1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_sb.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 void *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return -EIO; 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return -EIO; 381 382 XFS_STATS_INC(mp, xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 uint8_t client, 438 bool permanent) 439 { 440 struct xlog *log = mp->m_log; 441 struct xlog_ticket *tic; 442 int need_bytes; 443 int error = 0; 444 445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 446 447 if (XLOG_FORCED_SHUTDOWN(log)) 448 return -EIO; 449 450 XFS_STATS_INC(mp, xs_try_logspace); 451 452 ASSERT(*ticp == NULL); 453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 454 KM_SLEEP | KM_MAYFAIL); 455 if (!tic) 456 return -ENOMEM; 457 458 *ticp = tic; 459 460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 461 : tic->t_unit_res); 462 463 trace_xfs_log_reserve(log, tic); 464 465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 466 &need_bytes); 467 if (error) 468 goto out_error; 469 470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 472 trace_xfs_log_reserve_exit(log, tic); 473 xlog_verify_grant_tail(log); 474 return 0; 475 476 out_error: 477 /* 478 * If we are failing, make sure the ticket doesn't have any current 479 * reservations. We don't want to add this back when the ticket/ 480 * transaction gets cancelled. 481 */ 482 tic->t_curr_res = 0; 483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 484 return error; 485 } 486 487 488 /* 489 * NOTES: 490 * 491 * 1. currblock field gets updated at startup and after in-core logs 492 * marked as with WANT_SYNC. 493 */ 494 495 /* 496 * This routine is called when a user of a log manager ticket is done with 497 * the reservation. If the ticket was ever used, then a commit record for 498 * the associated transaction is written out as a log operation header with 499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 500 * a given ticket. If the ticket was one with a permanent reservation, then 501 * a few operations are done differently. Permanent reservation tickets by 502 * default don't release the reservation. They just commit the current 503 * transaction with the belief that the reservation is still needed. A flag 504 * must be passed in before permanent reservations are actually released. 505 * When these type of tickets are not released, they need to be set into 506 * the inited state again. By doing this, a start record will be written 507 * out when the next write occurs. 508 */ 509 xfs_lsn_t 510 xfs_log_done( 511 struct xfs_mount *mp, 512 struct xlog_ticket *ticket, 513 struct xlog_in_core **iclog, 514 bool regrant) 515 { 516 struct xlog *log = mp->m_log; 517 xfs_lsn_t lsn = 0; 518 519 if (XLOG_FORCED_SHUTDOWN(log) || 520 /* 521 * If nothing was ever written, don't write out commit record. 522 * If we get an error, just continue and give back the log ticket. 523 */ 524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 525 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 526 lsn = (xfs_lsn_t) -1; 527 regrant = false; 528 } 529 530 531 if (!regrant) { 532 trace_xfs_log_done_nonperm(log, ticket); 533 534 /* 535 * Release ticket if not permanent reservation or a specific 536 * request has been made to release a permanent reservation. 537 */ 538 xlog_ungrant_log_space(log, ticket); 539 } else { 540 trace_xfs_log_done_perm(log, ticket); 541 542 xlog_regrant_reserve_log_space(log, ticket); 543 /* If this ticket was a permanent reservation and we aren't 544 * trying to release it, reset the inited flags; so next time 545 * we write, a start record will be written out. 546 */ 547 ticket->t_flags |= XLOG_TIC_INITED; 548 } 549 550 xfs_log_ticket_put(ticket); 551 return lsn; 552 } 553 554 /* 555 * Attaches a new iclog I/O completion callback routine during 556 * transaction commit. If the log is in error state, a non-zero 557 * return code is handed back and the caller is responsible for 558 * executing the callback at an appropriate time. 559 */ 560 int 561 xfs_log_notify( 562 struct xfs_mount *mp, 563 struct xlog_in_core *iclog, 564 xfs_log_callback_t *cb) 565 { 566 int abortflg; 567 568 spin_lock(&iclog->ic_callback_lock); 569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 570 if (!abortflg) { 571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 572 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 573 cb->cb_next = NULL; 574 *(iclog->ic_callback_tail) = cb; 575 iclog->ic_callback_tail = &(cb->cb_next); 576 } 577 spin_unlock(&iclog->ic_callback_lock); 578 return abortflg; 579 } 580 581 int 582 xfs_log_release_iclog( 583 struct xfs_mount *mp, 584 struct xlog_in_core *iclog) 585 { 586 if (xlog_state_release_iclog(mp->m_log, iclog)) { 587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 588 return -EIO; 589 } 590 591 return 0; 592 } 593 594 /* 595 * Mount a log filesystem 596 * 597 * mp - ubiquitous xfs mount point structure 598 * log_target - buftarg of on-disk log device 599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 600 * num_bblocks - Number of BBSIZE blocks in on-disk log 601 * 602 * Return error or zero. 603 */ 604 int 605 xfs_log_mount( 606 xfs_mount_t *mp, 607 xfs_buftarg_t *log_target, 608 xfs_daddr_t blk_offset, 609 int num_bblks) 610 { 611 int error = 0; 612 int min_logfsbs; 613 614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 615 xfs_notice(mp, "Mounting V%d Filesystem", 616 XFS_SB_VERSION_NUM(&mp->m_sb)); 617 } else { 618 xfs_notice(mp, 619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 620 XFS_SB_VERSION_NUM(&mp->m_sb)); 621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 622 } 623 624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 625 if (IS_ERR(mp->m_log)) { 626 error = PTR_ERR(mp->m_log); 627 goto out; 628 } 629 630 /* 631 * Validate the given log space and drop a critical message via syslog 632 * if the log size is too small that would lead to some unexpected 633 * situations in transaction log space reservation stage. 634 * 635 * Note: we can't just reject the mount if the validation fails. This 636 * would mean that people would have to downgrade their kernel just to 637 * remedy the situation as there is no way to grow the log (short of 638 * black magic surgery with xfs_db). 639 * 640 * We can, however, reject mounts for CRC format filesystems, as the 641 * mkfs binary being used to make the filesystem should never create a 642 * filesystem with a log that is too small. 643 */ 644 min_logfsbs = xfs_log_calc_minimum_size(mp); 645 646 if (mp->m_sb.sb_logblocks < min_logfsbs) { 647 xfs_warn(mp, 648 "Log size %d blocks too small, minimum size is %d blocks", 649 mp->m_sb.sb_logblocks, min_logfsbs); 650 error = -EINVAL; 651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 652 xfs_warn(mp, 653 "Log size %d blocks too large, maximum size is %lld blocks", 654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 655 error = -EINVAL; 656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 657 xfs_warn(mp, 658 "log size %lld bytes too large, maximum size is %lld bytes", 659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 660 XFS_MAX_LOG_BYTES); 661 error = -EINVAL; 662 } 663 if (error) { 664 if (xfs_sb_version_hascrc(&mp->m_sb)) { 665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 666 ASSERT(0); 667 goto out_free_log; 668 } 669 xfs_crit(mp, "Log size out of supported range."); 670 xfs_crit(mp, 671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 672 } 673 674 /* 675 * Initialize the AIL now we have a log. 676 */ 677 error = xfs_trans_ail_init(mp); 678 if (error) { 679 xfs_warn(mp, "AIL initialisation failed: error %d", error); 680 goto out_free_log; 681 } 682 mp->m_log->l_ailp = mp->m_ail; 683 684 /* 685 * skip log recovery on a norecovery mount. pretend it all 686 * just worked. 687 */ 688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 690 691 if (readonly) 692 mp->m_flags &= ~XFS_MOUNT_RDONLY; 693 694 error = xlog_recover(mp->m_log); 695 696 if (readonly) 697 mp->m_flags |= XFS_MOUNT_RDONLY; 698 if (error) { 699 xfs_warn(mp, "log mount/recovery failed: error %d", 700 error); 701 xlog_recover_cancel(mp->m_log); 702 goto out_destroy_ail; 703 } 704 } 705 706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 707 "log"); 708 if (error) 709 goto out_destroy_ail; 710 711 /* Normal transactions can now occur */ 712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 713 714 /* 715 * Now the log has been fully initialised and we know were our 716 * space grant counters are, we can initialise the permanent ticket 717 * needed for delayed logging to work. 718 */ 719 xlog_cil_init_post_recovery(mp->m_log); 720 721 return 0; 722 723 out_destroy_ail: 724 xfs_trans_ail_destroy(mp); 725 out_free_log: 726 xlog_dealloc_log(mp->m_log); 727 out: 728 return error; 729 } 730 731 /* 732 * Finish the recovery of the file system. This is separate from the 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 735 * here. 736 * 737 * If we finish recovery successfully, start the background log work. If we are 738 * not doing recovery, then we have a RO filesystem and we don't need to start 739 * it. 740 */ 741 int 742 xfs_log_mount_finish( 743 struct xfs_mount *mp) 744 { 745 int error = 0; 746 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 747 748 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 749 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 750 return 0; 751 } else if (readonly) { 752 /* Allow unlinked processing to proceed */ 753 mp->m_flags &= ~XFS_MOUNT_RDONLY; 754 } 755 756 /* 757 * During the second phase of log recovery, we need iget and 758 * iput to behave like they do for an active filesystem. 759 * xfs_fs_drop_inode needs to be able to prevent the deletion 760 * of inodes before we're done replaying log items on those 761 * inodes. Turn it off immediately after recovery finishes 762 * so that we don't leak the quota inodes if subsequent mount 763 * activities fail. 764 * 765 * We let all inodes involved in redo item processing end up on 766 * the LRU instead of being evicted immediately so that if we do 767 * something to an unlinked inode, the irele won't cause 768 * premature truncation and freeing of the inode, which results 769 * in log recovery failure. We have to evict the unreferenced 770 * lru inodes after clearing MS_ACTIVE because we don't 771 * otherwise clean up the lru if there's a subsequent failure in 772 * xfs_mountfs, which leads to us leaking the inodes if nothing 773 * else (e.g. quotacheck) references the inodes before the 774 * mount failure occurs. 775 */ 776 mp->m_super->s_flags |= MS_ACTIVE; 777 error = xlog_recover_finish(mp->m_log); 778 if (!error) 779 xfs_log_work_queue(mp); 780 mp->m_super->s_flags &= ~MS_ACTIVE; 781 evict_inodes(mp->m_super); 782 783 if (readonly) 784 mp->m_flags |= XFS_MOUNT_RDONLY; 785 786 return error; 787 } 788 789 /* 790 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 791 * the log. 792 */ 793 int 794 xfs_log_mount_cancel( 795 struct xfs_mount *mp) 796 { 797 int error; 798 799 error = xlog_recover_cancel(mp->m_log); 800 xfs_log_unmount(mp); 801 802 return error; 803 } 804 805 /* 806 * Final log writes as part of unmount. 807 * 808 * Mark the filesystem clean as unmount happens. Note that during relocation 809 * this routine needs to be executed as part of source-bag while the 810 * deallocation must not be done until source-end. 811 */ 812 813 /* 814 * Unmount record used to have a string "Unmount filesystem--" in the 815 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 816 * We just write the magic number now since that particular field isn't 817 * currently architecture converted and "Unmount" is a bit foo. 818 * As far as I know, there weren't any dependencies on the old behaviour. 819 */ 820 821 static int 822 xfs_log_unmount_write(xfs_mount_t *mp) 823 { 824 struct xlog *log = mp->m_log; 825 xlog_in_core_t *iclog; 826 #ifdef DEBUG 827 xlog_in_core_t *first_iclog; 828 #endif 829 xlog_ticket_t *tic = NULL; 830 xfs_lsn_t lsn; 831 int error; 832 833 /* 834 * Don't write out unmount record on norecovery mounts or ro devices. 835 * Or, if we are doing a forced umount (typically because of IO errors). 836 */ 837 if (mp->m_flags & XFS_MOUNT_NORECOVERY || 838 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 839 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 840 return 0; 841 } 842 843 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 844 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 845 846 #ifdef DEBUG 847 first_iclog = iclog = log->l_iclog; 848 do { 849 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 850 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 851 ASSERT(iclog->ic_offset == 0); 852 } 853 iclog = iclog->ic_next; 854 } while (iclog != first_iclog); 855 #endif 856 if (! (XLOG_FORCED_SHUTDOWN(log))) { 857 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 858 if (!error) { 859 /* the data section must be 32 bit size aligned */ 860 struct { 861 uint16_t magic; 862 uint16_t pad1; 863 uint32_t pad2; /* may as well make it 64 bits */ 864 } magic = { 865 .magic = XLOG_UNMOUNT_TYPE, 866 }; 867 struct xfs_log_iovec reg = { 868 .i_addr = &magic, 869 .i_len = sizeof(magic), 870 .i_type = XLOG_REG_TYPE_UNMOUNT, 871 }; 872 struct xfs_log_vec vec = { 873 .lv_niovecs = 1, 874 .lv_iovecp = ®, 875 }; 876 877 /* remove inited flag, and account for space used */ 878 tic->t_flags = 0; 879 tic->t_curr_res -= sizeof(magic); 880 error = xlog_write(log, &vec, tic, &lsn, 881 NULL, XLOG_UNMOUNT_TRANS); 882 /* 883 * At this point, we're umounting anyway, 884 * so there's no point in transitioning log state 885 * to IOERROR. Just continue... 886 */ 887 } 888 889 if (error) 890 xfs_alert(mp, "%s: unmount record failed", __func__); 891 892 893 spin_lock(&log->l_icloglock); 894 iclog = log->l_iclog; 895 atomic_inc(&iclog->ic_refcnt); 896 xlog_state_want_sync(log, iclog); 897 spin_unlock(&log->l_icloglock); 898 error = xlog_state_release_iclog(log, iclog); 899 900 spin_lock(&log->l_icloglock); 901 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 902 iclog->ic_state == XLOG_STATE_DIRTY)) { 903 if (!XLOG_FORCED_SHUTDOWN(log)) { 904 xlog_wait(&iclog->ic_force_wait, 905 &log->l_icloglock); 906 } else { 907 spin_unlock(&log->l_icloglock); 908 } 909 } else { 910 spin_unlock(&log->l_icloglock); 911 } 912 if (tic) { 913 trace_xfs_log_umount_write(log, tic); 914 xlog_ungrant_log_space(log, tic); 915 xfs_log_ticket_put(tic); 916 } 917 } else { 918 /* 919 * We're already in forced_shutdown mode, couldn't 920 * even attempt to write out the unmount transaction. 