1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *logoffsetp); 53 STATIC void 54 xlog_grant_push_ail( 55 struct xlog *log, 56 int need_bytes); 57 STATIC void 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog, 61 struct xlog_ticket *ticket); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_verify_grant_tail( 65 struct xlog *log); 66 STATIC void 67 xlog_verify_iclog( 68 struct xlog *log, 69 struct xlog_in_core *iclog, 70 int count); 71 STATIC void 72 xlog_verify_tail_lsn( 73 struct xlog *log, 74 struct xlog_in_core *iclog); 75 #else 76 #define xlog_verify_grant_tail(a) 77 #define xlog_verify_iclog(a,b,c) 78 #define xlog_verify_tail_lsn(a,b) 79 #endif 80 81 STATIC int 82 xlog_iclogs_empty( 83 struct xlog *log); 84 85 static int 86 xfs_log_cover(struct xfs_mount *); 87 88 /* 89 * We need to make sure the buffer pointer returned is naturally aligned for the 90 * biggest basic data type we put into it. We have already accounted for this 91 * padding when sizing the buffer. 92 * 93 * However, this padding does not get written into the log, and hence we have to 94 * track the space used by the log vectors separately to prevent log space hangs 95 * due to inaccurate accounting (i.e. a leak) of the used log space through the 96 * CIL context ticket. 97 * 98 * We also add space for the xlog_op_header that describes this region in the 99 * log. This prepends the data region we return to the caller to copy their data 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr 101 * is not 8 byte aligned, we have to be careful to ensure that we align the 102 * start of the buffer such that the region we return to the call is 8 byte 103 * aligned and packed against the tail of the ophdr. 104 */ 105 void * 106 xlog_prepare_iovec( 107 struct xfs_log_vec *lv, 108 struct xfs_log_iovec **vecp, 109 uint type) 110 { 111 struct xfs_log_iovec *vec = *vecp; 112 struct xlog_op_header *oph; 113 uint32_t len; 114 void *buf; 115 116 if (vec) { 117 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 118 vec++; 119 } else { 120 vec = &lv->lv_iovecp[0]; 121 } 122 123 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 124 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 125 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 126 sizeof(struct xlog_op_header); 127 } 128 129 vec->i_type = type; 130 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 131 132 oph = vec->i_addr; 133 oph->oh_clientid = XFS_TRANSACTION; 134 oph->oh_res2 = 0; 135 oph->oh_flags = 0; 136 137 buf = vec->i_addr + sizeof(struct xlog_op_header); 138 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 139 140 *vecp = vec; 141 return buf; 142 } 143 144 static void 145 xlog_grant_sub_space( 146 struct xlog *log, 147 atomic64_t *head, 148 int bytes) 149 { 150 int64_t head_val = atomic64_read(head); 151 int64_t new, old; 152 153 do { 154 int cycle, space; 155 156 xlog_crack_grant_head_val(head_val, &cycle, &space); 157 158 space -= bytes; 159 if (space < 0) { 160 space += log->l_logsize; 161 cycle--; 162 } 163 164 old = head_val; 165 new = xlog_assign_grant_head_val(cycle, space); 166 head_val = atomic64_cmpxchg(head, old, new); 167 } while (head_val != old); 168 } 169 170 static void 171 xlog_grant_add_space( 172 struct xlog *log, 173 atomic64_t *head, 174 int bytes) 175 { 176 int64_t head_val = atomic64_read(head); 177 int64_t new, old; 178 179 do { 180 int tmp; 181 int cycle, space; 182 183 xlog_crack_grant_head_val(head_val, &cycle, &space); 184 185 tmp = log->l_logsize - space; 186 if (tmp > bytes) 187 space += bytes; 188 else { 189 space = bytes - tmp; 190 cycle++; 191 } 192 193 old = head_val; 194 new = xlog_assign_grant_head_val(cycle, space); 195 head_val = atomic64_cmpxchg(head, old, new); 196 } while (head_val != old); 197 } 198 199 STATIC void 200 xlog_grant_head_init( 201 struct xlog_grant_head *head) 202 { 203 xlog_assign_grant_head(&head->grant, 1, 0); 204 INIT_LIST_HEAD(&head->waiters); 205 spin_lock_init(&head->lock); 206 } 207 208 STATIC void 209 xlog_grant_head_wake_all( 210 struct xlog_grant_head *head) 211 { 212 struct xlog_ticket *tic; 213 214 spin_lock(&head->lock); 215 list_for_each_entry(tic, &head->waiters, t_queue) 216 wake_up_process(tic->t_task); 217 spin_unlock(&head->lock); 218 } 219 220 static inline int 221 xlog_ticket_reservation( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 struct xlog_ticket *tic) 225 { 226 if (head == &log->l_write_head) { 227 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 228 return tic->t_unit_res; 229 } 230 231 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 232 return tic->t_unit_res * tic->t_cnt; 233 234 return tic->t_unit_res; 235 } 236 237 STATIC bool 238 xlog_grant_head_wake( 239 struct xlog *log, 240 struct xlog_grant_head *head, 241 int *free_bytes) 242 { 243 struct xlog_ticket *tic; 244 int need_bytes; 245 bool woken_task = false; 246 247 list_for_each_entry(tic, &head->waiters, t_queue) { 248 249 /* 250 * There is a chance that the size of the CIL checkpoints in 251 * progress at the last AIL push target calculation resulted in 252 * limiting the target to the log head (l_last_sync_lsn) at the 253 * time. This may not reflect where the log head is now as the 254 * CIL checkpoints may have completed. 255 * 256 * Hence when we are woken here, it may be that the head of the 257 * log that has moved rather than the tail. As the tail didn't 258 * move, there still won't be space available for the 259 * reservation we require. However, if the AIL has already 260 * pushed to the target defined by the old log head location, we 261 * will hang here waiting for something else to update the AIL 262 * push target. 263 * 264 * Therefore, if there isn't space to wake the first waiter on 265 * the grant head, we need to push the AIL again to ensure the 266 * target reflects both the current log tail and log head 267 * position before we wait for the tail to move again. 268 */ 269 270 need_bytes = xlog_ticket_reservation(log, head, tic); 271 if (*free_bytes < need_bytes) { 272 if (!woken_task) 273 xlog_grant_push_ail(log, need_bytes); 274 return false; 275 } 276 277 *free_bytes -= need_bytes; 278 trace_xfs_log_grant_wake_up(log, tic); 279 wake_up_process(tic->t_task); 280 woken_task = true; 281 } 282 283 return true; 284 } 285 286 STATIC int 287 xlog_grant_head_wait( 288 struct xlog *log, 289 struct xlog_grant_head *head, 290 struct xlog_ticket *tic, 291 int need_bytes) __releases(&head->lock) 292 __acquires(&head->lock) 293 { 294 list_add_tail(&tic->t_queue, &head->waiters); 295 296 do { 297 if (xlog_is_shutdown(log)) 298 goto shutdown; 299 xlog_grant_push_ail(log, need_bytes); 300 301 __set_current_state(TASK_UNINTERRUPTIBLE); 302 spin_unlock(&head->lock); 303 304 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 305 306 trace_xfs_log_grant_sleep(log, tic); 307 schedule(); 308 trace_xfs_log_grant_wake(log, tic); 309 310 spin_lock(&head->lock); 311 if (xlog_is_shutdown(log)) 312 goto shutdown; 313 } while (xlog_space_left(log, &head->grant) < need_bytes); 314 315 list_del_init(&tic->t_queue); 316 return 0; 317 shutdown: 318 list_del_init(&tic->t_queue); 319 return -EIO; 320 } 321 322 /* 323 * Atomically get the log space required for a log ticket. 324 * 325 * Once a ticket gets put onto head->waiters, it will only return after the 326 * needed reservation is satisfied. 