1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_log_recover.h" 20 #include "xfs_inode.h" 21 #include "xfs_trace.h" 22 #include "xfs_fsops.h" 23 #include "xfs_cksum.h" 24 #include "xfs_sysfs.h" 25 #include "xfs_sb.h" 26 27 kmem_zone_t *xfs_log_ticket_zone; 28 29 /* Local miscellaneous function prototypes */ 30 STATIC int 31 xlog_commit_record( 32 struct xlog *log, 33 struct xlog_ticket *ticket, 34 struct xlog_in_core **iclog, 35 xfs_lsn_t *commitlsnp); 36 37 STATIC struct xlog * 38 xlog_alloc_log( 39 struct xfs_mount *mp, 40 struct xfs_buftarg *log_target, 41 xfs_daddr_t blk_offset, 42 int num_bblks); 43 STATIC int 44 xlog_space_left( 45 struct xlog *log, 46 atomic64_t *head); 47 STATIC int 48 xlog_sync( 49 struct xlog *log, 50 struct xlog_in_core *iclog); 51 STATIC void 52 xlog_dealloc_log( 53 struct xlog *log); 54 55 /* local state machine functions */ 56 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 57 STATIC void 58 xlog_state_do_callback( 59 struct xlog *log, 60 int aborted, 61 struct xlog_in_core *iclog); 62 STATIC int 63 xlog_state_get_iclog_space( 64 struct xlog *log, 65 int len, 66 struct xlog_in_core **iclog, 67 struct xlog_ticket *ticket, 68 int *continued_write, 69 int *logoffsetp); 70 STATIC int 71 xlog_state_release_iclog( 72 struct xlog *log, 73 struct xlog_in_core *iclog); 74 STATIC void 75 xlog_state_switch_iclogs( 76 struct xlog *log, 77 struct xlog_in_core *iclog, 78 int eventual_size); 79 STATIC void 80 xlog_state_want_sync( 81 struct xlog *log, 82 struct xlog_in_core *iclog); 83 84 STATIC void 85 xlog_grant_push_ail( 86 struct xlog *log, 87 int need_bytes); 88 STATIC void 89 xlog_regrant_reserve_log_space( 90 struct xlog *log, 91 struct xlog_ticket *ticket); 92 STATIC void 93 xlog_ungrant_log_space( 94 struct xlog *log, 95 struct xlog_ticket *ticket); 96 97 #if defined(DEBUG) 98 STATIC void 99 xlog_verify_dest_ptr( 100 struct xlog *log, 101 void *ptr); 102 STATIC void 103 xlog_verify_grant_tail( 104 struct xlog *log); 105 STATIC void 106 xlog_verify_iclog( 107 struct xlog *log, 108 struct xlog_in_core *iclog, 109 int count, 110 bool syncing); 111 STATIC void 112 xlog_verify_tail_lsn( 113 struct xlog *log, 114 struct xlog_in_core *iclog, 115 xfs_lsn_t tail_lsn); 116 #else 117 #define xlog_verify_dest_ptr(a,b) 118 #define xlog_verify_grant_tail(a) 119 #define xlog_verify_iclog(a,b,c,d) 120 #define xlog_verify_tail_lsn(a,b,c) 121 #endif 122 123 STATIC int 124 xlog_iclogs_empty( 125 struct xlog *log); 126 127 static void 128 xlog_grant_sub_space( 129 struct xlog *log, 130 atomic64_t *head, 131 int bytes) 132 { 133 int64_t head_val = atomic64_read(head); 134 int64_t new, old; 135 136 do { 137 int cycle, space; 138 139 xlog_crack_grant_head_val(head_val, &cycle, &space); 140 141 space -= bytes; 142 if (space < 0) { 143 space += log->l_logsize; 144 cycle--; 145 } 146 147 old = head_val; 148 new = xlog_assign_grant_head_val(cycle, space); 149 head_val = atomic64_cmpxchg(head, old, new); 150 } while (head_val != old); 151 } 152 153 static void 154 xlog_grant_add_space( 155 struct xlog *log, 156 atomic64_t *head, 157 int bytes) 158 { 159 int64_t head_val = atomic64_read(head); 160 int64_t new, old; 161 162 do { 163 int tmp; 164 int cycle, space; 165 166 xlog_crack_grant_head_val(head_val, &cycle, &space); 167 168 tmp = log->l_logsize - space; 169 if (tmp > bytes) 170 space += bytes; 171 else { 172 space = bytes - tmp; 173 cycle++; 174 } 175 176 old = head_val; 177 new = xlog_assign_grant_head_val(cycle, space); 178 head_val = atomic64_cmpxchg(head, old, new); 179 } while (head_val != old); 180 } 181 182 STATIC void 183 xlog_grant_head_init( 184 struct xlog_grant_head *head) 185 { 186 xlog_assign_grant_head(&head->grant, 1, 0); 187 INIT_LIST_HEAD(&head->waiters); 188 spin_lock_init(&head->lock); 189 } 190 191 STATIC void 192 xlog_grant_head_wake_all( 193 struct xlog_grant_head *head) 194 { 195 struct xlog_ticket *tic; 196 197 spin_lock(&head->lock); 198 list_for_each_entry(tic, &head->waiters, t_queue) 199 wake_up_process(tic->t_task); 200 spin_unlock(&head->lock); 201 } 202 203 static inline int 204 xlog_ticket_reservation( 205 struct xlog *log, 206 struct xlog_grant_head *head, 207 struct xlog_ticket *tic) 208 { 209 if (head == &log->l_write_head) { 210 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 211 return tic->t_unit_res; 212 } else { 213 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 214 return tic->t_unit_res * tic->t_cnt; 215 else 216 return tic->t_unit_res; 217 } 218 } 219 220 STATIC bool 221 xlog_grant_head_wake( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 int *free_bytes) 225 { 226 struct xlog_ticket *tic; 227 int need_bytes; 228 229 list_for_each_entry(tic, &head->waiters, t_queue) { 230 need_bytes = xlog_ticket_reservation(log, head, tic); 231 if (*free_bytes < need_bytes) 232 return false; 233 234 *free_bytes -= need_bytes; 235 trace_xfs_log_grant_wake_up(log, tic); 236 wake_up_process(tic->t_task); 237 } 238 239 return true; 240 } 241 242 STATIC int 243 xlog_grant_head_wait( 244 struct xlog *log, 245 struct xlog_grant_head *head, 246 struct xlog_ticket *tic, 247 int need_bytes) __releases(&head->lock) 248 __acquires(&head->lock) 249 { 250 list_add_tail(&tic->t_queue, &head->waiters); 251 252 do { 253 if (XLOG_FORCED_SHUTDOWN(log)) 254 goto shutdown; 255 xlog_grant_push_ail(log, need_bytes); 256 257 __set_current_state(TASK_UNINTERRUPTIBLE); 258 spin_unlock(&head->lock); 259 260 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 261 262 trace_xfs_log_grant_sleep(log, tic); 263 schedule(); 264 trace_xfs_log_grant_wake(log, tic); 265 266 spin_lock(&head->lock); 267 if (XLOG_FORCED_SHUTDOWN(log)) 268 goto shutdown; 269 } while (xlog_space_left(log, &head->grant) < need_bytes); 270 271 list_del_init(&tic->t_queue); 272 return 0; 273 shutdown: 274 list_del_init(&tic->t_queue); 275 return -EIO; 276 } 277 278 /* 279 * Atomically get the log space required for a log ticket. 280 * 281 * Once a ticket gets put onto head->waiters, it will only return after the 282 * needed reservation is satisfied. 283 * 284 * This function is structured so that it has a lock free fast path. This is 285 * necessary because every new transaction reservation will come through this 286 * path. Hence any lock will be globally hot if we take it unconditionally on 287 * every pass. 288 * 289 * As tickets are only ever moved on and off head->waiters under head->lock, we 290 * only need to take that lock if we are going to add the ticket to the queue 291 * and sleep. We can avoid taking the lock if the ticket was never added to 292 * head->waiters because the t_queue list head will be empty and we hold the 293 * only reference to it so it can safely be checked unlocked. 294 */ 295 STATIC int 296 xlog_grant_head_check( 297 struct xlog *log, 298 struct xlog_grant_head *head, 299 struct xlog_ticket *tic, 300 int *need_bytes) 301 { 302 int free_bytes; 303 int error = 0; 304 305 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 306 307 /* 308 * If there are other waiters on the queue then give them a chance at 309 * logspace before us. Wake up the first waiters, if we do not wake 310 * up all the waiters then go to sleep waiting for more free space, 311 * otherwise try to get some space for this transaction. 312 */ 313 *need_bytes = xlog_ticket_reservation(log, head, tic); 314 free_bytes = xlog_space_left(log, &head->grant); 315 if (!list_empty_careful(&head->waiters)) { 316 spin_lock(&head->lock); 317 if (!xlog_grant_head_wake(log, head, &free_bytes) || 318 free_bytes < *need_bytes) { 319 error = xlog_grant_head_wait(log, head, tic, 320 *need_bytes); 321 } 322 spin_unlock(&head->lock); 323 } else if (free_bytes < *need_bytes) { 324 spin_lock(&head->lock); 325 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 326 spin_unlock(&head->lock); 327 } 328 329 return error; 330 } 331 332 static void 333 xlog_tic_reset_res(xlog_ticket_t *tic) 334 { 335 tic->t_res_num = 0; 336 tic->t_res_arr_sum = 0; 337 tic->t_res_num_ophdrs = 0; 338 } 339 340 static void 341 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 342 { 343 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 344 /* add to overflow and start again */ 345 tic->t_res_o_flow += tic->t_res_arr_sum; 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 } 349 350 tic->t_res_arr[tic->t_res_num].r_len = len; 351 tic->t_res_arr[tic->t_res_num].r_type = type; 352 tic->t_res_arr_sum += len; 353 tic->t_res_num++; 354 } 355 356 /* 357 * Replenish the byte reservation required by moving the grant write head. 358 */ 359 int 360 xfs_log_regrant( 361 struct xfs_mount *mp, 362 struct xlog_ticket *tic) 363 { 364 struct xlog *log = mp->m_log; 365 int need_bytes; 366 int error = 0; 367 368 if (XLOG_FORCED_SHUTDOWN(log)) 369 return -EIO; 370 371 XFS_STATS_INC(mp, xs_try_logspace); 372 373 /* 374 * This is a new transaction on the ticket, so we need to change the 375 * transaction ID so that the next transaction has a different TID in 376 * the log. Just add one to the existing tid so that we can see chains 377 * of rolling transactions in the log easily. 378 */ 379 tic->t_tid++; 380 381 xlog_grant_push_ail(log, tic->t_unit_res); 382 383 tic->t_curr_res = tic->t_unit_res; 384 xlog_tic_reset_res(tic); 385 386 if (tic->t_cnt > 0) 387 return 0; 388 389 trace_xfs_log_regrant(log, tic); 390 391 error = xlog_grant_head_check(log, &log->l_write_head, tic, 392 &need_bytes); 393 if (error) 394 goto out_error; 395 396 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 397 trace_xfs_log_regrant_exit(log, tic); 398 xlog_verify_grant_tail(log); 399 return 0; 400 401 out_error: 402 /* 403 * If we are failing, make sure the ticket doesn't have any current 404 * reservations. We don't want to add this back when the ticket/ 405 * transaction gets cancelled. 406 */ 407 tic->t_curr_res = 0; 408 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 409 return error; 410 } 411 412 /* 413 * Reserve log space and return a ticket corresponding to the reservation. 414 * 415 * Each reservation is going to reserve extra space for a log record header. 416 * When writes happen to the on-disk log, we don't subtract the length of the 417 * log record header from any reservation. By wasting space in each 418 * reservation, we prevent over allocation problems. 419 */ 420 int 421 xfs_log_reserve( 422 struct xfs_mount *mp, 423 int unit_bytes, 424 int cnt, 425 struct xlog_ticket **ticp, 426 uint8_t client, 427 bool permanent) 428 { 429 struct xlog *log = mp->m_log; 430 struct xlog_ticket *tic; 431 int need_bytes; 432 int error = 0; 433 434 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 435 436 if (XLOG_FORCED_SHUTDOWN(log)) 437 return -EIO; 438 439 XFS_STATS_INC(mp, xs_try_logspace); 440 441 ASSERT(*ticp == NULL); 442 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 443 KM_SLEEP | KM_MAYFAIL); 444 if (!tic) 445 return -ENOMEM; 446 447 *ticp = tic; 448 449 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 450 : tic->t_unit_res); 451 452 trace_xfs_log_reserve(log, tic); 453 454 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 455 &need_bytes); 456 if (error) 457 goto out_error; 458 459 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 460 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 461 trace_xfs_log_reserve_exit(log, tic); 462 xlog_verify_grant_tail(log); 463 return 0; 464 465 out_error: 466 /* 467 * If we are failing, make sure the ticket doesn't have any current 468 * reservations. We don't want to add this back when the ticket/ 469 * transaction gets cancelled. 470 */ 471 tic->t_curr_res = 0; 472 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 473 return error; 474 } 475 476 477 /* 478 * NOTES: 479 * 480 * 1. currblock field gets updated at startup and after in-core logs 481 * marked as with WANT_SYNC. 482 */ 483 484 /* 485 * This routine is called when a user of a log manager ticket is done with 486 * the reservation. If the ticket was ever used, then a commit record for 487 * the associated transaction is written out as a log operation header with 488 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 489 * a given ticket. If the ticket was one with a permanent reservation, then 490 * a few operations are done differently. Permanent reservation tickets by 491 * default don't release the reservation. They just commit the current 492 * transaction with the belief that the reservation is still needed. A flag 493 * must be passed in before permanent reservations are actually released. 494 * When these type of tickets are not released, they need to be set into 495 * the inited state again. By doing this, a start record will be written 496 * out when the next write occurs. 497 */ 498 xfs_lsn_t 499 xfs_log_done( 500 struct xfs_mount *mp, 501 struct xlog_ticket *ticket, 502 struct xlog_in_core **iclog, 503 bool regrant) 504 { 505 struct xlog *log = mp->m_log; 506 xfs_lsn_t lsn = 0; 507 508 if (XLOG_FORCED_SHUTDOWN(log) || 509 /* 510 * If nothing was ever written, don't write out commit record. 511 * If we get an error, just continue and give back the log ticket. 512 */ 513 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 514 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 515 lsn = (xfs_lsn_t) -1; 516 regrant = false; 517 } 518 519 520 if (!regrant) { 521 trace_xfs_log_done_nonperm(log, ticket); 522 523 /* 524 * Release ticket if not permanent reservation or a specific 525 * request has been made to release a permanent reservation. 526 */ 527 xlog_ungrant_log_space(log, ticket); 528 } else { 529 trace_xfs_log_done_perm(log, ticket); 530 531 xlog_regrant_reserve_log_space(log, ticket); 532 /* If this ticket was a permanent reservation and we aren't 533 * trying to release it, reset the inited flags; so next time 534 * we write, a start record will be written out. 535 */ 536 ticket->t_flags |= XLOG_TIC_INITED; 537 } 538 539 xfs_log_ticket_put(ticket); 540 return lsn; 541 } 542 543 /* 544 * Attaches a new iclog I/O completion callback routine during 545 * transaction commit. If the log is in error state, a non-zero 546 * return code is handed back and the caller is responsible for 547 * executing the callback at an appropriate time. 548 */ 549 int 550 xfs_log_notify( 551 struct xlog_in_core *iclog, 552 xfs_log_callback_t *cb) 553 { 554 int abortflg; 555 556 spin_lock(&iclog->ic_callback_lock); 557 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 558 if (!abortflg) { 559 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 560 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 561 cb->cb_next = NULL; 562 *(iclog->ic_callback_tail) = cb; 563 iclog->ic_callback_tail = &(cb->cb_next); 564 } 565 spin_unlock(&iclog->ic_callback_lock); 566 return abortflg; 567 } 568 569 int 570 xfs_log_release_iclog( 571 struct xfs_mount *mp, 572 struct xlog_in_core *iclog) 573 { 574 if (xlog_state_release_iclog(mp->m_log, iclog)) { 575 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 576 return -EIO; 577 } 578 579 return 0; 580 } 581 582 /* 583 * Mount a log filesystem 584 * 585 * mp - ubiquitous xfs mount point structure 586 * log_target - buftarg of on-disk log device 587 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 588 * num_bblocks - Number of BBSIZE blocks in on-disk log 589 * 590 * Return error or zero. 591 */ 592 int 593 xfs_log_mount( 594 xfs_mount_t *mp, 595 xfs_buftarg_t *log_target, 596 xfs_daddr_t blk_offset, 597 int num_bblks) 598 { 599 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 600 int error = 0; 601 int min_logfsbs; 602 603 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 604 xfs_notice(mp, "Mounting V%d Filesystem", 605 XFS_SB_VERSION_NUM(&mp->m_sb)); 606 } else { 607 xfs_notice(mp, 608 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 609 XFS_SB_VERSION_NUM(&mp->m_sb)); 610 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 611 } 612 613 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 614 if (IS_ERR(mp->m_log)) { 615 error = PTR_ERR(mp->m_log); 616 goto out; 617 } 618 619 /* 620 * Validate the given log space and drop a critical message via syslog 621 * if the log size is too small that would lead to some unexpected 622 * situations in transaction log space reservation stage. 