921 * 922 * Go through the motions of sync'ing and releasing 923 * the iclog, even though no I/O will actually happen, 924 * we need to wait for other log I/Os that may already 925 * be in progress. Do this as a separate section of 926 * code so we'll know if we ever get stuck here that 927 * we're in this odd situation of trying to unmount 928 * a file system that went into forced_shutdown as 929 * the result of an unmount.. 930 */ 931 spin_lock(&log->l_icloglock); 932 iclog = log->l_iclog; 933 atomic_inc(&iclog->ic_refcnt); 934 935 xlog_state_want_sync(log, iclog); 936 spin_unlock(&log->l_icloglock); 937 error = xlog_state_release_iclog(log, iclog); 938 939 spin_lock(&log->l_icloglock); 940 941 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 942 || iclog->ic_state == XLOG_STATE_DIRTY 943 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 944 945 xlog_wait(&iclog->ic_force_wait, 946 &log->l_icloglock); 947 } else { 948 spin_unlock(&log->l_icloglock); 949 } 950 } 951 952 return error; 953 } /* xfs_log_unmount_write */ 954 955 /* 956 * Empty the log for unmount/freeze. 957 * 958 * To do this, we first need to shut down the background log work so it is not 959 * trying to cover the log as we clean up. We then need to unpin all objects in 960 * the log so we can then flush them out. Once they have completed their IO and 961 * run the callbacks removing themselves from the AIL, we can write the unmount 962 * record. 963 */ 964 void 965 xfs_log_quiesce( 966 struct xfs_mount *mp) 967 { 968 cancel_delayed_work_sync(&mp->m_log->l_work); 969 xfs_log_force(mp, XFS_LOG_SYNC); 970 971 /* 972 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 973 * will push it, xfs_wait_buftarg() will not wait for it. Further, 974 * xfs_buf_iowait() cannot be used because it was pushed with the 975 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 976 * the IO to complete. 977 */ 978 xfs_ail_push_all_sync(mp->m_ail); 979 xfs_wait_buftarg(mp->m_ddev_targp); 980 xfs_buf_lock(mp->m_sb_bp); 981 xfs_buf_unlock(mp->m_sb_bp); 982 983 xfs_log_unmount_write(mp); 984 } 985 986 /* 987 * Shut down and release the AIL and Log. 988 * 989 * During unmount, we need to ensure we flush all the dirty metadata objects 990 * from the AIL so that the log is empty before we write the unmount record to 991 * the log. Once this is done, we can tear down the AIL and the log. 992 */ 993 void 994 xfs_log_unmount( 995 struct xfs_mount *mp) 996 { 997 xfs_log_quiesce(mp); 998 999 xfs_trans_ail_destroy(mp); 1000 1001 xfs_sysfs_del(&mp->m_log->l_kobj); 1002 1003 xlog_dealloc_log(mp->m_log); 1004 } 1005 1006 void 1007 xfs_log_item_init( 1008 struct xfs_mount *mp, 1009 struct xfs_log_item *item, 1010 int type, 1011 const struct xfs_item_ops *ops) 1012 { 1013 item->li_mountp = mp; 1014 item->li_ailp = mp->m_ail; 1015 item->li_type = type; 1016 item->li_ops = ops; 1017 item->li_lv = NULL; 1018 1019 INIT_LIST_HEAD(&item->li_ail); 1020 INIT_LIST_HEAD(&item->li_cil); 1021 } 1022 1023 /* 1024 * Wake up processes waiting for log space after we have moved the log tail. 1025 */ 1026 void 1027 xfs_log_space_wake( 1028 struct xfs_mount *mp) 1029 { 1030 struct xlog *log = mp->m_log; 1031 int free_bytes; 1032 1033 if (XLOG_FORCED_SHUTDOWN(log)) 1034 return; 1035 1036 if (!list_empty_careful(&log->l_write_head.waiters)) { 1037 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1038 1039 spin_lock(&log->l_write_head.lock); 1040 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1041 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1042 spin_unlock(&log->l_write_head.lock); 1043 } 1044 1045 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1046 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1047 1048 spin_lock(&log->l_reserve_head.lock); 1049 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1050 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1051 spin_unlock(&log->l_reserve_head.lock); 1052 } 1053 } 1054 1055 /* 1056 * Determine if we have a transaction that has gone to disk that needs to be 1057 * covered. To begin the transition to the idle state firstly the log needs to 1058 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1059 * we start attempting to cover the log. 1060 * 1061 * Only if we are then in a state where covering is needed, the caller is 1062 * informed that dummy transactions are required to move the log into the idle 1063 * state. 1064 * 1065 * If there are any items in the AIl or CIL, then we do not want to attempt to 1066 * cover the log as we may be in a situation where there isn't log space 1067 * available to run a dummy transaction and this can lead to deadlocks when the 1068 * tail of the log is pinned by an item that is modified in the CIL. Hence 1069 * there's no point in running a dummy transaction at this point because we 1070 * can't start trying to idle the log until both the CIL and AIL are empty. 1071 */ 1072 static int 1073 xfs_log_need_covered(xfs_mount_t *mp) 1074 { 1075 struct xlog *log = mp->m_log; 1076 int needed = 0; 1077 1078 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1079 return 0; 1080 1081 if (!xlog_cil_empty(log)) 1082 return 0; 1083 1084 spin_lock(&log->l_icloglock); 1085 switch (log->l_covered_state) { 1086 case XLOG_STATE_COVER_DONE: 1087 case XLOG_STATE_COVER_DONE2: 1088 case XLOG_STATE_COVER_IDLE: 1089 break; 1090 case XLOG_STATE_COVER_NEED: 1091 case XLOG_STATE_COVER_NEED2: 1092 if (xfs_ail_min_lsn(log->l_ailp)) 1093 break; 1094 if (!xlog_iclogs_empty(log)) 1095 break; 1096 1097 needed = 1; 1098 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1099 log->l_covered_state = XLOG_STATE_COVER_DONE; 1100 else 1101 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1102 break; 1103 default: 1104 needed = 1; 1105 break; 1106 } 1107 spin_unlock(&log->l_icloglock); 1108 return needed; 1109 } 1110 1111 /* 1112 * We may be holding the log iclog lock upon entering this routine. 1113 */ 1114 xfs_lsn_t 1115 xlog_assign_tail_lsn_locked( 1116 struct xfs_mount *mp) 1117 { 1118 struct xlog *log = mp->m_log; 1119 struct xfs_log_item *lip; 1120 xfs_lsn_t tail_lsn; 1121 1122 assert_spin_locked(&mp->m_ail->xa_lock); 1123 1124 /* 1125 * To make sure we always have a valid LSN for the log tail we keep 1126 * track of the last LSN which was committed in log->l_last_sync_lsn, 1127 * and use that when the AIL was empty. 1128 */ 1129 lip = xfs_ail_min(mp->m_ail); 1130 if (lip) 1131 tail_lsn = lip->li_lsn; 1132 else 1133 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1134 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1135 atomic64_set(&log->l_tail_lsn, tail_lsn); 1136 return tail_lsn; 1137 } 1138 1139 xfs_lsn_t 1140 xlog_assign_tail_lsn( 1141 struct xfs_mount *mp) 1142 { 1143 xfs_lsn_t tail_lsn; 1144 1145 spin_lock(&mp->m_ail->xa_lock); 1146 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1147 spin_unlock(&mp->m_ail->xa_lock); 1148 1149 return tail_lsn; 1150 } 1151 1152 /* 1153 * Return the space in the log between the tail and the head. The head 1154 * is passed in the cycle/bytes formal parms. In the special case where 1155 * the reserve head has wrapped passed the tail, this calculation is no 1156 * longer valid. In this case, just return 0 which means there is no space 1157 * in the log. This works for all places where this function is called 1158 * with the reserve head. Of course, if the write head were to ever 1159 * wrap the tail, we should blow up. Rather than catch this case here, 1160 * we depend on other ASSERTions in other parts of the code. XXXmiken 1161 * 1162 * This code also handles the case where the reservation head is behind 1163 * the tail. The details of this case are described below, but the end 1164 * result is that we return the size of the log as the amount of space left. 1165 */ 1166 STATIC int 1167 xlog_space_left( 1168 struct xlog *log, 1169 atomic64_t *head) 1170 { 1171 int free_bytes; 1172 int tail_bytes; 1173 int tail_cycle; 1174 int head_cycle; 1175 int head_bytes; 1176 1177 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1178 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1179 tail_bytes = BBTOB(tail_bytes); 1180 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1181 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1182 else if (tail_cycle + 1 < head_cycle) 1183 return 0; 1184 else if (tail_cycle < head_cycle) { 1185 ASSERT(tail_cycle == (head_cycle - 1)); 1186 free_bytes = tail_bytes - head_bytes; 1187 } else { 1188 /* 1189 * The reservation head is behind the tail. 1190 * In this case we just want to return the size of the 1191 * log as the amount of space left. 1192 */ 1193 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1194 xfs_alert(log->l_mp, 1195 " tail_cycle = %d, tail_bytes = %d", 1196 tail_cycle, tail_bytes); 1197 xfs_alert(log->l_mp, 1198 " GH cycle = %d, GH bytes = %d", 1199 head_cycle, head_bytes); 1200 ASSERT(0); 1201 free_bytes = log->l_logsize; 1202 } 1203 return free_bytes; 1204 } 1205 1206 1207 /* 1208 * Log function which is called when an io completes. 1209 * 1210 * The log manager needs its own routine, in order to control what 1211 * happens with the buffer after the write completes. 1212 */ 1213 static void 1214 xlog_iodone(xfs_buf_t *bp) 1215 { 1216 struct xlog_in_core *iclog = bp->b_fspriv; 1217 struct xlog *l = iclog->ic_log; 1218 int aborted = 0; 1219 1220 /* 1221 * Race to shutdown the filesystem if we see an error or the iclog is in 1222 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1223 * CRC errors into log recovery. 1224 */ 1225 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) || 1226 iclog->ic_state & XLOG_STATE_IOABORT) { 1227 if (iclog->ic_state & XLOG_STATE_IOABORT) 1228 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1229 1230 xfs_buf_ioerror_alert(bp, __func__); 1231 xfs_buf_stale(bp); 1232 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1233 /* 1234 * This flag will be propagated to the trans-committed 1235 * callback routines to let them know that the log-commit 1236 * didn't succeed. 1237 */ 1238 aborted = XFS_LI_ABORTED; 1239 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1240 aborted = XFS_LI_ABORTED; 1241 } 1242 1243 /* log I/O is always issued ASYNC */ 1244 ASSERT(bp->b_flags & XBF_ASYNC); 1245 xlog_state_done_syncing(iclog, aborted); 1246 1247 /* 1248 * drop the buffer lock now that we are done. Nothing references 1249 * the buffer after this, so an unmount waiting on this lock can now 1250 * tear it down safely. As such, it is unsafe to reference the buffer 1251 * (bp) after the unlock as we could race with it being freed. 1252 */ 1253 xfs_buf_unlock(bp); 1254 } 1255 1256 /* 1257 * Return size of each in-core log record buffer. 1258 * 1259 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1260 * 1261 * If the filesystem blocksize is too large, we may need to choose a 1262 * larger size since the directory code currently logs entire blocks. 1263 */ 1264 1265 STATIC void 1266 xlog_get_iclog_buffer_size( 1267 struct xfs_mount *mp, 1268 struct xlog *log) 1269 { 1270 int size; 1271 int xhdrs; 1272 1273 if (mp->m_logbufs <= 0) 1274 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1275 else 1276 log->l_iclog_bufs = mp->m_logbufs; 1277 1278 /* 1279 * Buffer size passed in from mount system call. 1280 */ 1281 if (mp->m_logbsize > 0) { 1282 size = log->l_iclog_size = mp->m_logbsize; 1283 log->l_iclog_size_log = 0; 1284 while (size != 1) { 1285 log->l_iclog_size_log++; 1286 size >>= 1; 1287 } 1288 1289 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1290 /* # headers = size / 32k 1291 * one header holds cycles from 32k of data 1292 */ 1293 1294 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1295 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1296 xhdrs++; 1297 log->l_iclog_hsize = xhdrs << BBSHIFT; 1298 log->l_iclog_heads = xhdrs; 1299 } else { 1300 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1301 log->l_iclog_hsize = BBSIZE; 1302 log->l_iclog_heads = 1; 1303 } 1304 goto done; 1305 } 1306 1307 /* All machines use 32kB buffers by default. */ 1308 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1309 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1310 1311 /* the default log size is 16k or 32k which is one header sector */ 1312 log->l_iclog_hsize = BBSIZE; 1313 log->l_iclog_heads = 1; 1314 1315 done: 1316 /* are we being asked to make the sizes selected above visible? */ 1317 if (mp->m_logbufs == 0) 1318 mp->m_logbufs = log->l_iclog_bufs; 1319 if (mp->m_logbsize == 0) 1320 mp->m_logbsize = log->l_iclog_size; 1321 } /* xlog_get_iclog_buffer_size */ 1322 1323 1324 void 1325 xfs_log_work_queue( 1326 struct xfs_mount *mp) 1327 { 1328 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1329 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1330 } 1331 1332 /* 1333 * Every sync period we need to unpin all items in the AIL and push them to 1334 * disk. If there is nothing dirty, then we might need to cover the log to 1335 * indicate that the filesystem is idle. 1336 */ 1337 static void 1338 xfs_log_worker( 1339 struct work_struct *work) 1340 { 1341 struct xlog *log = container_of(to_delayed_work(work), 1342 struct xlog, l_work); 1343 struct xfs_mount *mp = log->l_mp; 1344 1345 /* dgc: errors ignored - not fatal and nowhere to report them */ 1346 if (xfs_log_need_covered(mp)) { 1347 /* 1348 * Dump a transaction into the log that contains no real change. 1349 * This is needed to stamp the current tail LSN into the log 1350 * during the covering operation. 1351 * 1352 * We cannot use an inode here for this - that will push dirty 1353 * state back up into the VFS and then periodic inode flushing 1354 * will prevent log covering from making progress. Hence we 1355 * synchronously log the superblock instead to ensure the 1356 * superblock is immediately unpinned and can be written back. 1357 */ 1358 xfs_sync_sb(mp, true); 1359 } else 1360 xfs_log_force(mp, 0); 1361 1362 /* start pushing all the metadata that is currently dirty */ 1363 xfs_ail_push_all(mp->m_ail); 1364 1365 /* queue us up again */ 1366 xfs_log_work_queue(mp); 1367 } 1368 1369 /* 1370 * This routine initializes some of the log structure for a given mount point. 