327 * 328 * This function is structured so that it has a lock free fast path. This is 329 * necessary because every new transaction reservation will come through this 330 * path. Hence any lock will be globally hot if we take it unconditionally on 331 * every pass. 332 * 333 * As tickets are only ever moved on and off head->waiters under head->lock, we 334 * only need to take that lock if we are going to add the ticket to the queue 335 * and sleep. We can avoid taking the lock if the ticket was never added to 336 * head->waiters because the t_queue list head will be empty and we hold the 337 * only reference to it so it can safely be checked unlocked. 338 */ 339 STATIC int 340 xlog_grant_head_check( 341 struct xlog *log, 342 struct xlog_grant_head *head, 343 struct xlog_ticket *tic, 344 int *need_bytes) 345 { 346 int free_bytes; 347 int error = 0; 348 349 ASSERT(!xlog_in_recovery(log)); 350 351 /* 352 * If there are other waiters on the queue then give them a chance at 353 * logspace before us. Wake up the first waiters, if we do not wake 354 * up all the waiters then go to sleep waiting for more free space, 355 * otherwise try to get some space for this transaction. 356 */ 357 *need_bytes = xlog_ticket_reservation(log, head, tic); 358 free_bytes = xlog_space_left(log, &head->grant); 359 if (!list_empty_careful(&head->waiters)) { 360 spin_lock(&head->lock); 361 if (!xlog_grant_head_wake(log, head, &free_bytes) || 362 free_bytes < *need_bytes) { 363 error = xlog_grant_head_wait(log, head, tic, 364 *need_bytes); 365 } 366 spin_unlock(&head->lock); 367 } else if (free_bytes < *need_bytes) { 368 spin_lock(&head->lock); 369 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 370 spin_unlock(&head->lock); 371 } 372 373 return error; 374 } 375 376 bool 377 xfs_log_writable( 378 struct xfs_mount *mp) 379 { 380 /* 381 * Do not write to the log on norecovery mounts, if the data or log 382 * devices are read-only, or if the filesystem is shutdown. Read-only 383 * mounts allow internal writes for log recovery and unmount purposes, 384 * so don't restrict that case. 385 */ 386 if (xfs_has_norecovery(mp)) 387 return false; 388 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 389 return false; 390 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 391 return false; 392 if (xlog_is_shutdown(mp->m_log)) 393 return false; 394 return true; 395 } 396 397 /* 398 * Replenish the byte reservation required by moving the grant write head. 399 */ 400 int 401 xfs_log_regrant( 402 struct xfs_mount *mp, 403 struct xlog_ticket *tic) 404 { 405 struct xlog *log = mp->m_log; 406 int need_bytes; 407 int error = 0; 408 409 if (xlog_is_shutdown(log)) 410 return -EIO; 411 412 XFS_STATS_INC(mp, xs_try_logspace); 413 414 /* 415 * This is a new transaction on the ticket, so we need to change the 416 * transaction ID so that the next transaction has a different TID in 417 * the log. Just add one to the existing tid so that we can see chains 418 * of rolling transactions in the log easily. 419 */ 420 tic->t_tid++; 421 422 xlog_grant_push_ail(log, tic->t_unit_res); 423 424 tic->t_curr_res = tic->t_unit_res; 425 if (tic->t_cnt > 0) 426 return 0; 427 428 trace_xfs_log_regrant(log, tic); 429 430 error = xlog_grant_head_check(log, &log->l_write_head, tic, 431 &need_bytes); 432 if (error) 433 goto out_error; 434 435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 436 trace_xfs_log_regrant_exit(log, tic); 437 xlog_verify_grant_tail(log); 438 return 0; 439 440 out_error: 441 /* 442 * If we are failing, make sure the ticket doesn't have any current 443 * reservations. We don't want to add this back when the ticket/ 444 * transaction gets cancelled. 445 */ 446 tic->t_curr_res = 0; 447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 448 return error; 449 } 450 451 /* 452 * Reserve log space and return a ticket corresponding to the reservation. 453 * 454 * Each reservation is going to reserve extra space for a log record header. 455 * When writes happen to the on-disk log, we don't subtract the length of the 456 * log record header from any reservation. By wasting space in each 457 * reservation, we prevent over allocation problems. 458 */ 459 int 460 xfs_log_reserve( 461 struct xfs_mount *mp, 462 int unit_bytes, 463 int cnt, 464 struct xlog_ticket **ticp, 465 bool permanent) 466 { 467 struct xlog *log = mp->m_log; 468 struct xlog_ticket *tic; 469 int need_bytes; 470 int error = 0; 471 472 if (xlog_is_shutdown(log)) 473 return -EIO; 474 475 XFS_STATS_INC(mp, xs_try_logspace); 476 477 ASSERT(*ticp == NULL); 478 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 479 *ticp = tic; 480 481 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 482 : tic->t_unit_res); 483 484 trace_xfs_log_reserve(log, tic); 485 486 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 487 &need_bytes); 488 if (error) 489 goto out_error; 490 491 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 492 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 493 trace_xfs_log_reserve_exit(log, tic); 494 xlog_verify_grant_tail(log); 495 return 0; 496 497 out_error: 498 /* 499 * If we are failing, make sure the ticket doesn't have any current 500 * reservations. We don't want to add this back when the ticket/ 501 * transaction gets cancelled. 502 */ 503 tic->t_curr_res = 0; 504 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 505 return error; 506 } 507 508 /* 509 * Run all the pending iclog callbacks and wake log force waiters and iclog 510 * space waiters so they can process the newly set shutdown state. We really 511 * don't care what order we process callbacks here because the log is shut down 512 * and so state cannot change on disk anymore. However, we cannot wake waiters 513 * until the callbacks have been processed because we may be in unmount and 514 * we must ensure that all AIL operations the callbacks perform have completed 515 * before we tear down the AIL. 516 * 517 * We avoid processing actively referenced iclogs so that we don't run callbacks 518 * while the iclog owner might still be preparing the iclog for IO submssion. 519 * These will be caught by xlog_state_iclog_release() and call this function 520 * again to process any callbacks that may have been added to that iclog. 521 */ 522 static void 523 xlog_state_shutdown_callbacks( 524 struct xlog *log) 525 { 526 struct xlog_in_core *iclog; 527 LIST_HEAD(cb_list); 528 529 iclog = log->l_iclog; 530 do { 531 if (atomic_read(&iclog->ic_refcnt)) { 532 /* Reference holder will re-run iclog callbacks. */ 533 continue; 534 } 535 list_splice_init(&iclog->ic_callbacks, &cb_list); 536 spin_unlock(&log->l_icloglock); 537 538 xlog_cil_process_committed(&cb_list); 539 540 spin_lock(&log->l_icloglock); 541 wake_up_all(&iclog->ic_write_wait); 542 wake_up_all(&iclog->ic_force_wait); 543 } while ((iclog = iclog->ic_next) != log->l_iclog); 544 545 wake_up_all(&log->l_flush_wait); 546 } 547 548 /* 549 * Flush iclog to disk if this is the last reference to the given iclog and the 550 * it is in the WANT_SYNC state. 551 * 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 554 * written to stable storage, and implies that a commit record is contained 555 * within the iclog. We need to ensure that the log tail does not move beyond 556 * the tail that the first commit record in the iclog ordered against, otherwise 557 * correct recovery of that checkpoint becomes dependent on future operations 558 * performed on this iclog. 