623 * 624 * Note: we can't just reject the mount if the validation fails. This 625 * would mean that people would have to downgrade their kernel just to 626 * remedy the situation as there is no way to grow the log (short of 627 * black magic surgery with xfs_db). 628 * 629 * We can, however, reject mounts for CRC format filesystems, as the 630 * mkfs binary being used to make the filesystem should never create a 631 * filesystem with a log that is too small. 632 */ 633 min_logfsbs = xfs_log_calc_minimum_size(mp); 634 635 if (mp->m_sb.sb_logblocks < min_logfsbs) { 636 xfs_warn(mp, 637 "Log size %d blocks too small, minimum size is %d blocks", 638 mp->m_sb.sb_logblocks, min_logfsbs); 639 error = -EINVAL; 640 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 641 xfs_warn(mp, 642 "Log size %d blocks too large, maximum size is %lld blocks", 643 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 644 error = -EINVAL; 645 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 646 xfs_warn(mp, 647 "log size %lld bytes too large, maximum size is %lld bytes", 648 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 649 XFS_MAX_LOG_BYTES); 650 error = -EINVAL; 651 } else if (mp->m_sb.sb_logsunit > 1 && 652 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 653 xfs_warn(mp, 654 "log stripe unit %u bytes must be a multiple of block size", 655 mp->m_sb.sb_logsunit); 656 error = -EINVAL; 657 fatal = true; 658 } 659 if (error) { 660 /* 661 * Log check errors are always fatal on v5; or whenever bad 662 * metadata leads to a crash. 663 */ 664 if (fatal) { 665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 666 ASSERT(0); 667 goto out_free_log; 668 } 669 xfs_crit(mp, "Log size out of supported range."); 670 xfs_crit(mp, 671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 672 } 673 674 /* 675 * Initialize the AIL now we have a log. 676 */ 677 error = xfs_trans_ail_init(mp); 678 if (error) { 679 xfs_warn(mp, "AIL initialisation failed: error %d", error); 680 goto out_free_log; 681 } 682 mp->m_log->l_ailp = mp->m_ail; 683 684 /* 685 * skip log recovery on a norecovery mount. pretend it all 686 * just worked. 687 */ 688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 690 691 if (readonly) 692 mp->m_flags &= ~XFS_MOUNT_RDONLY; 693 694 error = xlog_recover(mp->m_log); 695 696 if (readonly) 697 mp->m_flags |= XFS_MOUNT_RDONLY; 698 if (error) { 699 xfs_warn(mp, "log mount/recovery failed: error %d", 700 error); 701 xlog_recover_cancel(mp->m_log); 702 goto out_destroy_ail; 703 } 704 } 705 706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 707 "log"); 708 if (error) 709 goto out_destroy_ail; 710 711 /* Normal transactions can now occur */ 712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 713 714 /* 715 * Now the log has been fully initialised and we know were our 716 * space grant counters are, we can initialise the permanent ticket 717 * needed for delayed logging to work. 718 */ 719 xlog_cil_init_post_recovery(mp->m_log); 720 721 return 0; 722 723 out_destroy_ail: 724 xfs_trans_ail_destroy(mp); 725 out_free_log: 726 xlog_dealloc_log(mp->m_log); 727 out: 728 return error; 729 } 730 731 /* 732 * Finish the recovery of the file system. This is separate from the 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 735 * here. 736 * 737 * If we finish recovery successfully, start the background log work. If we are 738 * not doing recovery, then we have a RO filesystem and we don't need to start 739 * it. 740 */ 741 int 742 xfs_log_mount_finish( 743 struct xfs_mount *mp) 744 { 745 int error = 0; 746 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 747 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 748 749 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 751 return 0; 752 } else if (readonly) { 753 /* Allow unlinked processing to proceed */ 754 mp->m_flags &= ~XFS_MOUNT_RDONLY; 755 } 756 757 /* 758 * During the second phase of log recovery, we need iget and 759 * iput to behave like they do for an active filesystem. 760 * xfs_fs_drop_inode needs to be able to prevent the deletion 761 * of inodes before we're done replaying log items on those 762 * inodes. Turn it off immediately after recovery finishes 763 * so that we don't leak the quota inodes if subsequent mount 764 * activities fail. 765 * 766 * We let all inodes involved in redo item processing end up on 767 * the LRU instead of being evicted immediately so that if we do 768 * something to an unlinked inode, the irele won't cause 769 * premature truncation and freeing of the inode, which results 770 * in log recovery failure. We have to evict the unreferenced 771 * lru inodes after clearing SB_ACTIVE because we don't 772 * otherwise clean up the lru if there's a subsequent failure in 773 * xfs_mountfs, which leads to us leaking the inodes if nothing 774 * else (e.g. quotacheck) references the inodes before the 775 * mount failure occurs. 776 */ 777 mp->m_super->s_flags |= SB_ACTIVE; 778 error = xlog_recover_finish(mp->m_log); 779 if (!error) 780 xfs_log_work_queue(mp); 781 mp->m_super->s_flags &= ~SB_ACTIVE; 782 evict_inodes(mp->m_super); 783 784 /* 785 * Drain the buffer LRU after log recovery. This is required for v4 786 * filesystems to avoid leaving around buffers with NULL verifier ops, 787 * but we do it unconditionally to make sure we're always in a clean 788 * cache state after mount. 789 * 790 * Don't push in the error case because the AIL may have pending intents 791 * that aren't removed until recovery is cancelled. 792 */ 793 if (!error && recovered) { 794 xfs_log_force(mp, XFS_LOG_SYNC); 795 xfs_ail_push_all_sync(mp->m_ail); 796 } 797 xfs_wait_buftarg(mp->m_ddev_targp); 798 799 if (readonly) 800 mp->m_flags |= XFS_MOUNT_RDONLY; 801 802 return error; 803 } 804 805 /* 806 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 807 * the log. 808 */ 809 int 810 xfs_log_mount_cancel( 811 struct xfs_mount *mp) 812 { 813 int error; 814 815 error = xlog_recover_cancel(mp->m_log); 816 xfs_log_unmount(mp); 817 818 return error; 819 } 820 821 /* 822 * Final log writes as part of unmount. 823 * 824 * Mark the filesystem clean as unmount happens. Note that during relocation 825 * this routine needs to be executed as part of source-bag while the 826 * deallocation must not be done until source-end. 827 */ 828 829 /* Actually write the unmount record to disk. */ 830 static void 831 xfs_log_write_unmount_record( 832 struct xfs_mount *mp) 833 { 834 /* the data section must be 32 bit size aligned */ 835 struct xfs_unmount_log_format magic = { 836 .magic = XLOG_UNMOUNT_TYPE, 837 }; 838 struct xfs_log_iovec reg = { 839 .i_addr = &magic, 840 .i_len = sizeof(magic), 841 .i_type = XLOG_REG_TYPE_UNMOUNT, 842 }; 843 struct xfs_log_vec vec = { 844 .lv_niovecs = 1, 845 .lv_iovecp = ®, 846 }; 847 struct xlog *log = mp->m_log; 848 struct xlog_in_core *iclog; 849 struct xlog_ticket *tic = NULL; 850 xfs_lsn_t lsn; 851 uint flags = XLOG_UNMOUNT_TRANS; 852 int error; 853 854 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 855 if (error) 856 goto out_err; 857 858 /* 859 * If we think the summary counters are bad, clear the unmount header 860 * flag in the unmount record so that the summary counters will be 861 * recalculated during log recovery at next mount. Refer to 862 * xlog_check_unmount_rec for more details. 863 */ 864 if (XFS_TEST_ERROR((mp->m_flags & XFS_MOUNT_BAD_SUMMARY), mp, 865 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 866 xfs_alert(mp, "%s: will fix summary counters at next mount", 867 __func__); 868 flags &= ~XLOG_UNMOUNT_TRANS; 869 } 870 871 /* remove inited flag, and account for space used */ 872 tic->t_flags = 0; 873 tic->t_curr_res -= sizeof(magic); 874 error = xlog_write(log, &vec, tic, &lsn, NULL, flags); 875 /* 876 * At this point, we're umounting anyway, so there's no point in 877 * transitioning log state to IOERROR. Just continue... 878 */ 879 out_err: 880 if (error) 881 xfs_alert(mp, "%s: unmount record failed", __func__); 882 883 spin_lock(&log->l_icloglock); 884 iclog = log->l_iclog; 885 atomic_inc(&iclog->ic_refcnt); 886 xlog_state_want_sync(log, iclog); 887 spin_unlock(&log->l_icloglock); 888 error = xlog_state_release_iclog(log, iclog); 889 890 spin_lock(&log->l_icloglock); 891 switch (iclog->ic_state) { 892 default: 893 if (!XLOG_FORCED_SHUTDOWN(log)) { 894 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 895 break; 896 } 897 /* fall through */ 898 case XLOG_STATE_ACTIVE: 899 case XLOG_STATE_DIRTY: 900 spin_unlock(&log->l_icloglock); 901 break; 902 } 903 904 if (tic) { 905 trace_xfs_log_umount_write(log, tic); 906 xlog_ungrant_log_space(log, tic); 907 xfs_log_ticket_put(tic); 908 } 909 } 910 911 /* 912 * Unmount record used to have a string "Unmount filesystem--" in the 913 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 914 * We just write the magic number now since that particular field isn't 915 * currently architecture converted and "Unmount" is a bit foo. 916 * As far as I know, there weren't any dependencies on the old behaviour. 917 */ 918 919 static int 920 xfs_log_unmount_write(xfs_mount_t *mp) 921 { 922 struct xlog *log = mp->m_log; 923 xlog_in_core_t *iclog; 924 #ifdef DEBUG 925 xlog_in_core_t *first_iclog; 926 #endif 927 int error; 928 929 /* 930 * Don't write out unmount record on norecovery mounts or ro devices. 931 * Or, if we are doing a forced umount (typically because of IO errors). 932 */ 933 if (mp->m_flags & XFS_MOUNT_NORECOVERY || 934 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 935 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 936 return 0; 937 } 938 939 error = xfs_log_force(mp, XFS_LOG_SYNC); 940 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 941 942 #ifdef DEBUG 943 first_iclog = iclog = log->l_iclog; 944 do { 945 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 946 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 947 ASSERT(iclog->ic_offset == 0); 948 } 949 iclog = iclog->ic_next; 950 } while (iclog != first_iclog); 951 #endif 952 if (! (XLOG_FORCED_SHUTDOWN(log))) { 953 xfs_log_write_unmount_record(mp); 954 } else { 955 /* 956 * We're already in forced_shutdown mode, couldn't 957 * even attempt to write out the unmount transaction. 958 * 959 * Go through the motions of sync'ing and releasing 960 * the iclog, even though no I/O will actually happen, 961 * we need to wait for other log I/Os that may already 962 * be in progress. Do this as a separate section of 963 * code so we'll know if we ever get stuck here that 964 * we're in this odd situation of trying to unmount 965 * a file system that went into forced_shutdown as 966 * the result of an unmount.. 967 */ 968 spin_lock(&log->l_icloglock); 969 iclog = log->l_iclog; 970 atomic_inc(&iclog->ic_refcnt); 971 972 xlog_state_want_sync(log, iclog); 973 spin_unlock(&log->l_icloglock); 974 error = xlog_state_release_iclog(log, iclog); 975 976 spin_lock(&log->l_icloglock); 977 978 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 979 || iclog->ic_state == XLOG_STATE_DIRTY 980 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 981 982 xlog_wait(&iclog->ic_force_wait, 983 &log->l_icloglock); 984 } else { 985 spin_unlock(&log->l_icloglock); 986 } 987 } 988 989 return error; 990 } /* xfs_log_unmount_write */ 991 992 /* 993 * Empty the log for unmount/freeze. 994 * 995 * To do this, we first need to shut down the background log work so it is not 996 * trying to cover the log as we clean up. We then need to unpin all objects in 997 * the log so we can then flush them out. Once they have completed their IO and 998 * run the callbacks removing themselves from the AIL, we can write the unmount 999 * record. 1000 */ 1001 void 1002 xfs_log_quiesce( 1003 struct xfs_mount *mp) 1004 { 1005 cancel_delayed_work_sync(&mp->m_log->l_work); 1006 xfs_log_force(mp, XFS_LOG_SYNC); 1007 1008 /* 1009 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1010 * will push it, xfs_wait_buftarg() will not wait for it. Further, 1011 * xfs_buf_iowait() cannot be used because it was pushed with the 1012 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1013 * the IO to complete. 1014 */ 1015 xfs_ail_push_all_sync(mp->m_ail); 1016 xfs_wait_buftarg(mp->m_ddev_targp); 1017 xfs_buf_lock(mp->m_sb_bp); 1018 xfs_buf_unlock(mp->m_sb_bp); 1019 1020 xfs_log_unmount_write(mp); 1021 } 1022 1023 /* 1024 * Shut down and release the AIL and Log. 1025 * 1026 * During unmount, we need to ensure we flush all the dirty metadata objects 1027 * from the AIL so that the log is empty before we write the unmount record to 1028 * the log. Once this is done, we can tear down the AIL and the log. 1029 */ 1030 void 1031 xfs_log_unmount( 1032 struct xfs_mount *mp) 1033 { 1034 xfs_log_quiesce(mp); 1035 1036 xfs_trans_ail_destroy(mp); 1037 1038 xfs_sysfs_del(&mp->m_log->l_kobj); 1039 1040 xlog_dealloc_log(mp->m_log); 1041 } 1042 1043 void 1044 xfs_log_item_init( 1045 struct xfs_mount *mp, 1046 struct xfs_log_item *item, 1047 int type, 1048 const struct xfs_item_ops *ops) 1049 { 1050 item->li_mountp = mp; 1051 item->li_ailp = mp->m_ail; 1052 item->li_type = type; 1053 item->li_ops = ops; 1054 item->li_lv = NULL; 1055 1056 INIT_LIST_HEAD(&item->li_ail); 1057 INIT_LIST_HEAD(&item->li_cil); 1058 INIT_LIST_HEAD(&item->li_bio_list); 1059 INIT_LIST_HEAD(&item->li_trans); 1060 } 1061 1062 /* 1063 * Wake up processes waiting for log space after we have moved the log tail. 1064 */ 1065 void 1066 xfs_log_space_wake( 1067 struct xfs_mount *mp) 1068 { 1069 struct xlog *log = mp->m_log; 1070 int free_bytes; 1071 1072 if (XLOG_FORCED_SHUTDOWN(log)) 1073 return; 1074 1075 if (!list_empty_careful(&log->l_write_head.waiters)) { 1076 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1077 1078 spin_lock(&log->l_write_head.lock); 1079 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1080 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1081 spin_unlock(&log->l_write_head.lock); 1082 } 1083 1084 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1085 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1086 1087 spin_lock(&log->l_reserve_head.lock); 1088 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1089 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1090 spin_unlock(&log->l_reserve_head.lock); 1091 } 1092 } 1093 1094 /* 1095 * Determine if we have a transaction that has gone to disk that needs to be 1096 * covered. To begin the transition to the idle state firstly the log needs to 1097 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1098 * we start attempting to cover the log. 1099 * 1100 * Only if we are then in a state where covering is needed, the caller is 1101 * informed that dummy transactions are required to move the log into the idle 1102 * state. 1103 * 1104 * If there are any items in the AIl or CIL, then we do not want to attempt to 1105 * cover the log as we may be in a situation where there isn't log space 1106 * available to run a dummy transaction and this can lead to deadlocks when the 1107 * tail of the log is pinned by an item that is modified in the CIL. Hence 1108 * there's no point in running a dummy transaction at this point because we 1109 * can't start trying to idle the log until both the CIL and AIL are empty. 