1371 * Its primary purpose is to fill in enough, so recovery can occur. However, 1372 * some other stuff may be filled in too. 1373 */ 1374 STATIC struct xlog * 1375 xlog_alloc_log( 1376 struct xfs_mount *mp, 1377 struct xfs_buftarg *log_target, 1378 xfs_daddr_t blk_offset, 1379 int num_bblks) 1380 { 1381 struct xlog *log; 1382 xlog_rec_header_t *head; 1383 xlog_in_core_t **iclogp; 1384 xlog_in_core_t *iclog, *prev_iclog=NULL; 1385 xfs_buf_t *bp; 1386 int i; 1387 int error = -ENOMEM; 1388 uint log2_size = 0; 1389 1390 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1391 if (!log) { 1392 xfs_warn(mp, "Log allocation failed: No memory!"); 1393 goto out; 1394 } 1395 1396 log->l_mp = mp; 1397 log->l_targ = log_target; 1398 log->l_logsize = BBTOB(num_bblks); 1399 log->l_logBBstart = blk_offset; 1400 log->l_logBBsize = num_bblks; 1401 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1402 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1403 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1404 1405 log->l_prev_block = -1; 1406 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1407 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1408 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1409 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1410 1411 xlog_grant_head_init(&log->l_reserve_head); 1412 xlog_grant_head_init(&log->l_write_head); 1413 1414 error = -EFSCORRUPTED; 1415 if (xfs_sb_version_hassector(&mp->m_sb)) { 1416 log2_size = mp->m_sb.sb_logsectlog; 1417 if (log2_size < BBSHIFT) { 1418 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1419 log2_size, BBSHIFT); 1420 goto out_free_log; 1421 } 1422 1423 log2_size -= BBSHIFT; 1424 if (log2_size > mp->m_sectbb_log) { 1425 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1426 log2_size, mp->m_sectbb_log); 1427 goto out_free_log; 1428 } 1429 1430 /* for larger sector sizes, must have v2 or external log */ 1431 if (log2_size && log->l_logBBstart > 0 && 1432 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1433 xfs_warn(mp, 1434 "log sector size (0x%x) invalid for configuration.", 1435 log2_size); 1436 goto out_free_log; 1437 } 1438 } 1439 log->l_sectBBsize = 1 << log2_size; 1440 1441 xlog_get_iclog_buffer_size(mp, log); 1442 1443 /* 1444 * Use a NULL block for the extra log buffer used during splits so that 1445 * it will trigger errors if we ever try to do IO on it without first 1446 * having set it up properly. 1447 */ 1448 error = -ENOMEM; 1449 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1450 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1451 if (!bp) 1452 goto out_free_log; 1453 1454 /* 1455 * The iclogbuf buffer locks are held over IO but we are not going to do 1456 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1457 * when appropriately. 1458 */ 1459 ASSERT(xfs_buf_islocked(bp)); 1460 xfs_buf_unlock(bp); 1461 1462 /* use high priority wq for log I/O completion */ 1463 bp->b_ioend_wq = mp->m_log_workqueue; 1464 bp->b_iodone = xlog_iodone; 1465 log->l_xbuf = bp; 1466 1467 spin_lock_init(&log->l_icloglock); 1468 init_waitqueue_head(&log->l_flush_wait); 1469 1470 iclogp = &log->l_iclog; 1471 /* 1472 * The amount of memory to allocate for the iclog structure is 1473 * rather funky due to the way the structure is defined. It is 1474 * done this way so that we can use different sizes for machines 1475 * with different amounts of memory. See the definition of 1476 * xlog_in_core_t in xfs_log_priv.h for details. 1477 */ 1478 ASSERT(log->l_iclog_size >= 4096); 1479 for (i=0; i < log->l_iclog_bufs; i++) { 1480 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1481 if (!*iclogp) 1482 goto out_free_iclog; 1483 1484 iclog = *iclogp; 1485 iclog->ic_prev = prev_iclog; 1486 prev_iclog = iclog; 1487 1488 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1489 BTOBB(log->l_iclog_size), 1490 XBF_NO_IOACCT); 1491 if (!bp) 1492 goto out_free_iclog; 1493 1494 ASSERT(xfs_buf_islocked(bp)); 1495 xfs_buf_unlock(bp); 1496 1497 /* use high priority wq for log I/O completion */ 1498 bp->b_ioend_wq = mp->m_log_workqueue; 1499 bp->b_iodone = xlog_iodone; 1500 iclog->ic_bp = bp; 1501 iclog->ic_data = bp->b_addr; 1502 #ifdef DEBUG 1503 log->l_iclog_bak[i] = &iclog->ic_header; 1504 #endif 1505 head = &iclog->ic_header; 1506 memset(head, 0, sizeof(xlog_rec_header_t)); 1507 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1508 head->h_version = cpu_to_be32( 1509 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1510 head->h_size = cpu_to_be32(log->l_iclog_size); 1511 /* new fields */ 1512 head->h_fmt = cpu_to_be32(XLOG_FMT); 1513 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1514 1515 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1516 iclog->ic_state = XLOG_STATE_ACTIVE; 1517 iclog->ic_log = log; 1518 atomic_set(&iclog->ic_refcnt, 0); 1519 spin_lock_init(&iclog->ic_callback_lock); 1520 iclog->ic_callback_tail = &(iclog->ic_callback); 1521 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1522 1523 init_waitqueue_head(&iclog->ic_force_wait); 1524 init_waitqueue_head(&iclog->ic_write_wait); 1525 1526 iclogp = &iclog->ic_next; 1527 } 1528 *iclogp = log->l_iclog; /* complete ring */ 1529 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1530 1531 error = xlog_cil_init(log); 1532 if (error) 1533 goto out_free_iclog; 1534 return log; 1535 1536 out_free_iclog: 1537 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1538 prev_iclog = iclog->ic_next; 1539 if (iclog->ic_bp) 1540 xfs_buf_free(iclog->ic_bp); 1541 kmem_free(iclog); 1542 } 1543 spinlock_destroy(&log->l_icloglock); 1544 xfs_buf_free(log->l_xbuf); 1545 out_free_log: 1546 kmem_free(log); 1547 out: 1548 return ERR_PTR(error); 1549 } /* xlog_alloc_log */ 1550 1551 1552 /* 1553 * Write out the commit record of a transaction associated with the given 1554 * ticket. Return the lsn of the commit record. 1555 */ 1556 STATIC int 1557 xlog_commit_record( 1558 struct xlog *log, 1559 struct xlog_ticket *ticket, 1560 struct xlog_in_core **iclog, 1561 xfs_lsn_t *commitlsnp) 1562 { 1563 struct xfs_mount *mp = log->l_mp; 1564 int error; 1565 struct xfs_log_iovec reg = { 1566 .i_addr = NULL, 1567 .i_len = 0, 1568 .i_type = XLOG_REG_TYPE_COMMIT, 1569 }; 1570 struct xfs_log_vec vec = { 1571 .lv_niovecs = 1, 1572 .lv_iovecp = ®, 1573 }; 1574 1575 ASSERT_ALWAYS(iclog); 1576 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1577 XLOG_COMMIT_TRANS); 1578 if (error) 1579 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1580 return error; 1581 } 1582 1583 /* 1584 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1585 * log space. This code pushes on the lsn which would supposedly free up 1586 * the 25% which we want to leave free. We may need to adopt a policy which 1587 * pushes on an lsn which is further along in the log once we reach the high 1588 * water mark. In this manner, we would be creating a low water mark. 1589 */ 1590 STATIC void 1591 xlog_grant_push_ail( 1592 struct xlog *log, 1593 int need_bytes) 1594 { 1595 xfs_lsn_t threshold_lsn = 0; 1596 xfs_lsn_t last_sync_lsn; 1597 int free_blocks; 1598 int free_bytes; 1599 int threshold_block; 1600 int threshold_cycle; 1601 int free_threshold; 1602 1603 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1604 1605 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1606 free_blocks = BTOBBT(free_bytes); 1607 1608 /* 1609 * Set the threshold for the minimum number of free blocks in the 1610 * log to the maximum of what the caller needs, one quarter of the 1611 * log, and 256 blocks. 1612 */ 1613 free_threshold = BTOBB(need_bytes); 1614 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1615 free_threshold = MAX(free_threshold, 256); 1616 if (free_blocks >= free_threshold) 1617 return; 1618 1619 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1620 &threshold_block); 1621 threshold_block += free_threshold; 1622 if (threshold_block >= log->l_logBBsize) { 1623 threshold_block -= log->l_logBBsize; 1624 threshold_cycle += 1; 1625 } 1626 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1627 threshold_block); 1628 /* 1629 * Don't pass in an lsn greater than the lsn of the last 1630 * log record known to be on disk. Use a snapshot of the last sync lsn 1631 * so that it doesn't change between the compare and the set. 1632 */ 1633 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1634 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1635 threshold_lsn = last_sync_lsn; 1636 1637 /* 1638 * Get the transaction layer to kick the dirty buffers out to 1639 * disk asynchronously. No point in trying to do this if 1640 * the filesystem is shutting down. 1641 */ 1642 if (!XLOG_FORCED_SHUTDOWN(log)) 1643 xfs_ail_push(log->l_ailp, threshold_lsn); 1644 } 1645 1646 /* 1647 * Stamp cycle number in every block 1648 */ 1649 STATIC void 1650 xlog_pack_data( 1651 struct xlog *log, 1652 struct xlog_in_core *iclog, 1653 int roundoff) 1654 { 1655 int i, j, k; 1656 int size = iclog->ic_offset + roundoff; 1657 __be32 cycle_lsn; 1658 char *dp; 1659 1660 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1661 1662 dp = iclog->ic_datap; 1663 for (i = 0; i < BTOBB(size); i++) { 1664 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1665 break; 1666 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1667 *(__be32 *)dp = cycle_lsn; 1668 dp += BBSIZE; 1669 } 1670 1671 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1672 xlog_in_core_2_t *xhdr = iclog->ic_data; 1673 1674 for ( ; i < BTOBB(size); i++) { 1675 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1676 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1677 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1678 *(__be32 *)dp = cycle_lsn; 1679 dp += BBSIZE; 1680 } 1681 1682 for (i = 1; i < log->l_iclog_heads; i++) 1683 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1684 } 1685 } 1686 1687 /* 1688 * Calculate the checksum for a log buffer. 1689 * 1690 * This is a little more complicated than it should be because the various 1691 * headers and the actual data are non-contiguous. 1692 */ 1693 __le32 1694 xlog_cksum( 1695 struct xlog *log, 1696 struct xlog_rec_header *rhead, 1697 char *dp, 1698 int size) 1699 { 1700 uint32_t crc; 1701 1702 /* first generate the crc for the record header ... */ 1703 crc = xfs_start_cksum_update((char *)rhead, 1704 sizeof(struct xlog_rec_header), 1705 offsetof(struct xlog_rec_header, h_crc)); 1706 1707 /* ... then for additional cycle data for v2 logs ... */ 1708 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1709 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1710 int i; 1711 int xheads; 1712 1713 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1714 if (size % XLOG_HEADER_CYCLE_SIZE) 1715 xheads++; 1716 1717 for (i = 1; i < xheads; i++) { 1718 crc = crc32c(crc, &xhdr[i].hic_xheader, 1719 sizeof(struct xlog_rec_ext_header)); 1720 } 1721 } 1722 1723 /* ... and finally for the payload */ 1724 crc = crc32c(crc, dp, size); 1725 1726 return xfs_end_cksum(crc); 1727 } 1728 1729 /* 1730 * The bdstrat callback function for log bufs. This gives us a central 1731 * place to trap bufs in case we get hit by a log I/O error and need to 1732 * shutdown. Actually, in practice, even when we didn't get a log error, 1733 * we transition the iclogs to IOERROR state *after* flushing all existing 1734 * iclogs to disk. This is because we don't want anymore new transactions to be 1735 * started or completed afterwards. 1736 * 1737 * We lock the iclogbufs here so that we can serialise against IO completion 1738 * during unmount. We might be processing a shutdown triggered during unmount, 1739 * and that can occur asynchronously to the unmount thread, and hence we need to 1740 * ensure that completes before tearing down the iclogbufs. Hence we need to 1741 * hold the buffer lock across the log IO to acheive that. 1742 */ 1743 STATIC int 1744 xlog_bdstrat( 1745 struct xfs_buf *bp) 1746 { 1747 struct xlog_in_core *iclog = bp->b_fspriv; 1748 1749 xfs_buf_lock(bp); 1750 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1751 xfs_buf_ioerror(bp, -EIO); 1752 xfs_buf_stale(bp); 1753 xfs_buf_ioend(bp); 1754 /* 1755 * It would seem logical to return EIO here, but we rely on 1756 * the log state machine to propagate I/O errors instead of 1757 * doing it here. Similarly, IO completion will unlock the 1758 * buffer, so we don't do it here. 1759 */ 1760 return 0; 1761 } 1762 1763 xfs_buf_submit(bp); 1764 return 0; 1765 } 1766 1767 /* 1768 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1769 * fashion. Previously, we should have moved the current iclog 1770 * ptr in the log to point to the next available iclog. This allows further 1771 * write to continue while this code syncs out an iclog ready to go. 1772 * Before an in-core log can be written out, the data section must be scanned 1773 * to save away the 1st word of each BBSIZE block into the header. We replace 1774 * it with the current cycle count. Each BBSIZE block is tagged with the 1775 * cycle count because there in an implicit assumption that drives will 1776 * guarantee that entire 512 byte blocks get written at once. In other words, 1777 * we can't have part of a 512 byte block written and part not written. By 1778 * tagging each block, we will know which blocks are valid when recovering 1779 * after an unclean shutdown. 1780 * 1781 * This routine is single threaded on the iclog. No other thread can be in 1782 * this routine with the same iclog. Changing contents of iclog can there- 1783 * fore be done without grabbing the state machine lock. Updating the global 1784 * log will require grabbing the lock though. 1785 * 1786 * The entire log manager uses a logical block numbering scheme. Only 1787 * log_sync (and then only bwrite()) know about the fact that the log may 1788 * not start with block zero on a given device. The log block start offset 1789 * is added immediately before calling bwrite(). 1790 */ 1791 1792 STATIC int 1793 xlog_sync( 1794 struct xlog *log, 1795 struct xlog_in_core *iclog) 1796 { 1797 xfs_buf_t *bp; 1798 int i; 1799 uint count; /* byte count of bwrite */ 1800 uint count_init; /* initial count before roundup */ 1801 int roundoff; /* roundoff to BB or stripe */ 1802 int split = 0; /* split write into two regions */ 1803 int error; 1804 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1805 int size; 1806 1807 XFS_STATS_INC(log->l_mp, xs_log_writes); 1808 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1809 1810 /* Add for LR header */ 1811 count_init = log->l_iclog_hsize + iclog->ic_offset; 1812 1813 /* Round out the log write size */ 1814 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1815 /* we have a v2 stripe unit to use */ 1816 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1817 } else { 1818 count = BBTOB(BTOBB(count_init)); 1819 } 1820 roundoff = count - count_init; 1821 ASSERT(roundoff >= 0); 1822 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1823 roundoff < log->l_mp->m_sb.sb_logsunit) 1824 || 1825 (log->l_mp->m_sb.sb_logsunit <= 1 && 1826 roundoff < BBTOB(1))); 1827 1828 /* move grant heads by roundoff in sync */ 1829 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1830 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1831 1832 /* put cycle number in every block */ 1833 xlog_pack_data(log, iclog, roundoff); 1834 1835 /* real byte length */ 1836 size = iclog->ic_offset; 1837 if (v2) 1838 size += roundoff; 1839 iclog->ic_header.h_len = cpu_to_be32(size); 1840 1841 bp = iclog->ic_bp; 1842 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1843 1844 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1845 1846 /* Do we need to split this write into 2 parts? */ 1847 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1848 char *dptr; 1849 1850 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1851 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1852 iclog->ic_bwritecnt = 2; 1853 1854 /* 1855 * Bump the cycle numbers at the start of each block in the 1856 * part of the iclog that ends up in the buffer that gets 1857 * written to the start of the log. 1858 * 1859 * Watch out for the header magic number case, though. 