xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 05bcf503)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	char			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	boolean_t		syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes)
259 {
260 	list_add_tail(&tic->t_queue, &head->waiters);
261 
262 	do {
263 		if (XLOG_FORCED_SHUTDOWN(log))
264 			goto shutdown;
265 		xlog_grant_push_ail(log, need_bytes);
266 
267 		__set_current_state(TASK_UNINTERRUPTIBLE);
268 		spin_unlock(&head->lock);
269 
270 		XFS_STATS_INC(xs_sleep_logspace);
271 
272 		trace_xfs_log_grant_sleep(log, tic);
273 		schedule();
274 		trace_xfs_log_grant_wake(log, tic);
275 
276 		spin_lock(&head->lock);
277 		if (XLOG_FORCED_SHUTDOWN(log))
278 			goto shutdown;
279 	} while (xlog_space_left(log, &head->grant) < need_bytes);
280 
281 	list_del_init(&tic->t_queue);
282 	return 0;
283 shutdown:
284 	list_del_init(&tic->t_queue);
285 	return XFS_ERROR(EIO);
286 }
287 
288 /*
289  * Atomically get the log space required for a log ticket.
290  *
291  * Once a ticket gets put onto head->waiters, it will only return after the
292  * needed reservation is satisfied.
293  *
294  * This function is structured so that it has a lock free fast path. This is
295  * necessary because every new transaction reservation will come through this
296  * path. Hence any lock will be globally hot if we take it unconditionally on
297  * every pass.
298  *
299  * As tickets are only ever moved on and off head->waiters under head->lock, we
300  * only need to take that lock if we are going to add the ticket to the queue
301  * and sleep. We can avoid taking the lock if the ticket was never added to
302  * head->waiters because the t_queue list head will be empty and we hold the
303  * only reference to it so it can safely be checked unlocked.
304  */
305 STATIC int
306 xlog_grant_head_check(
307 	struct xlog		*log,
308 	struct xlog_grant_head	*head,
309 	struct xlog_ticket	*tic,
310 	int			*need_bytes)
311 {
312 	int			free_bytes;
313 	int			error = 0;
314 
315 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
316 
317 	/*
318 	 * If there are other waiters on the queue then give them a chance at
319 	 * logspace before us.  Wake up the first waiters, if we do not wake
320 	 * up all the waiters then go to sleep waiting for more free space,
321 	 * otherwise try to get some space for this transaction.
322 	 */
323 	*need_bytes = xlog_ticket_reservation(log, head, tic);
324 	free_bytes = xlog_space_left(log, &head->grant);
325 	if (!list_empty_careful(&head->waiters)) {
326 		spin_lock(&head->lock);
327 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
328 		    free_bytes < *need_bytes) {
329 			error = xlog_grant_head_wait(log, head, tic,
330 						     *need_bytes);
331 		}
332 		spin_unlock(&head->lock);
333 	} else if (free_bytes < *need_bytes) {
334 		spin_lock(&head->lock);
335 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
336 		spin_unlock(&head->lock);
337 	}
338 
339 	return error;
340 }
341 
342 static void
343 xlog_tic_reset_res(xlog_ticket_t *tic)
344 {
345 	tic->t_res_num = 0;
346 	tic->t_res_arr_sum = 0;
347 	tic->t_res_num_ophdrs = 0;
348 }
349 
350 static void
351 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
352 {
353 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
354 		/* add to overflow and start again */
355 		tic->t_res_o_flow += tic->t_res_arr_sum;
356 		tic->t_res_num = 0;
357 		tic->t_res_arr_sum = 0;
358 	}
359 
360 	tic->t_res_arr[tic->t_res_num].r_len = len;
361 	tic->t_res_arr[tic->t_res_num].r_type = type;
362 	tic->t_res_arr_sum += len;
363 	tic->t_res_num++;
364 }
365 
366 /*
367  * Replenish the byte reservation required by moving the grant write head.
368  */
369 int
370 xfs_log_regrant(
371 	struct xfs_mount	*mp,
372 	struct xlog_ticket	*tic)
373 {
374 	struct xlog		*log = mp->m_log;
375 	int			need_bytes;
376 	int			error = 0;
377 
378 	if (XLOG_FORCED_SHUTDOWN(log))
379 		return XFS_ERROR(EIO);
380 
381 	XFS_STATS_INC(xs_try_logspace);
382 
383 	/*
384 	 * This is a new transaction on the ticket, so we need to change the
385 	 * transaction ID so that the next transaction has a different TID in
386 	 * the log. Just add one to the existing tid so that we can see chains
387 	 * of rolling transactions in the log easily.
388 	 */
389 	tic->t_tid++;
390 
391 	xlog_grant_push_ail(log, tic->t_unit_res);
392 
393 	tic->t_curr_res = tic->t_unit_res;
394 	xlog_tic_reset_res(tic);
395 
396 	if (tic->t_cnt > 0)
397 		return 0;
398 
399 	trace_xfs_log_regrant(log, tic);
400 
401 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
402 				      &need_bytes);
403 	if (error)
404 		goto out_error;
405 
406 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
407 	trace_xfs_log_regrant_exit(log, tic);
408 	xlog_verify_grant_tail(log);
409 	return 0;
410 
411 out_error:
412 	/*
413 	 * If we are failing, make sure the ticket doesn't have any current
414 	 * reservations.  We don't want to add this back when the ticket/
415 	 * transaction gets cancelled.
416 	 */
417 	tic->t_curr_res = 0;
418 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
419 	return error;
420 }
421 
422 /*
423  * Reserve log space and return a ticket corresponding the reservation.
424  *
425  * Each reservation is going to reserve extra space for a log record header.
426  * When writes happen to the on-disk log, we don't subtract the length of the
427  * log record header from any reservation.  By wasting space in each
428  * reservation, we prevent over allocation problems.
429  */
430 int
431 xfs_log_reserve(
432 	struct xfs_mount	*mp,
433 	int		 	unit_bytes,
434 	int		 	cnt,
435 	struct xlog_ticket	**ticp,
436 	__uint8_t	 	client,
437 	bool			permanent,
438 	uint		 	t_type)
439 {
440 	struct xlog		*log = mp->m_log;
441 	struct xlog_ticket	*tic;
442 	int			need_bytes;
443 	int			error = 0;
444 
445 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446 
447 	if (XLOG_FORCED_SHUTDOWN(log))
448 		return XFS_ERROR(EIO);
449 
450 	XFS_STATS_INC(xs_try_logspace);
451 
452 	ASSERT(*ticp == NULL);
453 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 				KM_SLEEP | KM_MAYFAIL);
455 	if (!tic)
456 		return XFS_ERROR(ENOMEM);
457 
458 	tic->t_trans_type = t_type;
459 	*ticp = tic;
460 
461 	xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
462 
463 	trace_xfs_log_reserve(log, tic);
464 
465 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 				      &need_bytes);
467 	if (error)
468 		goto out_error;
469 
470 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 	trace_xfs_log_reserve_exit(log, tic);
473 	xlog_verify_grant_tail(log);
474 	return 0;
475 
476 out_error:
477 	/*
478 	 * If we are failing, make sure the ticket doesn't have any current
479 	 * reservations.  We don't want to add this back when the ticket/
480 	 * transaction gets cancelled.
481 	 */
482 	tic->t_curr_res = 0;
483 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
484 	return error;
485 }
486 
487 
488 /*
489  * NOTES:
490  *
491  *	1. currblock field gets updated at startup and after in-core logs
492  *		marked as with WANT_SYNC.
493  */
494 
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511 	struct xfs_mount	*mp,
512 	struct xlog_ticket	*ticket,
513 	struct xlog_in_core	**iclog,
514 	uint			flags)
515 {
516 	struct xlog		*log = mp->m_log;
517 	xfs_lsn_t		lsn = 0;
518 
519 	if (XLOG_FORCED_SHUTDOWN(log) ||
520 	    /*
521 	     * If nothing was ever written, don't write out commit record.
522 	     * If we get an error, just continue and give back the log ticket.
523 	     */
524 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 		lsn = (xfs_lsn_t) -1;
527 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
528 			flags |= XFS_LOG_REL_PERM_RESERV;
529 		}
530 	}
531 
532 
533 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
534 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
535 		trace_xfs_log_done_nonperm(log, ticket);
536 
537 		/*
538 		 * Release ticket if not permanent reservation or a specific
539 		 * request has been made to release a permanent reservation.
540 		 */
541 		xlog_ungrant_log_space(log, ticket);
542 		xfs_log_ticket_put(ticket);
543 	} else {
544 		trace_xfs_log_done_perm(log, ticket);
545 
546 		xlog_regrant_reserve_log_space(log, ticket);
547 		/* If this ticket was a permanent reservation and we aren't
548 		 * trying to release it, reset the inited flags; so next time
549 		 * we write, a start record will be written out.
550 		 */
551 		ticket->t_flags |= XLOG_TIC_INITED;
552 	}
553 
554 	return lsn;
555 }
556 
557 /*
558  * Attaches a new iclog I/O completion callback routine during
559  * transaction commit.  If the log is in error state, a non-zero
560  * return code is handed back and the caller is responsible for
561  * executing the callback at an appropriate time.
562  */
563 int
564 xfs_log_notify(
565 	struct xfs_mount	*mp,
566 	struct xlog_in_core	*iclog,
567 	xfs_log_callback_t	*cb)
568 {
569 	int	abortflg;
570 
571 	spin_lock(&iclog->ic_callback_lock);
572 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
573 	if (!abortflg) {
574 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
575 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
576 		cb->cb_next = NULL;
577 		*(iclog->ic_callback_tail) = cb;
578 		iclog->ic_callback_tail = &(cb->cb_next);
579 	}
580 	spin_unlock(&iclog->ic_callback_lock);
581 	return abortflg;
582 }
583 
584 int
585 xfs_log_release_iclog(
586 	struct xfs_mount	*mp,
587 	struct xlog_in_core	*iclog)
588 {
589 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
590 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
591 		return EIO;
592 	}
593 
594 	return 0;
595 }
596 
597 /*
598  * Mount a log filesystem
599  *
600  * mp		- ubiquitous xfs mount point structure
601  * log_target	- buftarg of on-disk log device
602  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
603  * num_bblocks	- Number of BBSIZE blocks in on-disk log
604  *
605  * Return error or zero.
606  */
607 int
608 xfs_log_mount(
609 	xfs_mount_t	*mp,
610 	xfs_buftarg_t	*log_target,
611 	xfs_daddr_t	blk_offset,
612 	int		num_bblks)
613 {
614 	int		error;
615 
616 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
617 		xfs_notice(mp, "Mounting Filesystem");
618 	else {
619 		xfs_notice(mp,
620 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
621 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 	}
623 
624 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 	if (IS_ERR(mp->m_log)) {
626 		error = -PTR_ERR(mp->m_log);
627 		goto out;
628 	}
629 
630 	/*
631 	 * Initialize the AIL now we have a log.
632 	 */
633 	error = xfs_trans_ail_init(mp);
634 	if (error) {
635 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
636 		goto out_free_log;
637 	}
638 	mp->m_log->l_ailp = mp->m_ail;
639 
640 	/*
641 	 * skip log recovery on a norecovery mount.  pretend it all
642 	 * just worked.
643 	 */
644 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
645 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
646 
647 		if (readonly)
648 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
649 
650 		error = xlog_recover(mp->m_log);
651 
652 		if (readonly)
653 			mp->m_flags |= XFS_MOUNT_RDONLY;
654 		if (error) {
655 			xfs_warn(mp, "log mount/recovery failed: error %d",
656 				error);
657 			goto out_destroy_ail;
658 		}
659 	}
660 
661 	/* Normal transactions can now occur */
662 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
663 
664 	/*
665 	 * Now the log has been fully initialised and we know were our
666 	 * space grant counters are, we can initialise the permanent ticket
667 	 * needed for delayed logging to work.
668 	 */
669 	xlog_cil_init_post_recovery(mp->m_log);
670 
671 	return 0;
672 
673 out_destroy_ail:
674 	xfs_trans_ail_destroy(mp);
675 out_free_log:
676 	xlog_dealloc_log(mp->m_log);
677 out:
678 	return error;
679 }
680 
681 /*
682  * Finish the recovery of the file system.  This is separate from
683  * the xfs_log_mount() call, because it depends on the code in
684  * xfs_mountfs() to read in the root and real-time bitmap inodes
685  * between calling xfs_log_mount() and here.
686  *
687  * mp		- ubiquitous xfs mount point structure
688  */
689 int
690 xfs_log_mount_finish(xfs_mount_t *mp)
691 {
692 	int	error;
693 
694 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
695 		error = xlog_recover_finish(mp->m_log);
696 	else {
697 		error = 0;
698 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
699 	}
700 
701 	return error;
702 }
703 
704 /*
705  * Final log writes as part of unmount.
706  *
707  * Mark the filesystem clean as unmount happens.  Note that during relocation
708  * this routine needs to be executed as part of source-bag while the
709  * deallocation must not be done until source-end.
710  */
711 
712 /*
713  * Unmount record used to have a string "Unmount filesystem--" in the
714  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
715  * We just write the magic number now since that particular field isn't
716  * currently architecture converted and "nUmount" is a bit foo.
717  * As far as I know, there weren't any dependencies on the old behaviour.
718  */
719 
720 int
721 xfs_log_unmount_write(xfs_mount_t *mp)
722 {
723 	struct xlog	 *log = mp->m_log;
724 	xlog_in_core_t	 *iclog;
725 #ifdef DEBUG
726 	xlog_in_core_t	 *first_iclog;
727 #endif
728 	xlog_ticket_t	*tic = NULL;
729 	xfs_lsn_t	 lsn;
730 	int		 error;
731 
732 	/*
733 	 * Don't write out unmount record on read-only mounts.
734 	 * Or, if we are doing a forced umount (typically because of IO errors).