1110 */ 1111 static int 1112 xfs_log_need_covered(xfs_mount_t *mp) 1113 { 1114 struct xlog *log = mp->m_log; 1115 int needed = 0; 1116 1117 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1118 return 0; 1119 1120 if (!xlog_cil_empty(log)) 1121 return 0; 1122 1123 spin_lock(&log->l_icloglock); 1124 switch (log->l_covered_state) { 1125 case XLOG_STATE_COVER_DONE: 1126 case XLOG_STATE_COVER_DONE2: 1127 case XLOG_STATE_COVER_IDLE: 1128 break; 1129 case XLOG_STATE_COVER_NEED: 1130 case XLOG_STATE_COVER_NEED2: 1131 if (xfs_ail_min_lsn(log->l_ailp)) 1132 break; 1133 if (!xlog_iclogs_empty(log)) 1134 break; 1135 1136 needed = 1; 1137 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1138 log->l_covered_state = XLOG_STATE_COVER_DONE; 1139 else 1140 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1141 break; 1142 default: 1143 needed = 1; 1144 break; 1145 } 1146 spin_unlock(&log->l_icloglock); 1147 return needed; 1148 } 1149 1150 /* 1151 * We may be holding the log iclog lock upon entering this routine. 1152 */ 1153 xfs_lsn_t 1154 xlog_assign_tail_lsn_locked( 1155 struct xfs_mount *mp) 1156 { 1157 struct xlog *log = mp->m_log; 1158 struct xfs_log_item *lip; 1159 xfs_lsn_t tail_lsn; 1160 1161 assert_spin_locked(&mp->m_ail->ail_lock); 1162 1163 /* 1164 * To make sure we always have a valid LSN for the log tail we keep 1165 * track of the last LSN which was committed in log->l_last_sync_lsn, 1166 * and use that when the AIL was empty. 1167 */ 1168 lip = xfs_ail_min(mp->m_ail); 1169 if (lip) 1170 tail_lsn = lip->li_lsn; 1171 else 1172 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1173 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1174 atomic64_set(&log->l_tail_lsn, tail_lsn); 1175 return tail_lsn; 1176 } 1177 1178 xfs_lsn_t 1179 xlog_assign_tail_lsn( 1180 struct xfs_mount *mp) 1181 { 1182 xfs_lsn_t tail_lsn; 1183 1184 spin_lock(&mp->m_ail->ail_lock); 1185 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1186 spin_unlock(&mp->m_ail->ail_lock); 1187 1188 return tail_lsn; 1189 } 1190 1191 /* 1192 * Return the space in the log between the tail and the head. The head 1193 * is passed in the cycle/bytes formal parms. In the special case where 1194 * the reserve head has wrapped passed the tail, this calculation is no 1195 * longer valid. In this case, just return 0 which means there is no space 1196 * in the log. This works for all places where this function is called 1197 * with the reserve head. Of course, if the write head were to ever 1198 * wrap the tail, we should blow up. Rather than catch this case here, 1199 * we depend on other ASSERTions in other parts of the code. XXXmiken 1200 * 1201 * This code also handles the case where the reservation head is behind 1202 * the tail. The details of this case are described below, but the end 1203 * result is that we return the size of the log as the amount of space left. 1204 */ 1205 STATIC int 1206 xlog_space_left( 1207 struct xlog *log, 1208 atomic64_t *head) 1209 { 1210 int free_bytes; 1211 int tail_bytes; 1212 int tail_cycle; 1213 int head_cycle; 1214 int head_bytes; 1215 1216 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1217 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1218 tail_bytes = BBTOB(tail_bytes); 1219 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1220 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1221 else if (tail_cycle + 1 < head_cycle) 1222 return 0; 1223 else if (tail_cycle < head_cycle) { 1224 ASSERT(tail_cycle == (head_cycle - 1)); 1225 free_bytes = tail_bytes - head_bytes; 1226 } else { 1227 /* 1228 * The reservation head is behind the tail. 1229 * In this case we just want to return the size of the 1230 * log as the amount of space left. 1231 */ 1232 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1233 xfs_alert(log->l_mp, 1234 " tail_cycle = %d, tail_bytes = %d", 1235 tail_cycle, tail_bytes); 1236 xfs_alert(log->l_mp, 1237 " GH cycle = %d, GH bytes = %d", 1238 head_cycle, head_bytes); 1239 ASSERT(0); 1240 free_bytes = log->l_logsize; 1241 } 1242 return free_bytes; 1243 } 1244 1245 1246 /* 1247 * Log function which is called when an io completes. 1248 * 1249 * The log manager needs its own routine, in order to control what 1250 * happens with the buffer after the write completes. 1251 */ 1252 static void 1253 xlog_iodone(xfs_buf_t *bp) 1254 { 1255 struct xlog_in_core *iclog = bp->b_log_item; 1256 struct xlog *l = iclog->ic_log; 1257 int aborted = 0; 1258 1259 /* 1260 * Race to shutdown the filesystem if we see an error or the iclog is in 1261 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1262 * CRC errors into log recovery. 1263 */ 1264 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) || 1265 iclog->ic_state & XLOG_STATE_IOABORT) { 1266 if (iclog->ic_state & XLOG_STATE_IOABORT) 1267 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1268 1269 xfs_buf_ioerror_alert(bp, __func__); 1270 xfs_buf_stale(bp); 1271 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1272 /* 1273 * This flag will be propagated to the trans-committed 1274 * callback routines to let them know that the log-commit 1275 * didn't succeed. 1276 */ 1277 aborted = XFS_LI_ABORTED; 1278 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1279 aborted = XFS_LI_ABORTED; 1280 } 1281 1282 /* log I/O is always issued ASYNC */ 1283 ASSERT(bp->b_flags & XBF_ASYNC); 1284 xlog_state_done_syncing(iclog, aborted); 1285 1286 /* 1287 * drop the buffer lock now that we are done. Nothing references 1288 * the buffer after this, so an unmount waiting on this lock can now 1289 * tear it down safely. As such, it is unsafe to reference the buffer 1290 * (bp) after the unlock as we could race with it being freed. 1291 */ 1292 xfs_buf_unlock(bp); 1293 } 1294 1295 /* 1296 * Return size of each in-core log record buffer. 1297 * 1298 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1299 * 1300 * If the filesystem blocksize is too large, we may need to choose a 1301 * larger size since the directory code currently logs entire blocks. 1302 */ 1303 1304 STATIC void 1305 xlog_get_iclog_buffer_size( 1306 struct xfs_mount *mp, 1307 struct xlog *log) 1308 { 1309 int size; 1310 int xhdrs; 1311 1312 if (mp->m_logbufs <= 0) 1313 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1314 else 1315 log->l_iclog_bufs = mp->m_logbufs; 1316 1317 /* 1318 * Buffer size passed in from mount system call. 1319 */ 1320 if (mp->m_logbsize > 0) { 1321 size = log->l_iclog_size = mp->m_logbsize; 1322 log->l_iclog_size_log = 0; 1323 while (size != 1) { 1324 log->l_iclog_size_log++; 1325 size >>= 1; 1326 } 1327 1328 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1329 /* # headers = size / 32k 1330 * one header holds cycles from 32k of data 1331 */ 1332 1333 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1334 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1335 xhdrs++; 1336 log->l_iclog_hsize = xhdrs << BBSHIFT; 1337 log->l_iclog_heads = xhdrs; 1338 } else { 1339 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1340 log->l_iclog_hsize = BBSIZE; 1341 log->l_iclog_heads = 1; 1342 } 1343 goto done; 1344 } 1345 1346 /* All machines use 32kB buffers by default. */ 1347 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1348 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1349 1350 /* the default log size is 16k or 32k which is one header sector */ 1351 log->l_iclog_hsize = BBSIZE; 1352 log->l_iclog_heads = 1; 1353 1354 done: 1355 /* are we being asked to make the sizes selected above visible? */ 1356 if (mp->m_logbufs == 0) 1357 mp->m_logbufs = log->l_iclog_bufs; 1358 if (mp->m_logbsize == 0) 1359 mp->m_logbsize = log->l_iclog_size; 1360 } /* xlog_get_iclog_buffer_size */ 1361 1362 1363 void 1364 xfs_log_work_queue( 1365 struct xfs_mount *mp) 1366 { 1367 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1368 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1369 } 1370 1371 /* 1372 * Every sync period we need to unpin all items in the AIL and push them to 1373 * disk. If there is nothing dirty, then we might need to cover the log to 1374 * indicate that the filesystem is idle. 1375 */ 1376 static void 1377 xfs_log_worker( 1378 struct work_struct *work) 1379 { 1380 struct xlog *log = container_of(to_delayed_work(work), 1381 struct xlog, l_work); 1382 struct xfs_mount *mp = log->l_mp; 1383 1384 /* dgc: errors ignored - not fatal and nowhere to report them */ 1385 if (xfs_log_need_covered(mp)) { 1386 /* 1387 * Dump a transaction into the log that contains no real change. 1388 * This is needed to stamp the current tail LSN into the log 1389 * during the covering operation. 1390 * 1391 * We cannot use an inode here for this - that will push dirty 1392 * state back up into the VFS and then periodic inode flushing 1393 * will prevent log covering from making progress. Hence we 1394 * synchronously log the superblock instead to ensure the 1395 * superblock is immediately unpinned and can be written back. 1396 */ 1397 xfs_sync_sb(mp, true); 1398 } else 1399 xfs_log_force(mp, 0); 1400 1401 /* start pushing all the metadata that is currently dirty */ 1402 xfs_ail_push_all(mp->m_ail); 1403 1404 /* queue us up again */ 1405 xfs_log_work_queue(mp); 1406 } 1407 1408 /* 1409 * This routine initializes some of the log structure for a given mount point. 1410 * Its primary purpose is to fill in enough, so recovery can occur. However, 1411 * some other stuff may be filled in too. 1412 */ 1413 STATIC struct xlog * 1414 xlog_alloc_log( 1415 struct xfs_mount *mp, 1416 struct xfs_buftarg *log_target, 1417 xfs_daddr_t blk_offset, 1418 int num_bblks) 1419 { 1420 struct xlog *log; 1421 xlog_rec_header_t *head; 1422 xlog_in_core_t **iclogp; 1423 xlog_in_core_t *iclog, *prev_iclog=NULL; 1424 xfs_buf_t *bp; 1425 int i; 1426 int error = -ENOMEM; 1427 uint log2_size = 0; 1428 1429 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1430 if (!log) { 1431 xfs_warn(mp, "Log allocation failed: No memory!"); 1432 goto out; 1433 } 1434 1435 log->l_mp = mp; 1436 log->l_targ = log_target; 1437 log->l_logsize = BBTOB(num_bblks); 1438 log->l_logBBstart = blk_offset; 1439 log->l_logBBsize = num_bblks; 1440 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1441 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1442 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1443 1444 log->l_prev_block = -1; 1445 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1446 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1447 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1448 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1449 1450 xlog_grant_head_init(&log->l_reserve_head); 1451 xlog_grant_head_init(&log->l_write_head); 1452 1453 error = -EFSCORRUPTED; 1454 if (xfs_sb_version_hassector(&mp->m_sb)) { 1455 log2_size = mp->m_sb.sb_logsectlog; 1456 if (log2_size < BBSHIFT) { 1457 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1458 log2_size, BBSHIFT); 1459 goto out_free_log; 1460 } 1461 1462 log2_size -= BBSHIFT; 1463 if (log2_size > mp->m_sectbb_log) { 1464 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1465 log2_size, mp->m_sectbb_log); 1466 goto out_free_log; 1467 } 1468 1469 /* for larger sector sizes, must have v2 or external log */ 1470 if (log2_size && log->l_logBBstart > 0 && 1471 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1472 xfs_warn(mp, 1473 "log sector size (0x%x) invalid for configuration.", 1474 log2_size); 1475 goto out_free_log; 1476 } 1477 } 1478 log->l_sectBBsize = 1 << log2_size; 1479 1480 xlog_get_iclog_buffer_size(mp, log); 1481 1482 /* 1483 * Use a NULL block for the extra log buffer used during splits so that 1484 * it will trigger errors if we ever try to do IO on it without first 1485 * having set it up properly. 1486 */ 1487 error = -ENOMEM; 1488 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1489 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1490 if (!bp) 1491 goto out_free_log; 1492 1493 /* 1494 * The iclogbuf buffer locks are held over IO but we are not going to do 1495 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1496 * when appropriately. 1497 */ 1498 ASSERT(xfs_buf_islocked(bp)); 1499 xfs_buf_unlock(bp); 1500 1501 /* use high priority wq for log I/O completion */ 1502 bp->b_ioend_wq = mp->m_log_workqueue; 1503 bp->b_iodone = xlog_iodone; 1504 log->l_xbuf = bp; 1505 1506 spin_lock_init(&log->l_icloglock); 1507 init_waitqueue_head(&log->l_flush_wait); 1508 1509 iclogp = &log->l_iclog; 1510 /* 1511 * The amount of memory to allocate for the iclog structure is 1512 * rather funky due to the way the structure is defined. It is 1513 * done this way so that we can use different sizes for machines 1514 * with different amounts of memory. See the definition of 1515 * xlog_in_core_t in xfs_log_priv.h for details. 1516 */ 1517 ASSERT(log->l_iclog_size >= 4096); 1518 for (i=0; i < log->l_iclog_bufs; i++) { 1519 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1520 if (!*iclogp) 1521 goto out_free_iclog; 1522 1523 iclog = *iclogp; 1524 iclog->ic_prev = prev_iclog; 1525 prev_iclog = iclog; 1526 1527 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1528 BTOBB(log->l_iclog_size), 1529 XBF_NO_IOACCT); 1530 if (!bp) 1531 goto out_free_iclog; 1532 1533 ASSERT(xfs_buf_islocked(bp)); 1534 xfs_buf_unlock(bp); 1535 1536 /* use high priority wq for log I/O completion */ 1537 bp->b_ioend_wq = mp->m_log_workqueue; 1538 bp->b_iodone = xlog_iodone; 1539 iclog->ic_bp = bp; 1540 iclog->ic_data = bp->b_addr; 1541 #ifdef DEBUG 1542 log->l_iclog_bak[i] = &iclog->ic_header; 1543 #endif 1544 head = &iclog->ic_header; 1545 memset(head, 0, sizeof(xlog_rec_header_t)); 1546 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1547 head->h_version = cpu_to_be32( 1548 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1549 head->h_size = cpu_to_be32(log->l_iclog_size); 1550 /* new fields */ 1551 head->h_fmt = cpu_to_be32(XLOG_FMT); 1552 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1553 1554 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1555 iclog->ic_state = XLOG_STATE_ACTIVE; 1556 iclog->ic_log = log; 1557 atomic_set(&iclog->ic_refcnt, 0); 1558 spin_lock_init(&iclog->ic_callback_lock); 1559 iclog->ic_callback_tail = &(iclog->ic_callback); 1560 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1561 1562 init_waitqueue_head(&iclog->ic_force_wait); 1563 init_waitqueue_head(&iclog->ic_write_wait); 1564 1565 iclogp = &iclog->ic_next; 1566 } 1567 *iclogp = log->l_iclog; /* complete ring */ 1568 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1569 1570 error = xlog_cil_init(log); 1571 if (error) 1572 goto out_free_iclog; 1573 return log; 1574 1575 out_free_iclog: 1576 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1577 prev_iclog = iclog->ic_next; 1578 if (iclog->ic_bp) 1579 xfs_buf_free(iclog->ic_bp); 1580 kmem_free(iclog); 1581 } 1582 spinlock_destroy(&log->l_icloglock); 1583 xfs_buf_free(log->l_xbuf); 1584 out_free_log: 1585 kmem_free(log); 1586 out: 1587 return ERR_PTR(error); 1588 } /* xlog_alloc_log */ 1589 1590 1591 /* 1592 * Write out the commit record of a transaction associated with the given 1593 * ticket. Return the lsn of the commit record. 1594 */ 1595 STATIC int 1596 xlog_commit_record( 1597 struct xlog *log, 1598 struct xlog_ticket *ticket, 1599 struct xlog_in_core **iclog, 1600 xfs_lsn_t *commitlsnp) 1601 { 1602 struct xfs_mount *mp = log->l_mp; 1603 int error; 1604 struct xfs_log_iovec reg = { 1605 .i_addr = NULL, 1606 .i_len = 0, 1607 .i_type = XLOG_REG_TYPE_COMMIT, 1608 }; 1609 struct xfs_log_vec vec = { 1610 .lv_niovecs = 1, 1611 .lv_iovecp = ®, 1612 }; 1613 1614 ASSERT_ALWAYS(iclog); 1615 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1616 XLOG_COMMIT_TRANS); 1617 if (error) 1618 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1619 return error; 1620 } 1621 1622 /* 1623 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1624 * log space. This code pushes on the lsn which would supposedly free up 1625 * the 25% which we want to leave free. We may need to adopt a policy which 1626 * pushes on an lsn which is further along in the log once we reach the high 1627 * water mark. In this manner, we would be creating a low water mark. 1628 */ 1629 STATIC void 1630 xlog_grant_push_ail( 1631 struct xlog *log, 1632 int need_bytes) 1633 { 1634 xfs_lsn_t threshold_lsn = 0; 1635 xfs_lsn_t last_sync_lsn; 1636 int free_blocks; 1637 int free_bytes; 1638 int threshold_block; 1639 int threshold_cycle; 1640 int free_threshold; 1641 1642 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1643 1644 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1645 free_blocks = BTOBBT(free_bytes); 1646 1647 /* 1648 * Set the threshold for the minimum number of free blocks in the 1649 * log to the maximum of what the caller needs, one quarter of the 1650 * log, and 256 blocks. 