559 * 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 561 * current tail into iclog. Once the iclog tail is set, future operations must 562 * not modify it, otherwise they potentially violate ordering constraints for 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 564 * the iclog will get zeroed on activation of the iclog after sync, so we 565 * always capture the tail lsn on the iclog on the first NEED_FUA release 566 * regardless of the number of active reference counts on this iclog. 567 */ 568 int 569 xlog_state_release_iclog( 570 struct xlog *log, 571 struct xlog_in_core *iclog, 572 struct xlog_ticket *ticket) 573 { 574 xfs_lsn_t tail_lsn; 575 bool last_ref; 576 577 lockdep_assert_held(&log->l_icloglock); 578 579 trace_xlog_iclog_release(iclog, _RET_IP_); 580 /* 581 * Grabbing the current log tail needs to be atomic w.r.t. the writing 582 * of the tail LSN into the iclog so we guarantee that the log tail does 583 * not move between the first time we know that the iclog needs to be 584 * made stable and when we eventually submit it. 585 */ 586 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 587 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 588 !iclog->ic_header.h_tail_lsn) { 589 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 590 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 591 } 592 593 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 594 595 if (xlog_is_shutdown(log)) { 596 /* 597 * If there are no more references to this iclog, process the 598 * pending iclog callbacks that were waiting on the release of 599 * this iclog. 600 */ 601 if (last_ref) 602 xlog_state_shutdown_callbacks(log); 603 return -EIO; 604 } 605 606 if (!last_ref) 607 return 0; 608 609 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 610 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 611 return 0; 612 } 613 614 iclog->ic_state = XLOG_STATE_SYNCING; 615 xlog_verify_tail_lsn(log, iclog); 616 trace_xlog_iclog_syncing(iclog, _RET_IP_); 617 618 spin_unlock(&log->l_icloglock); 619 xlog_sync(log, iclog, ticket); 620 spin_lock(&log->l_icloglock); 621 return 0; 622 } 623 624 /* 625 * Mount a log filesystem 626 * 627 * mp - ubiquitous xfs mount point structure 628 * log_target - buftarg of on-disk log device 629 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 630 * num_bblocks - Number of BBSIZE blocks in on-disk log 631 * 632 * Return error or zero. 633 */ 634 int 635 xfs_log_mount( 636 xfs_mount_t *mp, 637 xfs_buftarg_t *log_target, 638 xfs_daddr_t blk_offset, 639 int num_bblks) 640 { 641 struct xlog *log; 642 bool fatal = xfs_has_crc(mp); 643 int error = 0; 644 int min_logfsbs; 645 646 if (!xfs_has_norecovery(mp)) { 647 xfs_notice(mp, "Mounting V%d Filesystem %pU", 648 XFS_SB_VERSION_NUM(&mp->m_sb), 649 &mp->m_sb.sb_uuid); 650 } else { 651 xfs_notice(mp, 652 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 653 XFS_SB_VERSION_NUM(&mp->m_sb), 654 &mp->m_sb.sb_uuid); 655 ASSERT(xfs_is_readonly(mp)); 656 } 657 658 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 659 if (IS_ERR(log)) { 660 error = PTR_ERR(log); 661 goto out; 662 } 663 mp->m_log = log; 664 665 /* 666 * Validate the given log space and drop a critical message via syslog 667 * if the log size is too small that would lead to some unexpected 668 * situations in transaction log space reservation stage. 669 * 670 * Note: we can't just reject the mount if the validation fails. This 671 * would mean that people would have to downgrade their kernel just to 672 * remedy the situation as there is no way to grow the log (short of 673 * black magic surgery with xfs_db). 674 * 675 * We can, however, reject mounts for CRC format filesystems, as the 676 * mkfs binary being used to make the filesystem should never create a 677 * filesystem with a log that is too small. 678 */ 679 min_logfsbs = xfs_log_calc_minimum_size(mp); 680 681 if (mp->m_sb.sb_logblocks < min_logfsbs) { 682 xfs_warn(mp, 683 "Log size %d blocks too small, minimum size is %d blocks", 684 mp->m_sb.sb_logblocks, min_logfsbs); 685 error = -EINVAL; 686 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 687 xfs_warn(mp, 688 "Log size %d blocks too large, maximum size is %lld blocks", 689 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 690 error = -EINVAL; 691 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 692 xfs_warn(mp, 693 "log size %lld bytes too large, maximum size is %lld bytes", 694 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 695 XFS_MAX_LOG_BYTES); 696 error = -EINVAL; 697 } else if (mp->m_sb.sb_logsunit > 1 && 698 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 699 xfs_warn(mp, 700 "log stripe unit %u bytes must be a multiple of block size", 701 mp->m_sb.sb_logsunit); 702 error = -EINVAL; 703 fatal = true; 704 } 705 if (error) { 706 /* 707 * Log check errors are always fatal on v5; or whenever bad 708 * metadata leads to a crash. 709 */ 710 if (fatal) { 711 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 712 ASSERT(0); 713 goto out_free_log; 714 } 715 xfs_crit(mp, "Log size out of supported range."); 716 xfs_crit(mp, 717 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 718 } 719 720 /* 721 * Initialize the AIL now we have a log. 722 */ 723 error = xfs_trans_ail_init(mp); 724 if (error) { 725 xfs_warn(mp, "AIL initialisation failed: error %d", error); 726 goto out_free_log; 727 } 728 log->l_ailp = mp->m_ail; 729 730 /* 731 * skip log recovery on a norecovery mount. pretend it all 732 * just worked. 733 */ 734 if (!xfs_has_norecovery(mp)) { 735 /* 736 * log recovery ignores readonly state and so we need to clear 737 * mount-based read only state so it can write to disk. 738 */ 739 bool readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, 740 &mp->m_opstate); 741 error = xlog_recover(log); 742 if (readonly) 743 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 744 if (error) { 745 xfs_warn(mp, "log mount/recovery failed: error %d", 746 error); 747 xlog_recover_cancel(log); 748 goto out_destroy_ail; 749 } 750 } 751 752 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 753 "log"); 754 if (error) 755 goto out_destroy_ail; 756 757 /* Normal transactions can now occur */ 758 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 759 760 /* 761 * Now the log has been fully initialised and we know were our 762 * space grant counters are, we can initialise the permanent ticket 763 * needed for delayed logging to work. 764 */ 765 xlog_cil_init_post_recovery(log); 766 767 return 0; 768 769 out_destroy_ail: 770 xfs_trans_ail_destroy(mp); 771 out_free_log: 772 xlog_dealloc_log(log); 773 out: 774 return error; 775 } 776 777 /* 778 * Finish the recovery of the file system. This is separate from the 779 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 780 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 781 * here. 782 * 783 * If we finish recovery successfully, start the background log work. If we are 784 * not doing recovery, then we have a RO filesystem and we don't need to start 785 * it. 786 */ 787 int 788 xfs_log_mount_finish( 789 struct xfs_mount *mp) 790 { 791 struct xlog *log = mp->m_log; 792 bool readonly; 793 int error = 0; 794 795 if (xfs_has_norecovery(mp)) { 796 ASSERT(xfs_is_readonly(mp)); 797 return 0; 798 } 799 800 /* 801 * log recovery ignores readonly state and so we need to clear 802 * mount-based read only state so it can write to disk. 803 */ 804 readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 805 806 /* 807 * During the second phase of log recovery, we need iget and 808 * iput to behave like they do for an active filesystem. 