735 	 */
736 	if (mp->m_flags & XFS_MOUNT_RDONLY)
737 		return 0;
738 
739 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
740 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
741 
742 #ifdef DEBUG
743 	first_iclog = iclog = log->l_iclog;
744 	do {
745 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
746 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
747 			ASSERT(iclog->ic_offset == 0);
748 		}
749 		iclog = iclog->ic_next;
750 	} while (iclog != first_iclog);
751 #endif
752 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
753 		error = xfs_log_reserve(mp, 600, 1, &tic,
754 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
755 		if (!error) {
756 			/* the data section must be 32 bit size aligned */
757 			struct {
758 			    __uint16_t magic;
759 			    __uint16_t pad1;
760 			    __uint32_t pad2; /* may as well make it 64 bits */
761 			} magic = {
762 				.magic = XLOG_UNMOUNT_TYPE,
763 			};
764 			struct xfs_log_iovec reg = {
765 				.i_addr = &magic,
766 				.i_len = sizeof(magic),
767 				.i_type = XLOG_REG_TYPE_UNMOUNT,
768 			};
769 			struct xfs_log_vec vec = {
770 				.lv_niovecs = 1,
771 				.lv_iovecp = &reg,
772 			};
773 
774 			/* remove inited flag, and account for space used */
775 			tic->t_flags = 0;
776 			tic->t_curr_res -= sizeof(magic);
777 			error = xlog_write(log, &vec, tic, &lsn,
778 					   NULL, XLOG_UNMOUNT_TRANS);
779 			/*
780 			 * At this point, we're umounting anyway,
781 			 * so there's no point in transitioning log state
782 			 * to IOERROR. Just continue...
783 			 */
784 		}
785 
786 		if (error)
787 			xfs_alert(mp, "%s: unmount record failed", __func__);
788 
789 
790 		spin_lock(&log->l_icloglock);
791 		iclog = log->l_iclog;
792 		atomic_inc(&iclog->ic_refcnt);
793 		xlog_state_want_sync(log, iclog);
794 		spin_unlock(&log->l_icloglock);
795 		error = xlog_state_release_iclog(log, iclog);
796 
797 		spin_lock(&log->l_icloglock);
798 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
799 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
800 			if (!XLOG_FORCED_SHUTDOWN(log)) {
801 				xlog_wait(&iclog->ic_force_wait,
802 							&log->l_icloglock);
803 			} else {
804 				spin_unlock(&log->l_icloglock);
805 			}
806 		} else {
807 			spin_unlock(&log->l_icloglock);
808 		}
809 		if (tic) {
810 			trace_xfs_log_umount_write(log, tic);
811 			xlog_ungrant_log_space(log, tic);
812 			xfs_log_ticket_put(tic);
813 		}
814 	} else {
815 		/*
816 		 * We're already in forced_shutdown mode, couldn't
817 		 * even attempt to write out the unmount transaction.
818 		 *
819 		 * Go through the motions of sync'ing and releasing
820 		 * the iclog, even though no I/O will actually happen,
821 		 * we need to wait for other log I/Os that may already
822 		 * be in progress.  Do this as a separate section of
823 		 * code so we'll know if we ever get stuck here that
824 		 * we're in this odd situation of trying to unmount
825 		 * a file system that went into forced_shutdown as
826 		 * the result of an unmount..
827 		 */
828 		spin_lock(&log->l_icloglock);
829 		iclog = log->l_iclog;
830 		atomic_inc(&iclog->ic_refcnt);
831 
832 		xlog_state_want_sync(log, iclog);
833 		spin_unlock(&log->l_icloglock);
834 		error =  xlog_state_release_iclog(log, iclog);
835 
836 		spin_lock(&log->l_icloglock);
837 
838 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
839 			|| iclog->ic_state == XLOG_STATE_DIRTY
840 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
841 
842 				xlog_wait(&iclog->ic_force_wait,
843 							&log->l_icloglock);
844 		} else {
845 			spin_unlock(&log->l_icloglock);
846 		}
847 	}
848 
849 	return error;
850 }	/* xfs_log_unmount_write */
851 
852 /*
853  * Deallocate log structures for unmount/relocation.
854  *
855  * We need to stop the aild from running before we destroy
856  * and deallocate the log as the aild references the log.
857  */
858 void
859 xfs_log_unmount(xfs_mount_t *mp)
860 {
861 	cancel_delayed_work_sync(&mp->m_sync_work);
862 	xfs_trans_ail_destroy(mp);
863 	xlog_dealloc_log(mp->m_log);
864 }
865 
866 void
867 xfs_log_item_init(
868 	struct xfs_mount	*mp,
869 	struct xfs_log_item	*item,
870 	int			type,
871 	const struct xfs_item_ops *ops)
872 {
873 	item->li_mountp = mp;
874 	item->li_ailp = mp->m_ail;
875 	item->li_type = type;
876 	item->li_ops = ops;
877 	item->li_lv = NULL;
878 
879 	INIT_LIST_HEAD(&item->li_ail);
880 	INIT_LIST_HEAD(&item->li_cil);
881 }
882 
883 /*
884  * Wake up processes waiting for log space after we have moved the log tail.
885  */
886 void
887 xfs_log_space_wake(
888 	struct xfs_mount	*mp)
889 {
890 	struct xlog		*log = mp->m_log;
891 	int			free_bytes;
892 
893 	if (XLOG_FORCED_SHUTDOWN(log))
894 		return;
895 
896 	if (!list_empty_careful(&log->l_write_head.waiters)) {
897 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
898 
899 		spin_lock(&log->l_write_head.lock);
900 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
901 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
902 		spin_unlock(&log->l_write_head.lock);
903 	}
904 
905 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
906 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
907 
908 		spin_lock(&log->l_reserve_head.lock);
909 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
910 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
911 		spin_unlock(&log->l_reserve_head.lock);
912 	}
913 }
914 
915 /*
916  * Determine if we have a transaction that has gone to disk
917  * that needs to be covered. To begin the transition to the idle state
918  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
919  * If we are then in a state where covering is needed, the caller is informed
920  * that dummy transactions are required to move the log into the idle state.
921  *
922  * Because this is called as part of the sync process, we should also indicate
923  * that dummy transactions should be issued in anything but the covered or
924  * idle states. This ensures that the log tail is accurately reflected in
925  * the log at the end of the sync, hence if a crash occurrs avoids replay
926  * of transactions where the metadata is already on disk.
927  */
928 int
929 xfs_log_need_covered(xfs_mount_t *mp)
930 {
931 	int		needed = 0;
932 	struct xlog	*log = mp->m_log;
933 
934 	if (!xfs_fs_writable(mp))
935 		return 0;
936 
937 	spin_lock(&log->l_icloglock);
938 	switch (log->l_covered_state) {
939 	case XLOG_STATE_COVER_DONE:
940 	case XLOG_STATE_COVER_DONE2:
941 	case XLOG_STATE_COVER_IDLE:
942 		break;
943 	case XLOG_STATE_COVER_NEED:
944 	case XLOG_STATE_COVER_NEED2:
945 		if (!xfs_ail_min_lsn(log->l_ailp) &&
946 		    xlog_iclogs_empty(log)) {
947 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
948 				log->l_covered_state = XLOG_STATE_COVER_DONE;
949 			else
950 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
951 		}
952 		/* FALLTHRU */
953 	default:
954 		needed = 1;
955 		break;
956 	}
957 	spin_unlock(&log->l_icloglock);
958 	return needed;
959 }
960 
961 /*
962  * We may be holding the log iclog lock upon entering this routine.
963  */
964 xfs_lsn_t
965 xlog_assign_tail_lsn_locked(
966 	struct xfs_mount	*mp)
967 {
968 	struct xlog		*log = mp->m_log;
969 	struct xfs_log_item	*lip;
970 	xfs_lsn_t		tail_lsn;
971 
972 	assert_spin_locked(&mp->m_ail->xa_lock);
973 
974 	/*
975 	 * To make sure we always have a valid LSN for the log tail we keep
976 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
977 	 * and use that when the AIL was empty.
978 	 */
979 	lip = xfs_ail_min(mp->m_ail);
980 	if (lip)
981 		tail_lsn = lip->li_lsn;
982 	else
983 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
984 	atomic64_set(&log->l_tail_lsn, tail_lsn);
985 	return tail_lsn;
986 }
987 
988 xfs_lsn_t
989 xlog_assign_tail_lsn(
990 	struct xfs_mount	*mp)
991 {
992 	xfs_lsn_t		tail_lsn;
993 
994 	spin_lock(&mp->m_ail->xa_lock);
995 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
996 	spin_unlock(&mp->m_ail->xa_lock);
997 
998 	return tail_lsn;
999 }
1000 
1001 /*
1002  * Return the space in the log between the tail and the head.  The head
1003  * is passed in the cycle/bytes formal parms.  In the special case where
1004  * the reserve head has wrapped passed the tail, this calculation is no
1005  * longer valid.  In this case, just return 0 which means there is no space
1006  * in the log.  This works for all places where this function is called
1007  * with the reserve head.  Of course, if the write head were to ever
1008  * wrap the tail, we should blow up.  Rather than catch this case here,
1009  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1010  *
1011  * This code also handles the case where the reservation head is behind
1012  * the tail.  The details of this case are described below, but the end
1013  * result is that we return the size of the log as the amount of space left.
1014  */
1015 STATIC int
1016 xlog_space_left(
1017 	struct xlog	*log,
1018 	atomic64_t	*head)
1019 {
1020 	int		free_bytes;
1021 	int		tail_bytes;
1022 	int		tail_cycle;
1023 	int		head_cycle;
1024 	int		head_bytes;
1025 
1026 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1027 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1028 	tail_bytes = BBTOB(tail_bytes);
1029 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1030 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1031 	else if (tail_cycle + 1 < head_cycle)
1032 		return 0;
1033 	else if (tail_cycle < head_cycle) {
1034 		ASSERT(tail_cycle == (head_cycle - 1));
1035 		free_bytes = tail_bytes - head_bytes;
1036 	} else {
1037 		/*
1038 		 * The reservation head is behind the tail.
1039 		 * In this case we just want to return the size of the
1040 		 * log as the amount of space left.
1041 		 */
1042 		xfs_alert(log->l_mp,
1043 			"xlog_space_left: head behind tail\n"
1044 			"  tail_cycle = %d, tail_bytes = %d\n"
1045 			"  GH   cycle = %d, GH   bytes = %d",
1046 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1047 		ASSERT(0);
1048 		free_bytes = log->l_logsize;
1049 	}
1050 	return free_bytes;
1051 }
1052 
1053 
1054 /*
1055  * Log function which is called when an io completes.
1056  *
1057  * The log manager needs its own routine, in order to control what
1058  * happens with the buffer after the write completes.
1059  */
1060 void
1061 xlog_iodone(xfs_buf_t *bp)
1062 {
1063 	struct xlog_in_core	*iclog = bp->b_fspriv;
1064 	struct xlog		*l = iclog->ic_log;
1065 	int			aborted = 0;
1066 
1067 	/*
1068 	 * Race to shutdown the filesystem if we see an error.
1069 	 */
1070 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1071 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1072 		xfs_buf_ioerror_alert(bp, __func__);
1073 		xfs_buf_stale(bp);
1074 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1075 		/*
1076 		 * This flag will be propagated to the trans-committed
1077 		 * callback routines to let them know that the log-commit
1078 		 * didn't succeed.
1079 		 */
1080 		aborted = XFS_LI_ABORTED;
1081 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1082 		aborted = XFS_LI_ABORTED;
1083 	}
1084 
1085 	/* log I/O is always issued ASYNC */
1086 	ASSERT(XFS_BUF_ISASYNC(bp));
1087 	xlog_state_done_syncing(iclog, aborted);
1088 	/*
1089 	 * do not reference the buffer (bp) here as we could race
1090 	 * with it being freed after writing the unmount record to the
1091 	 * log.
1092 	 */
1093 
1094 }	/* xlog_iodone */
1095 
1096 /*
1097  * Return size of each in-core log record buffer.
1098  *
1099  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1100  *
1101  * If the filesystem blocksize is too large, we may need to choose a
1102  * larger size since the directory code currently logs entire blocks.
1103  */
1104 
1105 STATIC void
1106 xlog_get_iclog_buffer_size(
1107 	struct xfs_mount	*mp,
1108 	struct xlog		*log)
1109 {
1110 	int size;
1111 	int xhdrs;
1112 
1113 	if (mp->m_logbufs <= 0)
1114 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1115 	else
1116 		log->l_iclog_bufs = mp->m_logbufs;
1117 
1118 	/*
1119 	 * Buffer size passed in from mount system call.
1120 	 */
1121 	if (mp->m_logbsize > 0) {
1122 		size = log->l_iclog_size = mp->m_logbsize;
1123 		log->l_iclog_size_log = 0;
1124 		while (size != 1) {
1125 			log->l_iclog_size_log++;
1126 			size >>= 1;
1127 		}
1128 
1129 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1130 			/* # headers = size / 32k
1131 			 * one header holds cycles from 32k of data
1132 			 */
1133 
1134 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1135 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1136 				xhdrs++;
1137 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1138 			log->l_iclog_heads = xhdrs;
1139 		} else {
1140 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1141 			log->l_iclog_hsize = BBSIZE;
1142 			log->l_iclog_heads = 1;
1143 		}
1144 		goto done;
1145 	}
1146 
1147 	/* All machines use 32kB buffers by default. */
1148 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1149 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1150 
1151 	/* the default log size is 16k or 32k which is one header sector */
1152 	log->l_iclog_hsize = BBSIZE;
1153 	log->l_iclog_heads = 1;
1154 
1155 done:
1156 	/* are we being asked to make the sizes selected above visible? */
1157 	if (mp->m_logbufs == 0)
1158 		mp->m_logbufs = log->l_iclog_bufs;
1159 	if (mp->m_logbsize == 0)
1160 		mp->m_logbsize = log->l_iclog_size;
1161 }	/* xlog_get_iclog_buffer_size */
1162 
1163 
1164 /*
1165  * This routine initializes some of the log structure for a given mount point.
1166  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1167  * some other stuff may be filled in too.