1651 */ 1652 free_threshold = BTOBB(need_bytes); 1653 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1654 free_threshold = max(free_threshold, 256); 1655 if (free_blocks >= free_threshold) 1656 return; 1657 1658 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1659 &threshold_block); 1660 threshold_block += free_threshold; 1661 if (threshold_block >= log->l_logBBsize) { 1662 threshold_block -= log->l_logBBsize; 1663 threshold_cycle += 1; 1664 } 1665 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1666 threshold_block); 1667 /* 1668 * Don't pass in an lsn greater than the lsn of the last 1669 * log record known to be on disk. Use a snapshot of the last sync lsn 1670 * so that it doesn't change between the compare and the set. 1671 */ 1672 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1673 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1674 threshold_lsn = last_sync_lsn; 1675 1676 /* 1677 * Get the transaction layer to kick the dirty buffers out to 1678 * disk asynchronously. No point in trying to do this if 1679 * the filesystem is shutting down. 1680 */ 1681 if (!XLOG_FORCED_SHUTDOWN(log)) 1682 xfs_ail_push(log->l_ailp, threshold_lsn); 1683 } 1684 1685 /* 1686 * Stamp cycle number in every block 1687 */ 1688 STATIC void 1689 xlog_pack_data( 1690 struct xlog *log, 1691 struct xlog_in_core *iclog, 1692 int roundoff) 1693 { 1694 int i, j, k; 1695 int size = iclog->ic_offset + roundoff; 1696 __be32 cycle_lsn; 1697 char *dp; 1698 1699 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1700 1701 dp = iclog->ic_datap; 1702 for (i = 0; i < BTOBB(size); i++) { 1703 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1704 break; 1705 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1706 *(__be32 *)dp = cycle_lsn; 1707 dp += BBSIZE; 1708 } 1709 1710 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1711 xlog_in_core_2_t *xhdr = iclog->ic_data; 1712 1713 for ( ; i < BTOBB(size); i++) { 1714 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1715 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1716 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1717 *(__be32 *)dp = cycle_lsn; 1718 dp += BBSIZE; 1719 } 1720 1721 for (i = 1; i < log->l_iclog_heads; i++) 1722 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1723 } 1724 } 1725 1726 /* 1727 * Calculate the checksum for a log buffer. 1728 * 1729 * This is a little more complicated than it should be because the various 1730 * headers and the actual data are non-contiguous. 1731 */ 1732 __le32 1733 xlog_cksum( 1734 struct xlog *log, 1735 struct xlog_rec_header *rhead, 1736 char *dp, 1737 int size) 1738 { 1739 uint32_t crc; 1740 1741 /* first generate the crc for the record header ... */ 1742 crc = xfs_start_cksum_update((char *)rhead, 1743 sizeof(struct xlog_rec_header), 1744 offsetof(struct xlog_rec_header, h_crc)); 1745 1746 /* ... then for additional cycle data for v2 logs ... */ 1747 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1748 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1749 int i; 1750 int xheads; 1751 1752 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1753 if (size % XLOG_HEADER_CYCLE_SIZE) 1754 xheads++; 1755 1756 for (i = 1; i < xheads; i++) { 1757 crc = crc32c(crc, &xhdr[i].hic_xheader, 1758 sizeof(struct xlog_rec_ext_header)); 1759 } 1760 } 1761 1762 /* ... and finally for the payload */ 1763 crc = crc32c(crc, dp, size); 1764 1765 return xfs_end_cksum(crc); 1766 } 1767 1768 /* 1769 * The bdstrat callback function for log bufs. This gives us a central 1770 * place to trap bufs in case we get hit by a log I/O error and need to 1771 * shutdown. Actually, in practice, even when we didn't get a log error, 1772 * we transition the iclogs to IOERROR state *after* flushing all existing 1773 * iclogs to disk. This is because we don't want anymore new transactions to be 1774 * started or completed afterwards. 1775 * 1776 * We lock the iclogbufs here so that we can serialise against IO completion 1777 * during unmount. We might be processing a shutdown triggered during unmount, 1778 * and that can occur asynchronously to the unmount thread, and hence we need to 1779 * ensure that completes before tearing down the iclogbufs. Hence we need to 1780 * hold the buffer lock across the log IO to acheive that. 1781 */ 1782 STATIC int 1783 xlog_bdstrat( 1784 struct xfs_buf *bp) 1785 { 1786 struct xlog_in_core *iclog = bp->b_log_item; 1787 1788 xfs_buf_lock(bp); 1789 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1790 xfs_buf_ioerror(bp, -EIO); 1791 xfs_buf_stale(bp); 1792 xfs_buf_ioend(bp); 1793 /* 1794 * It would seem logical to return EIO here, but we rely on 1795 * the log state machine to propagate I/O errors instead of 1796 * doing it here. Similarly, IO completion will unlock the 1797 * buffer, so we don't do it here. 1798 */ 1799 return 0; 1800 } 1801 1802 xfs_buf_submit(bp); 1803 return 0; 1804 } 1805 1806 /* 1807 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1808 * fashion. Previously, we should have moved the current iclog 1809 * ptr in the log to point to the next available iclog. This allows further 1810 * write to continue while this code syncs out an iclog ready to go. 1811 * Before an in-core log can be written out, the data section must be scanned 1812 * to save away the 1st word of each BBSIZE block into the header. We replace 1813 * it with the current cycle count. Each BBSIZE block is tagged with the 1814 * cycle count because there in an implicit assumption that drives will 1815 * guarantee that entire 512 byte blocks get written at once. In other words, 1816 * we can't have part of a 512 byte block written and part not written. By 1817 * tagging each block, we will know which blocks are valid when recovering 1818 * after an unclean shutdown. 1819 * 1820 * This routine is single threaded on the iclog. No other thread can be in 1821 * this routine with the same iclog. Changing contents of iclog can there- 1822 * fore be done without grabbing the state machine lock. Updating the global 1823 * log will require grabbing the lock though. 1824 * 1825 * The entire log manager uses a logical block numbering scheme. Only 1826 * log_sync (and then only bwrite()) know about the fact that the log may 1827 * not start with block zero on a given device. The log block start offset 1828 * is added immediately before calling bwrite(). 1829 */ 1830 1831 STATIC int 1832 xlog_sync( 1833 struct xlog *log, 1834 struct xlog_in_core *iclog) 1835 { 1836 xfs_buf_t *bp; 1837 int i; 1838 uint count; /* byte count of bwrite */ 1839 uint count_init; /* initial count before roundup */ 1840 int roundoff; /* roundoff to BB or stripe */ 1841 int split = 0; /* split write into two regions */ 1842 int error; 1843 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1844 int size; 1845 1846 XFS_STATS_INC(log->l_mp, xs_log_writes); 1847 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1848 1849 /* Add for LR header */ 1850 count_init = log->l_iclog_hsize + iclog->ic_offset; 1851 1852 /* Round out the log write size */ 1853 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1854 /* we have a v2 stripe unit to use */ 1855 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1856 } else { 1857 count = BBTOB(BTOBB(count_init)); 1858 } 1859 roundoff = count - count_init; 1860 ASSERT(roundoff >= 0); 1861 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1862 roundoff < log->l_mp->m_sb.sb_logsunit) 1863 || 1864 (log->l_mp->m_sb.sb_logsunit <= 1 && 1865 roundoff < BBTOB(1))); 1866 1867 /* move grant heads by roundoff in sync */ 1868 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1869 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1870 1871 /* put cycle number in every block */ 1872 xlog_pack_data(log, iclog, roundoff); 1873 1874 /* real byte length */ 1875 size = iclog->ic_offset; 1876 if (v2) 1877 size += roundoff; 1878 iclog->ic_header.h_len = cpu_to_be32(size); 1879 1880 bp = iclog->ic_bp; 1881 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1882 1883 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1884 1885 /* Do we need to split this write into 2 parts? */ 1886 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1887 char *dptr; 1888 1889 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1890 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1891 iclog->ic_bwritecnt = 2; 1892 1893 /* 1894 * Bump the cycle numbers at the start of each block in the 1895 * part of the iclog that ends up in the buffer that gets 1896 * written to the start of the log. 1897 * 1898 * Watch out for the header magic number case, though. 1899 */ 1900 dptr = (char *)&iclog->ic_header + count; 1901 for (i = 0; i < split; i += BBSIZE) { 1902 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1903 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1904 cycle++; 1905 *(__be32 *)dptr = cpu_to_be32(cycle); 1906 1907 dptr += BBSIZE; 1908 } 1909 } else { 1910 iclog->ic_bwritecnt = 1; 1911 } 1912 1913 /* calculcate the checksum */ 1914 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1915 iclog->ic_datap, size); 1916 /* 1917 * Intentionally corrupt the log record CRC based on the error injection 1918 * frequency, if defined. This facilitates testing log recovery in the 1919 * event of torn writes. Hence, set the IOABORT state to abort the log 1920 * write on I/O completion and shutdown the fs. The subsequent mount 1921 * detects the bad CRC and attempts to recover. 1922 */ 1923 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1924 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1925 iclog->ic_state |= XLOG_STATE_IOABORT; 1926 xfs_warn(log->l_mp, 1927 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1928 be64_to_cpu(iclog->ic_header.h_lsn)); 1929 } 1930 1931 bp->b_io_length = BTOBB(count); 1932 bp->b_log_item = iclog; 1933 bp->b_flags &= ~XBF_FLUSH; 1934 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1935 1936 /* 1937 * Flush the data device before flushing the log to make sure all meta 1938 * data written back from the AIL actually made it to disk before 1939 * stamping the new log tail LSN into the log buffer. For an external 1940 * log we need to issue the flush explicitly, and unfortunately 1941 * synchronously here; for an internal log we can simply use the block 1942 * layer state machine for preflushes. 1943 */ 1944 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1945 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1946 else 1947 bp->b_flags |= XBF_FLUSH; 1948 1949 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1950 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1951 1952 xlog_verify_iclog(log, iclog, count, true); 1953 1954 /* account for log which doesn't start at block #0 */ 1955 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1956 1957 /* 1958 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1959 * is shutting down. 1960 */ 1961 error = xlog_bdstrat(bp); 1962 if (error) { 1963 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1964 return error; 1965 } 1966 if (split) { 1967 bp = iclog->ic_log->l_xbuf; 1968 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1969 xfs_buf_associate_memory(bp, 1970 (char *)&iclog->ic_header + count, split); 1971 bp->b_log_item = iclog; 1972 bp->b_flags &= ~XBF_FLUSH; 1973 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1974 1975 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1976 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1977 1978 /* account for internal log which doesn't start at block #0 */ 1979 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1980 error = xlog_bdstrat(bp); 1981 if (error) { 1982 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1983 return error; 1984 } 1985 } 1986 return 0; 1987 } /* xlog_sync */ 1988 1989 /* 1990 * Deallocate a log structure 1991 */ 1992 STATIC void 1993 xlog_dealloc_log( 1994 struct xlog *log) 1995 { 1996 xlog_in_core_t *iclog, *next_iclog; 1997 int i; 1998 1999 xlog_cil_destroy(log); 2000 2001 /* 2002 * Cycle all the iclogbuf locks to make sure all log IO completion 2003 * is done before we tear down these buffers. 2004 */ 2005 iclog = log->l_iclog; 2006 for (i = 0; i < log->l_iclog_bufs; i++) { 2007 xfs_buf_lock(iclog->ic_bp); 2008 xfs_buf_unlock(iclog->ic_bp); 2009 iclog = iclog->ic_next; 2010 } 2011 2012 /* 2013 * Always need to ensure that the extra buffer does not point to memory 2014 * owned by another log buffer before we free it. Also, cycle the lock 2015 * first to ensure we've completed IO on it. 2016 */ 2017 xfs_buf_lock(log->l_xbuf); 2018 xfs_buf_unlock(log->l_xbuf); 2019 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 2020 xfs_buf_free(log->l_xbuf); 2021 2022 iclog = log->l_iclog; 2023 for (i = 0; i < log->l_iclog_bufs; i++) { 2024 xfs_buf_free(iclog->ic_bp); 2025 next_iclog = iclog->ic_next; 2026 kmem_free(iclog); 2027 iclog = next_iclog; 2028 } 2029 spinlock_destroy(&log->l_icloglock); 2030 2031 log->l_mp->m_log = NULL; 2032 kmem_free(log); 2033 } /* xlog_dealloc_log */ 2034 2035 /* 2036 * Update counters atomically now that memcpy is done. 2037 */ 2038 /* ARGSUSED */ 2039 static inline void 2040 xlog_state_finish_copy( 2041 struct xlog *log, 2042 struct xlog_in_core *iclog, 2043 int record_cnt, 2044 int copy_bytes) 2045 { 2046 spin_lock(&log->l_icloglock); 2047 2048 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2049 iclog->ic_offset += copy_bytes; 2050 2051 spin_unlock(&log->l_icloglock); 2052 } /* xlog_state_finish_copy */ 2053 2054 2055 2056 2057 /* 2058 * print out info relating to regions written which consume 2059 * the reservation 2060 */ 2061 void 2062 xlog_print_tic_res( 2063 struct xfs_mount *mp, 2064 struct xlog_ticket *ticket) 2065 { 2066 uint i; 2067 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2068 2069 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2070 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2071 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2072 REG_TYPE_STR(BFORMAT, "bformat"), 2073 REG_TYPE_STR(BCHUNK, "bchunk"), 2074 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2075 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2076 REG_TYPE_STR(IFORMAT, "iformat"), 2077 REG_TYPE_STR(ICORE, "icore"), 2078 REG_TYPE_STR(IEXT, "iext"), 2079 REG_TYPE_STR(IBROOT, "ibroot"), 2080 REG_TYPE_STR(ILOCAL, "ilocal"), 2081 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2082 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2083 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2084 REG_TYPE_STR(QFORMAT, "qformat"), 2085 REG_TYPE_STR(DQUOT, "dquot"), 2086 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2087 REG_TYPE_STR(LRHEADER, "LR header"), 2088 REG_TYPE_STR(UNMOUNT, "unmount"), 2089 REG_TYPE_STR(COMMIT, "commit"), 2090 REG_TYPE_STR(TRANSHDR, "trans header"), 2091 REG_TYPE_STR(ICREATE, "inode create") 2092 }; 2093 #undef REG_TYPE_STR 2094 2095 xfs_warn(mp, "ticket reservation summary:"); 2096 xfs_warn(mp, " unit res = %d bytes", 2097 ticket->t_unit_res); 2098 xfs_warn(mp, " current res = %d bytes", 2099 ticket->t_curr_res); 2100 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2101 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2102 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2103 ticket->t_res_num_ophdrs, ophdr_spc); 2104 xfs_warn(mp, " ophdr + reg = %u bytes", 2105 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2106 xfs_warn(mp, " num regions = %u", 2107 ticket->t_res_num); 2108 2109 for (i = 0; i < ticket->t_res_num; i++) { 2110 uint r_type = ticket->t_res_arr[i].r_type; 2111 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2112 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2113 "bad-rtype" : res_type_str[r_type]), 2114 ticket->t_res_arr[i].r_len); 2115 } 2116 } 2117 2118 /* 2119 * Print a summary of the transaction. 