809 * xfs_fs_drop_inode needs to be able to prevent the deletion 810 * of inodes before we're done replaying log items on those 811 * inodes. Turn it off immediately after recovery finishes 812 * so that we don't leak the quota inodes if subsequent mount 813 * activities fail. 814 * 815 * We let all inodes involved in redo item processing end up on 816 * the LRU instead of being evicted immediately so that if we do 817 * something to an unlinked inode, the irele won't cause 818 * premature truncation and freeing of the inode, which results 819 * in log recovery failure. We have to evict the unreferenced 820 * lru inodes after clearing SB_ACTIVE because we don't 821 * otherwise clean up the lru if there's a subsequent failure in 822 * xfs_mountfs, which leads to us leaking the inodes if nothing 823 * else (e.g. quotacheck) references the inodes before the 824 * mount failure occurs. 825 */ 826 mp->m_super->s_flags |= SB_ACTIVE; 827 xfs_log_work_queue(mp); 828 if (xlog_recovery_needed(log)) 829 error = xlog_recover_finish(log); 830 mp->m_super->s_flags &= ~SB_ACTIVE; 831 evict_inodes(mp->m_super); 832 833 /* 834 * Drain the buffer LRU after log recovery. This is required for v4 835 * filesystems to avoid leaving around buffers with NULL verifier ops, 836 * but we do it unconditionally to make sure we're always in a clean 837 * cache state after mount. 838 * 839 * Don't push in the error case because the AIL may have pending intents 840 * that aren't removed until recovery is cancelled. 841 */ 842 if (xlog_recovery_needed(log)) { 843 if (!error) { 844 xfs_log_force(mp, XFS_LOG_SYNC); 845 xfs_ail_push_all_sync(mp->m_ail); 846 } 847 xfs_notice(mp, "Ending recovery (logdev: %s)", 848 mp->m_logname ? mp->m_logname : "internal"); 849 } else { 850 xfs_info(mp, "Ending clean mount"); 851 } 852 xfs_buftarg_drain(mp->m_ddev_targp); 853 854 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 855 if (readonly) 856 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 857 858 /* Make sure the log is dead if we're returning failure. */ 859 ASSERT(!error || xlog_is_shutdown(log)); 860 861 return error; 862 } 863 864 /* 865 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 866 * the log. 867 */ 868 void 869 xfs_log_mount_cancel( 870 struct xfs_mount *mp) 871 { 872 xlog_recover_cancel(mp->m_log); 873 xfs_log_unmount(mp); 874 } 875 876 /* 877 * Flush out the iclog to disk ensuring that device caches are flushed and 878 * the iclog hits stable storage before any completion waiters are woken. 879 */ 880 static inline int 881 xlog_force_iclog( 882 struct xlog_in_core *iclog) 883 { 884 atomic_inc(&iclog->ic_refcnt); 885 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 886 if (iclog->ic_state == XLOG_STATE_ACTIVE) 887 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 888 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 889 } 890 891 /* 892 * Cycle all the iclogbuf locks to make sure all log IO completion 893 * is done before we tear down these buffers. 894 */ 895 static void 896 xlog_wait_iclog_completion(struct xlog *log) 897 { 898 int i; 899 struct xlog_in_core *iclog = log->l_iclog; 900 901 for (i = 0; i < log->l_iclog_bufs; i++) { 902 down(&iclog->ic_sema); 903 up(&iclog->ic_sema); 904 iclog = iclog->ic_next; 905 } 906 } 907 908 /* 909 * Wait for the iclog and all prior iclogs to be written disk as required by the 910 * log force state machine. Waiting on ic_force_wait ensures iclog completions 911 * have been ordered and callbacks run before we are woken here, hence 912 * guaranteeing that all the iclogs up to this one are on stable storage. 913 */ 914 int 915 xlog_wait_on_iclog( 916 struct xlog_in_core *iclog) 917 __releases(iclog->ic_log->l_icloglock) 918 { 919 struct xlog *log = iclog->ic_log; 920 921 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 922 if (!xlog_is_shutdown(log) && 923 iclog->ic_state != XLOG_STATE_ACTIVE && 924 iclog->ic_state != XLOG_STATE_DIRTY) { 925 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 926 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 927 } else { 928 spin_unlock(&log->l_icloglock); 929 } 930 931 if (xlog_is_shutdown(log)) 932 return -EIO; 933 return 0; 934 } 935 936 /* 937 * Write out an unmount record using the ticket provided. We have to account for 938 * the data space used in the unmount ticket as this write is not done from a 939 * transaction context that has already done the accounting for us. 940 */ 941 static int 942 xlog_write_unmount_record( 943 struct xlog *log, 944 struct xlog_ticket *ticket) 945 { 946 struct { 947 struct xlog_op_header ophdr; 948 struct xfs_unmount_log_format ulf; 949 } unmount_rec = { 950 .ophdr = { 951 .oh_clientid = XFS_LOG, 952 .oh_tid = cpu_to_be32(ticket->t_tid), 953 .oh_flags = XLOG_UNMOUNT_TRANS, 954 }, 955 .ulf = { 956 .magic = XLOG_UNMOUNT_TYPE, 957 }, 958 }; 959 struct xfs_log_iovec reg = { 960 .i_addr = &unmount_rec, 961 .i_len = sizeof(unmount_rec), 962 .i_type = XLOG_REG_TYPE_UNMOUNT, 963 }; 964 struct xfs_log_vec vec = { 965 .lv_niovecs = 1, 966 .lv_iovecp = ®, 967 }; 968 LIST_HEAD(lv_chain); 969 list_add(&vec.lv_list, &lv_chain); 970 971 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 972 sizeof(struct xfs_unmount_log_format)) != 973 sizeof(unmount_rec)); 974 975 /* account for space used by record data */ 976 ticket->t_curr_res -= sizeof(unmount_rec); 977 978 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 979 } 980 981 /* 982 * Mark the filesystem clean by writing an unmount record to the head of the 983 * log. 984 */ 985 static void 986 xlog_unmount_write( 987 struct xlog *log) 988 { 989 struct xfs_mount *mp = log->l_mp; 990 struct xlog_in_core *iclog; 991 struct xlog_ticket *tic = NULL; 992 int error; 993 994 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 995 if (error) 996 goto out_err; 997 998 error = xlog_write_unmount_record(log, tic); 999 /* 1000 * At this point, we're umounting anyway, so there's no point in 1001 * transitioning log state to shutdown. Just continue... 1002 */ 1003 out_err: 1004 if (error) 1005 xfs_alert(mp, "%s: unmount record failed", __func__); 1006 1007 spin_lock(&log->l_icloglock); 1008 iclog = log->l_iclog; 1009 error = xlog_force_iclog(iclog); 1010 xlog_wait_on_iclog(iclog); 1011 1012 if (tic) { 1013 trace_xfs_log_umount_write(log, tic); 1014 xfs_log_ticket_ungrant(log, tic); 1015 } 1016 } 1017 1018 static void 1019 xfs_log_unmount_verify_iclog( 1020 struct xlog *log) 1021 { 1022 struct xlog_in_core *iclog = log->l_iclog; 1023 1024 do { 1025 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 1026 ASSERT(iclog->ic_offset == 0); 1027 } while ((iclog = iclog->ic_next) != log->l_iclog); 1028 } 1029 1030 /* 1031 * Unmount record used to have a string "Unmount filesystem--" in the 1032 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 1033 * We just write the magic number now since that particular field isn't 1034 * currently architecture converted and "Unmount" is a bit foo. 1035 * As far as I know, there weren't any dependencies on the old behaviour. 