->l_cilp->xc_commit_wait); 3800 spin_unlock(&log->l_cilp->xc_push_lock); 3801 3802 spin_lock(&log->l_icloglock); 3803 xlog_state_shutdown_callbacks(log); 3804 spin_unlock(&log->l_icloglock); 3805 3806 wake_up_var(&log->l_opstate); 3807 return log_error; 3808 } 3809 3810 STATIC int 3811 xlog_iclogs_empty( 3812 struct xlog *log) 3813 { 3814 xlog_in_core_t *iclog; 3815 3816 iclog = log->l_iclog; 3817 do { 3818 /* endianness does not matter here, zero is zero in 3819 * any language. 3820 */ 3821 if (iclog->ic_header.h_num_logops) 3822 return 0; 3823 iclog = iclog->ic_next; 3824 } while (iclog != log->l_iclog); 3825 return 1; 3826 } 3827 3828 /* 3829 * Verify that an LSN stamped into a piece of metadata is valid. This is 3830 * intended for use in read verifiers on v5 superblocks. 3831 */ 3832 bool 3833 xfs_log_check_lsn( 3834 struct xfs_mount *mp, 3835 xfs_lsn_t lsn) 3836 { 3837 struct xlog *log = mp->m_log; 3838 bool valid; 3839 3840 /* 3841 * norecovery mode skips mount-time log processing and unconditionally 3842 * resets the in-core LSN. We can't validate in this mode, but 3843 * modifications are not allowed anyways so just return true. 3844 */ 3845 if (xfs_has_norecovery(mp)) 3846 return true; 3847 3848 /* 3849 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3850 * handled by recovery and thus safe to ignore here. 3851 */ 3852 if (lsn == NULLCOMMITLSN) 3853 return true; 3854 3855 valid = xlog_valid_lsn(mp->m_log, lsn); 3856 3857 /* warn the user about what's gone wrong before verifier failure */ 3858 if (!valid) { 3859 spin_lock(&log->l_icloglock); 3860 xfs_warn(mp, 3861 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3862 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3863 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3864 log->l_curr_cycle, log->l_curr_block); 3865 spin_unlock(&log->l_icloglock); 3866 } 3867 3868 return valid; 3869 } 3870 3871 /* 3872 * Notify the log that we're about to start using a feature that is protected 3873 * by a log incompat feature flag. This will prevent log covering from 3874 * clearing those flags. 3875 */ 3876 void 3877 xlog_use_incompat_feat( 3878 struct xlog *log) 3879 { 3880 down_read(&log->l_incompat_users); 3881 } 3882 3883 /* Notify the log that we've finished using log incompat features. */ 3884 void 3885 xlog_drop_incompat_feat( 3886 struct xlog *log) 3887 { 3888 up_read(&log->l_incompat_users); 3889 } 3890