1168  */
1169 STATIC struct xlog *
1170 xlog_alloc_log(
1171 	struct xfs_mount	*mp,
1172 	struct xfs_buftarg	*log_target,
1173 	xfs_daddr_t		blk_offset,
1174 	int			num_bblks)
1175 {
1176 	struct xlog		*log;
1177 	xlog_rec_header_t	*head;
1178 	xlog_in_core_t		**iclogp;
1179 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1180 	xfs_buf_t		*bp;
1181 	int			i;
1182 	int			error = ENOMEM;
1183 	uint			log2_size = 0;
1184 
1185 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1186 	if (!log) {
1187 		xfs_warn(mp, "Log allocation failed: No memory!");
1188 		goto out;
1189 	}
1190 
1191 	log->l_mp	   = mp;
1192 	log->l_targ	   = log_target;
1193 	log->l_logsize     = BBTOB(num_bblks);
1194 	log->l_logBBstart  = blk_offset;
1195 	log->l_logBBsize   = num_bblks;
1196 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1197 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1198 
1199 	log->l_prev_block  = -1;
1200 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1201 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1202 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1203 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1204 
1205 	xlog_grant_head_init(&log->l_reserve_head);
1206 	xlog_grant_head_init(&log->l_write_head);
1207 
1208 	error = EFSCORRUPTED;
1209 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1210 	        log2_size = mp->m_sb.sb_logsectlog;
1211 		if (log2_size < BBSHIFT) {
1212 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1213 				log2_size, BBSHIFT);
1214 			goto out_free_log;
1215 		}
1216 
1217 	        log2_size -= BBSHIFT;
1218 		if (log2_size > mp->m_sectbb_log) {
1219 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1220 				log2_size, mp->m_sectbb_log);
1221 			goto out_free_log;
1222 		}
1223 
1224 		/* for larger sector sizes, must have v2 or external log */
1225 		if (log2_size && log->l_logBBstart > 0 &&
1226 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1227 			xfs_warn(mp,
1228 		"log sector size (0x%x) invalid for configuration.",
1229 				log2_size);
1230 			goto out_free_log;
1231 		}
1232 	}
1233 	log->l_sectBBsize = 1 << log2_size;
1234 
1235 	xlog_get_iclog_buffer_size(mp, log);
1236 
1237 	error = ENOMEM;
1238 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1239 	if (!bp)
1240 		goto out_free_log;
1241 	bp->b_iodone = xlog_iodone;
1242 	ASSERT(xfs_buf_islocked(bp));
1243 	log->l_xbuf = bp;
1244 
1245 	spin_lock_init(&log->l_icloglock);
1246 	init_waitqueue_head(&log->l_flush_wait);
1247 
1248 	iclogp = &log->l_iclog;
1249 	/*
1250 	 * The amount of memory to allocate for the iclog structure is
1251 	 * rather funky due to the way the structure is defined.  It is
1252 	 * done this way so that we can use different sizes for machines
1253 	 * with different amounts of memory.  See the definition of
1254 	 * xlog_in_core_t in xfs_log_priv.h for details.
1255 	 */
1256 	ASSERT(log->l_iclog_size >= 4096);
1257 	for (i=0; i < log->l_iclog_bufs; i++) {
1258 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1259 		if (!*iclogp)
1260 			goto out_free_iclog;
1261 
1262 		iclog = *iclogp;
1263 		iclog->ic_prev = prev_iclog;
1264 		prev_iclog = iclog;
1265 
1266 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1267 						BTOBB(log->l_iclog_size), 0);
1268 		if (!bp)
1269 			goto out_free_iclog;
1270 
1271 		bp->b_iodone = xlog_iodone;
1272 		iclog->ic_bp = bp;
1273 		iclog->ic_data = bp->b_addr;
1274 #ifdef DEBUG
1275 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1276 #endif
1277 		head = &iclog->ic_header;
1278 		memset(head, 0, sizeof(xlog_rec_header_t));
1279 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1280 		head->h_version = cpu_to_be32(
1281 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1282 		head->h_size = cpu_to_be32(log->l_iclog_size);
1283 		/* new fields */
1284 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1285 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1286 
1287 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1288 		iclog->ic_state = XLOG_STATE_ACTIVE;
1289 		iclog->ic_log = log;
1290 		atomic_set(&iclog->ic_refcnt, 0);
1291 		spin_lock_init(&iclog->ic_callback_lock);
1292 		iclog->ic_callback_tail = &(iclog->ic_callback);
1293 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1294 
1295 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1296 		init_waitqueue_head(&iclog->ic_force_wait);
1297 		init_waitqueue_head(&iclog->ic_write_wait);
1298 
1299 		iclogp = &iclog->ic_next;
1300 	}
1301 	*iclogp = log->l_iclog;			/* complete ring */
1302 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1303 
1304 	error = xlog_cil_init(log);
1305 	if (error)
1306 		goto out_free_iclog;
1307 	return log;
1308 
1309 out_free_iclog:
1310 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1311 		prev_iclog = iclog->ic_next;
1312 		if (iclog->ic_bp)
1313 			xfs_buf_free(iclog->ic_bp);
1314 		kmem_free(iclog);
1315 	}
1316 	spinlock_destroy(&log->l_icloglock);
1317 	xfs_buf_free(log->l_xbuf);
1318 out_free_log:
1319 	kmem_free(log);
1320 out:
1321 	return ERR_PTR(-error);
1322 }	/* xlog_alloc_log */
1323 
1324 
1325 /*
1326  * Write out the commit record of a transaction associated with the given
1327  * ticket.  Return the lsn of the commit record.
1328  */
1329 STATIC int
1330 xlog_commit_record(
1331 	struct xlog		*log,
1332 	struct xlog_ticket	*ticket,
1333 	struct xlog_in_core	**iclog,
1334 	xfs_lsn_t		*commitlsnp)
1335 {
1336 	struct xfs_mount *mp = log->l_mp;
1337 	int	error;
1338 	struct xfs_log_iovec reg = {
1339 		.i_addr = NULL,
1340 		.i_len = 0,
1341 		.i_type = XLOG_REG_TYPE_COMMIT,
1342 	};
1343 	struct xfs_log_vec vec = {
1344 		.lv_niovecs = 1,
1345 		.lv_iovecp = &reg,
1346 	};
1347 
1348 	ASSERT_ALWAYS(iclog);
1349 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1350 					XLOG_COMMIT_TRANS);
1351 	if (error)
1352 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1353 	return error;
1354 }
1355 
1356 /*
1357  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1358  * log space.  This code pushes on the lsn which would supposedly free up
1359  * the 25% which we want to leave free.  We may need to adopt a policy which
1360  * pushes on an lsn which is further along in the log once we reach the high
1361  * water mark.  In this manner, we would be creating a low water mark.
1362  */
1363 STATIC void
1364 xlog_grant_push_ail(
1365 	struct xlog	*log,
1366 	int		need_bytes)
1367 {
1368 	xfs_lsn_t	threshold_lsn = 0;
1369 	xfs_lsn_t	last_sync_lsn;
1370 	int		free_blocks;
1371 	int		free_bytes;
1372 	int		threshold_block;
1373 	int		threshold_cycle;
1374 	int		free_threshold;
1375 
1376 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1377 
1378 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1379 	free_blocks = BTOBBT(free_bytes);
1380 
1381 	/*
1382 	 * Set the threshold for the minimum number of free blocks in the
1383 	 * log to the maximum of what the caller needs, one quarter of the
1384 	 * log, and 256 blocks.
1385 	 */
1386 	free_threshold = BTOBB(need_bytes);
1387 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1388 	free_threshold = MAX(free_threshold, 256);
1389 	if (free_blocks >= free_threshold)
1390 		return;
1391 
1392 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1393 						&threshold_block);
1394 	threshold_block += free_threshold;
1395 	if (threshold_block >= log->l_logBBsize) {
1396 		threshold_block -= log->l_logBBsize;
1397 		threshold_cycle += 1;
1398 	}
1399 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1400 					threshold_block);
1401 	/*
1402 	 * Don't pass in an lsn greater than the lsn of the last
1403 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1404 	 * so that it doesn't change between the compare and the set.
1405 	 */
1406 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1407 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1408 		threshold_lsn = last_sync_lsn;
1409 
1410 	/*
1411 	 * Get the transaction layer to kick the dirty buffers out to
1412 	 * disk asynchronously. No point in trying to do this if
1413 	 * the filesystem is shutting down.
1414 	 */
1415 	if (!XLOG_FORCED_SHUTDOWN(log))
1416 		xfs_ail_push(log->l_ailp, threshold_lsn);
1417 }
1418 
1419 /*
1420  * The bdstrat callback function for log bufs. This gives us a central
1421  * place to trap bufs in case we get hit by a log I/O error and need to
1422  * shutdown. Actually, in practice, even when we didn't get a log error,
1423  * we transition the iclogs to IOERROR state *after* flushing all existing
1424  * iclogs to disk. This is because we don't want anymore new transactions to be
1425  * started or completed afterwards.
1426  */
1427 STATIC int
1428 xlog_bdstrat(
1429 	struct xfs_buf		*bp)
1430 {
1431 	struct xlog_in_core	*iclog = bp->b_fspriv;
1432 
1433 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1434 		xfs_buf_ioerror(bp, EIO);
1435 		xfs_buf_stale(bp);
1436 		xfs_buf_ioend(bp, 0);
1437 		/*
1438 		 * It would seem logical to return EIO here, but we rely on
1439 		 * the log state machine to propagate I/O errors instead of
1440 		 * doing it here.
1441 		 */
1442 		return 0;
1443 	}
1444 
1445 	xfs_buf_iorequest(bp);
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1451  * fashion.  Previously, we should have moved the current iclog
1452  * ptr in the log to point to the next available iclog.  This allows further
1453  * write to continue while this code syncs out an iclog ready to go.
1454  * Before an in-core log can be written out, the data section must be scanned
1455  * to save away the 1st word of each BBSIZE block into the header.  We replace
1456  * it with the current cycle count.  Each BBSIZE block is tagged with the
1457  * cycle count because there in an implicit assumption that drives will
1458  * guarantee that entire 512 byte blocks get written at once.  In other words,
1459  * we can't have part of a 512 byte block written and part not written.  By
1460  * tagging each block, we will know which blocks are valid when recovering
1461  * after an unclean shutdown.
1462  *
1463  * This routine is single threaded on the iclog.  No other thread can be in
1464  * this routine with the same iclog.  Changing contents of iclog can there-
1465  * fore be done without grabbing the state machine lock.  Updating the global
1466  * log will require grabbing the lock though.
1467  *
1468  * The entire log manager uses a logical block numbering scheme.  Only
1469  * log_sync (and then only bwrite()) know about the fact that the log may
1470  * not start with block zero on a given device.  The log block start offset
1471  * is added immediately before calling bwrite().
1472  */
1473 
1474 STATIC int
1475 xlog_sync(
1476 	struct xlog		*log,
1477 	struct xlog_in_core	*iclog)
1478 {
1479 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1480 	xfs_buf_t	*bp;
1481 	int		i;
1482 	uint		count;		/* byte count of bwrite */
1483 	uint		count_init;	/* initial count before roundup */
1484 	int		roundoff;       /* roundoff to BB or stripe */
1485 	int		split = 0;	/* split write into two regions */
1486 	int		error;
1487 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1488 
1489 	XFS_STATS_INC(xs_log_writes);
1490 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1491 
1492 	/* Add for LR header */
1493 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1494 
1495 	/* Round out the log write size */
1496 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1497 		/* we have a v2 stripe unit to use */
1498 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1499 	} else {
1500 		count = BBTOB(BTOBB(count_init));
1501 	}
1502 	roundoff = count - count_init;
1503 	ASSERT(roundoff >= 0);
1504 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1505                 roundoff < log->l_mp->m_sb.sb_logsunit)
1506 		||
1507 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1508 		 roundoff < BBTOB(1)));
1509 
1510 	/* move grant heads by roundoff in sync */
1511 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1512 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1513 
1514 	/* put cycle number in every block */
1515 	xlog_pack_data(log, iclog, roundoff);
1516 
1517 	/* real byte length */
1518 	if (v2) {
1519 		iclog->ic_header.h_len =
1520 			cpu_to_be32(iclog->ic_offset + roundoff);
1521 	} else {
1522 		iclog->ic_header.h_len =
1523 			cpu_to_be32(iclog->ic_offset);
1524 	}
1525 
1526 	bp = iclog->ic_bp;
1527 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1528 
1529 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1530 
1531 	/* Do we need to split this write into 2 parts? */
1532 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1533 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1534 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1535 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1536 	} else {
1537 		iclog->ic_bwritecnt = 1;
1538 	}
1539 	bp->b_io_length = BTOBB(count);
1540 	bp->b_fspriv = iclog;
1541 	XFS_BUF_ZEROFLAGS(bp);
1542 	XFS_BUF_ASYNC(bp);
1543 	bp->b_flags |= XBF_SYNCIO;
1544 
1545 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1546 		bp->b_flags |= XBF_FUA;
1547 
1548 		/*
1549 		 * Flush the data device before flushing the log to make
1550 		 * sure all meta data written back from the AIL actually made
1551 		 * it to disk before stamping the new log tail LSN into the
1552 		 * log buffer.  For an external log we need to issue the
1553 		 * flush explicitly, and unfortunately synchronously here;
1554 		 * for an internal log we can simply use the block layer
1555 		 * state machine for preflushes.
1556 		 */
1557 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1558 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1559 		else
1560 			bp->b_flags |= XBF_FLUSH;
1561 	}
1562 
1563 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1564 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1565 
1566 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1567 
1568 	/* account for log which doesn't start at block #0 */
1569 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1570 	/*
1571 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1572 	 * is shutting down.
1573 	 */
1574 	XFS_BUF_WRITE(bp);
1575 
1576 	error = xlog_bdstrat(bp);
1577 	if (error) {
1578 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1579 		return error;
1580 	}
1581 	if (split) {
1582 		bp = iclog->ic_log->l_xbuf;
1583 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1584 		xfs_buf_associate_memory(bp,
1585 				(char *)&iclog->ic_header + count, split);
1586 		bp->b_fspriv = iclog;
1587 		XFS_BUF_ZEROFLAGS(bp);
1588 		XFS_BUF_ASYNC(bp);
1589 		bp->b_flags |= XBF_SYNCIO;
1590 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1591 			bp->b_flags |= XBF_FUA;
1592 		dptr = bp->b_addr;
1593 		/*
1594 		 * Bump the cycle numbers at the start of each block
1595 		 * since this part of the buffer is at the start of
1596 		 * a new cycle.  Watch out for the header magic number
1597 		 * case, though.