1036 */ 1037 static void 1038 xfs_log_unmount_write( 1039 struct xfs_mount *mp) 1040 { 1041 struct xlog *log = mp->m_log; 1042 1043 if (!xfs_log_writable(mp)) 1044 return; 1045 1046 xfs_log_force(mp, XFS_LOG_SYNC); 1047 1048 if (xlog_is_shutdown(log)) 1049 return; 1050 1051 /* 1052 * If we think the summary counters are bad, avoid writing the unmount 1053 * record to force log recovery at next mount, after which the summary 1054 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1055 * more details. 1056 */ 1057 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1058 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1059 xfs_alert(mp, "%s: will fix summary counters at next mount", 1060 __func__); 1061 return; 1062 } 1063 1064 xfs_log_unmount_verify_iclog(log); 1065 xlog_unmount_write(log); 1066 } 1067 1068 /* 1069 * Empty the log for unmount/freeze. 1070 * 1071 * To do this, we first need to shut down the background log work so it is not 1072 * trying to cover the log as we clean up. We then need to unpin all objects in 1073 * the log so we can then flush them out. Once they have completed their IO and 1074 * run the callbacks removing themselves from the AIL, we can cover the log. 1075 */ 1076 int 1077 xfs_log_quiesce( 1078 struct xfs_mount *mp) 1079 { 1080 /* 1081 * Clear log incompat features since we're quiescing the log. Report 1082 * failures, though it's not fatal to have a higher log feature 1083 * protection level than the log contents actually require. 1084 */ 1085 if (xfs_clear_incompat_log_features(mp)) { 1086 int error; 1087 1088 error = xfs_sync_sb(mp, false); 1089 if (error) 1090 xfs_warn(mp, 1091 "Failed to clear log incompat features on quiesce"); 1092 } 1093 1094 cancel_delayed_work_sync(&mp->m_log->l_work); 1095 xfs_log_force(mp, XFS_LOG_SYNC); 1096 1097 /* 1098 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1099 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1100 * xfs_buf_iowait() cannot be used because it was pushed with the 1101 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1102 * the IO to complete. 1103 */ 1104 xfs_ail_push_all_sync(mp->m_ail); 1105 xfs_buftarg_wait(mp->m_ddev_targp); 1106 xfs_buf_lock(mp->m_sb_bp); 1107 xfs_buf_unlock(mp->m_sb_bp); 1108 1109 return xfs_log_cover(mp); 1110 } 1111 1112 void 1113 xfs_log_clean( 1114 struct xfs_mount *mp) 1115 { 1116 xfs_log_quiesce(mp); 1117 xfs_log_unmount_write(mp); 1118 } 1119 1120 /* 1121 * Shut down and release the AIL and Log. 1122 * 1123 * During unmount, we need to ensure we flush all the dirty metadata objects 1124 * from the AIL so that the log is empty before we write the unmount record to 1125 * the log. Once this is done, we can tear down the AIL and the log. 1126 */ 1127 void 1128 xfs_log_unmount( 1129 struct xfs_mount *mp) 1130 { 1131 xfs_log_clean(mp); 1132 1133 /* 1134 * If shutdown has come from iclog IO context, the log 1135 * cleaning will have been skipped and so we need to wait 1136 * for the iclog to complete shutdown processing before we 1137 * tear anything down. 1138 */ 1139 xlog_wait_iclog_completion(mp->m_log); 1140 1141 xfs_buftarg_drain(mp->m_ddev_targp); 1142 1143 xfs_trans_ail_destroy(mp); 1144 1145 xfs_sysfs_del(&mp->m_log->l_kobj); 1146 1147 xlog_dealloc_log(mp->m_log); 1148 } 1149 1150 void 1151 xfs_log_item_init( 1152 struct xfs_mount *mp, 1153 struct xfs_log_item *item, 1154 int type, 1155 const struct xfs_item_ops *ops) 1156 { 1157 item->li_log = mp->m_log; 1158 item->li_ailp = mp->m_ail; 1159 item->li_type = type; 1160 item->li_ops = ops; 1161 item->li_lv = NULL; 1162 1163 INIT_LIST_HEAD(&item->li_ail); 1164 INIT_LIST_HEAD(&item->li_cil); 1165 INIT_LIST_HEAD(&item->li_bio_list); 1166 INIT_LIST_HEAD(&item->li_trans); 1167 } 1168 1169 /* 1170 * Wake up processes waiting for log space after we have moved the log tail. 1171 */ 1172 void 1173 xfs_log_space_wake( 1174 struct xfs_mount *mp) 1175 { 1176 struct xlog *log = mp->m_log; 1177 int free_bytes; 1178 1179 if (xlog_is_shutdown(log)) 1180 return; 1181 1182 if (!list_empty_careful(&log->l_write_head.waiters)) { 1183 ASSERT(!xlog_in_recovery(log)); 1184 1185 spin_lock(&log->l_write_head.lock); 1186 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1187 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1188 spin_unlock(&log->l_write_head.lock); 1189 } 1190 1191 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1192 ASSERT(!xlog_in_recovery(log)); 1193 1194 spin_lock(&log->l_reserve_head.lock); 1195 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1196 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1197 spin_unlock(&log->l_reserve_head.lock); 1198 } 1199 } 1200 1201 /* 1202 * Determine if we have a transaction that has gone to disk that needs to be 1203 * covered. To begin the transition to the idle state firstly the log needs to 1204 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1205 * we start attempting to cover the log. 1206 * 1207 * Only if we are then in a state where covering is needed, the caller is 1208 * informed that dummy transactions are required to move the log into the idle 1209 * state. 1210 * 1211 * If there are any items in the AIl or CIL, then we do not want to attempt to 1212 * cover the log as we may be in a situation where there isn't log space 1213 * available to run a dummy transaction and this can lead to deadlocks when the 1214 * tail of the log is pinned by an item that is modified in the CIL. Hence 1215 * there's no point in running a dummy transaction at this point because we 1216 * can't start trying to idle the log until both the CIL and AIL are empty. 1217 */ 1218 static bool 1219 xfs_log_need_covered( 1220 struct xfs_mount *mp) 1221 { 1222 struct xlog *log = mp->m_log; 1223 bool needed = false; 1224 1225 if (!xlog_cil_empty(log)) 1226 return false; 1227 1228 spin_lock(&log->l_icloglock); 1229 switch (log->l_covered_state) { 1230 case XLOG_STATE_COVER_DONE: 1231 case XLOG_STATE_COVER_DONE2: 1232 case XLOG_STATE_COVER_IDLE: 1233 break; 1234 case XLOG_STATE_COVER_NEED: 1235 case XLOG_STATE_COVER_NEED2: 1236 if (xfs_ail_min_lsn(log->l_ailp)) 1237 break; 1238 if (!xlog_iclogs_empty(log)) 1239 break; 1240 1241 needed = true; 1242 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1243 log->l_covered_state = XLOG_STATE_COVER_DONE; 1244 else 1245 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1246 break; 1247 default: 1248 needed = true; 1249 break; 1250 } 1251 spin_unlock(&log->l_icloglock); 1252 return needed; 1253 } 1254 1255 /* 1256 * Explicitly cover the log. This is similar to background log covering but 1257 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1258 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1259 * must all be empty. 1260 */ 1261 static int 1262 xfs_log_cover( 1263 struct xfs_mount *mp) 1264 { 1265 int error = 0; 1266 bool need_covered; 1267 1268 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1269 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1270 xlog_is_shutdown(mp->m_log)); 1271 1272 if (!xfs_log_writable(mp)) 1273 return 0; 1274 1275 /* 1276 * xfs_log_need_covered() is not idempotent because it progresses the 1277 * state machine if the log requires covering. Therefore, we must call 1278 * this function once and use the result until we've issued an sb sync. 1279 * Do so first to make that abundantly clear. 