2120 */ 2121 void 2122 xlog_print_trans( 2123 struct xfs_trans *tp) 2124 { 2125 struct xfs_mount *mp = tp->t_mountp; 2126 struct xfs_log_item *lip; 2127 2128 /* dump core transaction and ticket info */ 2129 xfs_warn(mp, "transaction summary:"); 2130 xfs_warn(mp, " log res = %d", tp->t_log_res); 2131 xfs_warn(mp, " log count = %d", tp->t_log_count); 2132 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2133 2134 xlog_print_tic_res(mp, tp->t_ticket); 2135 2136 /* dump each log item */ 2137 list_for_each_entry(lip, &tp->t_items, li_trans) { 2138 struct xfs_log_vec *lv = lip->li_lv; 2139 struct xfs_log_iovec *vec; 2140 int i; 2141 2142 xfs_warn(mp, "log item: "); 2143 xfs_warn(mp, " type = 0x%x", lip->li_type); 2144 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2145 if (!lv) 2146 continue; 2147 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2148 xfs_warn(mp, " size = %d", lv->lv_size); 2149 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2150 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2151 2152 /* dump each iovec for the log item */ 2153 vec = lv->lv_iovecp; 2154 for (i = 0; i < lv->lv_niovecs; i++) { 2155 int dumplen = min(vec->i_len, 32); 2156 2157 xfs_warn(mp, " iovec[%d]", i); 2158 xfs_warn(mp, " type = 0x%x", vec->i_type); 2159 xfs_warn(mp, " len = %d", vec->i_len); 2160 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2161 xfs_hex_dump(vec->i_addr, dumplen); 2162 2163 vec++; 2164 } 2165 } 2166 } 2167 2168 /* 2169 * Calculate the potential space needed by the log vector. Each region gets 2170 * its own xlog_op_header_t and may need to be double word aligned. 2171 */ 2172 static int 2173 xlog_write_calc_vec_length( 2174 struct xlog_ticket *ticket, 2175 struct xfs_log_vec *log_vector) 2176 { 2177 struct xfs_log_vec *lv; 2178 int headers = 0; 2179 int len = 0; 2180 int i; 2181 2182 /* acct for start rec of xact */ 2183 if (ticket->t_flags & XLOG_TIC_INITED) 2184 headers++; 2185 2186 for (lv = log_vector; lv; lv = lv->lv_next) { 2187 /* we don't write ordered log vectors */ 2188 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2189 continue; 2190 2191 headers += lv->lv_niovecs; 2192 2193 for (i = 0; i < lv->lv_niovecs; i++) { 2194 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2195 2196 len += vecp->i_len; 2197 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2198 } 2199 } 2200 2201 ticket->t_res_num_ophdrs += headers; 2202 len += headers * sizeof(struct xlog_op_header); 2203 2204 return len; 2205 } 2206 2207 /* 2208 * If first write for transaction, insert start record We can't be trying to 2209 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2210 */ 2211 static int 2212 xlog_write_start_rec( 2213 struct xlog_op_header *ophdr, 2214 struct xlog_ticket *ticket) 2215 { 2216 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2217 return 0; 2218 2219 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2220 ophdr->oh_clientid = ticket->t_clientid; 2221 ophdr->oh_len = 0; 2222 ophdr->oh_flags = XLOG_START_TRANS; 2223 ophdr->oh_res2 = 0; 2224 2225 ticket->t_flags &= ~XLOG_TIC_INITED; 2226 2227 return sizeof(struct xlog_op_header); 2228 } 2229 2230 static xlog_op_header_t * 2231 xlog_write_setup_ophdr( 2232 struct xlog *log, 2233 struct xlog_op_header *ophdr, 2234 struct xlog_ticket *ticket, 2235 uint flags) 2236 { 2237 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2238 ophdr->oh_clientid = ticket->t_clientid; 2239 ophdr->oh_res2 = 0; 2240 2241 /* are we copying a commit or unmount record? */ 2242 ophdr->oh_flags = flags; 2243 2244 /* 2245 * We've seen logs corrupted with bad transaction client ids. This 2246 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2247 * and shut down the filesystem. 2248 */ 2249 switch (ophdr->oh_clientid) { 2250 case XFS_TRANSACTION: 2251 case XFS_VOLUME: 2252 case XFS_LOG: 2253 break; 2254 default: 2255 xfs_warn(log->l_mp, 2256 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2257 ophdr->oh_clientid, ticket); 2258 return NULL; 2259 } 2260 2261 return ophdr; 2262 } 2263 2264 /* 2265 * Set up the parameters of the region copy into the log. This has 2266 * to handle region write split across multiple log buffers - this 2267 * state is kept external to this function so that this code can 2268 * be written in an obvious, self documenting manner. 2269 */ 2270 static int 2271 xlog_write_setup_copy( 2272 struct xlog_ticket *ticket, 2273 struct xlog_op_header *ophdr, 2274 int space_available, 2275 int space_required, 2276 int *copy_off, 2277 int *copy_len, 2278 int *last_was_partial_copy, 2279 int *bytes_consumed) 2280 { 2281 int still_to_copy; 2282 2283 still_to_copy = space_required - *bytes_consumed; 2284 *copy_off = *bytes_consumed; 2285 2286 if (still_to_copy <= space_available) { 2287 /* write of region completes here */ 2288 *copy_len = still_to_copy; 2289 ophdr->oh_len = cpu_to_be32(*copy_len); 2290 if (*last_was_partial_copy) 2291 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2292 *last_was_partial_copy = 0; 2293 *bytes_consumed = 0; 2294 return 0; 2295 } 2296 2297 /* partial write of region, needs extra log op header reservation */ 2298 *copy_len = space_available; 2299 ophdr->oh_len = cpu_to_be32(*copy_len); 2300 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2301 if (*last_was_partial_copy) 2302 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2303 *bytes_consumed += *copy_len; 2304 (*last_was_partial_copy)++; 2305 2306 /* account for new log op header */ 2307 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2308 ticket->t_res_num_ophdrs++; 2309 2310 return sizeof(struct xlog_op_header); 2311 } 2312 2313 static int 2314 xlog_write_copy_finish( 2315 struct xlog *log, 2316 struct xlog_in_core *iclog, 2317 uint flags, 2318 int *record_cnt, 2319 int *data_cnt, 2320 int *partial_copy, 2321 int *partial_copy_len, 2322 int log_offset, 2323 struct xlog_in_core **commit_iclog) 2324 { 2325 if (*partial_copy) { 2326 /* 2327 * This iclog has already been marked WANT_SYNC by 2328 * xlog_state_get_iclog_space. 2329 */ 2330 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2331 *record_cnt = 0; 2332 *data_cnt = 0; 2333 return xlog_state_release_iclog(log, iclog); 2334 } 2335 2336 *partial_copy = 0; 2337 *partial_copy_len = 0; 2338 2339 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2340 /* no more space in this iclog - push it. */ 2341 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2342 *record_cnt = 0; 2343 *data_cnt = 0; 2344 2345 spin_lock(&log->l_icloglock); 2346 xlog_state_want_sync(log, iclog); 2347 spin_unlock(&log->l_icloglock); 2348 2349 if (!commit_iclog) 2350 return xlog_state_release_iclog(log, iclog); 2351 ASSERT(flags & XLOG_COMMIT_TRANS); 2352 *commit_iclog = iclog; 2353 } 2354 2355 return 0; 2356 } 2357 2358 /* 2359 * Write some region out to in-core log 2360 * 2361 * This will be called when writing externally provided regions or when 2362 * writing out a commit record for a given transaction. 2363 * 2364 * General algorithm: 2365 * 1. Find total length of this write. This may include adding to the 2366 * lengths passed in. 2367 * 2. Check whether we violate the tickets reservation. 2368 * 3. While writing to this iclog 2369 * A. Reserve as much space in this iclog as can get 2370 * B. If this is first write, save away start lsn 2371 * C. While writing this region: 2372 * 1. If first write of transaction, write start record 2373 * 2. Write log operation header (header per region) 2374 * 3. Find out if we can fit entire region into this iclog 2375 * 4. Potentially, verify destination memcpy ptr 2376 * 5. Memcpy (partial) region 2377 * 6. If partial copy, release iclog; otherwise, continue 2378 * copying more regions into current iclog 2379 * 4. Mark want sync bit (in simulation mode) 2380 * 5. Release iclog for potential flush to on-disk log. 2381 * 2382 * ERRORS: 2383 * 1. Panic if reservation is overrun. This should never happen since 2384 * reservation amounts are generated internal to the filesystem. 2385 * NOTES: 2386 * 1. Tickets are single threaded data structures. 2387 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2388 * syncing routine. When a single log_write region needs to span 2389 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2390 * on all log operation writes which don't contain the end of the 2391 * region. The XLOG_END_TRANS bit is used for the in-core log 2392 * operation which contains the end of the continued log_write region. 2393 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2394 * we don't really know exactly how much space will be used. As a result, 2395 * we don't update ic_offset until the end when we know exactly how many 2396 * bytes have been written out. 2397 */ 2398 int 2399 xlog_write( 2400 struct xlog *log, 2401 struct xfs_log_vec *log_vector, 2402 struct xlog_ticket *ticket, 2403 xfs_lsn_t *start_lsn, 2404 struct xlog_in_core **commit_iclog, 2405 uint flags) 2406 { 2407 struct xlog_in_core *iclog = NULL; 2408 struct xfs_log_iovec *vecp; 2409 struct xfs_log_vec *lv; 2410 int len; 2411 int index; 2412 int partial_copy = 0; 2413 int partial_copy_len = 0; 2414 int contwr = 0; 2415 int record_cnt = 0; 2416 int data_cnt = 0; 2417 int error; 2418 2419 *start_lsn = 0; 2420 2421 len = xlog_write_calc_vec_length(ticket, log_vector); 2422 2423 /* 2424 * Region headers and bytes are already accounted for. 2425 * We only need to take into account start records and 2426 * split regions in this function. 2427 */ 2428 if (ticket->t_flags & XLOG_TIC_INITED) 2429 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2430 2431 /* 2432 * Commit record headers need to be accounted for. These 2433 * come in as separate writes so are easy to detect. 2434 */ 2435 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2436 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2437 2438 if (ticket->t_curr_res < 0) { 2439 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2440 "ctx ticket reservation ran out. Need to up reservation"); 2441 xlog_print_tic_res(log->l_mp, ticket); 2442 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2443 } 2444 2445 index = 0; 2446 lv = log_vector; 2447 vecp = lv->lv_iovecp; 2448 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2449 void *ptr; 2450 int log_offset; 2451 2452 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2453 &contwr, &log_offset); 2454 if (error) 2455 return error; 2456 2457 ASSERT(log_offset <= iclog->ic_size - 1); 2458 ptr = iclog->ic_datap + log_offset; 2459 2460 /* start_lsn is the first lsn written to. That's all we need. */ 2461 if (!*start_lsn) 2462 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2463 2464 /* 2465 * This loop writes out as many regions as can fit in the amount 2466 * of space which was allocated by xlog_state_get_iclog_space(). 2467 */ 2468 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2469 struct xfs_log_iovec *reg; 2470 struct xlog_op_header *ophdr; 2471 int start_rec_copy; 2472 int copy_len; 2473 int copy_off; 2474 bool ordered = false; 2475 2476 /* ordered log vectors have no regions to write */ 2477 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2478 ASSERT(lv->lv_niovecs == 0); 2479 ordered = true; 2480 goto next_lv; 2481 } 2482 2483 reg = &vecp[index]; 2484 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2485 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2486 2487 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2488 if (start_rec_copy) { 2489 record_cnt++; 2490 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2491 start_rec_copy); 2492 } 2493 2494 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2495 if (!ophdr) 2496 return -EIO; 2497 2498 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2499 sizeof(struct xlog_op_header)); 2500 2501 len += xlog_write_setup_copy(ticket, ophdr, 2502 iclog->ic_size-log_offset, 2503 reg->i_len, 2504 ©_off, ©_len, 2505 &partial_copy, 2506 &partial_copy_len); 2507 xlog_verify_dest_ptr(log, ptr); 2508 2509 /* 2510 * Copy region. 2511 * 2512 * Unmount records just log an opheader, so can have 2513 * empty payloads with no data region to copy. Hence we 2514 * only copy the payload if the vector says it has data 2515 * to copy. 2516 */ 2517 ASSERT(copy_len >= 0); 2518 if (copy_len > 0) { 2519 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2520 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2521 copy_len); 2522 } 2523 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2524 record_cnt++; 2525 data_cnt += contwr ? copy_len : 0; 2526 2527 error = xlog_write_copy_finish(log, iclog, flags, 2528 &record_cnt, &data_cnt, 2529 &partial_copy, 2530 &partial_copy_len, 2531 log_offset, 2532 commit_iclog); 2533 if (error) 2534 return error; 2535 2536 /* 2537 * if we had a partial copy, we need to get more iclog 2538 * space but we don't want to increment the region 2539 * index because there is still more is this region to 2540 * write. 2541 * 2542 * If we completed writing this region, and we flushed 2543 * the iclog (indicated by resetting of the record 2544 * count), then we also need to get more log space. If 2545 * this was the last record, though, we are done and 2546 * can just return. 2547 */ 2548 if (partial_copy) 2549 break; 2550 2551 if (++index == lv->lv_niovecs) { 2552 next_lv: 2553 lv = lv->lv_next; 2554 index = 0; 2555 if (lv) 2556 vecp = lv->lv_iovecp; 2557 } 2558 if (record_cnt == 0 && !ordered) { 2559 if (!lv) 2560 return 0; 2561 break; 2562 } 2563 } 2564 } 2565 2566 ASSERT(len == 0); 2567 2568 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2569 if (!commit_iclog) 2570 return xlog_state_release_iclog(log, iclog); 2571 2572 ASSERT(flags & XLOG_COMMIT_TRANS); 2573 *commit_iclog = iclog; 2574 return 0; 2575 } 2576 2577 2578 /***************************************************************************** 2579 * 2580 * State Machine functions 2581 * 2582 ***************************************************************************** 2583 */ 2584 2585 /* Clean iclogs starting from the head. This ordering must be 2586 * maintained, so an iclog doesn't become ACTIVE beyond one that 2587 * is SYNCING. This is also required to maintain the notion that we use 2588 * a ordered wait queue to hold off would be writers to the log when every 2589 * iclog is trying to sync to disk. 2590 * 2591 * State Change: DIRTY -> ACTIVE 2592 */ 2593 STATIC void 2594 xlog_state_clean_log( 2595 struct xlog *log) 2596 { 2597 xlog_in_core_t *iclog; 2598 int changed = 0; 2599 2600 iclog = log->l_iclog; 2601 do { 2602 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2603 iclog->ic_state = XLOG_STATE_ACTIVE; 2604 iclog->ic_offset = 0; 2605 ASSERT(iclog->ic_callback == NULL); 2606 /* 2607 * If the number of ops in this iclog indicate it just 2608 * contains the dummy transaction, we can 2609 * change state into IDLE (the second time around). 2610 * Otherwise we should change the state into 2611 * NEED a dummy. 2612 * We don't need to cover the dummy. 2613 */ 2614 if (!changed && 2615 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2616 XLOG_COVER_OPS)) { 2617 changed = 1; 2618 } else { 2619 /* 2620 * We have two dirty iclogs so start over 2621 * This could also be num of ops indicates 2622 * this is not the dummy going out. 2623 */ 2624 changed = 2; 2625 } 2626 iclog->ic_header.h_num_logops = 0; 2627 memset(iclog->ic_header.h_cycle_data, 0, 2628 sizeof(iclog->ic_header.h_cycle_data)); 2629 iclog->ic_header.h_lsn = 0; 2630 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2631 /* do nothing */; 2632 else 2633 break; /* stop cleaning */ 2634 iclog = iclog->ic_next; 2635 } while (iclog != log->l_iclog); 2636 2637 /* log is locked when we are called */ 2638 /* 2639 * Change state for the dummy log recording. 