1598 		 */
1599 		for (i = 0; i < split; i += BBSIZE) {
1600 			be32_add_cpu((__be32 *)dptr, 1);
1601 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1602 				be32_add_cpu((__be32 *)dptr, 1);
1603 			dptr += BBSIZE;
1604 		}
1605 
1606 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1607 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1608 
1609 		/* account for internal log which doesn't start at block #0 */
1610 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1611 		XFS_BUF_WRITE(bp);
1612 		error = xlog_bdstrat(bp);
1613 		if (error) {
1614 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1615 			return error;
1616 		}
1617 	}
1618 	return 0;
1619 }	/* xlog_sync */
1620 
1621 
1622 /*
1623  * Deallocate a log structure
1624  */
1625 STATIC void
1626 xlog_dealloc_log(
1627 	struct xlog	*log)
1628 {
1629 	xlog_in_core_t	*iclog, *next_iclog;
1630 	int		i;
1631 
1632 	xlog_cil_destroy(log);
1633 
1634 	/*
1635 	 * always need to ensure that the extra buffer does not point to memory
1636 	 * owned by another log buffer before we free it.
1637 	 */
1638 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1639 	xfs_buf_free(log->l_xbuf);
1640 
1641 	iclog = log->l_iclog;
1642 	for (i=0; i<log->l_iclog_bufs; i++) {
1643 		xfs_buf_free(iclog->ic_bp);
1644 		next_iclog = iclog->ic_next;
1645 		kmem_free(iclog);
1646 		iclog = next_iclog;
1647 	}
1648 	spinlock_destroy(&log->l_icloglock);
1649 
1650 	log->l_mp->m_log = NULL;
1651 	kmem_free(log);
1652 }	/* xlog_dealloc_log */
1653 
1654 /*
1655  * Update counters atomically now that memcpy is done.
1656  */
1657 /* ARGSUSED */
1658 static inline void
1659 xlog_state_finish_copy(
1660 	struct xlog		*log,
1661 	struct xlog_in_core	*iclog,
1662 	int			record_cnt,
1663 	int			copy_bytes)
1664 {
1665 	spin_lock(&log->l_icloglock);
1666 
1667 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1668 	iclog->ic_offset += copy_bytes;
1669 
1670 	spin_unlock(&log->l_icloglock);
1671 }	/* xlog_state_finish_copy */
1672 
1673 
1674 
1675 
1676 /*
1677  * print out info relating to regions written which consume
1678  * the reservation
1679  */
1680 void
1681 xlog_print_tic_res(
1682 	struct xfs_mount	*mp,
1683 	struct xlog_ticket	*ticket)
1684 {
1685 	uint i;
1686 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1687 
1688 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1689 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1690 	    "bformat",
1691 	    "bchunk",
1692 	    "efi_format",
1693 	    "efd_format",
1694 	    "iformat",
1695 	    "icore",
1696 	    "iext",
1697 	    "ibroot",
1698 	    "ilocal",
1699 	    "iattr_ext",
1700 	    "iattr_broot",
1701 	    "iattr_local",
1702 	    "qformat",
1703 	    "dquot",
1704 	    "quotaoff",
1705 	    "LR header",
1706 	    "unmount",
1707 	    "commit",
1708 	    "trans header"
1709 	};
1710 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1711 	    "SETATTR_NOT_SIZE",
1712 	    "SETATTR_SIZE",
1713 	    "INACTIVE",
1714 	    "CREATE",
1715 	    "CREATE_TRUNC",
1716 	    "TRUNCATE_FILE",
1717 	    "REMOVE",
1718 	    "LINK",
1719 	    "RENAME",
1720 	    "MKDIR",
1721 	    "RMDIR",
1722 	    "SYMLINK",
1723 	    "SET_DMATTRS",
1724 	    "GROWFS",
1725 	    "STRAT_WRITE",
1726 	    "DIOSTRAT",
1727 	    "WRITE_SYNC",
1728 	    "WRITEID",
1729 	    "ADDAFORK",
1730 	    "ATTRINVAL",
1731 	    "ATRUNCATE",
1732 	    "ATTR_SET",
1733 	    "ATTR_RM",
1734 	    "ATTR_FLAG",
1735 	    "CLEAR_AGI_BUCKET",
1736 	    "QM_SBCHANGE",
1737 	    "DUMMY1",
1738 	    "DUMMY2",
1739 	    "QM_QUOTAOFF",
1740 	    "QM_DQALLOC",
1741 	    "QM_SETQLIM",
1742 	    "QM_DQCLUSTER",
1743 	    "QM_QINOCREATE",
1744 	    "QM_QUOTAOFF_END",
1745 	    "SB_UNIT",
1746 	    "FSYNC_TS",
1747 	    "GROWFSRT_ALLOC",
1748 	    "GROWFSRT_ZERO",
1749 	    "GROWFSRT_FREE",
1750 	    "SWAPEXT"
1751 	};
1752 
1753 	xfs_warn(mp,
1754 		"xlog_write: reservation summary:\n"
1755 		"  trans type  = %s (%u)\n"
1756 		"  unit res    = %d bytes\n"
1757 		"  current res = %d bytes\n"
1758 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1759 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1760 		"  ophdr + reg = %u bytes\n"
1761 		"  num regions = %u\n",
1762 		((ticket->t_trans_type <= 0 ||
1763 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1764 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1765 		ticket->t_trans_type,
1766 		ticket->t_unit_res,
1767 		ticket->t_curr_res,
1768 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1769 		ticket->t_res_num_ophdrs, ophdr_spc,
1770 		ticket->t_res_arr_sum +
1771 		ticket->t_res_o_flow + ophdr_spc,
1772 		ticket->t_res_num);
1773 
1774 	for (i = 0; i < ticket->t_res_num; i++) {
1775 		uint r_type = ticket->t_res_arr[i].r_type;
1776 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1777 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1778 			    "bad-rtype" : res_type_str[r_type-1]),
1779 			    ticket->t_res_arr[i].r_len);
1780 	}
1781 
1782 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1783 		"xlog_write: reservation ran out. Need to up reservation");
1784 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1785 }
1786 
1787 /*
1788  * Calculate the potential space needed by the log vector.  Each region gets
1789  * its own xlog_op_header_t and may need to be double word aligned.
1790  */
1791 static int
1792 xlog_write_calc_vec_length(
1793 	struct xlog_ticket	*ticket,
1794 	struct xfs_log_vec	*log_vector)
1795 {
1796 	struct xfs_log_vec	*lv;
1797 	int			headers = 0;
1798 	int			len = 0;
1799 	int			i;
1800 
1801 	/* acct for start rec of xact */
1802 	if (ticket->t_flags & XLOG_TIC_INITED)
1803 		headers++;
1804 
1805 	for (lv = log_vector; lv; lv = lv->lv_next) {
1806 		headers += lv->lv_niovecs;
1807 
1808 		for (i = 0; i < lv->lv_niovecs; i++) {
1809 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1810 
1811 			len += vecp->i_len;
1812 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1813 		}
1814 	}
1815 
1816 	ticket->t_res_num_ophdrs += headers;
1817 	len += headers * sizeof(struct xlog_op_header);
1818 
1819 	return len;
1820 }
1821 
1822 /*
1823  * If first write for transaction, insert start record  We can't be trying to
1824  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1825  */
1826 static int
1827 xlog_write_start_rec(
1828 	struct xlog_op_header	*ophdr,
1829 	struct xlog_ticket	*ticket)
1830 {
1831 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1832 		return 0;
1833 
1834 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1835 	ophdr->oh_clientid = ticket->t_clientid;
1836 	ophdr->oh_len = 0;
1837 	ophdr->oh_flags = XLOG_START_TRANS;
1838 	ophdr->oh_res2 = 0;
1839 
1840 	ticket->t_flags &= ~XLOG_TIC_INITED;
1841 
1842 	return sizeof(struct xlog_op_header);
1843 }
1844 
1845 static xlog_op_header_t *
1846 xlog_write_setup_ophdr(
1847 	struct xlog		*log,
1848 	struct xlog_op_header	*ophdr,
1849 	struct xlog_ticket	*ticket,
1850 	uint			flags)
1851 {
1852 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1853 	ophdr->oh_clientid = ticket->t_clientid;
1854 	ophdr->oh_res2 = 0;
1855 
1856 	/* are we copying a commit or unmount record? */
1857 	ophdr->oh_flags = flags;
1858 
1859 	/*
1860 	 * We've seen logs corrupted with bad transaction client ids.  This
1861 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1862 	 * and shut down the filesystem.
1863 	 */
1864 	switch (ophdr->oh_clientid)  {
1865 	case XFS_TRANSACTION:
1866 	case XFS_VOLUME:
1867 	case XFS_LOG:
1868 		break;
1869 	default:
1870 		xfs_warn(log->l_mp,
1871 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1872 			ophdr->oh_clientid, ticket);
1873 		return NULL;
1874 	}
1875 
1876 	return ophdr;
1877 }
1878 
1879 /*
1880  * Set up the parameters of the region copy into the log. This has
1881  * to handle region write split across multiple log buffers - this
1882  * state is kept external to this function so that this code can
1883  * can be written in an obvious, self documenting manner.
1884  */
1885 static int
1886 xlog_write_setup_copy(
1887 	struct xlog_ticket	*ticket,
1888 	struct xlog_op_header	*ophdr,
1889 	int			space_available,
1890 	int			space_required,
1891 	int			*copy_off,
1892 	int			*copy_len,
1893 	int			*last_was_partial_copy,
1894 	int			*bytes_consumed)
1895 {
1896 	int			still_to_copy;
1897 
1898 	still_to_copy = space_required - *bytes_consumed;
1899 	*copy_off = *bytes_consumed;
1900 
1901 	if (still_to_copy <= space_available) {
1902 		/* write of region completes here */
1903 		*copy_len = still_to_copy;
1904 		ophdr->oh_len = cpu_to_be32(*copy_len);
1905 		if (*last_was_partial_copy)
1906 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1907 		*last_was_partial_copy = 0;
1908 		*bytes_consumed = 0;
1909 		return 0;
1910 	}
1911 
1912 	/* partial write of region, needs extra log op header reservation */
1913 	*copy_len = space_available;
1914 	ophdr->oh_len = cpu_to_be32(*copy_len);
1915 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1916 	if (*last_was_partial_copy)
1917 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1918 	*bytes_consumed += *copy_len;
1919 	(*last_was_partial_copy)++;
1920 
1921 	/* account for new log op header */
1922 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1923 	ticket->t_res_num_ophdrs++;
1924 
1925 	return sizeof(struct xlog_op_header);
1926 }
1927 
1928 static int
1929 xlog_write_copy_finish(
1930 	struct xlog		*log,
1931 	struct xlog_in_core	*iclog,
1932 	uint			flags,
1933 	int			*record_cnt,
1934 	int			*data_cnt,
1935 	int			*partial_copy,
1936 	int			*partial_copy_len,
1937 	int			log_offset,
1938 	struct xlog_in_core	**commit_iclog)
1939 {
1940 	if (*partial_copy) {
1941 		/*
1942 		 * This iclog has already been marked WANT_SYNC by
1943 		 * xlog_state_get_iclog_space.
1944 		 */
1945 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1946 		*record_cnt = 0;
1947 		*data_cnt = 0;
1948 		return xlog_state_release_iclog(log, iclog);
1949 	}
1950 
1951 	*partial_copy = 0;
1952 	*partial_copy_len = 0;
1953 
1954 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1955 		/* no more space in this iclog - push it. */
1956 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1957 		*record_cnt = 0;
1958 		*data_cnt = 0;
1959 
1960 		spin_lock(&log->l_icloglock);
1961 		xlog_state_want_sync(log, iclog);
1962 		spin_unlock(&log->l_icloglock);
1963 
1964 		if (!commit_iclog)
1965 			return xlog_state_release_iclog(log, iclog);
1966 		ASSERT(flags & XLOG_COMMIT_TRANS);
1967 		*commit_iclog = iclog;
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 /*
1974  * Write some region out to in-core log
1975  *
1976  * This will be called when writing externally provided regions or when
1977  * writing out a commit record for a given transaction.
1978  *
1979  * General algorithm:
1980  *	1. Find total length of this write.  This may include adding to the
1981  *		lengths passed in.
1982  *	2. Check whether we violate the tickets reservation.
1983  *	3. While writing to this iclog
1984  *	    A. Reserve as much space in this iclog as can get
1985  *	    B. If this is first write, save away start lsn
1986  *	    C. While writing this region:
1987  *		1. If first write of transaction, write start record
1988  *		2. Write log operation header (header per region)
1989  *		3. Find out if we can fit entire region into this iclog
1990  *		4. Potentially, verify destination memcpy ptr
1991  *		5. Memcpy (partial) region
1992  *		6. If partial copy, release iclog; otherwise, continue
1993  *			copying more regions into current iclog
1994  *	4. Mark want sync bit (in simulation mode)
1995  *	5. Release iclog for potential flush to on-disk log.
1996  *
1997  * ERRORS:
1998  * 1.	Panic if reservation is overrun.  This should never happen since
1999  *	reservation amounts are generated internal to the filesystem.
2000  * NOTES:
2001  * 1. Tickets are single threaded data structures.
2002  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2003  *	syncing routine.  When a single log_write region needs to span
2004  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2005  *	on all log operation writes which don't contain the end of the
2006  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2007  *	operation which contains the end of the continued log_write region.
2008  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2009  *	we don't really know exactly how much space will be used.  As a result,
2010  *	we don't update ic_offset until the end when we know exactly how many
2011  *	bytes have been written out.