1280 * 1281 * Fall into the covering sequence if the log needs covering or the 1282 * mount has lazy superblock accounting to sync to disk. The sb sync 1283 * used for covering accumulates the in-core counters, so covering 1284 * handles this for us. 1285 */ 1286 need_covered = xfs_log_need_covered(mp); 1287 if (!need_covered && !xfs_has_lazysbcount(mp)) 1288 return 0; 1289 1290 /* 1291 * To cover the log, commit the superblock twice (at most) in 1292 * independent checkpoints. The first serves as a reference for the 1293 * tail pointer. The sync transaction and AIL push empties the AIL and 1294 * updates the in-core tail to the LSN of the first checkpoint. The 1295 * second commit updates the on-disk tail with the in-core LSN, 1296 * covering the log. Push the AIL one more time to leave it empty, as 1297 * we found it. 1298 */ 1299 do { 1300 error = xfs_sync_sb(mp, true); 1301 if (error) 1302 break; 1303 xfs_ail_push_all_sync(mp->m_ail); 1304 } while (xfs_log_need_covered(mp)); 1305 1306 return error; 1307 } 1308 1309 /* 1310 * We may be holding the log iclog lock upon entering this routine. 1311 */ 1312 xfs_lsn_t 1313 xlog_assign_tail_lsn_locked( 1314 struct xfs_mount *mp) 1315 { 1316 struct xlog *log = mp->m_log; 1317 struct xfs_log_item *lip; 1318 xfs_lsn_t tail_lsn; 1319 1320 assert_spin_locked(&mp->m_ail->ail_lock); 1321 1322 /* 1323 * To make sure we always have a valid LSN for the log tail we keep 1324 * track of the last LSN which was committed in log->l_last_sync_lsn, 1325 * and use that when the AIL was empty. 1326 */ 1327 lip = xfs_ail_min(mp->m_ail); 1328 if (lip) 1329 tail_lsn = lip->li_lsn; 1330 else 1331 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1332 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1333 atomic64_set(&log->l_tail_lsn, tail_lsn); 1334 return tail_lsn; 1335 } 1336 1337 xfs_lsn_t 1338 xlog_assign_tail_lsn( 1339 struct xfs_mount *mp) 1340 { 1341 xfs_lsn_t tail_lsn; 1342 1343 spin_lock(&mp->m_ail->ail_lock); 1344 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1345 spin_unlock(&mp->m_ail->ail_lock); 1346 1347 return tail_lsn; 1348 } 1349 1350 /* 1351 * Return the space in the log between the tail and the head. The head 1352 * is passed in the cycle/bytes formal parms. In the special case where 1353 * the reserve head has wrapped passed the tail, this calculation is no 1354 * longer valid. In this case, just return 0 which means there is no space 1355 * in the log. This works for all places where this function is called 1356 * with the reserve head. Of course, if the write head were to ever 1357 * wrap the tail, we should blow up. Rather than catch this case here, 1358 * we depend on other ASSERTions in other parts of the code. XXXmiken 1359 * 1360 * If reservation head is behind the tail, we have a problem. Warn about it, 1361 * but then treat it as if the log is empty. 1362 * 1363 * If the log is shut down, the head and tail may be invalid or out of whack, so 1364 * shortcut invalidity asserts in this case so that we don't trigger them 1365 * falsely. 1366 */ 1367 STATIC int 1368 xlog_space_left( 1369 struct xlog *log, 1370 atomic64_t *head) 1371 { 1372 int tail_bytes; 1373 int tail_cycle; 1374 int head_cycle; 1375 int head_bytes; 1376 1377 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1378 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1379 tail_bytes = BBTOB(tail_bytes); 1380 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1381 return log->l_logsize - (head_bytes - tail_bytes); 1382 if (tail_cycle + 1 < head_cycle) 1383 return 0; 1384 1385 /* Ignore potential inconsistency when shutdown. */ 1386 if (xlog_is_shutdown(log)) 1387 return log->l_logsize; 1388 1389 if (tail_cycle < head_cycle) { 1390 ASSERT(tail_cycle == (head_cycle - 1)); 1391 return tail_bytes - head_bytes; 1392 } 1393 1394 /* 1395 * The reservation head is behind the tail. In this case we just want to 1396 * return the size of the log as the amount of space left. 1397 */ 1398 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1399 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1400 tail_cycle, tail_bytes); 1401 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1402 head_cycle, head_bytes); 1403 ASSERT(0); 1404 return log->l_logsize; 1405 } 1406 1407 1408 static void 1409 xlog_ioend_work( 1410 struct work_struct *work) 1411 { 1412 struct xlog_in_core *iclog = 1413 container_of(work, struct xlog_in_core, ic_end_io_work); 1414 struct xlog *log = iclog->ic_log; 1415 int error; 1416 1417 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1418 #ifdef DEBUG 1419 /* treat writes with injected CRC errors as failed */ 1420 if (iclog->ic_fail_crc) 1421 error = -EIO; 1422 #endif 1423 1424 /* 1425 * Race to shutdown the filesystem if we see an error. 1426 */ 1427 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1428 xfs_alert(log->l_mp, "log I/O error %d", error); 1429 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1430 } 1431 1432 xlog_state_done_syncing(iclog); 1433 bio_uninit(&iclog->ic_bio); 1434 1435 /* 1436 * Drop the lock to signal that we are done. Nothing references the 1437 * iclog after this, so an unmount waiting on this lock can now tear it 1438 * down safely. As such, it is unsafe to reference the iclog after the 1439 * unlock as we could race with it being freed. 1440 */ 1441 up(&iclog->ic_sema); 1442 } 1443 1444 /* 1445 * Return size of each in-core log record buffer. 1446 * 1447 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1448 * 1449 * If the filesystem blocksize is too large, we may need to choose a 1450 * larger size since the directory code currently logs entire blocks. 1451 */ 1452 STATIC void 1453 xlog_get_iclog_buffer_size( 1454 struct xfs_mount *mp, 1455 struct xlog *log) 1456 { 1457 if (mp->m_logbufs <= 0) 1458 mp->m_logbufs = XLOG_MAX_ICLOGS; 1459 if (mp->m_logbsize <= 0) 1460 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1461 1462 log->l_iclog_bufs = mp->m_logbufs; 1463 log->l_iclog_size = mp->m_logbsize; 1464 1465 /* 1466 * # headers = size / 32k - one header holds cycles from 32k of data. 1467 */ 1468 log->l_iclog_heads = 1469 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1470 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1471 } 1472 1473 void 1474 xfs_log_work_queue( 1475 struct xfs_mount *mp) 1476 { 1477 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1478 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1479 } 1480 1481 /* 1482 * Clear the log incompat flags if we have the opportunity. 1483 * 1484 * This only happens if we're about to log the second dummy transaction as part 1485 * of covering the log and we can get the log incompat feature usage lock. 1486 */ 1487 static inline void 1488 xlog_clear_incompat( 1489 struct xlog *log) 1490 { 1491 struct xfs_mount *mp = log->l_mp; 1492 1493 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1494 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1495 return; 1496 1497 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1498 return; 1499 1500 if (!down_write_trylock(&log->l_incompat_users)) 1501 return; 1502 1503 xfs_clear_incompat_log_features(mp); 1504 up_write(&log->l_incompat_users); 1505 } 1506 1507 /* 1508 * Every sync period we need to unpin all items in the AIL and push them to 1509 * disk. If there is nothing dirty, then we might need to cover the log to 1510 * indicate that the filesystem is idle. 1511 */ 1512 static void 1513 xfs_log_worker( 1514 struct work_struct *work) 1515 { 1516 struct xlog *log = container_of(to_delayed_work(work), 1517 struct xlog, l_work); 1518 struct xfs_mount *mp = log->l_mp; 1519 1520 /* dgc: errors ignored - not fatal and nowhere to report them */ 1521 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1522 /* 1523 * Dump a transaction into the log that contains no real change. 