1860 */ 1861 dptr = (char *)&iclog->ic_header + count; 1862 for (i = 0; i < split; i += BBSIZE) { 1863 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1864 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1865 cycle++; 1866 *(__be32 *)dptr = cpu_to_be32(cycle); 1867 1868 dptr += BBSIZE; 1869 } 1870 } else { 1871 iclog->ic_bwritecnt = 1; 1872 } 1873 1874 /* calculcate the checksum */ 1875 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1876 iclog->ic_datap, size); 1877 /* 1878 * Intentionally corrupt the log record CRC based on the error injection 1879 * frequency, if defined. This facilitates testing log recovery in the 1880 * event of torn writes. Hence, set the IOABORT state to abort the log 1881 * write on I/O completion and shutdown the fs. The subsequent mount 1882 * detects the bad CRC and attempts to recover. 1883 */ 1884 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1885 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1886 iclog->ic_state |= XLOG_STATE_IOABORT; 1887 xfs_warn(log->l_mp, 1888 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1889 be64_to_cpu(iclog->ic_header.h_lsn)); 1890 } 1891 1892 bp->b_io_length = BTOBB(count); 1893 bp->b_fspriv = iclog; 1894 bp->b_flags &= ~XBF_FLUSH; 1895 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1896 1897 /* 1898 * Flush the data device before flushing the log to make sure all meta 1899 * data written back from the AIL actually made it to disk before 1900 * stamping the new log tail LSN into the log buffer. For an external 1901 * log we need to issue the flush explicitly, and unfortunately 1902 * synchronously here; for an internal log we can simply use the block 1903 * layer state machine for preflushes. 1904 */ 1905 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1906 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1907 else 1908 bp->b_flags |= XBF_FLUSH; 1909 1910 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1911 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1912 1913 xlog_verify_iclog(log, iclog, count, true); 1914 1915 /* account for log which doesn't start at block #0 */ 1916 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1917 1918 /* 1919 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1920 * is shutting down. 1921 */ 1922 error = xlog_bdstrat(bp); 1923 if (error) { 1924 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1925 return error; 1926 } 1927 if (split) { 1928 bp = iclog->ic_log->l_xbuf; 1929 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1930 xfs_buf_associate_memory(bp, 1931 (char *)&iclog->ic_header + count, split); 1932 bp->b_fspriv = iclog; 1933 bp->b_flags &= ~XBF_FLUSH; 1934 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1935 1936 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1937 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1938 1939 /* account for internal log which doesn't start at block #0 */ 1940 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1941 error = xlog_bdstrat(bp); 1942 if (error) { 1943 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1944 return error; 1945 } 1946 } 1947 return 0; 1948 } /* xlog_sync */ 1949 1950 /* 1951 * Deallocate a log structure 1952 */ 1953 STATIC void 1954 xlog_dealloc_log( 1955 struct xlog *log) 1956 { 1957 xlog_in_core_t *iclog, *next_iclog; 1958 int i; 1959 1960 xlog_cil_destroy(log); 1961 1962 /* 1963 * Cycle all the iclogbuf locks to make sure all log IO completion 1964 * is done before we tear down these buffers. 1965 */ 1966 iclog = log->l_iclog; 1967 for (i = 0; i < log->l_iclog_bufs; i++) { 1968 xfs_buf_lock(iclog->ic_bp); 1969 xfs_buf_unlock(iclog->ic_bp); 1970 iclog = iclog->ic_next; 1971 } 1972 1973 /* 1974 * Always need to ensure that the extra buffer does not point to memory 1975 * owned by another log buffer before we free it. Also, cycle the lock 1976 * first to ensure we've completed IO on it. 1977 */ 1978 xfs_buf_lock(log->l_xbuf); 1979 xfs_buf_unlock(log->l_xbuf); 1980 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1981 xfs_buf_free(log->l_xbuf); 1982 1983 iclog = log->l_iclog; 1984 for (i = 0; i < log->l_iclog_bufs; i++) { 1985 xfs_buf_free(iclog->ic_bp); 1986 next_iclog = iclog->ic_next; 1987 kmem_free(iclog); 1988 iclog = next_iclog; 1989 } 1990 spinlock_destroy(&log->l_icloglock); 1991 1992 log->l_mp->m_log = NULL; 1993 kmem_free(log); 1994 } /* xlog_dealloc_log */ 1995 1996 /* 1997 * Update counters atomically now that memcpy is done. 1998 */ 1999 /* ARGSUSED */ 2000 static inline void 2001 xlog_state_finish_copy( 2002 struct xlog *log, 2003 struct xlog_in_core *iclog, 2004 int record_cnt, 2005 int copy_bytes) 2006 { 2007 spin_lock(&log->l_icloglock); 2008 2009 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2010 iclog->ic_offset += copy_bytes; 2011 2012 spin_unlock(&log->l_icloglock); 2013 } /* xlog_state_finish_copy */ 2014 2015 2016 2017 2018 /* 2019 * print out info relating to regions written which consume 2020 * the reservation 2021 */ 2022 void 2023 xlog_print_tic_res( 2024 struct xfs_mount *mp, 2025 struct xlog_ticket *ticket) 2026 { 2027 uint i; 2028 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2029 2030 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2031 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2032 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2033 REG_TYPE_STR(BFORMAT, "bformat"), 2034 REG_TYPE_STR(BCHUNK, "bchunk"), 2035 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2036 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2037 REG_TYPE_STR(IFORMAT, "iformat"), 2038 REG_TYPE_STR(ICORE, "icore"), 2039 REG_TYPE_STR(IEXT, "iext"), 2040 REG_TYPE_STR(IBROOT, "ibroot"), 2041 REG_TYPE_STR(ILOCAL, "ilocal"), 2042 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2043 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2044 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2045 REG_TYPE_STR(QFORMAT, "qformat"), 2046 REG_TYPE_STR(DQUOT, "dquot"), 2047 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2048 REG_TYPE_STR(LRHEADER, "LR header"), 2049 REG_TYPE_STR(UNMOUNT, "unmount"), 2050 REG_TYPE_STR(COMMIT, "commit"), 2051 REG_TYPE_STR(TRANSHDR, "trans header"), 2052 REG_TYPE_STR(ICREATE, "inode create") 2053 }; 2054 #undef REG_TYPE_STR 2055 2056 xfs_warn(mp, "ticket reservation summary:"); 2057 xfs_warn(mp, " unit res = %d bytes", 2058 ticket->t_unit_res); 2059 xfs_warn(mp, " current res = %d bytes", 2060 ticket->t_curr_res); 2061 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2062 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2063 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2064 ticket->t_res_num_ophdrs, ophdr_spc); 2065 xfs_warn(mp, " ophdr + reg = %u bytes", 2066 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2067 xfs_warn(mp, " num regions = %u", 2068 ticket->t_res_num); 2069 2070 for (i = 0; i < ticket->t_res_num; i++) { 2071 uint r_type = ticket->t_res_arr[i].r_type; 2072 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2073 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2074 "bad-rtype" : res_type_str[r_type]), 2075 ticket->t_res_arr[i].r_len); 2076 } 2077 } 2078 2079 /* 2080 * Print a summary of the transaction. 2081 */ 2082 void 2083 xlog_print_trans( 2084 struct xfs_trans *tp) 2085 { 2086 struct xfs_mount *mp = tp->t_mountp; 2087 struct xfs_log_item_desc *lidp; 2088 2089 /* dump core transaction and ticket info */ 2090 xfs_warn(mp, "transaction summary:"); 2091 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2092 2093 xlog_print_tic_res(mp, tp->t_ticket); 2094 2095 /* dump each log item */ 2096 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 2097 struct xfs_log_item *lip = lidp->lid_item; 2098 struct xfs_log_vec *lv = lip->li_lv; 2099 struct xfs_log_iovec *vec; 2100 int i; 2101 2102 xfs_warn(mp, "log item: "); 2103 xfs_warn(mp, " type = 0x%x", lip->li_type); 2104 xfs_warn(mp, " flags = 0x%x", lip->li_flags); 2105 if (!lv) 2106 continue; 2107 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2108 xfs_warn(mp, " size = %d", lv->lv_size); 2109 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2110 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2111 2112 /* dump each iovec for the log item */ 2113 vec = lv->lv_iovecp; 2114 for (i = 0; i < lv->lv_niovecs; i++) { 2115 int dumplen = min(vec->i_len, 32); 2116 2117 xfs_warn(mp, " iovec[%d]", i); 2118 xfs_warn(mp, " type = 0x%x", vec->i_type); 2119 xfs_warn(mp, " len = %d", vec->i_len); 2120 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2121 xfs_hex_dump(vec->i_addr, dumplen); 2122 2123 vec++; 2124 } 2125 } 2126 } 2127 2128 /* 2129 * Calculate the potential space needed by the log vector. Each region gets 2130 * its own xlog_op_header_t and may need to be double word aligned. 2131 */ 2132 static int 2133 xlog_write_calc_vec_length( 2134 struct xlog_ticket *ticket, 2135 struct xfs_log_vec *log_vector) 2136 { 2137 struct xfs_log_vec *lv; 2138 int headers = 0; 2139 int len = 0; 2140 int i; 2141 2142 /* acct for start rec of xact */ 2143 if (ticket->t_flags & XLOG_TIC_INITED) 2144 headers++; 2145 2146 for (lv = log_vector; lv; lv = lv->lv_next) { 2147 /* we don't write ordered log vectors */ 2148 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2149 continue; 2150 2151 headers += lv->lv_niovecs; 2152 2153 for (i = 0; i < lv->lv_niovecs; i++) { 2154 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2155 2156 len += vecp->i_len; 2157 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2158 } 2159 } 2160 2161 ticket->t_res_num_ophdrs += headers; 2162 len += headers * sizeof(struct xlog_op_header); 2163 2164 return len; 2165 } 2166 2167 /* 2168 * If first write for transaction, insert start record We can't be trying to 2169 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2170 */ 2171 static int 2172 xlog_write_start_rec( 2173 struct xlog_op_header *ophdr, 2174 struct xlog_ticket *ticket) 2175 { 2176 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2177 return 0; 2178 2179 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2180 ophdr->oh_clientid = ticket->t_clientid; 2181 ophdr->oh_len = 0; 2182 ophdr->oh_flags = XLOG_START_TRANS; 2183 ophdr->oh_res2 = 0; 2184 2185 ticket->t_flags &= ~XLOG_TIC_INITED; 2186 2187 return sizeof(struct xlog_op_header); 2188 } 2189 2190 static xlog_op_header_t * 2191 xlog_write_setup_ophdr( 2192 struct xlog *log, 2193 struct xlog_op_header *ophdr, 2194 struct xlog_ticket *ticket, 2195 uint flags) 2196 { 2197 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2198 ophdr->oh_clientid = ticket->t_clientid; 2199 ophdr->oh_res2 = 0; 2200 2201 /* are we copying a commit or unmount record? */ 2202 ophdr->oh_flags = flags; 2203 2204 /* 2205 * We've seen logs corrupted with bad transaction client ids. This 2206 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2207 * and shut down the filesystem. 2208 */ 2209 switch (ophdr->oh_clientid) { 2210 case XFS_TRANSACTION: 2211 case XFS_VOLUME: 2212 case XFS_LOG: 2213 break; 2214 default: 2215 xfs_warn(log->l_mp, 2216 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2217 ophdr->oh_clientid, ticket); 2218 return NULL; 2219 } 2220 2221 return ophdr; 2222 } 2223 2224 /* 2225 * Set up the parameters of the region copy into the log. This has 2226 * to handle region write split across multiple log buffers - this 2227 * state is kept external to this function so that this code can 2228 * be written in an obvious, self documenting manner. 2229 */ 2230 static int 2231 xlog_write_setup_copy( 2232 struct xlog_ticket *ticket, 2233 struct xlog_op_header *ophdr, 2234 int space_available, 2235 int space_required, 2236 int *copy_off, 2237 int *copy_len, 2238 int *last_was_partial_copy, 2239 int *bytes_consumed) 2240 { 2241 int still_to_copy; 2242 2243 still_to_copy = space_required - *bytes_consumed; 2244 *copy_off = *bytes_consumed; 2245 2246 if (still_to_copy <= space_available) { 2247 /* write of region completes here */ 2248 *copy_len = still_to_copy; 2249 ophdr->oh_len = cpu_to_be32(*copy_len); 2250 if (*last_was_partial_copy) 2251 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2252 *last_was_partial_copy = 0; 2253 *bytes_consumed = 0; 2254 return 0; 2255 } 2256 2257 /* partial write of region, needs extra log op header reservation */ 2258 *copy_len = space_available; 2259 ophdr->oh_len = cpu_to_be32(*copy_len); 2260 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2261 if (*last_was_partial_copy) 2262 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2263 *bytes_consumed += *copy_len; 2264 (*last_was_partial_copy)++; 2265 2266 /* account for new log op header */ 2267 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2268 ticket->t_res_num_ophdrs++; 2269 2270 return sizeof(struct xlog_op_header); 2271 } 2272 2273 static int 2274 xlog_write_copy_finish( 2275 struct xlog *log, 2276 struct xlog_in_core *iclog, 2277 uint flags, 2278 int *record_cnt, 2279 int *data_cnt, 2280 int *partial_copy, 2281 int *partial_copy_len, 2282 int log_offset, 2283 struct xlog_in_core **commit_iclog) 2284 { 2285 if (*partial_copy) { 2286 /* 2287 * This iclog has already been marked WANT_SYNC by 2288 * xlog_state_get_iclog_space. 