2012  */
2013 int
2014 xlog_write(
2015 	struct xlog		*log,
2016 	struct xfs_log_vec	*log_vector,
2017 	struct xlog_ticket	*ticket,
2018 	xfs_lsn_t		*start_lsn,
2019 	struct xlog_in_core	**commit_iclog,
2020 	uint			flags)
2021 {
2022 	struct xlog_in_core	*iclog = NULL;
2023 	struct xfs_log_iovec	*vecp;
2024 	struct xfs_log_vec	*lv;
2025 	int			len;
2026 	int			index;
2027 	int			partial_copy = 0;
2028 	int			partial_copy_len = 0;
2029 	int			contwr = 0;
2030 	int			record_cnt = 0;
2031 	int			data_cnt = 0;
2032 	int			error;
2033 
2034 	*start_lsn = 0;
2035 
2036 	len = xlog_write_calc_vec_length(ticket, log_vector);
2037 
2038 	/*
2039 	 * Region headers and bytes are already accounted for.
2040 	 * We only need to take into account start records and
2041 	 * split regions in this function.
2042 	 */
2043 	if (ticket->t_flags & XLOG_TIC_INITED)
2044 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2045 
2046 	/*
2047 	 * Commit record headers need to be accounted for. These
2048 	 * come in as separate writes so are easy to detect.
2049 	 */
2050 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2051 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2052 
2053 	if (ticket->t_curr_res < 0)
2054 		xlog_print_tic_res(log->l_mp, ticket);
2055 
2056 	index = 0;
2057 	lv = log_vector;
2058 	vecp = lv->lv_iovecp;
2059 	while (lv && index < lv->lv_niovecs) {
2060 		void		*ptr;
2061 		int		log_offset;
2062 
2063 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2064 						   &contwr, &log_offset);
2065 		if (error)
2066 			return error;
2067 
2068 		ASSERT(log_offset <= iclog->ic_size - 1);
2069 		ptr = iclog->ic_datap + log_offset;
2070 
2071 		/* start_lsn is the first lsn written to. That's all we need. */
2072 		if (!*start_lsn)
2073 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2074 
2075 		/*
2076 		 * This loop writes out as many regions as can fit in the amount
2077 		 * of space which was allocated by xlog_state_get_iclog_space().
2078 		 */
2079 		while (lv && index < lv->lv_niovecs) {
2080 			struct xfs_log_iovec	*reg = &vecp[index];
2081 			struct xlog_op_header	*ophdr;
2082 			int			start_rec_copy;
2083 			int			copy_len;
2084 			int			copy_off;
2085 
2086 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2087 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2088 
2089 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2090 			if (start_rec_copy) {
2091 				record_cnt++;
2092 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2093 						   start_rec_copy);
2094 			}
2095 
2096 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2097 			if (!ophdr)
2098 				return XFS_ERROR(EIO);
2099 
2100 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2101 					   sizeof(struct xlog_op_header));
2102 
2103 			len += xlog_write_setup_copy(ticket, ophdr,
2104 						     iclog->ic_size-log_offset,
2105 						     reg->i_len,
2106 						     &copy_off, &copy_len,
2107 						     &partial_copy,
2108 						     &partial_copy_len);
2109 			xlog_verify_dest_ptr(log, ptr);
2110 
2111 			/* copy region */
2112 			ASSERT(copy_len >= 0);
2113 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2114 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2115 
2116 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2117 			record_cnt++;
2118 			data_cnt += contwr ? copy_len : 0;
2119 
2120 			error = xlog_write_copy_finish(log, iclog, flags,
2121 						       &record_cnt, &data_cnt,
2122 						       &partial_copy,
2123 						       &partial_copy_len,
2124 						       log_offset,
2125 						       commit_iclog);
2126 			if (error)
2127 				return error;
2128 
2129 			/*
2130 			 * if we had a partial copy, we need to get more iclog
2131 			 * space but we don't want to increment the region
2132 			 * index because there is still more is this region to
2133 			 * write.
2134 			 *
2135 			 * If we completed writing this region, and we flushed
2136 			 * the iclog (indicated by resetting of the record
2137 			 * count), then we also need to get more log space. If
2138 			 * this was the last record, though, we are done and
2139 			 * can just return.
2140 			 */
2141 			if (partial_copy)
2142 				break;
2143 
2144 			if (++index == lv->lv_niovecs) {
2145 				lv = lv->lv_next;
2146 				index = 0;
2147 				if (lv)
2148 					vecp = lv->lv_iovecp;
2149 			}
2150 			if (record_cnt == 0) {
2151 				if (!lv)
2152 					return 0;
2153 				break;
2154 			}
2155 		}
2156 	}
2157 
2158 	ASSERT(len == 0);
2159 
2160 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2161 	if (!commit_iclog)
2162 		return xlog_state_release_iclog(log, iclog);
2163 
2164 	ASSERT(flags & XLOG_COMMIT_TRANS);
2165 	*commit_iclog = iclog;
2166 	return 0;
2167 }
2168 
2169 
2170 /*****************************************************************************
2171  *
2172  *		State Machine functions
2173  *
2174  *****************************************************************************
2175  */
2176 
2177 /* Clean iclogs starting from the head.  This ordering must be
2178  * maintained, so an iclog doesn't become ACTIVE beyond one that
2179  * is SYNCING.  This is also required to maintain the notion that we use
2180  * a ordered wait queue to hold off would be writers to the log when every
2181  * iclog is trying to sync to disk.
2182  *
2183  * State Change: DIRTY -> ACTIVE
2184  */
2185 STATIC void
2186 xlog_state_clean_log(
2187 	struct xlog *log)
2188 {
2189 	xlog_in_core_t	*iclog;
2190 	int changed = 0;
2191 
2192 	iclog = log->l_iclog;
2193 	do {
2194 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2195 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2196 			iclog->ic_offset       = 0;
2197 			ASSERT(iclog->ic_callback == NULL);
2198 			/*
2199 			 * If the number of ops in this iclog indicate it just
2200 			 * contains the dummy transaction, we can
2201 			 * change state into IDLE (the second time around).
2202 			 * Otherwise we should change the state into
2203 			 * NEED a dummy.
2204 			 * We don't need to cover the dummy.
2205 			 */
2206 			if (!changed &&
2207 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2208 			   		XLOG_COVER_OPS)) {
2209 				changed = 1;
2210 			} else {
2211 				/*
2212 				 * We have two dirty iclogs so start over
2213 				 * This could also be num of ops indicates
2214 				 * this is not the dummy going out.
2215 				 */
2216 				changed = 2;
2217 			}
2218 			iclog->ic_header.h_num_logops = 0;
2219 			memset(iclog->ic_header.h_cycle_data, 0,
2220 			      sizeof(iclog->ic_header.h_cycle_data));
2221 			iclog->ic_header.h_lsn = 0;
2222 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2223 			/* do nothing */;
2224 		else
2225 			break;	/* stop cleaning */
2226 		iclog = iclog->ic_next;
2227 	} while (iclog != log->l_iclog);
2228 
2229 	/* log is locked when we are called */
2230 	/*
2231 	 * Change state for the dummy log recording.
2232 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2233 	 * we are done writing the dummy record.
2234 	 * If we are done with the second dummy recored (DONE2), then
2235 	 * we go to IDLE.
2236 	 */
2237 	if (changed) {
2238 		switch (log->l_covered_state) {
2239 		case XLOG_STATE_COVER_IDLE:
2240 		case XLOG_STATE_COVER_NEED:
2241 		case XLOG_STATE_COVER_NEED2:
2242 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2243 			break;
2244 
2245 		case XLOG_STATE_COVER_DONE:
2246 			if (changed == 1)
2247 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2248 			else
2249 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2250 			break;
2251 
2252 		case XLOG_STATE_COVER_DONE2:
2253 			if (changed == 1)
2254 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2255 			else
2256 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2257 			break;
2258 
2259 		default:
2260 			ASSERT(0);
2261 		}
2262 	}
2263 }	/* xlog_state_clean_log */
2264 
2265 STATIC xfs_lsn_t
2266 xlog_get_lowest_lsn(
2267 	struct xlog	*log)
2268 {
2269 	xlog_in_core_t  *lsn_log;
2270 	xfs_lsn_t	lowest_lsn, lsn;
2271 
2272 	lsn_log = log->l_iclog;
2273 	lowest_lsn = 0;
2274 	do {
2275 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2276 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2277 		if ((lsn && !lowest_lsn) ||
2278 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2279 			lowest_lsn = lsn;
2280 		}
2281 	    }
2282 	    lsn_log = lsn_log->ic_next;
2283 	} while (lsn_log != log->l_iclog);
2284 	return lowest_lsn;
2285 }
2286 
2287 
2288 STATIC void
2289 xlog_state_do_callback(
2290 	struct xlog		*log,
2291 	int			aborted,
2292 	struct xlog_in_core	*ciclog)
2293 {
2294 	xlog_in_core_t	   *iclog;
2295 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2296 						 * processed all iclogs once */
2297 	xfs_log_callback_t *cb, *cb_next;
2298 	int		   flushcnt = 0;
2299 	xfs_lsn_t	   lowest_lsn;
2300 	int		   ioerrors;	/* counter: iclogs with errors */
2301 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2302 	int		   funcdidcallbacks; /* flag: function did callbacks */
2303 	int		   repeats;	/* for issuing console warnings if
2304 					 * looping too many times */
2305 	int		   wake = 0;
2306 
2307 	spin_lock(&log->l_icloglock);
2308 	first_iclog = iclog = log->l_iclog;
2309 	ioerrors = 0;
2310 	funcdidcallbacks = 0;
2311 	repeats = 0;
2312 
2313 	do {
2314 		/*
2315 		 * Scan all iclogs starting with the one pointed to by the
2316 		 * log.  Reset this starting point each time the log is
2317 		 * unlocked (during callbacks).
2318 		 *
2319 		 * Keep looping through iclogs until one full pass is made
2320 		 * without running any callbacks.
2321 		 */
2322 		first_iclog = log->l_iclog;
2323 		iclog = log->l_iclog;
2324 		loopdidcallbacks = 0;
2325 		repeats++;
2326 
2327 		do {
2328 
2329 			/* skip all iclogs in the ACTIVE & DIRTY states */
2330 			if (iclog->ic_state &
2331 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2332 				iclog = iclog->ic_next;
2333 				continue;
2334 			}
2335 
2336 			/*
2337 			 * Between marking a filesystem SHUTDOWN and stopping
2338 			 * the log, we do flush all iclogs to disk (if there
2339 			 * wasn't a log I/O error). So, we do want things to
2340 			 * go smoothly in case of just a SHUTDOWN  w/o a
2341 			 * LOG_IO_ERROR.
2342 			 */
2343 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2344 				/*
2345 				 * Can only perform callbacks in order.  Since
2346 				 * this iclog is not in the DONE_SYNC/
2347 				 * DO_CALLBACK state, we skip the rest and
2348 				 * just try to clean up.  If we set our iclog
2349 				 * to DO_CALLBACK, we will not process it when
2350 				 * we retry since a previous iclog is in the
2351 				 * CALLBACK and the state cannot change since
2352 				 * we are holding the l_icloglock.
2353 				 */
2354 				if (!(iclog->ic_state &
2355 					(XLOG_STATE_DONE_SYNC |
2356 						 XLOG_STATE_DO_CALLBACK))) {
2357 					if (ciclog && (ciclog->ic_state ==
2358 							XLOG_STATE_DONE_SYNC)) {
2359 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2360 					}
2361 					break;
2362 				}
2363 				/*
2364 				 * We now have an iclog that is in either the
2365 				 * DO_CALLBACK or DONE_SYNC states. The other
2366 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2367 				 * caught by the above if and are going to
2368 				 * clean (i.e. we aren't doing their callbacks)
2369 				 * see the above if.
2370 				 */
2371 
2372 				/*
2373 				 * We will do one more check here to see if we
2374 				 * have chased our tail around.
2375 				 */
2376 
2377 				lowest_lsn = xlog_get_lowest_lsn(log);
2378 				if (lowest_lsn &&
2379 				    XFS_LSN_CMP(lowest_lsn,
2380 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2381 					iclog = iclog->ic_next;
2382 					continue; /* Leave this iclog for
2383 						   * another thread */
2384 				}
2385 
2386 				iclog->ic_state = XLOG_STATE_CALLBACK;
2387 
2388 
2389 				/*
2390 				 * Completion of a iclog IO does not imply that
2391 				 * a transaction has completed, as transactions
2392 				 * can be large enough to span many iclogs. We
2393 				 * cannot change the tail of the log half way
2394 				 * through a transaction as this may be the only
2395 				 * transaction in the log and moving th etail to
2396 				 * point to the middle of it will prevent
2397 				 * recovery from finding the start of the
2398 				 * transaction. Hence we should only update the
2399 				 * last_sync_lsn if this iclog contains
2400 				 * transaction completion callbacks on it.
2401 				 *
2402 				 * We have to do this before we drop the
2403 				 * icloglock to ensure we are the only one that
2404 				 * can update it.
2405 				 */
2406 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2407 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2408 				if (iclog->ic_callback)
2409 					atomic64_set(&log->l_last_sync_lsn,
2410 						be64_to_cpu(iclog->ic_header.h_lsn));
2411 
2412 			} else
2413 				ioerrors++;
2414 
2415 			spin_unlock(&log->l_icloglock);
2416 
2417 			/*
2418 			 * Keep processing entries in the callback list until
2419 			 * we come around and it is empty.  We need to
2420 			 * atomically see that the list is empty and change the
2421 			 * state to DIRTY so that we don't miss any more
2422 			 * callbacks being added.