1524 * This is needed to stamp the current tail LSN into the log 1525 * during the covering operation. 1526 * 1527 * We cannot use an inode here for this - that will push dirty 1528 * state back up into the VFS and then periodic inode flushing 1529 * will prevent log covering from making progress. Hence we 1530 * synchronously log the superblock instead to ensure the 1531 * superblock is immediately unpinned and can be written back. 1532 */ 1533 xlog_clear_incompat(log); 1534 xfs_sync_sb(mp, true); 1535 } else 1536 xfs_log_force(mp, 0); 1537 1538 /* start pushing all the metadata that is currently dirty */ 1539 xfs_ail_push_all(mp->m_ail); 1540 1541 /* queue us up again */ 1542 xfs_log_work_queue(mp); 1543 } 1544 1545 /* 1546 * This routine initializes some of the log structure for a given mount point. 1547 * Its primary purpose is to fill in enough, so recovery can occur. However, 1548 * some other stuff may be filled in too. 1549 */ 1550 STATIC struct xlog * 1551 xlog_alloc_log( 1552 struct xfs_mount *mp, 1553 struct xfs_buftarg *log_target, 1554 xfs_daddr_t blk_offset, 1555 int num_bblks) 1556 { 1557 struct xlog *log; 1558 xlog_rec_header_t *head; 1559 xlog_in_core_t **iclogp; 1560 xlog_in_core_t *iclog, *prev_iclog=NULL; 1561 int i; 1562 int error = -ENOMEM; 1563 uint log2_size = 0; 1564 1565 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1566 if (!log) { 1567 xfs_warn(mp, "Log allocation failed: No memory!"); 1568 goto out; 1569 } 1570 1571 log->l_mp = mp; 1572 log->l_targ = log_target; 1573 log->l_logsize = BBTOB(num_bblks); 1574 log->l_logBBstart = blk_offset; 1575 log->l_logBBsize = num_bblks; 1576 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1577 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1578 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1579 1580 log->l_prev_block = -1; 1581 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1582 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1583 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1584 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1585 1586 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1587 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1588 else 1589 log->l_iclog_roundoff = BBSIZE; 1590 1591 xlog_grant_head_init(&log->l_reserve_head); 1592 xlog_grant_head_init(&log->l_write_head); 1593 1594 error = -EFSCORRUPTED; 1595 if (xfs_has_sector(mp)) { 1596 log2_size = mp->m_sb.sb_logsectlog; 1597 if (log2_size < BBSHIFT) { 1598 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1599 log2_size, BBSHIFT); 1600 goto out_free_log; 1601 } 1602 1603 log2_size -= BBSHIFT; 1604 if (log2_size > mp->m_sectbb_log) { 1605 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1606 log2_size, mp->m_sectbb_log); 1607 goto out_free_log; 1608 } 1609 1610 /* for larger sector sizes, must have v2 or external log */ 1611 if (log2_size && log->l_logBBstart > 0 && 1612 !xfs_has_logv2(mp)) { 1613 xfs_warn(mp, 1614 "log sector size (0x%x) invalid for configuration.", 1615 log2_size); 1616 goto out_free_log; 1617 } 1618 } 1619 log->l_sectBBsize = 1 << log2_size; 1620 1621 init_rwsem(&log->l_incompat_users); 1622 1623 xlog_get_iclog_buffer_size(mp, log); 1624 1625 spin_lock_init(&log->l_icloglock); 1626 init_waitqueue_head(&log->l_flush_wait); 1627 1628 iclogp = &log->l_iclog; 1629 /* 1630 * The amount of memory to allocate for the iclog structure is 1631 * rather funky due to the way the structure is defined. It is 1632 * done this way so that we can use different sizes for machines 1633 * with different amounts of memory. See the definition of 1634 * xlog_in_core_t in xfs_log_priv.h for details. 1635 */ 1636 ASSERT(log->l_iclog_size >= 4096); 1637 for (i = 0; i < log->l_iclog_bufs; i++) { 1638 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1639 sizeof(struct bio_vec); 1640 1641 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1642 if (!iclog) 1643 goto out_free_iclog; 1644 1645 *iclogp = iclog; 1646 iclog->ic_prev = prev_iclog; 1647 prev_iclog = iclog; 1648 1649 iclog->ic_data = kvzalloc(log->l_iclog_size, 1650 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1651 if (!iclog->ic_data) 1652 goto out_free_iclog; 1653 head = &iclog->ic_header; 1654 memset(head, 0, sizeof(xlog_rec_header_t)); 1655 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1656 head->h_version = cpu_to_be32( 1657 xfs_has_logv2(log->l_mp) ? 2 : 1); 1658 head->h_size = cpu_to_be32(log->l_iclog_size); 1659 /* new fields */ 1660 head->h_fmt = cpu_to_be32(XLOG_FMT); 1661 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1662 1663 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1664 iclog->ic_state = XLOG_STATE_ACTIVE; 1665 iclog->ic_log = log; 1666 atomic_set(&iclog->ic_refcnt, 0); 1667 INIT_LIST_HEAD(&iclog->ic_callbacks); 1668 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1669 1670 init_waitqueue_head(&iclog->ic_force_wait); 1671 init_waitqueue_head(&iclog->ic_write_wait); 1672 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1673 sema_init(&iclog->ic_sema, 1); 1674 1675 iclogp = &iclog->ic_next; 1676 } 1677 *iclogp = log->l_iclog; /* complete ring */ 1678 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1679 1680 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1681 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1682 WQ_HIGHPRI), 1683 0, mp->m_super->s_id); 1684 if (!log->l_ioend_workqueue) 1685 goto out_free_iclog; 1686 1687 error = xlog_cil_init(log); 1688 if (error) 1689 goto out_destroy_workqueue; 1690 return log; 1691 1692 out_destroy_workqueue: 1693 destroy_workqueue(log->l_ioend_workqueue); 1694 out_free_iclog: 1695 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1696 prev_iclog = iclog->ic_next; 1697 kmem_free(iclog->ic_data); 1698 kmem_free(iclog); 1699 if (prev_iclog == log->l_iclog) 1700 break; 1701 } 1702 out_free_log: 1703 kmem_free(log); 1704 out: 1705 return ERR_PTR(error); 1706 } /* xlog_alloc_log */ 1707 1708 /* 1709 * Compute the LSN that we'd need to push the log tail towards in order to have 1710 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1711 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1712 * log free space already meets all three thresholds, this function returns 1713 * NULLCOMMITLSN. 1714 */ 1715 xfs_lsn_t 1716 xlog_grant_push_threshold( 1717 struct xlog *log, 1718 int need_bytes) 1719 { 1720 xfs_lsn_t threshold_lsn = 0; 1721 xfs_lsn_t last_sync_lsn; 1722 int free_blocks; 1723 int free_bytes; 1724 int threshold_block; 1725 int threshold_cycle; 1726 int free_threshold; 1727 1728 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1729 1730 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1731 free_blocks = BTOBBT(free_bytes); 1732 1733 /* 1734 * Set the threshold for the minimum number of free blocks in the 1735 * log to the maximum of what the caller needs, one quarter of the 1736 * log, and 256 blocks. 