2289 */ 2290 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2291 *record_cnt = 0; 2292 *data_cnt = 0; 2293 return xlog_state_release_iclog(log, iclog); 2294 } 2295 2296 *partial_copy = 0; 2297 *partial_copy_len = 0; 2298 2299 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2300 /* no more space in this iclog - push it. */ 2301 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2302 *record_cnt = 0; 2303 *data_cnt = 0; 2304 2305 spin_lock(&log->l_icloglock); 2306 xlog_state_want_sync(log, iclog); 2307 spin_unlock(&log->l_icloglock); 2308 2309 if (!commit_iclog) 2310 return xlog_state_release_iclog(log, iclog); 2311 ASSERT(flags & XLOG_COMMIT_TRANS); 2312 *commit_iclog = iclog; 2313 } 2314 2315 return 0; 2316 } 2317 2318 /* 2319 * Write some region out to in-core log 2320 * 2321 * This will be called when writing externally provided regions or when 2322 * writing out a commit record for a given transaction. 2323 * 2324 * General algorithm: 2325 * 1. Find total length of this write. This may include adding to the 2326 * lengths passed in. 2327 * 2. Check whether we violate the tickets reservation. 2328 * 3. While writing to this iclog 2329 * A. Reserve as much space in this iclog as can get 2330 * B. If this is first write, save away start lsn 2331 * C. While writing this region: 2332 * 1. If first write of transaction, write start record 2333 * 2. Write log operation header (header per region) 2334 * 3. Find out if we can fit entire region into this iclog 2335 * 4. Potentially, verify destination memcpy ptr 2336 * 5. Memcpy (partial) region 2337 * 6. If partial copy, release iclog; otherwise, continue 2338 * copying more regions into current iclog 2339 * 4. Mark want sync bit (in simulation mode) 2340 * 5. Release iclog for potential flush to on-disk log. 2341 * 2342 * ERRORS: 2343 * 1. Panic if reservation is overrun. This should never happen since 2344 * reservation amounts are generated internal to the filesystem. 2345 * NOTES: 2346 * 1. Tickets are single threaded data structures. 2347 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2348 * syncing routine. When a single log_write region needs to span 2349 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2350 * on all log operation writes which don't contain the end of the 2351 * region. The XLOG_END_TRANS bit is used for the in-core log 2352 * operation which contains the end of the continued log_write region. 2353 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2354 * we don't really know exactly how much space will be used. As a result, 2355 * we don't update ic_offset until the end when we know exactly how many 2356 * bytes have been written out. 2357 */ 2358 int 2359 xlog_write( 2360 struct xlog *log, 2361 struct xfs_log_vec *log_vector, 2362 struct xlog_ticket *ticket, 2363 xfs_lsn_t *start_lsn, 2364 struct xlog_in_core **commit_iclog, 2365 uint flags) 2366 { 2367 struct xlog_in_core *iclog = NULL; 2368 struct xfs_log_iovec *vecp; 2369 struct xfs_log_vec *lv; 2370 int len; 2371 int index; 2372 int partial_copy = 0; 2373 int partial_copy_len = 0; 2374 int contwr = 0; 2375 int record_cnt = 0; 2376 int data_cnt = 0; 2377 int error; 2378 2379 *start_lsn = 0; 2380 2381 len = xlog_write_calc_vec_length(ticket, log_vector); 2382 2383 /* 2384 * Region headers and bytes are already accounted for. 2385 * We only need to take into account start records and 2386 * split regions in this function. 2387 */ 2388 if (ticket->t_flags & XLOG_TIC_INITED) 2389 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2390 2391 /* 2392 * Commit record headers need to be accounted for. These 2393 * come in as separate writes so are easy to detect. 2394 */ 2395 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2396 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2397 2398 if (ticket->t_curr_res < 0) { 2399 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2400 "ctx ticket reservation ran out. Need to up reservation"); 2401 xlog_print_tic_res(log->l_mp, ticket); 2402 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2403 } 2404 2405 index = 0; 2406 lv = log_vector; 2407 vecp = lv->lv_iovecp; 2408 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2409 void *ptr; 2410 int log_offset; 2411 2412 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2413 &contwr, &log_offset); 2414 if (error) 2415 return error; 2416 2417 ASSERT(log_offset <= iclog->ic_size - 1); 2418 ptr = iclog->ic_datap + log_offset; 2419 2420 /* start_lsn is the first lsn written to. That's all we need. */ 2421 if (!*start_lsn) 2422 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2423 2424 /* 2425 * This loop writes out as many regions as can fit in the amount 2426 * of space which was allocated by xlog_state_get_iclog_space(). 2427 */ 2428 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2429 struct xfs_log_iovec *reg; 2430 struct xlog_op_header *ophdr; 2431 int start_rec_copy; 2432 int copy_len; 2433 int copy_off; 2434 bool ordered = false; 2435 2436 /* ordered log vectors have no regions to write */ 2437 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2438 ASSERT(lv->lv_niovecs == 0); 2439 ordered = true; 2440 goto next_lv; 2441 } 2442 2443 reg = &vecp[index]; 2444 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2445 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2446 2447 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2448 if (start_rec_copy) { 2449 record_cnt++; 2450 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2451 start_rec_copy); 2452 } 2453 2454 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2455 if (!ophdr) 2456 return -EIO; 2457 2458 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2459 sizeof(struct xlog_op_header)); 2460 2461 len += xlog_write_setup_copy(ticket, ophdr, 2462 iclog->ic_size-log_offset, 2463 reg->i_len, 2464 ©_off, ©_len, 2465 &partial_copy, 2466 &partial_copy_len); 2467 xlog_verify_dest_ptr(log, ptr); 2468 2469 /* 2470 * Copy region. 2471 * 2472 * Unmount records just log an opheader, so can have 2473 * empty payloads with no data region to copy. Hence we 2474 * only copy the payload if the vector says it has data 2475 * to copy. 2476 */ 2477 ASSERT(copy_len >= 0); 2478 if (copy_len > 0) { 2479 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2480 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2481 copy_len); 2482 } 2483 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2484 record_cnt++; 2485 data_cnt += contwr ? copy_len : 0; 2486 2487 error = xlog_write_copy_finish(log, iclog, flags, 2488 &record_cnt, &data_cnt, 2489 &partial_copy, 2490 &partial_copy_len, 2491 log_offset, 2492 commit_iclog); 2493 if (error) 2494 return error; 2495 2496 /* 2497 * if we had a partial copy, we need to get more iclog 2498 * space but we don't want to increment the region 2499 * index because there is still more is this region to 2500 * write. 2501 * 2502 * If we completed writing this region, and we flushed 2503 * the iclog (indicated by resetting of the record 2504 * count), then we also need to get more log space. If 2505 * this was the last record, though, we are done and 2506 * can just return. 2507 */ 2508 if (partial_copy) 2509 break; 2510 2511 if (++index == lv->lv_niovecs) { 2512 next_lv: 2513 lv = lv->lv_next; 2514 index = 0; 2515 if (lv) 2516 vecp = lv->lv_iovecp; 2517 } 2518 if (record_cnt == 0 && ordered == false) { 2519 if (!lv) 2520 return 0; 2521 break; 2522 } 2523 } 2524 } 2525 2526 ASSERT(len == 0); 2527 2528 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2529 if (!commit_iclog) 2530 return xlog_state_release_iclog(log, iclog); 2531 2532 ASSERT(flags & XLOG_COMMIT_TRANS); 2533 *commit_iclog = iclog; 2534 return 0; 2535 } 2536 2537 2538 /***************************************************************************** 2539 * 2540 * State Machine functions 2541 * 2542 ***************************************************************************** 2543 */ 2544 2545 /* Clean iclogs starting from the head. This ordering must be 2546 * maintained, so an iclog doesn't become ACTIVE beyond one that 2547 * is SYNCING. This is also required to maintain the notion that we use 2548 * a ordered wait queue to hold off would be writers to the log when every 2549 * iclog is trying to sync to disk. 2550 * 2551 * State Change: DIRTY -> ACTIVE 2552 */ 2553 STATIC void 2554 xlog_state_clean_log( 2555 struct xlog *log) 2556 { 2557 xlog_in_core_t *iclog; 2558 int changed = 0; 2559 2560 iclog = log->l_iclog; 2561 do { 2562 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2563 iclog->ic_state = XLOG_STATE_ACTIVE; 2564 iclog->ic_offset = 0; 2565 ASSERT(iclog->ic_callback == NULL); 2566 /* 2567 * If the number of ops in this iclog indicate it just 2568 * contains the dummy transaction, we can 2569 * change state into IDLE (the second time around). 2570 * Otherwise we should change the state into 2571 * NEED a dummy. 2572 * We don't need to cover the dummy. 2573 */ 2574 if (!changed && 2575 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2576 XLOG_COVER_OPS)) { 2577 changed = 1; 2578 } else { 2579 /* 2580 * We have two dirty iclogs so start over 2581 * This could also be num of ops indicates 2582 * this is not the dummy going out. 2583 */ 2584 changed = 2; 2585 } 2586 iclog->ic_header.h_num_logops = 0; 2587 memset(iclog->ic_header.h_cycle_data, 0, 2588 sizeof(iclog->ic_header.h_cycle_data)); 2589 iclog->ic_header.h_lsn = 0; 2590 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2591 /* do nothing */; 2592 else 2593 break; /* stop cleaning */ 2594 iclog = iclog->ic_next; 2595 } while (iclog != log->l_iclog); 2596 2597 /* log is locked when we are called */ 2598 /* 2599 * Change state for the dummy log recording. 2600 * We usually go to NEED. But we go to NEED2 if the changed indicates 2601 * we are done writing the dummy record. 2602 * If we are done with the second dummy recored (DONE2), then 2603 * we go to IDLE. 2604 */ 2605 if (changed) { 2606 switch (log->l_covered_state) { 2607 case XLOG_STATE_COVER_IDLE: 2608 case XLOG_STATE_COVER_NEED: 2609 case XLOG_STATE_COVER_NEED2: 2610 log->l_covered_state = XLOG_STATE_COVER_NEED; 2611 break; 2612 2613 case XLOG_STATE_COVER_DONE: 2614 if (changed == 1) 2615 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2616 else 2617 log->l_covered_state = XLOG_STATE_COVER_NEED; 2618 break; 2619 2620 case XLOG_STATE_COVER_DONE2: 2621 if (changed == 1) 2622 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2623 else 2624 log->l_covered_state = XLOG_STATE_COVER_NEED; 2625 break; 2626 2627 default: 2628 ASSERT(0); 2629 } 2630 } 2631 } /* xlog_state_clean_log */ 2632 2633 STATIC xfs_lsn_t 2634 xlog_get_lowest_lsn( 2635 struct xlog *log) 2636 { 2637 xlog_in_core_t *lsn_log; 2638 xfs_lsn_t lowest_lsn, lsn; 2639 2640 lsn_log = log->l_iclog; 2641 lowest_lsn = 0; 2642 do { 2643 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2644 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2645 if ((lsn && !lowest_lsn) || 2646 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2647 lowest_lsn = lsn; 2648 } 2649 } 2650 lsn_log = lsn_log->ic_next; 2651 } while (lsn_log != log->l_iclog); 2652 return lowest_lsn; 2653 } 2654 2655 2656 STATIC void 2657 xlog_state_do_callback( 2658 struct xlog *log, 2659 int aborted, 2660 struct xlog_in_core *ciclog) 2661 { 2662 xlog_in_core_t *iclog; 2663 xlog_in_core_t *first_iclog; /* used to know when we've 2664 * processed all iclogs once */ 2665 xfs_log_callback_t *cb, *cb_next; 2666 int flushcnt = 0; 2667 xfs_lsn_t lowest_lsn; 2668 int ioerrors; /* counter: iclogs with errors */ 2669 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2670 int funcdidcallbacks; /* flag: function did callbacks */ 2671 int repeats; /* for issuing console warnings if 2672 * looping too many times */ 2673 int wake = 0; 2674 2675 spin_lock(&log->l_icloglock); 2676 first_iclog = iclog = log->l_iclog; 2677 ioerrors = 0; 2678 funcdidcallbacks = 0; 2679 repeats = 0; 2680 2681 do { 2682 /* 2683 * Scan all iclogs starting with the one pointed to by the 2684 * log. Reset this starting point each time the log is 2685 * unlocked (during callbacks). 2686 * 2687 * Keep looping through iclogs until one full pass is made 2688 * without running any callbacks. 2689 */ 2690 first_iclog = log->l_iclog; 2691 iclog = log->l_iclog; 2692 loopdidcallbacks = 0; 2693 repeats++; 2694 2695 do { 2696 2697 /* skip all iclogs in the ACTIVE & DIRTY states */ 2698 if (iclog->ic_state & 2699 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2700 iclog = iclog->ic_next; 2701 continue; 2702 } 2703 2704 /* 2705 * Between marking a filesystem SHUTDOWN and stopping 2706 * the log, we do flush all iclogs to disk (if there 2707 * wasn't a log I/O error). So, we do want things to 2708 * go smoothly in case of just a SHUTDOWN w/o a 2709 * LOG_IO_ERROR. 2710 */ 2711 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2712 /* 2713 * Can only perform callbacks in order. Since 2714 * this iclog is not in the DONE_SYNC/ 2715 * DO_CALLBACK state, we skip the rest and 2716 * just try to clean up. If we set our iclog 2717 * to DO_CALLBACK, we will not process it when 2718 * we retry since a previous iclog is in the 2719 * CALLBACK and the state cannot change since 2720 * we are holding the l_icloglock. 2721 */ 2722 if (!(iclog->ic_state & 2723 (XLOG_STATE_DONE_SYNC | 2724 XLOG_STATE_DO_CALLBACK))) { 2725 if (ciclog && (ciclog->ic_state == 2726 XLOG_STATE_DONE_SYNC)) { 2727 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2728 } 2729 break; 2730 } 2731 /* 2732 * We now have an iclog that is in either the 2733 * DO_CALLBACK or DONE_SYNC states. The other 2734 * states (WANT_SYNC, SYNCING, or CALLBACK were 2735 * caught by the above if and are going to 2736 * clean (i.e. we aren't doing their callbacks) 2737 * see the above if. 2738 */ 2739 2740 /* 2741 * We will do one more check here to see if we 2742 * have chased our tail around. 2743 */ 2744 2745 lowest_lsn = xlog_get_lowest_lsn(log); 2746 if (lowest_lsn && 2747 XFS_LSN_CMP(lowest_lsn, 2748 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2749 iclog = iclog->ic_next; 2750 continue; /* Leave this iclog for 2751 * another thread */ 2752 } 2753 2754 iclog->ic_state = XLOG_STATE_CALLBACK; 2755 2756 2757 /* 2758 * Completion of a iclog IO does not imply that 2759 * a transaction has completed, as transactions 2760 * can be large enough to span many iclogs. We 2761 * cannot change the tail of the log half way 2762 * through a transaction as this may be the only 2763 * transaction in the log and moving th etail to 2764 * point to the middle of it will prevent 2765 * recovery from finding the start of the 2766 * transaction. Hence we should only update the 2767 * last_sync_lsn if this iclog contains 2768 * transaction completion callbacks on it. 2769 * 2770 * We have to do this before we drop the 2771 * icloglock to ensure we are the only one that 2772 * can update it. 2773 */ 2774 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2775 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2776 if (iclog->ic_callback) 2777 atomic64_set(&log->l_last_sync_lsn, 2778 be64_to_cpu(iclog->ic_header.h_lsn)); 2779 2780 } else 2781 ioerrors++; 2782 2783 spin_unlock(&log->l_icloglock); 2784 2785 /* 2786 * Keep processing entries in the callback list until 2787 * we come around and it is empty. We need to 2788 * atomically see that the list is empty and change the 2789 * state to DIRTY so that we don't miss any more 2790 * callbacks being added. 