2640 * We usually go to NEED. But we go to NEED2 if the changed indicates 2641 * we are done writing the dummy record. 2642 * If we are done with the second dummy recored (DONE2), then 2643 * we go to IDLE. 2644 */ 2645 if (changed) { 2646 switch (log->l_covered_state) { 2647 case XLOG_STATE_COVER_IDLE: 2648 case XLOG_STATE_COVER_NEED: 2649 case XLOG_STATE_COVER_NEED2: 2650 log->l_covered_state = XLOG_STATE_COVER_NEED; 2651 break; 2652 2653 case XLOG_STATE_COVER_DONE: 2654 if (changed == 1) 2655 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2656 else 2657 log->l_covered_state = XLOG_STATE_COVER_NEED; 2658 break; 2659 2660 case XLOG_STATE_COVER_DONE2: 2661 if (changed == 1) 2662 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2663 else 2664 log->l_covered_state = XLOG_STATE_COVER_NEED; 2665 break; 2666 2667 default: 2668 ASSERT(0); 2669 } 2670 } 2671 } /* xlog_state_clean_log */ 2672 2673 STATIC xfs_lsn_t 2674 xlog_get_lowest_lsn( 2675 struct xlog *log) 2676 { 2677 xlog_in_core_t *lsn_log; 2678 xfs_lsn_t lowest_lsn, lsn; 2679 2680 lsn_log = log->l_iclog; 2681 lowest_lsn = 0; 2682 do { 2683 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2684 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2685 if ((lsn && !lowest_lsn) || 2686 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2687 lowest_lsn = lsn; 2688 } 2689 } 2690 lsn_log = lsn_log->ic_next; 2691 } while (lsn_log != log->l_iclog); 2692 return lowest_lsn; 2693 } 2694 2695 2696 STATIC void 2697 xlog_state_do_callback( 2698 struct xlog *log, 2699 int aborted, 2700 struct xlog_in_core *ciclog) 2701 { 2702 xlog_in_core_t *iclog; 2703 xlog_in_core_t *first_iclog; /* used to know when we've 2704 * processed all iclogs once */ 2705 xfs_log_callback_t *cb, *cb_next; 2706 int flushcnt = 0; 2707 xfs_lsn_t lowest_lsn; 2708 int ioerrors; /* counter: iclogs with errors */ 2709 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2710 int funcdidcallbacks; /* flag: function did callbacks */ 2711 int repeats; /* for issuing console warnings if 2712 * looping too many times */ 2713 int wake = 0; 2714 2715 spin_lock(&log->l_icloglock); 2716 first_iclog = iclog = log->l_iclog; 2717 ioerrors = 0; 2718 funcdidcallbacks = 0; 2719 repeats = 0; 2720 2721 do { 2722 /* 2723 * Scan all iclogs starting with the one pointed to by the 2724 * log. Reset this starting point each time the log is 2725 * unlocked (during callbacks). 2726 * 2727 * Keep looping through iclogs until one full pass is made 2728 * without running any callbacks. 2729 */ 2730 first_iclog = log->l_iclog; 2731 iclog = log->l_iclog; 2732 loopdidcallbacks = 0; 2733 repeats++; 2734 2735 do { 2736 2737 /* skip all iclogs in the ACTIVE & DIRTY states */ 2738 if (iclog->ic_state & 2739 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2740 iclog = iclog->ic_next; 2741 continue; 2742 } 2743 2744 /* 2745 * Between marking a filesystem SHUTDOWN and stopping 2746 * the log, we do flush all iclogs to disk (if there 2747 * wasn't a log I/O error). So, we do want things to 2748 * go smoothly in case of just a SHUTDOWN w/o a 2749 * LOG_IO_ERROR. 2750 */ 2751 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2752 /* 2753 * Can only perform callbacks in order. Since 2754 * this iclog is not in the DONE_SYNC/ 2755 * DO_CALLBACK state, we skip the rest and 2756 * just try to clean up. If we set our iclog 2757 * to DO_CALLBACK, we will not process it when 2758 * we retry since a previous iclog is in the 2759 * CALLBACK and the state cannot change since 2760 * we are holding the l_icloglock. 2761 */ 2762 if (!(iclog->ic_state & 2763 (XLOG_STATE_DONE_SYNC | 2764 XLOG_STATE_DO_CALLBACK))) { 2765 if (ciclog && (ciclog->ic_state == 2766 XLOG_STATE_DONE_SYNC)) { 2767 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2768 } 2769 break; 2770 } 2771 /* 2772 * We now have an iclog that is in either the 2773 * DO_CALLBACK or DONE_SYNC states. The other 2774 * states (WANT_SYNC, SYNCING, or CALLBACK were 2775 * caught by the above if and are going to 2776 * clean (i.e. we aren't doing their callbacks) 2777 * see the above if. 2778 */ 2779 2780 /* 2781 * We will do one more check here to see if we 2782 * have chased our tail around. 2783 */ 2784 2785 lowest_lsn = xlog_get_lowest_lsn(log); 2786 if (lowest_lsn && 2787 XFS_LSN_CMP(lowest_lsn, 2788 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2789 iclog = iclog->ic_next; 2790 continue; /* Leave this iclog for 2791 * another thread */ 2792 } 2793 2794 iclog->ic_state = XLOG_STATE_CALLBACK; 2795 2796 2797 /* 2798 * Completion of a iclog IO does not imply that 2799 * a transaction has completed, as transactions 2800 * can be large enough to span many iclogs. We 2801 * cannot change the tail of the log half way 2802 * through a transaction as this may be the only 2803 * transaction in the log and moving th etail to 2804 * point to the middle of it will prevent 2805 * recovery from finding the start of the 2806 * transaction. Hence we should only update the 2807 * last_sync_lsn if this iclog contains 2808 * transaction completion callbacks on it. 2809 * 2810 * We have to do this before we drop the 2811 * icloglock to ensure we are the only one that 2812 * can update it. 2813 */ 2814 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2815 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2816 if (iclog->ic_callback) 2817 atomic64_set(&log->l_last_sync_lsn, 2818 be64_to_cpu(iclog->ic_header.h_lsn)); 2819 2820 } else 2821 ioerrors++; 2822 2823 spin_unlock(&log->l_icloglock); 2824 2825 /* 2826 * Keep processing entries in the callback list until 2827 * we come around and it is empty. We need to 2828 * atomically see that the list is empty and change the 2829 * state to DIRTY so that we don't miss any more 2830 * callbacks being added. 2831 */ 2832 spin_lock(&iclog->ic_callback_lock); 2833 cb = iclog->ic_callback; 2834 while (cb) { 2835 iclog->ic_callback_tail = &(iclog->ic_callback); 2836 iclog->ic_callback = NULL; 2837 spin_unlock(&iclog->ic_callback_lock); 2838 2839 /* perform callbacks in the order given */ 2840 for (; cb; cb = cb_next) { 2841 cb_next = cb->cb_next; 2842 cb->cb_func(cb->cb_arg, aborted); 2843 } 2844 spin_lock(&iclog->ic_callback_lock); 2845 cb = iclog->ic_callback; 2846 } 2847 2848 loopdidcallbacks++; 2849 funcdidcallbacks++; 2850 2851 spin_lock(&log->l_icloglock); 2852 ASSERT(iclog->ic_callback == NULL); 2853 spin_unlock(&iclog->ic_callback_lock); 2854 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2855 iclog->ic_state = XLOG_STATE_DIRTY; 2856 2857 /* 2858 * Transition from DIRTY to ACTIVE if applicable. 2859 * NOP if STATE_IOERROR. 2860 */ 2861 xlog_state_clean_log(log); 2862 2863 /* wake up threads waiting in xfs_log_force() */ 2864 wake_up_all(&iclog->ic_force_wait); 2865 2866 iclog = iclog->ic_next; 2867 } while (first_iclog != iclog); 2868 2869 if (repeats > 5000) { 2870 flushcnt += repeats; 2871 repeats = 0; 2872 xfs_warn(log->l_mp, 2873 "%s: possible infinite loop (%d iterations)", 2874 __func__, flushcnt); 2875 } 2876 } while (!ioerrors && loopdidcallbacks); 2877 2878 #ifdef DEBUG 2879 /* 2880 * Make one last gasp attempt to see if iclogs are being left in limbo. 2881 * If the above loop finds an iclog earlier than the current iclog and 2882 * in one of the syncing states, the current iclog is put into 2883 * DO_CALLBACK and the callbacks are deferred to the completion of the 2884 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2885 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2886 * states. 2887 * 2888 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2889 * for ic_state == SYNCING. 2890 */ 2891 if (funcdidcallbacks) { 2892 first_iclog = iclog = log->l_iclog; 2893 do { 2894 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2895 /* 2896 * Terminate the loop if iclogs are found in states 2897 * which will cause other threads to clean up iclogs. 2898 * 2899 * SYNCING - i/o completion will go through logs 2900 * DONE_SYNC - interrupt thread should be waiting for 2901 * l_icloglock 2902 * IOERROR - give up hope all ye who enter here 2903 */ 2904 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2905 iclog->ic_state & XLOG_STATE_SYNCING || 2906 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2907 iclog->ic_state == XLOG_STATE_IOERROR ) 2908 break; 2909 iclog = iclog->ic_next; 2910 } while (first_iclog != iclog); 2911 } 2912 #endif 2913 2914 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2915 wake = 1; 2916 spin_unlock(&log->l_icloglock); 2917 2918 if (wake) 2919 wake_up_all(&log->l_flush_wait); 2920 } 2921 2922 2923 /* 2924 * Finish transitioning this iclog to the dirty state. 2925 * 2926 * Make sure that we completely execute this routine only when this is 2927 * the last call to the iclog. There is a good chance that iclog flushes, 2928 * when we reach the end of the physical log, get turned into 2 separate 2929 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2930 * routine. By using the reference count bwritecnt, we guarantee that only 2931 * the second completion goes through. 2932 * 2933 * Callbacks could take time, so they are done outside the scope of the 2934 * global state machine log lock. 2935 */ 2936 STATIC void 2937 xlog_state_done_syncing( 2938 xlog_in_core_t *iclog, 2939 int aborted) 2940 { 2941 struct xlog *log = iclog->ic_log; 2942 2943 spin_lock(&log->l_icloglock); 2944 2945 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2946 iclog->ic_state == XLOG_STATE_IOERROR); 2947 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2948 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2949 2950 2951 /* 2952 * If we got an error, either on the first buffer, or in the case of 2953 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2954 * and none should ever be attempted to be written to disk 2955 * again. 2956 */ 2957 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2958 if (--iclog->ic_bwritecnt == 1) { 2959 spin_unlock(&log->l_icloglock); 2960 return; 2961 } 2962 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2963 } 2964 2965 /* 2966 * Someone could be sleeping prior to writing out the next 2967 * iclog buffer, we wake them all, one will get to do the 2968 * I/O, the others get to wait for the result. 2969 */ 2970 wake_up_all(&iclog->ic_write_wait); 2971 spin_unlock(&log->l_icloglock); 2972 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2973 } /* xlog_state_done_syncing */ 2974 2975 2976 /* 2977 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2978 * sleep. We wait on the flush queue on the head iclog as that should be 2979 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2980 * we will wait here and all new writes will sleep until a sync completes. 2981 * 2982 * The in-core logs are used in a circular fashion. They are not used 2983 * out-of-order even when an iclog past the head is free. 2984 * 2985 * return: 2986 * * log_offset where xlog_write() can start writing into the in-core 2987 * log's data space. 2988 * * in-core log pointer to which xlog_write() should write. 2989 * * boolean indicating this is a continued write to an in-core log. 2990 * If this is the last write, then the in-core log's offset field 2991 * needs to be incremented, depending on the amount of data which 2992 * is copied. 2993 */ 2994 STATIC int 2995 xlog_state_get_iclog_space( 2996 struct xlog *log, 2997 int len, 2998 struct xlog_in_core **iclogp, 2999 struct xlog_ticket *ticket, 3000 int *continued_write, 3001 int *logoffsetp) 3002 { 3003 int log_offset; 3004 xlog_rec_header_t *head; 3005 xlog_in_core_t *iclog; 3006 int error; 3007 3008 restart: 3009 spin_lock(&log->l_icloglock); 3010 if (XLOG_FORCED_SHUTDOWN(log)) { 3011 spin_unlock(&log->l_icloglock); 3012 return -EIO; 3013 } 3014 3015 iclog = log->l_iclog; 3016 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 3017 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 3018 3019 /* Wait for log writes to have flushed */ 3020 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 3021 goto restart; 3022 } 3023 3024 head = &iclog->ic_header; 3025 3026 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 3027 log_offset = iclog->ic_offset; 3028 3029 /* On the 1st write to an iclog, figure out lsn. This works 3030 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 3031 * committing to. If the offset is set, that's how many blocks 3032 * must be written. 3033 */ 3034 if (log_offset == 0) { 3035 ticket->t_curr_res -= log->l_iclog_hsize; 3036 xlog_tic_add_region(ticket, 3037 log->l_iclog_hsize, 3038 XLOG_REG_TYPE_LRHEADER); 3039 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 3040 head->h_lsn = cpu_to_be64( 3041 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 3042 ASSERT(log->l_curr_block >= 0); 3043 } 3044 3045 /* If there is enough room to write everything, then do it. Otherwise, 3046 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 3047 * bit is on, so this will get flushed out. Don't update ic_offset 3048 * until you know exactly how many bytes get copied. Therefore, wait 3049 * until later to update ic_offset. 3050 * 3051 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 3052 * can fit into remaining data section. 3053 */ 3054 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3055 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3056 3057 /* 3058 * If I'm the only one writing to this iclog, sync it to disk. 3059 * We need to do an atomic compare and decrement here to avoid 3060 * racing with concurrent atomic_dec_and_lock() calls in 3061 * xlog_state_release_iclog() when there is more than one 3062 * reference to the iclog. 3063 */ 3064 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 3065 /* we are the only one */ 3066 spin_unlock(&log->l_icloglock); 3067 error = xlog_state_release_iclog(log, iclog); 3068 if (error) 3069 return error; 3070 } else { 3071 spin_unlock(&log->l_icloglock); 3072 } 3073 goto restart; 3074 } 3075 3076 /* Do we have enough room to write the full amount in the remainder 3077 * of this iclog? Or must we continue a write on the next iclog and 3078 * mark this iclog as completely taken? In the case where we switch 3079 * iclogs (to mark it taken), this particular iclog will release/sync 3080 * to disk in xlog_write(). 3081 */ 3082 if (len <= iclog->ic_size - iclog->ic_offset) { 3083 *continued_write = 0; 3084 iclog->ic_offset += len; 3085 } else { 3086 *continued_write = 1; 3087 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3088 } 3089 *iclogp = iclog; 3090 3091 ASSERT(iclog->ic_offset <= iclog->ic_size); 3092 spin_unlock(&log->l_icloglock); 3093 3094 *logoffsetp = log_offset; 3095 return 0; 3096 } /* xlog_state_get_iclog_space */ 3097 3098 /* The first cnt-1 times through here we don't need to 3099 * move the grant write head because the permanent 3100 * reservation has reserved cnt times the unit amount. 3101 * Release part of current permanent unit reservation and 3102 * reset current reservation to be one units worth. Also 3103 * move grant reservation head forward. 3104 */ 3105 STATIC void 3106 xlog_regrant_reserve_log_space( 3107 struct xlog *log, 3108 struct xlog_ticket *ticket) 3109 { 3110 trace_xfs_log_regrant_reserve_enter(log, ticket); 3111 3112 if (ticket->t_cnt > 0) 3113 ticket->t_cnt--; 3114 3115 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3116 ticket->t_curr_res); 3117 xlog_grant_sub_space(log, &log->l_write_head.grant, 3118 ticket->t_curr_res); 3119 ticket->t_curr_res = ticket->t_unit_res; 3120 xlog_tic_reset_res(ticket); 3121 3122 trace_xfs_log_regrant_reserve_sub(log, ticket); 3123 3124 /* just return if we still have some of the pre-reserved space */ 3125 if (ticket->t_cnt > 0) 3126 return; 3127 3128 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3129 ticket->t_unit_res); 3130 3131 trace_xfs_log_regrant_reserve_exit(log, ticket); 3132 3133 ticket->t_curr_res = ticket->t_unit_res; 3134 xlog_tic_reset_res(ticket); 3135 } /* xlog_regrant_reserve_log_space */ 3136 3137 3138 /* 3139 * Give back the space left from a reservation. 