2423 			 */
2424 			spin_lock(&iclog->ic_callback_lock);
2425 			cb = iclog->ic_callback;
2426 			while (cb) {
2427 				iclog->ic_callback_tail = &(iclog->ic_callback);
2428 				iclog->ic_callback = NULL;
2429 				spin_unlock(&iclog->ic_callback_lock);
2430 
2431 				/* perform callbacks in the order given */
2432 				for (; cb; cb = cb_next) {
2433 					cb_next = cb->cb_next;
2434 					cb->cb_func(cb->cb_arg, aborted);
2435 				}
2436 				spin_lock(&iclog->ic_callback_lock);
2437 				cb = iclog->ic_callback;
2438 			}
2439 
2440 			loopdidcallbacks++;
2441 			funcdidcallbacks++;
2442 
2443 			spin_lock(&log->l_icloglock);
2444 			ASSERT(iclog->ic_callback == NULL);
2445 			spin_unlock(&iclog->ic_callback_lock);
2446 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2447 				iclog->ic_state = XLOG_STATE_DIRTY;
2448 
2449 			/*
2450 			 * Transition from DIRTY to ACTIVE if applicable.
2451 			 * NOP if STATE_IOERROR.
2452 			 */
2453 			xlog_state_clean_log(log);
2454 
2455 			/* wake up threads waiting in xfs_log_force() */
2456 			wake_up_all(&iclog->ic_force_wait);
2457 
2458 			iclog = iclog->ic_next;
2459 		} while (first_iclog != iclog);
2460 
2461 		if (repeats > 5000) {
2462 			flushcnt += repeats;
2463 			repeats = 0;
2464 			xfs_warn(log->l_mp,
2465 				"%s: possible infinite loop (%d iterations)",
2466 				__func__, flushcnt);
2467 		}
2468 	} while (!ioerrors && loopdidcallbacks);
2469 
2470 	/*
2471 	 * make one last gasp attempt to see if iclogs are being left in
2472 	 * limbo..
2473 	 */
2474 #ifdef DEBUG
2475 	if (funcdidcallbacks) {
2476 		first_iclog = iclog = log->l_iclog;
2477 		do {
2478 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2479 			/*
2480 			 * Terminate the loop if iclogs are found in states
2481 			 * which will cause other threads to clean up iclogs.
2482 			 *
2483 			 * SYNCING - i/o completion will go through logs
2484 			 * DONE_SYNC - interrupt thread should be waiting for
2485 			 *              l_icloglock
2486 			 * IOERROR - give up hope all ye who enter here
2487 			 */
2488 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2489 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2490 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2491 			    iclog->ic_state == XLOG_STATE_IOERROR )
2492 				break;
2493 			iclog = iclog->ic_next;
2494 		} while (first_iclog != iclog);
2495 	}
2496 #endif
2497 
2498 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2499 		wake = 1;
2500 	spin_unlock(&log->l_icloglock);
2501 
2502 	if (wake)
2503 		wake_up_all(&log->l_flush_wait);
2504 }
2505 
2506 
2507 /*
2508  * Finish transitioning this iclog to the dirty state.
2509  *
2510  * Make sure that we completely execute this routine only when this is
2511  * the last call to the iclog.  There is a good chance that iclog flushes,
2512  * when we reach the end of the physical log, get turned into 2 separate
2513  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2514  * routine.  By using the reference count bwritecnt, we guarantee that only
2515  * the second completion goes through.
2516  *
2517  * Callbacks could take time, so they are done outside the scope of the
2518  * global state machine log lock.
2519  */
2520 STATIC void
2521 xlog_state_done_syncing(
2522 	xlog_in_core_t	*iclog,
2523 	int		aborted)
2524 {
2525 	struct xlog	   *log = iclog->ic_log;
2526 
2527 	spin_lock(&log->l_icloglock);
2528 
2529 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2530 	       iclog->ic_state == XLOG_STATE_IOERROR);
2531 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2532 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2533 
2534 
2535 	/*
2536 	 * If we got an error, either on the first buffer, or in the case of
2537 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2538 	 * and none should ever be attempted to be written to disk
2539 	 * again.
2540 	 */
2541 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2542 		if (--iclog->ic_bwritecnt == 1) {
2543 			spin_unlock(&log->l_icloglock);
2544 			return;
2545 		}
2546 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2547 	}
2548 
2549 	/*
2550 	 * Someone could be sleeping prior to writing out the next
2551 	 * iclog buffer, we wake them all, one will get to do the
2552 	 * I/O, the others get to wait for the result.
2553 	 */
2554 	wake_up_all(&iclog->ic_write_wait);
2555 	spin_unlock(&log->l_icloglock);
2556 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2557 }	/* xlog_state_done_syncing */
2558 
2559 
2560 /*
2561  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2562  * sleep.  We wait on the flush queue on the head iclog as that should be
2563  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2564  * we will wait here and all new writes will sleep until a sync completes.
2565  *
2566  * The in-core logs are used in a circular fashion. They are not used
2567  * out-of-order even when an iclog past the head is free.
2568  *
2569  * return:
2570  *	* log_offset where xlog_write() can start writing into the in-core
2571  *		log's data space.
2572  *	* in-core log pointer to which xlog_write() should write.
2573  *	* boolean indicating this is a continued write to an in-core log.
2574  *		If this is the last write, then the in-core log's offset field
2575  *		needs to be incremented, depending on the amount of data which
2576  *		is copied.
2577  */
2578 STATIC int
2579 xlog_state_get_iclog_space(
2580 	struct xlog		*log,
2581 	int			len,
2582 	struct xlog_in_core	**iclogp,
2583 	struct xlog_ticket	*ticket,
2584 	int			*continued_write,
2585 	int			*logoffsetp)
2586 {
2587 	int		  log_offset;
2588 	xlog_rec_header_t *head;
2589 	xlog_in_core_t	  *iclog;
2590 	int		  error;
2591 
2592 restart:
2593 	spin_lock(&log->l_icloglock);
2594 	if (XLOG_FORCED_SHUTDOWN(log)) {
2595 		spin_unlock(&log->l_icloglock);
2596 		return XFS_ERROR(EIO);
2597 	}
2598 
2599 	iclog = log->l_iclog;
2600 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2601 		XFS_STATS_INC(xs_log_noiclogs);
2602 
2603 		/* Wait for log writes to have flushed */
2604 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2605 		goto restart;
2606 	}
2607 
2608 	head = &iclog->ic_header;
2609 
2610 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2611 	log_offset = iclog->ic_offset;
2612 
2613 	/* On the 1st write to an iclog, figure out lsn.  This works
2614 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2615 	 * committing to.  If the offset is set, that's how many blocks
2616 	 * must be written.
2617 	 */
2618 	if (log_offset == 0) {
2619 		ticket->t_curr_res -= log->l_iclog_hsize;
2620 		xlog_tic_add_region(ticket,
2621 				    log->l_iclog_hsize,
2622 				    XLOG_REG_TYPE_LRHEADER);
2623 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2624 		head->h_lsn = cpu_to_be64(
2625 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2626 		ASSERT(log->l_curr_block >= 0);
2627 	}
2628 
2629 	/* If there is enough room to write everything, then do it.  Otherwise,
2630 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2631 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2632 	 * until you know exactly how many bytes get copied.  Therefore, wait
2633 	 * until later to update ic_offset.
2634 	 *
2635 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2636 	 * can fit into remaining data section.
2637 	 */
2638 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2639 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2640 
2641 		/*
2642 		 * If I'm the only one writing to this iclog, sync it to disk.
2643 		 * We need to do an atomic compare and decrement here to avoid
2644 		 * racing with concurrent atomic_dec_and_lock() calls in
2645 		 * xlog_state_release_iclog() when there is more than one
2646 		 * reference to the iclog.
2647 		 */
2648 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2649 			/* we are the only one */
2650 			spin_unlock(&log->l_icloglock);
2651 			error = xlog_state_release_iclog(log, iclog);
2652 			if (error)
2653 				return error;
2654 		} else {
2655 			spin_unlock(&log->l_icloglock);
2656 		}
2657 		goto restart;
2658 	}
2659 
2660 	/* Do we have enough room to write the full amount in the remainder
2661 	 * of this iclog?  Or must we continue a write on the next iclog and
2662 	 * mark this iclog as completely taken?  In the case where we switch
2663 	 * iclogs (to mark it taken), this particular iclog will release/sync
2664 	 * to disk in xlog_write().
2665 	 */
2666 	if (len <= iclog->ic_size - iclog->ic_offset) {
2667 		*continued_write = 0;
2668 		iclog->ic_offset += len;
2669 	} else {
2670 		*continued_write = 1;
2671 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2672 	}
2673 	*iclogp = iclog;
2674 
2675 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2676 	spin_unlock(&log->l_icloglock);
2677 
2678 	*logoffsetp = log_offset;
2679 	return 0;
2680 }	/* xlog_state_get_iclog_space */
2681 
2682 /* The first cnt-1 times through here we don't need to
2683  * move the grant write head because the permanent
2684  * reservation has reserved cnt times the unit amount.
2685  * Release part of current permanent unit reservation and
2686  * reset current reservation to be one units worth.  Also
2687  * move grant reservation head forward.
2688  */
2689 STATIC void
2690 xlog_regrant_reserve_log_space(
2691 	struct xlog		*log,
2692 	struct xlog_ticket	*ticket)
2693 {
2694 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2695 
2696 	if (ticket->t_cnt > 0)
2697 		ticket->t_cnt--;
2698 
2699 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2700 					ticket->t_curr_res);
2701 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2702 					ticket->t_curr_res);
2703 	ticket->t_curr_res = ticket->t_unit_res;
2704 	xlog_tic_reset_res(ticket);
2705 
2706 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2707 
2708 	/* just return if we still have some of the pre-reserved space */
2709 	if (ticket->t_cnt > 0)
2710 		return;
2711 
2712 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2713 					ticket->t_unit_res);
2714 
2715 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2716 
2717 	ticket->t_curr_res = ticket->t_unit_res;
2718 	xlog_tic_reset_res(ticket);
2719 }	/* xlog_regrant_reserve_log_space */
2720 
2721 
2722 /*
2723  * Give back the space left from a reservation.
2724  *
2725  * All the information we need to make a correct determination of space left
2726  * is present.  For non-permanent reservations, things are quite easy.  The
2727  * count should have been decremented to zero.  We only need to deal with the
2728  * space remaining in the current reservation part of the ticket.  If the
2729  * ticket contains a permanent reservation, there may be left over space which
2730  * needs to be released.  A count of N means that N-1 refills of the current
2731  * reservation can be done before we need to ask for more space.  The first
2732  * one goes to fill up the first current reservation.  Once we run out of
2733  * space, the count will stay at zero and the only space remaining will be
2734  * in the current reservation field.
2735  */
2736 STATIC void
2737 xlog_ungrant_log_space(
2738 	struct xlog		*log,
2739 	struct xlog_ticket	*ticket)
2740 {
2741 	int	bytes;
2742 
2743 	if (ticket->t_cnt > 0)
2744 		ticket->t_cnt--;
2745 
2746 	trace_xfs_log_ungrant_enter(log, ticket);
2747 	trace_xfs_log_ungrant_sub(log, ticket);
2748 
2749 	/*
2750 	 * If this is a permanent reservation ticket, we may be able to free
2751 	 * up more space based on the remaining count.
2752 	 */
2753 	bytes = ticket->t_curr_res;
2754 	if (ticket->t_cnt > 0) {
2755 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2756 		bytes += ticket->t_unit_res*ticket->t_cnt;
2757 	}
2758 
2759 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2760 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2761 
2762 	trace_xfs_log_ungrant_exit(log, ticket);
2763 
2764 	xfs_log_space_wake(log->l_mp);
2765 }
2766 
2767 /*
2768  * Flush iclog to disk if this is the last reference to the given iclog and
2769  * the WANT_SYNC bit is set.
2770  *
2771  * When this function is entered, the iclog is not necessarily in the
2772  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2773  *
2774  *
2775  */
2776 STATIC int
2777 xlog_state_release_iclog(
2778 	struct xlog		*log,
2779 	struct xlog_in_core	*iclog)
2780 {
2781 	int		sync = 0;	/* do we sync? */
2782 
2783 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2784 		return XFS_ERROR(EIO);
2785 
2786 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2787 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2788 		return 0;
2789 
2790 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2791 		spin_unlock(&log->l_icloglock);
2792 		return XFS_ERROR(EIO);
2793 	}
2794 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2795 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2796 
2797 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2798 		/* update tail before writing to iclog */
2799 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2800 		sync++;
2801 		iclog->ic_state = XLOG_STATE_SYNCING;
2802 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2803 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2804 		/* cycle incremented when incrementing curr_block */
2805 	}
2806 	spin_unlock(&log->l_icloglock);
2807 
2808 	/*
2809 	 * We let the log lock go, so it's possible that we hit a log I/O
2810 	 * error or some other SHUTDOWN condition that marks the iclog
2811 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2812 	 * this iclog has consistent data, so we ignore IOERROR
2813 	 * flags after this point.
2814 	 */
2815 	if (sync)
2816 		return xlog_sync(log, iclog);
2817 	return 0;
2818 }	/* xlog_state_release_iclog */
2819 
2820 
2821 /*
2822  * This routine will mark the current iclog in the ring as WANT_SYNC
2823  * and move the current iclog pointer to the next iclog in the ring.
2824  * When this routine is called from xlog_state_get_iclog_space(), the
2825  * exact size of the iclog has not yet been determined.  All we know is
2826  * that every data block.  We have run out of space in this log record.
2827  */
2828 STATIC void
2829 xlog_state_switch_iclogs(
2830 	struct xlog		*log,
2831 	struct xlog_in_core	*iclog,
2832 	int			eventual_size)
2833 {
2834 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2835 	if (!eventual_size)
2836 		eventual_size = iclog->ic_offset;
2837 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2838 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2839 	log->l_prev_block = log->l_curr_block;
2840 	log->l_prev_cycle = log->l_curr_cycle;
2841 
2842 	/* roll log?: ic_offset changed later */
2843 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2844 
2845 	/* Round up to next log-sunit */
2846 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2847 	    log->l_mp->m_sb.sb_logsunit > 1) {
2848 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2849 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2850 	}
2851 
2852 	if (log->l_curr_block >= log->l_logBBsize) {
2853 		log->l_curr_cycle++;
2854 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2855 			log->l_curr_cycle++;
2856 		log->l_curr_block -= log->l_logBBsize;
2857 		ASSERT(log->l_curr_block >= 0);
2858 	}
2859 	ASSERT(iclog == log->l_iclog);
2860 	log->l_iclog = iclog->ic_next;
2861 }	/* xlog_state_switch_iclogs */
2862 
2863 /*
2864  * Write out all data in the in-core log as of this exact moment in time.