2791 */ 2792 spin_lock(&iclog->ic_callback_lock); 2793 cb = iclog->ic_callback; 2794 while (cb) { 2795 iclog->ic_callback_tail = &(iclog->ic_callback); 2796 iclog->ic_callback = NULL; 2797 spin_unlock(&iclog->ic_callback_lock); 2798 2799 /* perform callbacks in the order given */ 2800 for (; cb; cb = cb_next) { 2801 cb_next = cb->cb_next; 2802 cb->cb_func(cb->cb_arg, aborted); 2803 } 2804 spin_lock(&iclog->ic_callback_lock); 2805 cb = iclog->ic_callback; 2806 } 2807 2808 loopdidcallbacks++; 2809 funcdidcallbacks++; 2810 2811 spin_lock(&log->l_icloglock); 2812 ASSERT(iclog->ic_callback == NULL); 2813 spin_unlock(&iclog->ic_callback_lock); 2814 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2815 iclog->ic_state = XLOG_STATE_DIRTY; 2816 2817 /* 2818 * Transition from DIRTY to ACTIVE if applicable. 2819 * NOP if STATE_IOERROR. 2820 */ 2821 xlog_state_clean_log(log); 2822 2823 /* wake up threads waiting in xfs_log_force() */ 2824 wake_up_all(&iclog->ic_force_wait); 2825 2826 iclog = iclog->ic_next; 2827 } while (first_iclog != iclog); 2828 2829 if (repeats > 5000) { 2830 flushcnt += repeats; 2831 repeats = 0; 2832 xfs_warn(log->l_mp, 2833 "%s: possible infinite loop (%d iterations)", 2834 __func__, flushcnt); 2835 } 2836 } while (!ioerrors && loopdidcallbacks); 2837 2838 #ifdef DEBUG 2839 /* 2840 * Make one last gasp attempt to see if iclogs are being left in limbo. 2841 * If the above loop finds an iclog earlier than the current iclog and 2842 * in one of the syncing states, the current iclog is put into 2843 * DO_CALLBACK and the callbacks are deferred to the completion of the 2844 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2845 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2846 * states. 2847 * 2848 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2849 * for ic_state == SYNCING. 2850 */ 2851 if (funcdidcallbacks) { 2852 first_iclog = iclog = log->l_iclog; 2853 do { 2854 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2855 /* 2856 * Terminate the loop if iclogs are found in states 2857 * which will cause other threads to clean up iclogs. 2858 * 2859 * SYNCING - i/o completion will go through logs 2860 * DONE_SYNC - interrupt thread should be waiting for 2861 * l_icloglock 2862 * IOERROR - give up hope all ye who enter here 2863 */ 2864 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2865 iclog->ic_state & XLOG_STATE_SYNCING || 2866 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2867 iclog->ic_state == XLOG_STATE_IOERROR ) 2868 break; 2869 iclog = iclog->ic_next; 2870 } while (first_iclog != iclog); 2871 } 2872 #endif 2873 2874 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2875 wake = 1; 2876 spin_unlock(&log->l_icloglock); 2877 2878 if (wake) 2879 wake_up_all(&log->l_flush_wait); 2880 } 2881 2882 2883 /* 2884 * Finish transitioning this iclog to the dirty state. 2885 * 2886 * Make sure that we completely execute this routine only when this is 2887 * the last call to the iclog. There is a good chance that iclog flushes, 2888 * when we reach the end of the physical log, get turned into 2 separate 2889 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2890 * routine. By using the reference count bwritecnt, we guarantee that only 2891 * the second completion goes through. 2892 * 2893 * Callbacks could take time, so they are done outside the scope of the 2894 * global state machine log lock. 2895 */ 2896 STATIC void 2897 xlog_state_done_syncing( 2898 xlog_in_core_t *iclog, 2899 int aborted) 2900 { 2901 struct xlog *log = iclog->ic_log; 2902 2903 spin_lock(&log->l_icloglock); 2904 2905 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2906 iclog->ic_state == XLOG_STATE_IOERROR); 2907 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2908 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2909 2910 2911 /* 2912 * If we got an error, either on the first buffer, or in the case of 2913 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2914 * and none should ever be attempted to be written to disk 2915 * again. 2916 */ 2917 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2918 if (--iclog->ic_bwritecnt == 1) { 2919 spin_unlock(&log->l_icloglock); 2920 return; 2921 } 2922 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2923 } 2924 2925 /* 2926 * Someone could be sleeping prior to writing out the next 2927 * iclog buffer, we wake them all, one will get to do the 2928 * I/O, the others get to wait for the result. 2929 */ 2930 wake_up_all(&iclog->ic_write_wait); 2931 spin_unlock(&log->l_icloglock); 2932 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2933 } /* xlog_state_done_syncing */ 2934 2935 2936 /* 2937 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2938 * sleep. We wait on the flush queue on the head iclog as that should be 2939 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2940 * we will wait here and all new writes will sleep until a sync completes. 2941 * 2942 * The in-core logs are used in a circular fashion. They are not used 2943 * out-of-order even when an iclog past the head is free. 2944 * 2945 * return: 2946 * * log_offset where xlog_write() can start writing into the in-core 2947 * log's data space. 2948 * * in-core log pointer to which xlog_write() should write. 2949 * * boolean indicating this is a continued write to an in-core log. 2950 * If this is the last write, then the in-core log's offset field 2951 * needs to be incremented, depending on the amount of data which 2952 * is copied. 2953 */ 2954 STATIC int 2955 xlog_state_get_iclog_space( 2956 struct xlog *log, 2957 int len, 2958 struct xlog_in_core **iclogp, 2959 struct xlog_ticket *ticket, 2960 int *continued_write, 2961 int *logoffsetp) 2962 { 2963 int log_offset; 2964 xlog_rec_header_t *head; 2965 xlog_in_core_t *iclog; 2966 int error; 2967 2968 restart: 2969 spin_lock(&log->l_icloglock); 2970 if (XLOG_FORCED_SHUTDOWN(log)) { 2971 spin_unlock(&log->l_icloglock); 2972 return -EIO; 2973 } 2974 2975 iclog = log->l_iclog; 2976 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2977 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2978 2979 /* Wait for log writes to have flushed */ 2980 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2981 goto restart; 2982 } 2983 2984 head = &iclog->ic_header; 2985 2986 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2987 log_offset = iclog->ic_offset; 2988 2989 /* On the 1st write to an iclog, figure out lsn. This works 2990 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2991 * committing to. If the offset is set, that's how many blocks 2992 * must be written. 2993 */ 2994 if (log_offset == 0) { 2995 ticket->t_curr_res -= log->l_iclog_hsize; 2996 xlog_tic_add_region(ticket, 2997 log->l_iclog_hsize, 2998 XLOG_REG_TYPE_LRHEADER); 2999 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 3000 head->h_lsn = cpu_to_be64( 3001 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 3002 ASSERT(log->l_curr_block >= 0); 3003 } 3004 3005 /* If there is enough room to write everything, then do it. Otherwise, 3006 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 3007 * bit is on, so this will get flushed out. Don't update ic_offset 3008 * until you know exactly how many bytes get copied. Therefore, wait 3009 * until later to update ic_offset. 3010 * 3011 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 3012 * can fit into remaining data section. 3013 */ 3014 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3015 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3016 3017 /* 3018 * If I'm the only one writing to this iclog, sync it to disk. 3019 * We need to do an atomic compare and decrement here to avoid 3020 * racing with concurrent atomic_dec_and_lock() calls in 3021 * xlog_state_release_iclog() when there is more than one 3022 * reference to the iclog. 3023 */ 3024 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 3025 /* we are the only one */ 3026 spin_unlock(&log->l_icloglock); 3027 error = xlog_state_release_iclog(log, iclog); 3028 if (error) 3029 return error; 3030 } else { 3031 spin_unlock(&log->l_icloglock); 3032 } 3033 goto restart; 3034 } 3035 3036 /* Do we have enough room to write the full amount in the remainder 3037 * of this iclog? Or must we continue a write on the next iclog and 3038 * mark this iclog as completely taken? In the case where we switch 3039 * iclogs (to mark it taken), this particular iclog will release/sync 3040 * to disk in xlog_write(). 3041 */ 3042 if (len <= iclog->ic_size - iclog->ic_offset) { 3043 *continued_write = 0; 3044 iclog->ic_offset += len; 3045 } else { 3046 *continued_write = 1; 3047 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3048 } 3049 *iclogp = iclog; 3050 3051 ASSERT(iclog->ic_offset <= iclog->ic_size); 3052 spin_unlock(&log->l_icloglock); 3053 3054 *logoffsetp = log_offset; 3055 return 0; 3056 } /* xlog_state_get_iclog_space */ 3057 3058 /* The first cnt-1 times through here we don't need to 3059 * move the grant write head because the permanent 3060 * reservation has reserved cnt times the unit amount. 3061 * Release part of current permanent unit reservation and 3062 * reset current reservation to be one units worth. Also 3063 * move grant reservation head forward. 3064 */ 3065 STATIC void 3066 xlog_regrant_reserve_log_space( 3067 struct xlog *log, 3068 struct xlog_ticket *ticket) 3069 { 3070 trace_xfs_log_regrant_reserve_enter(log, ticket); 3071 3072 if (ticket->t_cnt > 0) 3073 ticket->t_cnt--; 3074 3075 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3076 ticket->t_curr_res); 3077 xlog_grant_sub_space(log, &log->l_write_head.grant, 3078 ticket->t_curr_res); 3079 ticket->t_curr_res = ticket->t_unit_res; 3080 xlog_tic_reset_res(ticket); 3081 3082 trace_xfs_log_regrant_reserve_sub(log, ticket); 3083 3084 /* just return if we still have some of the pre-reserved space */ 3085 if (ticket->t_cnt > 0) 3086 return; 3087 3088 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3089 ticket->t_unit_res); 3090 3091 trace_xfs_log_regrant_reserve_exit(log, ticket); 3092 3093 ticket->t_curr_res = ticket->t_unit_res; 3094 xlog_tic_reset_res(ticket); 3095 } /* xlog_regrant_reserve_log_space */ 3096 3097 3098 /* 3099 * Give back the space left from a reservation. 3100 * 3101 * All the information we need to make a correct determination of space left 3102 * is present. For non-permanent reservations, things are quite easy. The 3103 * count should have been decremented to zero. We only need to deal with the 3104 * space remaining in the current reservation part of the ticket. If the 3105 * ticket contains a permanent reservation, there may be left over space which 3106 * needs to be released. A count of N means that N-1 refills of the current 3107 * reservation can be done before we need to ask for more space. The first 3108 * one goes to fill up the first current reservation. Once we run out of 3109 * space, the count will stay at zero and the only space remaining will be 3110 * in the current reservation field. 3111 */ 3112 STATIC void 3113 xlog_ungrant_log_space( 3114 struct xlog *log, 3115 struct xlog_ticket *ticket) 3116 { 3117 int bytes; 3118 3119 if (ticket->t_cnt > 0) 3120 ticket->t_cnt--; 3121 3122 trace_xfs_log_ungrant_enter(log, ticket); 3123 trace_xfs_log_ungrant_sub(log, ticket); 3124 3125 /* 3126 * If this is a permanent reservation ticket, we may be able to free 3127 * up more space based on the remaining count. 3128 */ 3129 bytes = ticket->t_curr_res; 3130 if (ticket->t_cnt > 0) { 3131 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3132 bytes += ticket->t_unit_res*ticket->t_cnt; 3133 } 3134 3135 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3136 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3137 3138 trace_xfs_log_ungrant_exit(log, ticket); 3139 3140 xfs_log_space_wake(log->l_mp); 3141 } 3142 3143 /* 3144 * Flush iclog to disk if this is the last reference to the given iclog and 3145 * the WANT_SYNC bit is set. 3146 * 3147 * When this function is entered, the iclog is not necessarily in the 3148 * WANT_SYNC state. It may be sitting around waiting to get filled. 3149 * 3150 * 3151 */ 3152 STATIC int 3153 xlog_state_release_iclog( 3154 struct xlog *log, 3155 struct xlog_in_core *iclog) 3156 { 3157 int sync = 0; /* do we sync? */ 3158 3159 if (iclog->ic_state & XLOG_STATE_IOERROR) 3160 return -EIO; 3161 3162 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3163 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3164 return 0; 3165 3166 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3167 spin_unlock(&log->l_icloglock); 3168 return -EIO; 3169 } 3170 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3171 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3172 3173 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3174 /* update tail before writing to iclog */ 3175 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3176 sync++; 3177 iclog->ic_state = XLOG_STATE_SYNCING; 3178 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3179 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3180 /* cycle incremented when incrementing curr_block */ 3181 } 3182 spin_unlock(&log->l_icloglock); 3183 3184 /* 3185 * We let the log lock go, so it's possible that we hit a log I/O 3186 * error or some other SHUTDOWN condition that marks the iclog 3187 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3188 * this iclog has consistent data, so we ignore IOERROR 3189 * flags after this point. 3190 */ 3191 if (sync) 3192 return xlog_sync(log, iclog); 3193 return 0; 3194 } /* xlog_state_release_iclog */ 3195 3196 3197 /* 3198 * This routine will mark the current iclog in the ring as WANT_SYNC 3199 * and move the current iclog pointer to the next iclog in the ring. 3200 * When this routine is called from xlog_state_get_iclog_space(), the 3201 * exact size of the iclog has not yet been determined. All we know is 3202 * that every data block. We have run out of space in this log record. 