3140 * 3141 * All the information we need to make a correct determination of space left 3142 * is present. For non-permanent reservations, things are quite easy. The 3143 * count should have been decremented to zero. We only need to deal with the 3144 * space remaining in the current reservation part of the ticket. If the 3145 * ticket contains a permanent reservation, there may be left over space which 3146 * needs to be released. A count of N means that N-1 refills of the current 3147 * reservation can be done before we need to ask for more space. The first 3148 * one goes to fill up the first current reservation. Once we run out of 3149 * space, the count will stay at zero and the only space remaining will be 3150 * in the current reservation field. 3151 */ 3152 STATIC void 3153 xlog_ungrant_log_space( 3154 struct xlog *log, 3155 struct xlog_ticket *ticket) 3156 { 3157 int bytes; 3158 3159 if (ticket->t_cnt > 0) 3160 ticket->t_cnt--; 3161 3162 trace_xfs_log_ungrant_enter(log, ticket); 3163 trace_xfs_log_ungrant_sub(log, ticket); 3164 3165 /* 3166 * If this is a permanent reservation ticket, we may be able to free 3167 * up more space based on the remaining count. 3168 */ 3169 bytes = ticket->t_curr_res; 3170 if (ticket->t_cnt > 0) { 3171 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3172 bytes += ticket->t_unit_res*ticket->t_cnt; 3173 } 3174 3175 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3176 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3177 3178 trace_xfs_log_ungrant_exit(log, ticket); 3179 3180 xfs_log_space_wake(log->l_mp); 3181 } 3182 3183 /* 3184 * Flush iclog to disk if this is the last reference to the given iclog and 3185 * the WANT_SYNC bit is set. 3186 * 3187 * When this function is entered, the iclog is not necessarily in the 3188 * WANT_SYNC state. It may be sitting around waiting to get filled. 3189 * 3190 * 3191 */ 3192 STATIC int 3193 xlog_state_release_iclog( 3194 struct xlog *log, 3195 struct xlog_in_core *iclog) 3196 { 3197 int sync = 0; /* do we sync? */ 3198 3199 if (iclog->ic_state & XLOG_STATE_IOERROR) 3200 return -EIO; 3201 3202 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3203 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3204 return 0; 3205 3206 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3207 spin_unlock(&log->l_icloglock); 3208 return -EIO; 3209 } 3210 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3211 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3212 3213 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3214 /* update tail before writing to iclog */ 3215 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3216 sync++; 3217 iclog->ic_state = XLOG_STATE_SYNCING; 3218 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3219 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3220 /* cycle incremented when incrementing curr_block */ 3221 } 3222 spin_unlock(&log->l_icloglock); 3223 3224 /* 3225 * We let the log lock go, so it's possible that we hit a log I/O 3226 * error or some other SHUTDOWN condition that marks the iclog 3227 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3228 * this iclog has consistent data, so we ignore IOERROR 3229 * flags after this point. 3230 */ 3231 if (sync) 3232 return xlog_sync(log, iclog); 3233 return 0; 3234 } /* xlog_state_release_iclog */ 3235 3236 3237 /* 3238 * This routine will mark the current iclog in the ring as WANT_SYNC 3239 * and move the current iclog pointer to the next iclog in the ring. 3240 * When this routine is called from xlog_state_get_iclog_space(), the 3241 * exact size of the iclog has not yet been determined. All we know is 3242 * that every data block. We have run out of space in this log record. 3243 */ 3244 STATIC void 3245 xlog_state_switch_iclogs( 3246 struct xlog *log, 3247 struct xlog_in_core *iclog, 3248 int eventual_size) 3249 { 3250 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3251 if (!eventual_size) 3252 eventual_size = iclog->ic_offset; 3253 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3254 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3255 log->l_prev_block = log->l_curr_block; 3256 log->l_prev_cycle = log->l_curr_cycle; 3257 3258 /* roll log?: ic_offset changed later */ 3259 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3260 3261 /* Round up to next log-sunit */ 3262 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3263 log->l_mp->m_sb.sb_logsunit > 1) { 3264 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3265 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3266 } 3267 3268 if (log->l_curr_block >= log->l_logBBsize) { 3269 /* 3270 * Rewind the current block before the cycle is bumped to make 3271 * sure that the combined LSN never transiently moves forward 3272 * when the log wraps to the next cycle. This is to support the 3273 * unlocked sample of these fields from xlog_valid_lsn(). Most 3274 * other cases should acquire l_icloglock. 3275 */ 3276 log->l_curr_block -= log->l_logBBsize; 3277 ASSERT(log->l_curr_block >= 0); 3278 smp_wmb(); 3279 log->l_curr_cycle++; 3280 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3281 log->l_curr_cycle++; 3282 } 3283 ASSERT(iclog == log->l_iclog); 3284 log->l_iclog = iclog->ic_next; 3285 } /* xlog_state_switch_iclogs */ 3286 3287 /* 3288 * Write out all data in the in-core log as of this exact moment in time. 3289 * 3290 * Data may be written to the in-core log during this call. However, 3291 * we don't guarantee this data will be written out. A change from past 3292 * implementation means this routine will *not* write out zero length LRs. 3293 * 3294 * Basically, we try and perform an intelligent scan of the in-core logs. 3295 * If we determine there is no flushable data, we just return. There is no 3296 * flushable data if: 3297 * 3298 * 1. the current iclog is active and has no data; the previous iclog 3299 * is in the active or dirty state. 3300 * 2. the current iclog is drity, and the previous iclog is in the 3301 * active or dirty state. 3302 * 3303 * We may sleep if: 3304 * 3305 * 1. the current iclog is not in the active nor dirty state. 3306 * 2. the current iclog dirty, and the previous iclog is not in the 3307 * active nor dirty state. 3308 * 3. the current iclog is active, and there is another thread writing 3309 * to this particular iclog. 3310 * 4. a) the current iclog is active and has no other writers 3311 * b) when we return from flushing out this iclog, it is still 3312 * not in the active nor dirty state. 3313 */ 3314 int 3315 xfs_log_force( 3316 struct xfs_mount *mp, 3317 uint flags) 3318 { 3319 struct xlog *log = mp->m_log; 3320 struct xlog_in_core *iclog; 3321 xfs_lsn_t lsn; 3322 3323 XFS_STATS_INC(mp, xs_log_force); 3324 trace_xfs_log_force(mp, 0, _RET_IP_); 3325 3326 xlog_cil_force(log); 3327 3328 spin_lock(&log->l_icloglock); 3329 iclog = log->l_iclog; 3330 if (iclog->ic_state & XLOG_STATE_IOERROR) 3331 goto out_error; 3332 3333 if (iclog->ic_state == XLOG_STATE_DIRTY || 3334 (iclog->ic_state == XLOG_STATE_ACTIVE && 3335 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3336 /* 3337 * If the head is dirty or (active and empty), then we need to 3338 * look at the previous iclog. 3339 * 3340 * If the previous iclog is active or dirty we are done. There 3341 * is nothing to sync out. Otherwise, we attach ourselves to the 3342 * previous iclog and go to sleep. 3343 */ 3344 iclog = iclog->ic_prev; 3345 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3346 iclog->ic_state == XLOG_STATE_DIRTY) 3347 goto out_unlock; 3348 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3349 if (atomic_read(&iclog->ic_refcnt) == 0) { 3350 /* 3351 * We are the only one with access to this iclog. 3352 * 3353 * Flush it out now. There should be a roundoff of zero 3354 * to show that someone has already taken care of the 3355 * roundoff from the previous sync. 3356 */ 3357 atomic_inc(&iclog->ic_refcnt); 3358 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3359 xlog_state_switch_iclogs(log, iclog, 0); 3360 spin_unlock(&log->l_icloglock); 3361 3362 if (xlog_state_release_iclog(log, iclog)) 3363 return -EIO; 3364 3365 spin_lock(&log->l_icloglock); 3366 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn || 3367 iclog->ic_state == XLOG_STATE_DIRTY) 3368 goto out_unlock; 3369 } else { 3370 /* 3371 * Someone else is writing to this iclog. 3372 * 3373 * Use its call to flush out the data. However, the 3374 * other thread may not force out this LR, so we mark 3375 * it WANT_SYNC. 3376 */ 3377 xlog_state_switch_iclogs(log, iclog, 0); 3378 } 3379 } else { 3380 /* 3381 * If the head iclog is not active nor dirty, we just attach 3382 * ourselves to the head and go to sleep if necessary. 3383 */ 3384 ; 3385 } 3386 3387 if (!(flags & XFS_LOG_SYNC)) 3388 goto out_unlock; 3389 3390 if (iclog->ic_state & XLOG_STATE_IOERROR) 3391 goto out_error; 3392 XFS_STATS_INC(mp, xs_log_force_sleep); 3393 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3394 if (iclog->ic_state & XLOG_STATE_IOERROR) 3395 return -EIO; 3396 return 0; 3397 3398 out_unlock: 3399 spin_unlock(&log->l_icloglock); 3400 return 0; 3401 out_error: 3402 spin_unlock(&log->l_icloglock); 3403 return -EIO; 3404 } 3405 3406 static int 3407 __xfs_log_force_lsn( 3408 struct xfs_mount *mp, 3409 xfs_lsn_t lsn, 3410 uint flags, 3411 int *log_flushed, 3412 bool already_slept) 3413 { 3414 struct xlog *log = mp->m_log; 3415 struct xlog_in_core *iclog; 3416 3417 spin_lock(&log->l_icloglock); 3418 iclog = log->l_iclog; 3419 if (iclog->ic_state & XLOG_STATE_IOERROR) 3420 goto out_error; 3421 3422 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3423 iclog = iclog->ic_next; 3424 if (iclog == log->l_iclog) 3425 goto out_unlock; 3426 } 3427 3428 if (iclog->ic_state == XLOG_STATE_DIRTY) 3429 goto out_unlock; 3430 3431 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3432 /* 3433 * We sleep here if we haven't already slept (e.g. this is the 3434 * first time we've looked at the correct iclog buf) and the 3435 * buffer before us is going to be sync'ed. The reason for this 3436 * is that if we are doing sync transactions here, by waiting 3437 * for the previous I/O to complete, we can allow a few more 3438 * transactions into this iclog before we close it down. 3439 * 3440 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3441 * refcnt so we can release the log (which drops the ref count). 3442 * The state switch keeps new transaction commits from using 3443 * this buffer. When the current commits finish writing into 3444 * the buffer, the refcount will drop to zero and the buffer 3445 * will go out then. 3446 */ 3447 if (!already_slept && 3448 (iclog->ic_prev->ic_state & 3449 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3450 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3451 3452 XFS_STATS_INC(mp, xs_log_force_sleep); 3453 3454 xlog_wait(&iclog->ic_prev->ic_write_wait, 3455 &log->l_icloglock); 3456 return -EAGAIN; 3457 } 3458 atomic_inc(&iclog->ic_refcnt); 3459 xlog_state_switch_iclogs(log, iclog, 0); 3460 spin_unlock(&log->l_icloglock); 3461 if (xlog_state_release_iclog(log, iclog)) 3462 return -EIO; 3463 if (log_flushed) 3464 *log_flushed = 1; 3465 spin_lock(&log->l_icloglock); 3466 } 3467 3468 if (!(flags & XFS_LOG_SYNC) || 3469 (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) 3470 goto out_unlock; 3471 3472 if (iclog->ic_state & XLOG_STATE_IOERROR) 3473 goto out_error; 3474 3475 XFS_STATS_INC(mp, xs_log_force_sleep); 3476 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3477 if (iclog->ic_state & XLOG_STATE_IOERROR) 3478 return -EIO; 3479 return 0; 3480 3481 out_unlock: 3482 spin_unlock(&log->l_icloglock); 3483 return 0; 3484 out_error: 3485 spin_unlock(&log->l_icloglock); 3486 return -EIO; 3487 } 3488 3489 /* 3490 * Force the in-core log to disk for a specific LSN. 3491 * 3492 * Find in-core log with lsn. 3493 * If it is in the DIRTY state, just return. 3494 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3495 * state and go to sleep or return. 3496 * If it is in any other state, go to sleep or return. 3497 * 3498 * Synchronous forces are implemented with a wait queue. All callers trying 3499 * to force a given lsn to disk must wait on the queue attached to the 3500 * specific in-core log. When given in-core log finally completes its write 3501 * to disk, that thread will wake up all threads waiting on the queue. 3502 */ 3503 int 3504 xfs_log_force_lsn( 3505 struct xfs_mount *mp, 3506 xfs_lsn_t lsn, 3507 uint flags, 3508 int *log_flushed) 3509 { 3510 int ret; 3511 ASSERT(lsn != 0); 3512 3513 XFS_STATS_INC(mp, xs_log_force); 3514 trace_xfs_log_force(mp, lsn, _RET_IP_); 3515 3516 lsn = xlog_cil_force_lsn(mp->m_log, lsn); 3517 if (lsn == NULLCOMMITLSN) 3518 return 0; 3519 3520 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false); 3521 if (ret == -EAGAIN) 3522 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true); 3523 return ret; 3524 } 3525 3526 /* 3527 * Called when we want to mark the current iclog as being ready to sync to 3528 * disk. 3529 */ 3530 STATIC void 3531 xlog_state_want_sync( 3532 struct xlog *log, 3533 struct xlog_in_core *iclog) 3534 { 3535 assert_spin_locked(&log->l_icloglock); 3536 3537 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3538 xlog_state_switch_iclogs(log, iclog, 0); 3539 } else { 3540 ASSERT(iclog->ic_state & 3541 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3542 } 3543 } 3544 3545 3546 /***************************************************************************** 3547 * 3548 * TICKET functions 3549 * 3550 ***************************************************************************** 3551 */ 3552 3553 /* 3554 * Free a used ticket when its refcount falls to zero. 3555 */ 3556 void 3557 xfs_log_ticket_put( 3558 xlog_ticket_t *ticket) 3559 { 3560 ASSERT(atomic_read(&ticket->t_ref) > 0); 3561 if (atomic_dec_and_test(&ticket->t_ref)) 3562 kmem_zone_free(xfs_log_ticket_zone, ticket); 3563 } 3564 3565 xlog_ticket_t * 3566 xfs_log_ticket_get( 3567 xlog_ticket_t *ticket) 3568 { 3569 ASSERT(atomic_read(&ticket->t_ref) > 0); 3570 atomic_inc(&ticket->t_ref); 3571 return ticket; 3572 } 3573 3574 /* 3575 * Figure out the total log space unit (in bytes) that would be 3576 * required for a log ticket. 3577 */ 3578 int 3579 xfs_log_calc_unit_res( 3580 struct xfs_mount *mp, 3581 int unit_bytes) 3582 { 3583 struct xlog *log = mp->m_log; 3584 int iclog_space; 3585 uint num_headers; 3586 3587 /* 3588 * Permanent reservations have up to 'cnt'-1 active log operations 3589 * in the log. A unit in this case is the amount of space for one 3590 * of these log operations. Normal reservations have a cnt of 1 3591 * and their unit amount is the total amount of space required. 3592 * 3593 * The following lines of code account for non-transaction data 3594 * which occupy space in the on-disk log. 3595 * 3596 * Normal form of a transaction is: 3597 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3598 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3599 * 3600 * We need to account for all the leadup data and trailer data 3601 * around the transaction data. 3602 * And then we need to account for the worst case in terms of using 3603 * more space. 3604 * The worst case will happen if: 3605 * - the placement of the transaction happens to be such that the 3606 * roundoff is at its maximum 3607 * - the transaction data is synced before the commit record is synced 3608 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3609 * Therefore the commit record is in its own Log Record. 3610 * This can happen as the commit record is called with its 3611 * own region to xlog_write(). 