2865  *
2866  * Data may be written to the in-core log during this call.  However,
2867  * we don't guarantee this data will be written out.  A change from past
2868  * implementation means this routine will *not* write out zero length LRs.
2869  *
2870  * Basically, we try and perform an intelligent scan of the in-core logs.
2871  * If we determine there is no flushable data, we just return.  There is no
2872  * flushable data if:
2873  *
2874  *	1. the current iclog is active and has no data; the previous iclog
2875  *		is in the active or dirty state.
2876  *	2. the current iclog is drity, and the previous iclog is in the
2877  *		active or dirty state.
2878  *
2879  * We may sleep if:
2880  *
2881  *	1. the current iclog is not in the active nor dirty state.
2882  *	2. the current iclog dirty, and the previous iclog is not in the
2883  *		active nor dirty state.
2884  *	3. the current iclog is active, and there is another thread writing
2885  *		to this particular iclog.
2886  *	4. a) the current iclog is active and has no other writers
2887  *	   b) when we return from flushing out this iclog, it is still
2888  *		not in the active nor dirty state.
2889  */
2890 int
2891 _xfs_log_force(
2892 	struct xfs_mount	*mp,
2893 	uint			flags,
2894 	int			*log_flushed)
2895 {
2896 	struct xlog		*log = mp->m_log;
2897 	struct xlog_in_core	*iclog;
2898 	xfs_lsn_t		lsn;
2899 
2900 	XFS_STATS_INC(xs_log_force);
2901 
2902 	xlog_cil_force(log);
2903 
2904 	spin_lock(&log->l_icloglock);
2905 
2906 	iclog = log->l_iclog;
2907 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2908 		spin_unlock(&log->l_icloglock);
2909 		return XFS_ERROR(EIO);
2910 	}
2911 
2912 	/* If the head iclog is not active nor dirty, we just attach
2913 	 * ourselves to the head and go to sleep.
2914 	 */
2915 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2916 	    iclog->ic_state == XLOG_STATE_DIRTY) {
2917 		/*
2918 		 * If the head is dirty or (active and empty), then
2919 		 * we need to look at the previous iclog.  If the previous
2920 		 * iclog is active or dirty we are done.  There is nothing
2921 		 * to sync out.  Otherwise, we attach ourselves to the
2922 		 * previous iclog and go to sleep.
2923 		 */
2924 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2925 		    (atomic_read(&iclog->ic_refcnt) == 0
2926 		     && iclog->ic_offset == 0)) {
2927 			iclog = iclog->ic_prev;
2928 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2929 			    iclog->ic_state == XLOG_STATE_DIRTY)
2930 				goto no_sleep;
2931 			else
2932 				goto maybe_sleep;
2933 		} else {
2934 			if (atomic_read(&iclog->ic_refcnt) == 0) {
2935 				/* We are the only one with access to this
2936 				 * iclog.  Flush it out now.  There should
2937 				 * be a roundoff of zero to show that someone
2938 				 * has already taken care of the roundoff from
2939 				 * the previous sync.
2940 				 */
2941 				atomic_inc(&iclog->ic_refcnt);
2942 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2943 				xlog_state_switch_iclogs(log, iclog, 0);
2944 				spin_unlock(&log->l_icloglock);
2945 
2946 				if (xlog_state_release_iclog(log, iclog))
2947 					return XFS_ERROR(EIO);
2948 
2949 				if (log_flushed)
2950 					*log_flushed = 1;
2951 				spin_lock(&log->l_icloglock);
2952 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2953 				    iclog->ic_state != XLOG_STATE_DIRTY)
2954 					goto maybe_sleep;
2955 				else
2956 					goto no_sleep;
2957 			} else {
2958 				/* Someone else is writing to this iclog.
2959 				 * Use its call to flush out the data.  However,
2960 				 * the other thread may not force out this LR,
2961 				 * so we mark it WANT_SYNC.
2962 				 */
2963 				xlog_state_switch_iclogs(log, iclog, 0);
2964 				goto maybe_sleep;
2965 			}
2966 		}
2967 	}
2968 
2969 	/* By the time we come around again, the iclog could've been filled
2970 	 * which would give it another lsn.  If we have a new lsn, just
2971 	 * return because the relevant data has been flushed.
2972 	 */
2973 maybe_sleep:
2974 	if (flags & XFS_LOG_SYNC) {
2975 		/*
2976 		 * We must check if we're shutting down here, before
2977 		 * we wait, while we're holding the l_icloglock.
2978 		 * Then we check again after waking up, in case our
2979 		 * sleep was disturbed by a bad news.
2980 		 */
2981 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
2982 			spin_unlock(&log->l_icloglock);
2983 			return XFS_ERROR(EIO);
2984 		}
2985 		XFS_STATS_INC(xs_log_force_sleep);
2986 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2987 		/*
2988 		 * No need to grab the log lock here since we're
2989 		 * only deciding whether or not to return EIO
2990 		 * and the memory read should be atomic.
2991 		 */
2992 		if (iclog->ic_state & XLOG_STATE_IOERROR)
2993 			return XFS_ERROR(EIO);
2994 		if (log_flushed)
2995 			*log_flushed = 1;
2996 	} else {
2997 
2998 no_sleep:
2999 		spin_unlock(&log->l_icloglock);
3000 	}
3001 	return 0;
3002 }
3003 
3004 /*
3005  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3006  * about errors or whether the log was flushed or not. This is the normal
3007  * interface to use when trying to unpin items or move the log forward.
3008  */
3009 void
3010 xfs_log_force(
3011 	xfs_mount_t	*mp,
3012 	uint		flags)
3013 {
3014 	int	error;
3015 
3016 	trace_xfs_log_force(mp, 0);
3017 	error = _xfs_log_force(mp, flags, NULL);
3018 	if (error)
3019 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3020 }
3021 
3022 /*
3023  * Force the in-core log to disk for a specific LSN.
3024  *
3025  * Find in-core log with lsn.
3026  *	If it is in the DIRTY state, just return.
3027  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3028  *		state and go to sleep or return.
3029  *	If it is in any other state, go to sleep or return.
3030  *
3031  * Synchronous forces are implemented with a signal variable. All callers
3032  * to force a given lsn to disk will wait on a the sv attached to the
3033  * specific in-core log.  When given in-core log finally completes its
3034  * write to disk, that thread will wake up all threads waiting on the
3035  * sv.
3036  */
3037 int
3038 _xfs_log_force_lsn(
3039 	struct xfs_mount	*mp,
3040 	xfs_lsn_t		lsn,
3041 	uint			flags,
3042 	int			*log_flushed)
3043 {
3044 	struct xlog		*log = mp->m_log;
3045 	struct xlog_in_core	*iclog;
3046 	int			already_slept = 0;
3047 
3048 	ASSERT(lsn != 0);
3049 
3050 	XFS_STATS_INC(xs_log_force);
3051 
3052 	lsn = xlog_cil_force_lsn(log, lsn);
3053 	if (lsn == NULLCOMMITLSN)
3054 		return 0;
3055 
3056 try_again:
3057 	spin_lock(&log->l_icloglock);
3058 	iclog = log->l_iclog;
3059 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3060 		spin_unlock(&log->l_icloglock);
3061 		return XFS_ERROR(EIO);
3062 	}
3063 
3064 	do {
3065 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3066 			iclog = iclog->ic_next;
3067 			continue;
3068 		}
3069 
3070 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3071 			spin_unlock(&log->l_icloglock);
3072 			return 0;
3073 		}
3074 
3075 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3076 			/*
3077 			 * We sleep here if we haven't already slept (e.g.
3078 			 * this is the first time we've looked at the correct
3079 			 * iclog buf) and the buffer before us is going to
3080 			 * be sync'ed. The reason for this is that if we
3081 			 * are doing sync transactions here, by waiting for
3082 			 * the previous I/O to complete, we can allow a few
3083 			 * more transactions into this iclog before we close
3084 			 * it down.
3085 			 *
3086 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3087 			 * up the refcnt so we can release the log (which
3088 			 * drops the ref count).  The state switch keeps new
3089 			 * transaction commits from using this buffer.  When
3090 			 * the current commits finish writing into the buffer,
3091 			 * the refcount will drop to zero and the buffer will
3092 			 * go out then.
3093 			 */
3094 			if (!already_slept &&
3095 			    (iclog->ic_prev->ic_state &
3096 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3097 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3098 
3099 				XFS_STATS_INC(xs_log_force_sleep);
3100 
3101 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3102 							&log->l_icloglock);
3103 				if (log_flushed)
3104 					*log_flushed = 1;
3105 				already_slept = 1;
3106 				goto try_again;
3107 			}
3108 			atomic_inc(&iclog->ic_refcnt);
3109 			xlog_state_switch_iclogs(log, iclog, 0);
3110 			spin_unlock(&log->l_icloglock);
3111 			if (xlog_state_release_iclog(log, iclog))
3112 				return XFS_ERROR(EIO);
3113 			if (log_flushed)
3114 				*log_flushed = 1;
3115 			spin_lock(&log->l_icloglock);
3116 		}
3117 
3118 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3119 		    !(iclog->ic_state &
3120 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3121 			/*
3122 			 * Don't wait on completion if we know that we've
3123 			 * gotten a log write error.
3124 			 */
3125 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3126 				spin_unlock(&log->l_icloglock);
3127 				return XFS_ERROR(EIO);
3128 			}
3129 			XFS_STATS_INC(xs_log_force_sleep);
3130 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3131 			/*
3132 			 * No need to grab the log lock here since we're
3133 			 * only deciding whether or not to return EIO
3134 			 * and the memory read should be atomic.
3135 			 */
3136 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3137 				return XFS_ERROR(EIO);
3138 
3139 			if (log_flushed)
3140 				*log_flushed = 1;
3141 		} else {		/* just return */
3142 			spin_unlock(&log->l_icloglock);
3143 		}
3144 
3145 		return 0;
3146 	} while (iclog != log->l_iclog);
3147 
3148 	spin_unlock(&log->l_icloglock);
3149 	return 0;
3150 }
3151 
3152 /*
3153  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3154  * about errors or whether the log was flushed or not. This is the normal
3155  * interface to use when trying to unpin items or move the log forward.
3156  */
3157 void
3158 xfs_log_force_lsn(
3159 	xfs_mount_t	*mp,
3160 	xfs_lsn_t	lsn,
3161 	uint		flags)
3162 {
3163 	int	error;
3164 
3165 	trace_xfs_log_force(mp, lsn);
3166 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3167 	if (error)
3168 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3169 }
3170 
3171 /*
3172  * Called when we want to mark the current iclog as being ready to sync to
3173  * disk.
3174  */
3175 STATIC void
3176 xlog_state_want_sync(
3177 	struct xlog		*log,
3178 	struct xlog_in_core	*iclog)
3179 {
3180 	assert_spin_locked(&log->l_icloglock);
3181 
3182 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3183 		xlog_state_switch_iclogs(log, iclog, 0);
3184 	} else {
3185 		ASSERT(iclog->ic_state &
3186 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3187 	}
3188 }
3189 
3190 
3191 /*****************************************************************************
3192  *
3193  *		TICKET functions
3194  *
3195  *****************************************************************************
3196  */
3197 
3198 /*
3199  * Free a used ticket when its refcount falls to zero.
3200  */
3201 void
3202 xfs_log_ticket_put(
3203 	xlog_ticket_t	*ticket)
3204 {
3205 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3206 	if (atomic_dec_and_test(&ticket->t_ref))
3207 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3208 }
3209 
3210 xlog_ticket_t *
3211 xfs_log_ticket_get(
3212 	xlog_ticket_t	*ticket)
3213 {
3214 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3215 	atomic_inc(&ticket->t_ref);
3216 	return ticket;
3217 }
3218 
3219 /*
3220  * Allocate and initialise a new log ticket.
3221  */
3222 struct xlog_ticket *
3223 xlog_ticket_alloc(
3224 	struct xlog	*log,
3225 	int		unit_bytes,
3226 	int		cnt,
3227 	char		client,
3228 	bool		permanent,
3229 	xfs_km_flags_t	alloc_flags)
3230 {
3231 	struct xlog_ticket *tic;
3232 	uint		num_headers;
3233 	int		iclog_space;
3234 
3235 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3236 	if (!tic)
3237 		return NULL;
3238 
3239 	/*
3240 	 * Permanent reservations have up to 'cnt'-1 active log operations
3241 	 * in the log.  A unit in this case is the amount of space for one
3242 	 * of these log operations.  Normal reservations have a cnt of 1
3243 	 * and their unit amount is the total amount of space required.
3244 	 *
3245 	 * The following lines of code account for non-transaction data
3246 	 * which occupy space in the on-disk log.
3247 	 *
3248 	 * Normal form of a transaction is:
3249 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3250 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3251 	 *
3252 	 * We need to account for all the leadup data and trailer data
3253 	 * around the transaction data.
3254 	 * And then we need to account for the worst case in terms of using
3255 	 * more space.
3256 	 * The worst case will happen if:
3257 	 * - the placement of the transaction happens to be such that the
3258 	 *   roundoff is at its maximum
3259 	 * - the transaction data is synced before the commit record is synced
3260 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3261 	 *   Therefore the commit record is in its own Log Record.
3262 	 *   This can happen as the commit record is called with its
3263 	 *   own region to xlog_write().
3264 	 *   This then means that in the worst case, roundoff can happen for
3265 	 *   the commit-rec as well.
3266 	 *   The commit-rec is smaller than padding in this scenario and so it is
3267 	 *   not added separately.
3268 	 */
3269 
3270 	/* for trans header */
3271 	unit_bytes += sizeof(xlog_op_header_t);
3272 	unit_bytes += sizeof(xfs_trans_header_t);
3273 
3274 	/* for start-rec */
3275 	unit_bytes += sizeof(xlog_op_header_t);
3276 
3277 	/*
3278 	 * for LR headers - the space for data in an iclog is the size minus
3279 	 * the space used for the headers. If we use the iclog size, then we
3280 	 * undercalculate the number of headers required.