3203 */ 3204 STATIC void 3205 xlog_state_switch_iclogs( 3206 struct xlog *log, 3207 struct xlog_in_core *iclog, 3208 int eventual_size) 3209 { 3210 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3211 if (!eventual_size) 3212 eventual_size = iclog->ic_offset; 3213 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3214 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3215 log->l_prev_block = log->l_curr_block; 3216 log->l_prev_cycle = log->l_curr_cycle; 3217 3218 /* roll log?: ic_offset changed later */ 3219 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3220 3221 /* Round up to next log-sunit */ 3222 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3223 log->l_mp->m_sb.sb_logsunit > 1) { 3224 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3225 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3226 } 3227 3228 if (log->l_curr_block >= log->l_logBBsize) { 3229 /* 3230 * Rewind the current block before the cycle is bumped to make 3231 * sure that the combined LSN never transiently moves forward 3232 * when the log wraps to the next cycle. This is to support the 3233 * unlocked sample of these fields from xlog_valid_lsn(). Most 3234 * other cases should acquire l_icloglock. 3235 */ 3236 log->l_curr_block -= log->l_logBBsize; 3237 ASSERT(log->l_curr_block >= 0); 3238 smp_wmb(); 3239 log->l_curr_cycle++; 3240 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3241 log->l_curr_cycle++; 3242 } 3243 ASSERT(iclog == log->l_iclog); 3244 log->l_iclog = iclog->ic_next; 3245 } /* xlog_state_switch_iclogs */ 3246 3247 /* 3248 * Write out all data in the in-core log as of this exact moment in time. 3249 * 3250 * Data may be written to the in-core log during this call. However, 3251 * we don't guarantee this data will be written out. A change from past 3252 * implementation means this routine will *not* write out zero length LRs. 3253 * 3254 * Basically, we try and perform an intelligent scan of the in-core logs. 3255 * If we determine there is no flushable data, we just return. There is no 3256 * flushable data if: 3257 * 3258 * 1. the current iclog is active and has no data; the previous iclog 3259 * is in the active or dirty state. 3260 * 2. the current iclog is drity, and the previous iclog is in the 3261 * active or dirty state. 3262 * 3263 * We may sleep if: 3264 * 3265 * 1. the current iclog is not in the active nor dirty state. 3266 * 2. the current iclog dirty, and the previous iclog is not in the 3267 * active nor dirty state. 3268 * 3. the current iclog is active, and there is another thread writing 3269 * to this particular iclog. 3270 * 4. a) the current iclog is active and has no other writers 3271 * b) when we return from flushing out this iclog, it is still 3272 * not in the active nor dirty state. 3273 */ 3274 int 3275 _xfs_log_force( 3276 struct xfs_mount *mp, 3277 uint flags, 3278 int *log_flushed) 3279 { 3280 struct xlog *log = mp->m_log; 3281 struct xlog_in_core *iclog; 3282 xfs_lsn_t lsn; 3283 3284 XFS_STATS_INC(mp, xs_log_force); 3285 3286 xlog_cil_force(log); 3287 3288 spin_lock(&log->l_icloglock); 3289 3290 iclog = log->l_iclog; 3291 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3292 spin_unlock(&log->l_icloglock); 3293 return -EIO; 3294 } 3295 3296 /* If the head iclog is not active nor dirty, we just attach 3297 * ourselves to the head and go to sleep. 3298 */ 3299 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3300 iclog->ic_state == XLOG_STATE_DIRTY) { 3301 /* 3302 * If the head is dirty or (active and empty), then 3303 * we need to look at the previous iclog. If the previous 3304 * iclog is active or dirty we are done. There is nothing 3305 * to sync out. Otherwise, we attach ourselves to the 3306 * previous iclog and go to sleep. 3307 */ 3308 if (iclog->ic_state == XLOG_STATE_DIRTY || 3309 (atomic_read(&iclog->ic_refcnt) == 0 3310 && iclog->ic_offset == 0)) { 3311 iclog = iclog->ic_prev; 3312 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3313 iclog->ic_state == XLOG_STATE_DIRTY) 3314 goto no_sleep; 3315 else 3316 goto maybe_sleep; 3317 } else { 3318 if (atomic_read(&iclog->ic_refcnt) == 0) { 3319 /* We are the only one with access to this 3320 * iclog. Flush it out now. There should 3321 * be a roundoff of zero to show that someone 3322 * has already taken care of the roundoff from 3323 * the previous sync. 3324 */ 3325 atomic_inc(&iclog->ic_refcnt); 3326 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3327 xlog_state_switch_iclogs(log, iclog, 0); 3328 spin_unlock(&log->l_icloglock); 3329 3330 if (xlog_state_release_iclog(log, iclog)) 3331 return -EIO; 3332 3333 if (log_flushed) 3334 *log_flushed = 1; 3335 spin_lock(&log->l_icloglock); 3336 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3337 iclog->ic_state != XLOG_STATE_DIRTY) 3338 goto maybe_sleep; 3339 else 3340 goto no_sleep; 3341 } else { 3342 /* Someone else is writing to this iclog. 3343 * Use its call to flush out the data. However, 3344 * the other thread may not force out this LR, 3345 * so we mark it WANT_SYNC. 3346 */ 3347 xlog_state_switch_iclogs(log, iclog, 0); 3348 goto maybe_sleep; 3349 } 3350 } 3351 } 3352 3353 /* By the time we come around again, the iclog could've been filled 3354 * which would give it another lsn. If we have a new lsn, just 3355 * return because the relevant data has been flushed. 3356 */ 3357 maybe_sleep: 3358 if (flags & XFS_LOG_SYNC) { 3359 /* 3360 * We must check if we're shutting down here, before 3361 * we wait, while we're holding the l_icloglock. 3362 * Then we check again after waking up, in case our 3363 * sleep was disturbed by a bad news. 3364 */ 3365 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3366 spin_unlock(&log->l_icloglock); 3367 return -EIO; 3368 } 3369 XFS_STATS_INC(mp, xs_log_force_sleep); 3370 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3371 /* 3372 * No need to grab the log lock here since we're 3373 * only deciding whether or not to return EIO 3374 * and the memory read should be atomic. 3375 */ 3376 if (iclog->ic_state & XLOG_STATE_IOERROR) 3377 return -EIO; 3378 } else { 3379 3380 no_sleep: 3381 spin_unlock(&log->l_icloglock); 3382 } 3383 return 0; 3384 } 3385 3386 /* 3387 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3388 * about errors or whether the log was flushed or not. This is the normal 3389 * interface to use when trying to unpin items or move the log forward. 3390 */ 3391 void 3392 xfs_log_force( 3393 xfs_mount_t *mp, 3394 uint flags) 3395 { 3396 trace_xfs_log_force(mp, 0, _RET_IP_); 3397 _xfs_log_force(mp, flags, NULL); 3398 } 3399 3400 /* 3401 * Force the in-core log to disk for a specific LSN. 3402 * 3403 * Find in-core log with lsn. 3404 * If it is in the DIRTY state, just return. 3405 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3406 * state and go to sleep or return. 3407 * If it is in any other state, go to sleep or return. 3408 * 3409 * Synchronous forces are implemented with a signal variable. All callers 3410 * to force a given lsn to disk will wait on a the sv attached to the 3411 * specific in-core log. When given in-core log finally completes its 3412 * write to disk, that thread will wake up all threads waiting on the 3413 * sv. 3414 */ 3415 int 3416 _xfs_log_force_lsn( 3417 struct xfs_mount *mp, 3418 xfs_lsn_t lsn, 3419 uint flags, 3420 int *log_flushed) 3421 { 3422 struct xlog *log = mp->m_log; 3423 struct xlog_in_core *iclog; 3424 int already_slept = 0; 3425 3426 ASSERT(lsn != 0); 3427 3428 XFS_STATS_INC(mp, xs_log_force); 3429 3430 lsn = xlog_cil_force_lsn(log, lsn); 3431 if (lsn == NULLCOMMITLSN) 3432 return 0; 3433 3434 try_again: 3435 spin_lock(&log->l_icloglock); 3436 iclog = log->l_iclog; 3437 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3438 spin_unlock(&log->l_icloglock); 3439 return -EIO; 3440 } 3441 3442 do { 3443 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3444 iclog = iclog->ic_next; 3445 continue; 3446 } 3447 3448 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3449 spin_unlock(&log->l_icloglock); 3450 return 0; 3451 } 3452 3453 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3454 /* 3455 * We sleep here if we haven't already slept (e.g. 3456 * this is the first time we've looked at the correct 3457 * iclog buf) and the buffer before us is going to 3458 * be sync'ed. The reason for this is that if we 3459 * are doing sync transactions here, by waiting for 3460 * the previous I/O to complete, we can allow a few 3461 * more transactions into this iclog before we close 3462 * it down. 3463 * 3464 * Otherwise, we mark the buffer WANT_SYNC, and bump 3465 * up the refcnt so we can release the log (which 3466 * drops the ref count). The state switch keeps new 3467 * transaction commits from using this buffer. When 3468 * the current commits finish writing into the buffer, 3469 * the refcount will drop to zero and the buffer will 3470 * go out then. 3471 */ 3472 if (!already_slept && 3473 (iclog->ic_prev->ic_state & 3474 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3475 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3476 3477 XFS_STATS_INC(mp, xs_log_force_sleep); 3478 3479 xlog_wait(&iclog->ic_prev->ic_write_wait, 3480 &log->l_icloglock); 3481 already_slept = 1; 3482 goto try_again; 3483 } 3484 atomic_inc(&iclog->ic_refcnt); 3485 xlog_state_switch_iclogs(log, iclog, 0); 3486 spin_unlock(&log->l_icloglock); 3487 if (xlog_state_release_iclog(log, iclog)) 3488 return -EIO; 3489 if (log_flushed) 3490 *log_flushed = 1; 3491 spin_lock(&log->l_icloglock); 3492 } 3493 3494 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3495 !(iclog->ic_state & 3496 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3497 /* 3498 * Don't wait on completion if we know that we've 3499 * gotten a log write error. 3500 */ 3501 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3502 spin_unlock(&log->l_icloglock); 3503 return -EIO; 3504 } 3505 XFS_STATS_INC(mp, xs_log_force_sleep); 3506 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3507 /* 3508 * No need to grab the log lock here since we're 3509 * only deciding whether or not to return EIO 3510 * and the memory read should be atomic. 3511 */ 3512 if (iclog->ic_state & XLOG_STATE_IOERROR) 3513 return -EIO; 3514 } else { /* just return */ 3515 spin_unlock(&log->l_icloglock); 3516 } 3517 3518 return 0; 3519 } while (iclog != log->l_iclog); 3520 3521 spin_unlock(&log->l_icloglock); 3522 return 0; 3523 } 3524 3525 /* 3526 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3527 * about errors or whether the log was flushed or not. This is the normal 3528 * interface to use when trying to unpin items or move the log forward. 3529 */ 3530 void 3531 xfs_log_force_lsn( 3532 xfs_mount_t *mp, 3533 xfs_lsn_t lsn, 3534 uint flags) 3535 { 3536 trace_xfs_log_force(mp, lsn, _RET_IP_); 3537 _xfs_log_force_lsn(mp, lsn, flags, NULL); 3538 } 3539 3540 /* 3541 * Called when we want to mark the current iclog as being ready to sync to 3542 * disk. 3543 */ 3544 STATIC void 3545 xlog_state_want_sync( 3546 struct xlog *log, 3547 struct xlog_in_core *iclog) 3548 { 3549 assert_spin_locked(&log->l_icloglock); 3550 3551 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3552 xlog_state_switch_iclogs(log, iclog, 0); 3553 } else { 3554 ASSERT(iclog->ic_state & 3555 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3556 } 3557 } 3558 3559 3560 /***************************************************************************** 3561 * 3562 * TICKET functions 3563 * 3564 ***************************************************************************** 3565 */ 3566 3567 /* 3568 * Free a used ticket when its refcount falls to zero. 3569 */ 3570 void 3571 xfs_log_ticket_put( 3572 xlog_ticket_t *ticket) 3573 { 3574 ASSERT(atomic_read(&ticket->t_ref) > 0); 3575 if (atomic_dec_and_test(&ticket->t_ref)) 3576 kmem_zone_free(xfs_log_ticket_zone, ticket); 3577 } 3578 3579 xlog_ticket_t * 3580 xfs_log_ticket_get( 3581 xlog_ticket_t *ticket) 3582 { 3583 ASSERT(atomic_read(&ticket->t_ref) > 0); 3584 atomic_inc(&ticket->t_ref); 3585 return ticket; 3586 } 3587 3588 /* 3589 * Figure out the total log space unit (in bytes) that would be 3590 * required for a log ticket. 3591 */ 3592 int 3593 xfs_log_calc_unit_res( 3594 struct xfs_mount *mp, 3595 int unit_bytes) 3596 { 3597 struct xlog *log = mp->m_log; 3598 int iclog_space; 3599 uint num_headers; 3600 3601 /* 3602 * Permanent reservations have up to 'cnt'-1 active log operations 3603 * in the log. A unit in this case is the amount of space for one 3604 * of these log operations. Normal reservations have a cnt of 1 3605 * and their unit amount is the total amount of space required. 3606 * 3607 * The following lines of code account for non-transaction data 3608 * which occupy space in the on-disk log. 3609 * 3610 * Normal form of a transaction is: 3611 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3612 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3613 * 3614 * We need to account for all the leadup data and trailer data 3615 * around the transaction data. 3616 * And then we need to account for the worst case in terms of using 3617 * more space. 3618 * The worst case will happen if: 3619 * - the placement of the transaction happens to be such that the 3620 * roundoff is at its maximum 3621 * - the transaction data is synced before the commit record is synced 3622 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3623 * Therefore the commit record is in its own Log Record. 3624 * This can happen as the commit record is called with its 3625 * own region to xlog_write(). 3626 * This then means that in the worst case, roundoff can happen for 3627 * the commit-rec as well. 3628 * The commit-rec is smaller than padding in this scenario and so it is 3629 * not added separately. 3630 */ 3631 3632 /* for trans header */ 3633 unit_bytes += sizeof(xlog_op_header_t); 3634 unit_bytes += sizeof(xfs_trans_header_t); 3635 3636 /* for start-rec */ 3637 unit_bytes += sizeof(xlog_op_header_t); 3638 3639 /* 3640 * for LR headers - the space for data in an iclog is the size minus 3641 * the space used for the headers. If we use the iclog size, then we 3642 * undercalculate the number of headers required. 3643 * 3644 * Furthermore - the addition of op headers for split-recs might 3645 * increase the space required enough to require more log and op 3646 * headers, so take that into account too. 3647 * 3648 * IMPORTANT: This reservation makes the assumption that if this 3649 * transaction is the first in an iclog and hence has the LR headers 3650 * accounted to it, then the remaining space in the iclog is 3651 * exclusively for this transaction. i.e. if the transaction is larger 3652 * than the iclog, it will be the only thing in that iclog. 