3612 * This then means that in the worst case, roundoff can happen for 3613 * the commit-rec as well. 3614 * The commit-rec is smaller than padding in this scenario and so it is 3615 * not added separately. 3616 */ 3617 3618 /* for trans header */ 3619 unit_bytes += sizeof(xlog_op_header_t); 3620 unit_bytes += sizeof(xfs_trans_header_t); 3621 3622 /* for start-rec */ 3623 unit_bytes += sizeof(xlog_op_header_t); 3624 3625 /* 3626 * for LR headers - the space for data in an iclog is the size minus 3627 * the space used for the headers. If we use the iclog size, then we 3628 * undercalculate the number of headers required. 3629 * 3630 * Furthermore - the addition of op headers for split-recs might 3631 * increase the space required enough to require more log and op 3632 * headers, so take that into account too. 3633 * 3634 * IMPORTANT: This reservation makes the assumption that if this 3635 * transaction is the first in an iclog and hence has the LR headers 3636 * accounted to it, then the remaining space in the iclog is 3637 * exclusively for this transaction. i.e. if the transaction is larger 3638 * than the iclog, it will be the only thing in that iclog. 3639 * Fundamentally, this means we must pass the entire log vector to 3640 * xlog_write to guarantee this. 3641 */ 3642 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3643 num_headers = howmany(unit_bytes, iclog_space); 3644 3645 /* for split-recs - ophdrs added when data split over LRs */ 3646 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3647 3648 /* add extra header reservations if we overrun */ 3649 while (!num_headers || 3650 howmany(unit_bytes, iclog_space) > num_headers) { 3651 unit_bytes += sizeof(xlog_op_header_t); 3652 num_headers++; 3653 } 3654 unit_bytes += log->l_iclog_hsize * num_headers; 3655 3656 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3657 unit_bytes += log->l_iclog_hsize; 3658 3659 /* for roundoff padding for transaction data and one for commit record */ 3660 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3661 /* log su roundoff */ 3662 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3663 } else { 3664 /* BB roundoff */ 3665 unit_bytes += 2 * BBSIZE; 3666 } 3667 3668 return unit_bytes; 3669 } 3670 3671 /* 3672 * Allocate and initialise a new log ticket. 3673 */ 3674 struct xlog_ticket * 3675 xlog_ticket_alloc( 3676 struct xlog *log, 3677 int unit_bytes, 3678 int cnt, 3679 char client, 3680 bool permanent, 3681 xfs_km_flags_t alloc_flags) 3682 { 3683 struct xlog_ticket *tic; 3684 int unit_res; 3685 3686 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3687 if (!tic) 3688 return NULL; 3689 3690 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3691 3692 atomic_set(&tic->t_ref, 1); 3693 tic->t_task = current; 3694 INIT_LIST_HEAD(&tic->t_queue); 3695 tic->t_unit_res = unit_res; 3696 tic->t_curr_res = unit_res; 3697 tic->t_cnt = cnt; 3698 tic->t_ocnt = cnt; 3699 tic->t_tid = prandom_u32(); 3700 tic->t_clientid = client; 3701 tic->t_flags = XLOG_TIC_INITED; 3702 if (permanent) 3703 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3704 3705 xlog_tic_reset_res(tic); 3706 3707 return tic; 3708 } 3709 3710 3711 /****************************************************************************** 3712 * 3713 * Log debug routines 3714 * 3715 ****************************************************************************** 3716 */ 3717 #if defined(DEBUG) 3718 /* 3719 * Make sure that the destination ptr is within the valid data region of 3720 * one of the iclogs. This uses backup pointers stored in a different 3721 * part of the log in case we trash the log structure. 3722 */ 3723 STATIC void 3724 xlog_verify_dest_ptr( 3725 struct xlog *log, 3726 void *ptr) 3727 { 3728 int i; 3729 int good_ptr = 0; 3730 3731 for (i = 0; i < log->l_iclog_bufs; i++) { 3732 if (ptr >= log->l_iclog_bak[i] && 3733 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3734 good_ptr++; 3735 } 3736 3737 if (!good_ptr) 3738 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3739 } 3740 3741 /* 3742 * Check to make sure the grant write head didn't just over lap the tail. If 3743 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3744 * the cycles differ by exactly one and check the byte count. 3745 * 3746 * This check is run unlocked, so can give false positives. Rather than assert 3747 * on failures, use a warn-once flag and a panic tag to allow the admin to 3748 * determine if they want to panic the machine when such an error occurs. For 3749 * debug kernels this will have the same effect as using an assert but, unlinke 3750 * an assert, it can be turned off at runtime. 3751 */ 3752 STATIC void 3753 xlog_verify_grant_tail( 3754 struct xlog *log) 3755 { 3756 int tail_cycle, tail_blocks; 3757 int cycle, space; 3758 3759 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3760 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3761 if (tail_cycle != cycle) { 3762 if (cycle - 1 != tail_cycle && 3763 !(log->l_flags & XLOG_TAIL_WARN)) { 3764 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3765 "%s: cycle - 1 != tail_cycle", __func__); 3766 log->l_flags |= XLOG_TAIL_WARN; 3767 } 3768 3769 if (space > BBTOB(tail_blocks) && 3770 !(log->l_flags & XLOG_TAIL_WARN)) { 3771 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3772 "%s: space > BBTOB(tail_blocks)", __func__); 3773 log->l_flags |= XLOG_TAIL_WARN; 3774 } 3775 } 3776 } 3777 3778 /* check if it will fit */ 3779 STATIC void 3780 xlog_verify_tail_lsn( 3781 struct xlog *log, 3782 struct xlog_in_core *iclog, 3783 xfs_lsn_t tail_lsn) 3784 { 3785 int blocks; 3786 3787 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3788 blocks = 3789 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3790 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3791 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3792 } else { 3793 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3794 3795 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3796 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3797 3798 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3799 if (blocks < BTOBB(iclog->ic_offset) + 1) 3800 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3801 } 3802 } /* xlog_verify_tail_lsn */ 3803 3804 /* 3805 * Perform a number of checks on the iclog before writing to disk. 3806 * 3807 * 1. Make sure the iclogs are still circular 3808 * 2. Make sure we have a good magic number 3809 * 3. Make sure we don't have magic numbers in the data 3810 * 4. Check fields of each log operation header for: 3811 * A. Valid client identifier 3812 * B. tid ptr value falls in valid ptr space (user space code) 3813 * C. Length in log record header is correct according to the 3814 * individual operation headers within record. 3815 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3816 * log, check the preceding blocks of the physical log to make sure all 3817 * the cycle numbers agree with the current cycle number. 3818 */ 3819 STATIC void 3820 xlog_verify_iclog( 3821 struct xlog *log, 3822 struct xlog_in_core *iclog, 3823 int count, 3824 bool syncing) 3825 { 3826 xlog_op_header_t *ophead; 3827 xlog_in_core_t *icptr; 3828 xlog_in_core_2_t *xhdr; 3829 void *base_ptr, *ptr, *p; 3830 ptrdiff_t field_offset; 3831 uint8_t clientid; 3832 int len, i, j, k, op_len; 3833 int idx; 3834 3835 /* check validity of iclog pointers */ 3836 spin_lock(&log->l_icloglock); 3837 icptr = log->l_iclog; 3838 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3839 ASSERT(icptr); 3840 3841 if (icptr != log->l_iclog) 3842 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3843 spin_unlock(&log->l_icloglock); 3844 3845 /* check log magic numbers */ 3846 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3847 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3848 3849 base_ptr = ptr = &iclog->ic_header; 3850 p = &iclog->ic_header; 3851 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3852 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3853 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3854 __func__); 3855 } 3856 3857 /* check fields */ 3858 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3859 base_ptr = ptr = iclog->ic_datap; 3860 ophead = ptr; 3861 xhdr = iclog->ic_data; 3862 for (i = 0; i < len; i++) { 3863 ophead = ptr; 3864 3865 /* clientid is only 1 byte */ 3866 p = &ophead->oh_clientid; 3867 field_offset = p - base_ptr; 3868 if (!syncing || (field_offset & 0x1ff)) { 3869 clientid = ophead->oh_clientid; 3870 } else { 3871 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3872 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3873 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3874 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3875 clientid = xlog_get_client_id( 3876 xhdr[j].hic_xheader.xh_cycle_data[k]); 3877 } else { 3878 clientid = xlog_get_client_id( 3879 iclog->ic_header.h_cycle_data[idx]); 3880 } 3881 } 3882 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3883 xfs_warn(log->l_mp, 3884 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3885 __func__, clientid, ophead, 3886 (unsigned long)field_offset); 3887 3888 /* check length */ 3889 p = &ophead->oh_len; 3890 field_offset = p - base_ptr; 3891 if (!syncing || (field_offset & 0x1ff)) { 3892 op_len = be32_to_cpu(ophead->oh_len); 3893 } else { 3894 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3895 (uintptr_t)iclog->ic_datap); 3896 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3897 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3898 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3899 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3900 } else { 3901 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3902 } 3903 } 3904 ptr += sizeof(xlog_op_header_t) + op_len; 3905 } 3906 } /* xlog_verify_iclog */ 3907 #endif 3908 3909 /* 3910 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3911 */ 3912 STATIC int 3913 xlog_state_ioerror( 3914 struct xlog *log) 3915 { 3916 xlog_in_core_t *iclog, *ic; 3917 3918 iclog = log->l_iclog; 3919 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3920 /* 3921 * Mark all the incore logs IOERROR. 3922 * From now on, no log flushes will result. 3923 */ 3924 ic = iclog; 3925 do { 3926 ic->ic_state = XLOG_STATE_IOERROR; 3927 ic = ic->ic_next; 3928 } while (ic != iclog); 3929 return 0; 3930 } 3931 /* 3932 * Return non-zero, if state transition has already happened. 3933 */ 3934 return 1; 3935 } 3936 3937 /* 3938 * This is called from xfs_force_shutdown, when we're forcibly 3939 * shutting down the filesystem, typically because of an IO error. 3940 * Our main objectives here are to make sure that: 3941 * a. if !logerror, flush the logs to disk. Anything modified 3942 * after this is ignored. 3943 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3944 * parties to find out, 'atomically'. 3945 * c. those who're sleeping on log reservations, pinned objects and 3946 * other resources get woken up, and be told the bad news. 3947 * d. nothing new gets queued up after (b) and (c) are done. 3948 * 3949 * Note: for the !logerror case we need to flush the regions held in memory out 3950 * to disk first. This needs to be done before the log is marked as shutdown, 3951 * otherwise the iclog writes will fail. 3952 */ 3953 int 3954 xfs_log_force_umount( 3955 struct xfs_mount *mp, 3956 int logerror) 3957 { 3958 struct xlog *log; 3959 int retval; 3960 3961 log = mp->m_log; 3962 3963 /* 3964 * If this happens during log recovery, don't worry about 3965 * locking; the log isn't open for business yet. 3966 */ 3967 if (!log || 3968 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3969 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3970 if (mp->m_sb_bp) 3971 mp->m_sb_bp->b_flags |= XBF_DONE; 3972 return 0; 3973 } 3974 3975 /* 3976 * Somebody could've already done the hard work for us. 3977 * No need to get locks for this. 3978 */ 3979 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3980 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3981 return 1; 3982 } 3983 3984 /* 3985 * Flush all the completed transactions to disk before marking the log 3986 * being shut down. We need to do it in this order to ensure that 3987 * completed operations are safely on disk before we shut down, and that 3988 * we don't have to issue any buffer IO after the shutdown flags are set 3989 * to guarantee this. 3990 */ 3991 if (!logerror) 3992 xfs_log_force(mp, XFS_LOG_SYNC); 3993 3994 /* 3995 * mark the filesystem and the as in a shutdown state and wake 3996 * everybody up to tell them the bad news. 3997 */ 3998 spin_lock(&log->l_icloglock); 3999 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 4000 if (mp->m_sb_bp) 4001 mp->m_sb_bp->b_flags |= XBF_DONE; 4002 4003 /* 4004 * Mark the log and the iclogs with IO error flags to prevent any 4005 * further log IO from being issued or completed. 4006 */ 4007 log->l_flags |= XLOG_IO_ERROR; 4008 retval = xlog_state_ioerror(log); 4009 spin_unlock(&log->l_icloglock); 4010 4011 /* 4012 * We don't want anybody waiting for log reservations after this. That 4013 * means we have to wake up everybody queued up on reserveq as well as 4014 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 4015 * we don't enqueue anything once the SHUTDOWN flag is set, and this 4016 * action is protected by the grant locks. 4017 */ 4018 xlog_grant_head_wake_all(&log->l_reserve_head); 4019 xlog_grant_head_wake_all(&log->l_write_head); 4020 4021 /* 4022 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4023 * as if the log writes were completed. The abort handling in the log 4024 * item committed callback functions will do this again under lock to 4025 * avoid races. 4026 */ 4027 wake_up_all(&log->l_cilp->xc_commit_wait); 4028 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4029 4030 #ifdef XFSERRORDEBUG 4031 { 4032 xlog_in_core_t *iclog; 4033 4034 spin_lock(&log->l_icloglock); 4035 iclog = log->l_iclog; 4036 do { 4037 ASSERT(iclog->ic_callback == 0); 4038 iclog = iclog->ic_next; 4039 } while (iclog != log->l_iclog); 4040 spin_unlock(&log->l_icloglock); 4041 } 4042 #endif 4043 /* return non-zero if log IOERROR transition had already happened */ 4044 return retval; 4045 } 4046 4047 STATIC int 4048 xlog_iclogs_empty( 4049 struct xlog *log) 4050 { 4051 xlog_in_core_t *iclog; 4052 4053 iclog = log->l_iclog; 4054 do { 4055 /* endianness does not matter here, zero is zero in 4056 * any language. 4057 */ 4058 if (iclog->ic_header.h_num_logops) 4059 return 0; 4060 iclog = iclog->ic_next; 4061 } while (iclog != log->l_iclog); 4062 return 1; 4063 } 4064 4065 /* 4066 * Verify that an LSN stamped into a piece of metadata is valid. This is 4067 * intended for use in read verifiers on v5 superblocks. 4068 */ 4069 bool 4070 xfs_log_check_lsn( 4071 struct xfs_mount *mp, 4072 xfs_lsn_t lsn) 4073 { 4074 struct xlog *log = mp->m_log; 4075 bool valid; 4076 4077 /* 4078 * norecovery mode skips mount-time log processing and unconditionally 4079 * resets the in-core LSN. We can't validate in this mode, but 4080 * modifications are not allowed anyways so just return true. 4081 */ 4082 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4083 return true; 4084 4085 /* 4086 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4087 * handled by recovery and thus safe to ignore here. 4088 */ 4089 if (lsn == NULLCOMMITLSN) 4090 return true; 4091 4092 valid = xlog_valid_lsn(mp->m_log, lsn); 4093 4094 /* warn the user about what's gone wrong before verifier failure */ 4095 if (!valid) { 4096 spin_lock(&log->l_icloglock); 4097 xfs_warn(mp, 4098 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4099 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4100 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4101 log->l_curr_cycle, log->l_curr_block); 4102 spin_unlock(&log->l_icloglock); 4103 } 4104 4105 return valid; 4106 } 4107 4108 bool 4109 xfs_log_in_recovery( 4110 struct xfs_mount *mp) 4111 { 4112 struct xlog *log = mp->m_log; 4113 4114 return log->l_flags & XLOG_ACTIVE_RECOVERY; 4115 } 4116