3281 	 *
3282 	 * Furthermore - the addition of op headers for split-recs might
3283 	 * increase the space required enough to require more log and op
3284 	 * headers, so take that into account too.
3285 	 *
3286 	 * IMPORTANT: This reservation makes the assumption that if this
3287 	 * transaction is the first in an iclog and hence has the LR headers
3288 	 * accounted to it, then the remaining space in the iclog is
3289 	 * exclusively for this transaction.  i.e. if the transaction is larger
3290 	 * than the iclog, it will be the only thing in that iclog.
3291 	 * Fundamentally, this means we must pass the entire log vector to
3292 	 * xlog_write to guarantee this.
3293 	 */
3294 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3295 	num_headers = howmany(unit_bytes, iclog_space);
3296 
3297 	/* for split-recs - ophdrs added when data split over LRs */
3298 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3299 
3300 	/* add extra header reservations if we overrun */
3301 	while (!num_headers ||
3302 	       howmany(unit_bytes, iclog_space) > num_headers) {
3303 		unit_bytes += sizeof(xlog_op_header_t);
3304 		num_headers++;
3305 	}
3306 	unit_bytes += log->l_iclog_hsize * num_headers;
3307 
3308 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3309 	unit_bytes += log->l_iclog_hsize;
3310 
3311 	/* for roundoff padding for transaction data and one for commit record */
3312 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3313 	    log->l_mp->m_sb.sb_logsunit > 1) {
3314 		/* log su roundoff */
3315 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3316 	} else {
3317 		/* BB roundoff */
3318 		unit_bytes += 2*BBSIZE;
3319         }
3320 
3321 	atomic_set(&tic->t_ref, 1);
3322 	tic->t_task		= current;
3323 	INIT_LIST_HEAD(&tic->t_queue);
3324 	tic->t_unit_res		= unit_bytes;
3325 	tic->t_curr_res		= unit_bytes;
3326 	tic->t_cnt		= cnt;
3327 	tic->t_ocnt		= cnt;
3328 	tic->t_tid		= random32();
3329 	tic->t_clientid		= client;
3330 	tic->t_flags		= XLOG_TIC_INITED;
3331 	tic->t_trans_type	= 0;
3332 	if (permanent)
3333 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3334 
3335 	xlog_tic_reset_res(tic);
3336 
3337 	return tic;
3338 }
3339 
3340 
3341 /******************************************************************************
3342  *
3343  *		Log debug routines
3344  *
3345  ******************************************************************************
3346  */
3347 #if defined(DEBUG)
3348 /*
3349  * Make sure that the destination ptr is within the valid data region of
3350  * one of the iclogs.  This uses backup pointers stored in a different
3351  * part of the log in case we trash the log structure.
3352  */
3353 void
3354 xlog_verify_dest_ptr(
3355 	struct xlog	*log,
3356 	char		*ptr)
3357 {
3358 	int i;
3359 	int good_ptr = 0;
3360 
3361 	for (i = 0; i < log->l_iclog_bufs; i++) {
3362 		if (ptr >= log->l_iclog_bak[i] &&
3363 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3364 			good_ptr++;
3365 	}
3366 
3367 	if (!good_ptr)
3368 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3369 }
3370 
3371 /*
3372  * Check to make sure the grant write head didn't just over lap the tail.  If
3373  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3374  * the cycles differ by exactly one and check the byte count.
3375  *
3376  * This check is run unlocked, so can give false positives. Rather than assert
3377  * on failures, use a warn-once flag and a panic tag to allow the admin to
3378  * determine if they want to panic the machine when such an error occurs. For
3379  * debug kernels this will have the same effect as using an assert but, unlinke
3380  * an assert, it can be turned off at runtime.
3381  */
3382 STATIC void
3383 xlog_verify_grant_tail(
3384 	struct xlog	*log)
3385 {
3386 	int		tail_cycle, tail_blocks;
3387 	int		cycle, space;
3388 
3389 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3390 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3391 	if (tail_cycle != cycle) {
3392 		if (cycle - 1 != tail_cycle &&
3393 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3394 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3395 				"%s: cycle - 1 != tail_cycle", __func__);
3396 			log->l_flags |= XLOG_TAIL_WARN;
3397 		}
3398 
3399 		if (space > BBTOB(tail_blocks) &&
3400 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3401 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3402 				"%s: space > BBTOB(tail_blocks)", __func__);
3403 			log->l_flags |= XLOG_TAIL_WARN;
3404 		}
3405 	}
3406 }
3407 
3408 /* check if it will fit */
3409 STATIC void
3410 xlog_verify_tail_lsn(
3411 	struct xlog		*log,
3412 	struct xlog_in_core	*iclog,
3413 	xfs_lsn_t		tail_lsn)
3414 {
3415     int blocks;
3416 
3417     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3418 	blocks =
3419 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3420 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3421 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3422     } else {
3423 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3424 
3425 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3426 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3427 
3428 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3429 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3430 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3431     }
3432 }	/* xlog_verify_tail_lsn */
3433 
3434 /*
3435  * Perform a number of checks on the iclog before writing to disk.
3436  *
3437  * 1. Make sure the iclogs are still circular
3438  * 2. Make sure we have a good magic number
3439  * 3. Make sure we don't have magic numbers in the data
3440  * 4. Check fields of each log operation header for:
3441  *	A. Valid client identifier
3442  *	B. tid ptr value falls in valid ptr space (user space code)
3443  *	C. Length in log record header is correct according to the
3444  *		individual operation headers within record.
3445  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3446  *	log, check the preceding blocks of the physical log to make sure all
3447  *	the cycle numbers agree with the current cycle number.
3448  */
3449 STATIC void
3450 xlog_verify_iclog(
3451 	struct xlog		*log,
3452 	struct xlog_in_core	*iclog,
3453 	int			count,
3454 	boolean_t		syncing)
3455 {
3456 	xlog_op_header_t	*ophead;
3457 	xlog_in_core_t		*icptr;
3458 	xlog_in_core_2_t	*xhdr;
3459 	xfs_caddr_t		ptr;
3460 	xfs_caddr_t		base_ptr;
3461 	__psint_t		field_offset;
3462 	__uint8_t		clientid;
3463 	int			len, i, j, k, op_len;
3464 	int			idx;
3465 
3466 	/* check validity of iclog pointers */
3467 	spin_lock(&log->l_icloglock);
3468 	icptr = log->l_iclog;
3469 	for (i=0; i < log->l_iclog_bufs; i++) {
3470 		if (icptr == NULL)
3471 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3472 		icptr = icptr->ic_next;
3473 	}
3474 	if (icptr != log->l_iclog)
3475 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3476 	spin_unlock(&log->l_icloglock);
3477 
3478 	/* check log magic numbers */
3479 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3480 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3481 
3482 	ptr = (xfs_caddr_t) &iclog->ic_header;
3483 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3484 	     ptr += BBSIZE) {
3485 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3486 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3487 				__func__);
3488 	}
3489 
3490 	/* check fields */
3491 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3492 	ptr = iclog->ic_datap;
3493 	base_ptr = ptr;
3494 	ophead = (xlog_op_header_t *)ptr;
3495 	xhdr = iclog->ic_data;
3496 	for (i = 0; i < len; i++) {
3497 		ophead = (xlog_op_header_t *)ptr;
3498 
3499 		/* clientid is only 1 byte */
3500 		field_offset = (__psint_t)
3501 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3502 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3503 			clientid = ophead->oh_clientid;
3504 		} else {
3505 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3506 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3507 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3508 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3509 				clientid = xlog_get_client_id(
3510 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3511 			} else {
3512 				clientid = xlog_get_client_id(
3513 					iclog->ic_header.h_cycle_data[idx]);
3514 			}
3515 		}
3516 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3517 			xfs_warn(log->l_mp,
3518 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3519 				__func__, clientid, ophead,
3520 				(unsigned long)field_offset);
3521 
3522 		/* check length */
3523 		field_offset = (__psint_t)
3524 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3525 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3526 			op_len = be32_to_cpu(ophead->oh_len);
3527 		} else {
3528 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3529 				    (__psint_t)iclog->ic_datap);
3530 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3531 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3532 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3533 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3534 			} else {
3535 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3536 			}
3537 		}
3538 		ptr += sizeof(xlog_op_header_t) + op_len;
3539 	}
3540 }	/* xlog_verify_iclog */
3541 #endif
3542 
3543 /*
3544  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3545  */
3546 STATIC int
3547 xlog_state_ioerror(
3548 	struct xlog	*log)
3549 {
3550 	xlog_in_core_t	*iclog, *ic;
3551 
3552 	iclog = log->l_iclog;
3553 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3554 		/*
3555 		 * Mark all the incore logs IOERROR.
3556 		 * From now on, no log flushes will result.
3557 		 */
3558 		ic = iclog;
3559 		do {
3560 			ic->ic_state = XLOG_STATE_IOERROR;
3561 			ic = ic->ic_next;
3562 		} while (ic != iclog);
3563 		return 0;
3564 	}
3565 	/*
3566 	 * Return non-zero, if state transition has already happened.
3567 	 */
3568 	return 1;
3569 }
3570 
3571 /*
3572  * This is called from xfs_force_shutdown, when we're forcibly
3573  * shutting down the filesystem, typically because of an IO error.
3574  * Our main objectives here are to make sure that:
3575  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3576  *	   parties to find out, 'atomically'.
3577  *	b. those who're sleeping on log reservations, pinned objects and
3578  *	    other resources get woken up, and be told the bad news.
3579  *	c. nothing new gets queued up after (a) and (b) are done.
3580  *	d. if !logerror, flush the iclogs to disk, then seal them off
3581  *	   for business.
3582  *
3583  * Note: for delayed logging the !logerror case needs to flush the regions
3584  * held in memory out to the iclogs before flushing them to disk. This needs
3585  * to be done before the log is marked as shutdown, otherwise the flush to the
3586  * iclogs will fail.
3587  */
3588 int
3589 xfs_log_force_umount(
3590 	struct xfs_mount	*mp,
3591 	int			logerror)
3592 {
3593 	struct xlog	*log;
3594 	int		retval;
3595 
3596 	log = mp->m_log;
3597 
3598 	/*
3599 	 * If this happens during log recovery, don't worry about
3600 	 * locking; the log isn't open for business yet.
3601 	 */
3602 	if (!log ||
3603 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3604 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3605 		if (mp->m_sb_bp)
3606 			XFS_BUF_DONE(mp->m_sb_bp);
3607 		return 0;
3608 	}
3609 
3610 	/*
3611 	 * Somebody could've already done the hard work for us.
3612 	 * No need to get locks for this.
3613 	 */
3614 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3615 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3616 		return 1;
3617 	}
3618 	retval = 0;
3619 
3620 	/*
3621 	 * Flush the in memory commit item list before marking the log as
3622 	 * being shut down. We need to do it in this order to ensure all the
3623 	 * completed transactions are flushed to disk with the xfs_log_force()
3624 	 * call below.
3625 	 */
3626 	if (!logerror)
3627 		xlog_cil_force(log);
3628 
3629 	/*
3630 	 * mark the filesystem and the as in a shutdown state and wake
3631 	 * everybody up to tell them the bad news.
3632 	 */
3633 	spin_lock(&log->l_icloglock);
3634 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3635 	if (mp->m_sb_bp)
3636 		XFS_BUF_DONE(mp->m_sb_bp);
3637 
3638 	/*
3639 	 * This flag is sort of redundant because of the mount flag, but
3640 	 * it's good to maintain the separation between the log and the rest
3641 	 * of XFS.
3642 	 */
3643 	log->l_flags |= XLOG_IO_ERROR;
3644 
3645 	/*
3646 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3647 	 * while we're still holding the loglock.
3648 	 */
3649 	if (logerror)
3650 		retval = xlog_state_ioerror(log);
3651 	spin_unlock(&log->l_icloglock);
3652 
3653 	/*
3654 	 * We don't want anybody waiting for log reservations after this. That
3655 	 * means we have to wake up everybody queued up on reserveq as well as
3656 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3657 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3658 	 * action is protected by the grant locks.
3659 	 */
3660 	xlog_grant_head_wake_all(&log->l_reserve_head);
3661 	xlog_grant_head_wake_all(&log->l_write_head);
3662 
3663 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3664 		ASSERT(!logerror);
3665 		/*
3666 		 * Force the incore logs to disk before shutting the
3667 		 * log down completely.
3668 		 */
3669 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3670 
3671 		spin_lock(&log->l_icloglock);
3672 		retval = xlog_state_ioerror(log);
3673 		spin_unlock(&log->l_icloglock);
3674 	}
3675 	/*
3676 	 * Wake up everybody waiting on xfs_log_force.
3677 	 * Callback all log item committed functions as if the
3678 	 * log writes were completed.
3679 	 */
3680 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3681 
3682 #ifdef XFSERRORDEBUG
3683 	{
3684 		xlog_in_core_t	*iclog;
3685 
3686 		spin_lock(&log->l_icloglock);
3687 		iclog = log->l_iclog;
3688 		do {
3689 			ASSERT(iclog->ic_callback == 0);
3690 			iclog = iclog->ic_next;
3691 		} while (iclog != log->l_iclog);
3692 		spin_unlock(&log->l_icloglock);
3693 	}
3694 #endif
3695 	/* return non-zero if log IOERROR transition had already happened */
3696 	return retval;
3697 }
3698 
3699 STATIC int
3700 xlog_iclogs_empty(
3701 	struct xlog	*log)
3702 {
3703 	xlog_in_core_t	*iclog;
3704 
3705 	iclog = log->l_iclog;
3706 	do {
3707 		/* endianness does not matter here, zero is zero in
3708 		 * any language.
3709 		 */
3710 		if (iclog->ic_header.h_num_logops)
3711 			return 0;
3712 		iclog = iclog->ic_next;
3713 	} while (iclog != log->l_iclog);
3714 	return 1;
3715 }
3716