3653 * Fundamentally, this means we must pass the entire log vector to 3654 * xlog_write to guarantee this. 3655 */ 3656 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3657 num_headers = howmany(unit_bytes, iclog_space); 3658 3659 /* for split-recs - ophdrs added when data split over LRs */ 3660 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3661 3662 /* add extra header reservations if we overrun */ 3663 while (!num_headers || 3664 howmany(unit_bytes, iclog_space) > num_headers) { 3665 unit_bytes += sizeof(xlog_op_header_t); 3666 num_headers++; 3667 } 3668 unit_bytes += log->l_iclog_hsize * num_headers; 3669 3670 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3671 unit_bytes += log->l_iclog_hsize; 3672 3673 /* for roundoff padding for transaction data and one for commit record */ 3674 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3675 /* log su roundoff */ 3676 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3677 } else { 3678 /* BB roundoff */ 3679 unit_bytes += 2 * BBSIZE; 3680 } 3681 3682 return unit_bytes; 3683 } 3684 3685 /* 3686 * Allocate and initialise a new log ticket. 3687 */ 3688 struct xlog_ticket * 3689 xlog_ticket_alloc( 3690 struct xlog *log, 3691 int unit_bytes, 3692 int cnt, 3693 char client, 3694 bool permanent, 3695 xfs_km_flags_t alloc_flags) 3696 { 3697 struct xlog_ticket *tic; 3698 int unit_res; 3699 3700 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3701 if (!tic) 3702 return NULL; 3703 3704 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3705 3706 atomic_set(&tic->t_ref, 1); 3707 tic->t_task = current; 3708 INIT_LIST_HEAD(&tic->t_queue); 3709 tic->t_unit_res = unit_res; 3710 tic->t_curr_res = unit_res; 3711 tic->t_cnt = cnt; 3712 tic->t_ocnt = cnt; 3713 tic->t_tid = prandom_u32(); 3714 tic->t_clientid = client; 3715 tic->t_flags = XLOG_TIC_INITED; 3716 if (permanent) 3717 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3718 3719 xlog_tic_reset_res(tic); 3720 3721 return tic; 3722 } 3723 3724 3725 /****************************************************************************** 3726 * 3727 * Log debug routines 3728 * 3729 ****************************************************************************** 3730 */ 3731 #if defined(DEBUG) 3732 /* 3733 * Make sure that the destination ptr is within the valid data region of 3734 * one of the iclogs. This uses backup pointers stored in a different 3735 * part of the log in case we trash the log structure. 3736 */ 3737 void 3738 xlog_verify_dest_ptr( 3739 struct xlog *log, 3740 void *ptr) 3741 { 3742 int i; 3743 int good_ptr = 0; 3744 3745 for (i = 0; i < log->l_iclog_bufs; i++) { 3746 if (ptr >= log->l_iclog_bak[i] && 3747 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3748 good_ptr++; 3749 } 3750 3751 if (!good_ptr) 3752 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3753 } 3754 3755 /* 3756 * Check to make sure the grant write head didn't just over lap the tail. If 3757 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3758 * the cycles differ by exactly one and check the byte count. 3759 * 3760 * This check is run unlocked, so can give false positives. Rather than assert 3761 * on failures, use a warn-once flag and a panic tag to allow the admin to 3762 * determine if they want to panic the machine when such an error occurs. For 3763 * debug kernels this will have the same effect as using an assert but, unlinke 3764 * an assert, it can be turned off at runtime. 3765 */ 3766 STATIC void 3767 xlog_verify_grant_tail( 3768 struct xlog *log) 3769 { 3770 int tail_cycle, tail_blocks; 3771 int cycle, space; 3772 3773 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3774 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3775 if (tail_cycle != cycle) { 3776 if (cycle - 1 != tail_cycle && 3777 !(log->l_flags & XLOG_TAIL_WARN)) { 3778 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3779 "%s: cycle - 1 != tail_cycle", __func__); 3780 log->l_flags |= XLOG_TAIL_WARN; 3781 } 3782 3783 if (space > BBTOB(tail_blocks) && 3784 !(log->l_flags & XLOG_TAIL_WARN)) { 3785 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3786 "%s: space > BBTOB(tail_blocks)", __func__); 3787 log->l_flags |= XLOG_TAIL_WARN; 3788 } 3789 } 3790 } 3791 3792 /* check if it will fit */ 3793 STATIC void 3794 xlog_verify_tail_lsn( 3795 struct xlog *log, 3796 struct xlog_in_core *iclog, 3797 xfs_lsn_t tail_lsn) 3798 { 3799 int blocks; 3800 3801 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3802 blocks = 3803 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3804 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3805 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3806 } else { 3807 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3808 3809 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3810 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3811 3812 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3813 if (blocks < BTOBB(iclog->ic_offset) + 1) 3814 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3815 } 3816 } /* xlog_verify_tail_lsn */ 3817 3818 /* 3819 * Perform a number of checks on the iclog before writing to disk. 3820 * 3821 * 1. Make sure the iclogs are still circular 3822 * 2. Make sure we have a good magic number 3823 * 3. Make sure we don't have magic numbers in the data 3824 * 4. Check fields of each log operation header for: 3825 * A. Valid client identifier 3826 * B. tid ptr value falls in valid ptr space (user space code) 3827 * C. Length in log record header is correct according to the 3828 * individual operation headers within record. 3829 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3830 * log, check the preceding blocks of the physical log to make sure all 3831 * the cycle numbers agree with the current cycle number. 3832 */ 3833 STATIC void 3834 xlog_verify_iclog( 3835 struct xlog *log, 3836 struct xlog_in_core *iclog, 3837 int count, 3838 bool syncing) 3839 { 3840 xlog_op_header_t *ophead; 3841 xlog_in_core_t *icptr; 3842 xlog_in_core_2_t *xhdr; 3843 void *base_ptr, *ptr, *p; 3844 ptrdiff_t field_offset; 3845 uint8_t clientid; 3846 int len, i, j, k, op_len; 3847 int idx; 3848 3849 /* check validity of iclog pointers */ 3850 spin_lock(&log->l_icloglock); 3851 icptr = log->l_iclog; 3852 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3853 ASSERT(icptr); 3854 3855 if (icptr != log->l_iclog) 3856 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3857 spin_unlock(&log->l_icloglock); 3858 3859 /* check log magic numbers */ 3860 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3861 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3862 3863 base_ptr = ptr = &iclog->ic_header; 3864 p = &iclog->ic_header; 3865 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3866 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3867 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3868 __func__); 3869 } 3870 3871 /* check fields */ 3872 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3873 base_ptr = ptr = iclog->ic_datap; 3874 ophead = ptr; 3875 xhdr = iclog->ic_data; 3876 for (i = 0; i < len; i++) { 3877 ophead = ptr; 3878 3879 /* clientid is only 1 byte */ 3880 p = &ophead->oh_clientid; 3881 field_offset = p - base_ptr; 3882 if (!syncing || (field_offset & 0x1ff)) { 3883 clientid = ophead->oh_clientid; 3884 } else { 3885 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3886 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3887 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3888 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3889 clientid = xlog_get_client_id( 3890 xhdr[j].hic_xheader.xh_cycle_data[k]); 3891 } else { 3892 clientid = xlog_get_client_id( 3893 iclog->ic_header.h_cycle_data[idx]); 3894 } 3895 } 3896 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3897 xfs_warn(log->l_mp, 3898 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3899 __func__, clientid, ophead, 3900 (unsigned long)field_offset); 3901 3902 /* check length */ 3903 p = &ophead->oh_len; 3904 field_offset = p - base_ptr; 3905 if (!syncing || (field_offset & 0x1ff)) { 3906 op_len = be32_to_cpu(ophead->oh_len); 3907 } else { 3908 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3909 (uintptr_t)iclog->ic_datap); 3910 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3911 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3912 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3913 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3914 } else { 3915 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3916 } 3917 } 3918 ptr += sizeof(xlog_op_header_t) + op_len; 3919 } 3920 } /* xlog_verify_iclog */ 3921 #endif 3922 3923 /* 3924 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3925 */ 3926 STATIC int 3927 xlog_state_ioerror( 3928 struct xlog *log) 3929 { 3930 xlog_in_core_t *iclog, *ic; 3931 3932 iclog = log->l_iclog; 3933 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3934 /* 3935 * Mark all the incore logs IOERROR. 3936 * From now on, no log flushes will result. 3937 */ 3938 ic = iclog; 3939 do { 3940 ic->ic_state = XLOG_STATE_IOERROR; 3941 ic = ic->ic_next; 3942 } while (ic != iclog); 3943 return 0; 3944 } 3945 /* 3946 * Return non-zero, if state transition has already happened. 3947 */ 3948 return 1; 3949 } 3950 3951 /* 3952 * This is called from xfs_force_shutdown, when we're forcibly 3953 * shutting down the filesystem, typically because of an IO error. 3954 * Our main objectives here are to make sure that: 3955 * a. if !logerror, flush the logs to disk. Anything modified 3956 * after this is ignored. 3957 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3958 * parties to find out, 'atomically'. 3959 * c. those who're sleeping on log reservations, pinned objects and 3960 * other resources get woken up, and be told the bad news. 3961 * d. nothing new gets queued up after (b) and (c) are done. 3962 * 3963 * Note: for the !logerror case we need to flush the regions held in memory out 3964 * to disk first. This needs to be done before the log is marked as shutdown, 3965 * otherwise the iclog writes will fail. 3966 */ 3967 int 3968 xfs_log_force_umount( 3969 struct xfs_mount *mp, 3970 int logerror) 3971 { 3972 struct xlog *log; 3973 int retval; 3974 3975 log = mp->m_log; 3976 3977 /* 3978 * If this happens during log recovery, don't worry about 3979 * locking; the log isn't open for business yet. 3980 */ 3981 if (!log || 3982 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3983 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3984 if (mp->m_sb_bp) 3985 mp->m_sb_bp->b_flags |= XBF_DONE; 3986 return 0; 3987 } 3988 3989 /* 3990 * Somebody could've already done the hard work for us. 3991 * No need to get locks for this. 3992 */ 3993 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3994 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3995 return 1; 3996 } 3997 3998 /* 3999 * Flush all the completed transactions to disk before marking the log 4000 * being shut down. We need to do it in this order to ensure that 4001 * completed operations are safely on disk before we shut down, and that 4002 * we don't have to issue any buffer IO after the shutdown flags are set 4003 * to guarantee this. 4004 */ 4005 if (!logerror) 4006 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 4007 4008 /* 4009 * mark the filesystem and the as in a shutdown state and wake 4010 * everybody up to tell them the bad news. 4011 */ 4012 spin_lock(&log->l_icloglock); 4013 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 4014 if (mp->m_sb_bp) 4015 mp->m_sb_bp->b_flags |= XBF_DONE; 4016 4017 /* 4018 * Mark the log and the iclogs with IO error flags to prevent any 4019 * further log IO from being issued or completed. 4020 */ 4021 log->l_flags |= XLOG_IO_ERROR; 4022 retval = xlog_state_ioerror(log); 4023 spin_unlock(&log->l_icloglock); 4024 4025 /* 4026 * We don't want anybody waiting for log reservations after this. That 4027 * means we have to wake up everybody queued up on reserveq as well as 4028 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 4029 * we don't enqueue anything once the SHUTDOWN flag is set, and this 4030 * action is protected by the grant locks. 4031 */ 4032 xlog_grant_head_wake_all(&log->l_reserve_head); 4033 xlog_grant_head_wake_all(&log->l_write_head); 4034 4035 /* 4036 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4037 * as if the log writes were completed. The abort handling in the log 4038 * item committed callback functions will do this again under lock to 4039 * avoid races. 4040 */ 4041 wake_up_all(&log->l_cilp->xc_commit_wait); 4042 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4043 4044 #ifdef XFSERRORDEBUG 4045 { 4046 xlog_in_core_t *iclog; 4047 4048 spin_lock(&log->l_icloglock); 4049 iclog = log->l_iclog; 4050 do { 4051 ASSERT(iclog->ic_callback == 0); 4052 iclog = iclog->ic_next; 4053 } while (iclog != log->l_iclog); 4054 spin_unlock(&log->l_icloglock); 4055 } 4056 #endif 4057 /* return non-zero if log IOERROR transition had already happened */ 4058 return retval; 4059 } 4060 4061 STATIC int 4062 xlog_iclogs_empty( 4063 struct xlog *log) 4064 { 4065 xlog_in_core_t *iclog; 4066 4067 iclog = log->l_iclog; 4068 do { 4069 /* endianness does not matter here, zero is zero in 4070 * any language. 4071 */ 4072 if (iclog->ic_header.h_num_logops) 4073 return 0; 4074 iclog = iclog->ic_next; 4075 } while (iclog != log->l_iclog); 4076 return 1; 4077 } 4078 4079 /* 4080 * Verify that an LSN stamped into a piece of metadata is valid. This is 4081 * intended for use in read verifiers on v5 superblocks. 4082 */ 4083 bool 4084 xfs_log_check_lsn( 4085 struct xfs_mount *mp, 4086 xfs_lsn_t lsn) 4087 { 4088 struct xlog *log = mp->m_log; 4089 bool valid; 4090 4091 /* 4092 * norecovery mode skips mount-time log processing and unconditionally 4093 * resets the in-core LSN. We can't validate in this mode, but 4094 * modifications are not allowed anyways so just return true. 4095 */ 4096 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4097 return true; 4098 4099 /* 4100 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4101 * handled by recovery and thus safe to ignore here. 4102 */ 4103 if (lsn == NULLCOMMITLSN) 4104 return true; 4105 4106 valid = xlog_valid_lsn(mp->m_log, lsn); 4107 4108 /* warn the user about what's gone wrong before verifier failure */ 4109 if (!valid) { 4110 spin_lock(&log->l_icloglock); 4111 xfs_warn(mp, 4112 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4113 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4114 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4115 log->l_curr_cycle, log->l_curr_block); 4116 spin_unlock(&log->l_icloglock); 4117 } 4118 4119 return valid; 4120 } 4121