1737 */ 1738 free_threshold = BTOBB(need_bytes); 1739 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1740 free_threshold = max(free_threshold, 256); 1741 if (free_blocks >= free_threshold) 1742 return NULLCOMMITLSN; 1743 1744 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1745 &threshold_block); 1746 threshold_block += free_threshold; 1747 if (threshold_block >= log->l_logBBsize) { 1748 threshold_block -= log->l_logBBsize; 1749 threshold_cycle += 1; 1750 } 1751 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1752 threshold_block); 1753 /* 1754 * Don't pass in an lsn greater than the lsn of the last 1755 * log record known to be on disk. Use a snapshot of the last sync lsn 1756 * so that it doesn't change between the compare and the set. 1757 */ 1758 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1759 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1760 threshold_lsn = last_sync_lsn; 1761 1762 return threshold_lsn; 1763 } 1764 1765 /* 1766 * Push the tail of the log if we need to do so to maintain the free log space 1767 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1768 * policy which pushes on an lsn which is further along in the log once we 1769 * reach the high water mark. In this manner, we would be creating a low water 1770 * mark. 1771 */ 1772 STATIC void 1773 xlog_grant_push_ail( 1774 struct xlog *log, 1775 int need_bytes) 1776 { 1777 xfs_lsn_t threshold_lsn; 1778 1779 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1780 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1781 return; 1782 1783 /* 1784 * Get the transaction layer to kick the dirty buffers out to 1785 * disk asynchronously. No point in trying to do this if 1786 * the filesystem is shutting down. 1787 */ 1788 xfs_ail_push(log->l_ailp, threshold_lsn); 1789 } 1790 1791 /* 1792 * Stamp cycle number in every block 1793 */ 1794 STATIC void 1795 xlog_pack_data( 1796 struct xlog *log, 1797 struct xlog_in_core *iclog, 1798 int roundoff) 1799 { 1800 int i, j, k; 1801 int size = iclog->ic_offset + roundoff; 1802 __be32 cycle_lsn; 1803 char *dp; 1804 1805 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1806 1807 dp = iclog->ic_datap; 1808 for (i = 0; i < BTOBB(size); i++) { 1809 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1810 break; 1811 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1812 *(__be32 *)dp = cycle_lsn; 1813 dp += BBSIZE; 1814 } 1815 1816 if (xfs_has_logv2(log->l_mp)) { 1817 xlog_in_core_2_t *xhdr = iclog->ic_data; 1818 1819 for ( ; i < BTOBB(size); i++) { 1820 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1821 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1822 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1823 *(__be32 *)dp = cycle_lsn; 1824 dp += BBSIZE; 1825 } 1826 1827 for (i = 1; i < log->l_iclog_heads; i++) 1828 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1829 } 1830 } 1831 1832 /* 1833 * Calculate the checksum for a log buffer. 1834 * 1835 * This is a little more complicated than it should be because the various 1836 * headers and the actual data are non-contiguous. 1837 */ 1838 __le32 1839 xlog_cksum( 1840 struct xlog *log, 1841 struct xlog_rec_header *rhead, 1842 char *dp, 1843 int size) 1844 { 1845 uint32_t crc; 1846 1847 /* first generate the crc for the record header ... */ 1848 crc = xfs_start_cksum_update((char *)rhead, 1849 sizeof(struct xlog_rec_header), 1850 offsetof(struct xlog_rec_header, h_crc)); 1851 1852 /* ... then for additional cycle data for v2 logs ... */ 1853 if (xfs_has_logv2(log->l_mp)) { 1854 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1855 int i; 1856 int xheads; 1857 1858 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1859 1860 for (i = 1; i < xheads; i++) { 1861 crc = crc32c(crc, &xhdr[i].hic_xheader, 1862 sizeof(struct xlog_rec_ext_header)); 1863 } 1864 } 1865 1866 /* ... and finally for the payload */ 1867 crc = crc32c(crc, dp, size); 1868 1869 return xfs_end_cksum(crc); 1870 } 1871 1872 static void 1873 xlog_bio_end_io( 1874 struct bio *bio) 1875 { 1876 struct xlog_in_core *iclog = bio->bi_private; 1877 1878 queue_work(iclog->ic_log->l_ioend_workqueue, 1879 &iclog->ic_end_io_work); 1880 } 1881 1882 static int 1883 xlog_map_iclog_data( 1884 struct bio *bio, 1885 void *data, 1886 size_t count) 1887 { 1888 do { 1889 struct page *page = kmem_to_page(data); 1890 unsigned int off = offset_in_page(data); 1891 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1892 1893 if (bio_add_page(bio, page, len, off) != len) 1894 return -EIO; 1895 1896 data += len; 1897 count -= len; 1898 } while (count); 1899 1900 return 0; 1901 } 1902 1903 STATIC void 1904 xlog_write_iclog( 1905 struct xlog *log, 1906 struct xlog_in_core *iclog, 1907 uint64_t bno, 1908 unsigned int count) 1909 { 1910 ASSERT(bno < log->l_logBBsize); 1911 trace_xlog_iclog_write(iclog, _RET_IP_); 1912 1913 /* 1914 * We lock the iclogbufs here so that we can serialise against I/O 1915 * completion during unmount. We might be processing a shutdown 1916 * triggered during unmount, and that can occur asynchronously to the 1917 * unmount thread, and hence we need to ensure that completes before 1918 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1919 * across the log IO to archieve that. 1920 */ 1921 down(&iclog->ic_sema); 1922 if (xlog_is_shutdown(log)) { 1923 /* 1924 * It would seem logical to return EIO here, but we rely on 1925 * the log state machine to propagate I/O errors instead of 1926 * doing it here. We kick of the state machine and unlock 1927 * the buffer manually, the code needs to be kept in sync 1928 * with the I/O completion path. 1929 */ 1930 xlog_state_done_syncing(iclog); 1931 up(&iclog->ic_sema); 1932 return; 1933 } 1934 1935 /* 1936 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1937 * IOs coming immediately after this one. This prevents the block layer 1938 * writeback throttle from throttling log writes behind background 1939 * metadata writeback and causing priority inversions. 1940 */ 1941 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1942 howmany(count, PAGE_SIZE), 1943 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1944 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1945 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1946 iclog->ic_bio.bi_private = iclog; 1947 1948 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1949 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1950 /* 1951 * For external log devices, we also need to flush the data 1952 * device cache first to ensure all metadata writeback covered 1953 * by the LSN in this iclog is on stable storage. This is slow, 1954 * but it *must* complete before we issue the external log IO. 1955 * 1956 * If the flush fails, we cannot conclude that past metadata 1957 * writeback from the log succeeded. Repeating the flush is 1958 * not possible, hence we must shut down with log IO error to 1959 * avoid shutdown re-entering this path and erroring out again. 1960 */ 1961 if (log->l_targ != log->l_mp->m_ddev_targp && 1962 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) { 1963 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1964 return; 1965 } 1966 } 1967 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1968 iclog->ic_bio.bi_opf |= REQ_FUA; 1969 1970 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1971 1972 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1973 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1974 return; 1975 } 1976 if (is_vmalloc_addr(iclog->ic_data)) 1977 flush_kernel_vmap_range(iclog->ic_data, count); 1978 1979 /* 1980 * If this log buffer would straddle the end of the log we will have 1981 * to split it up into two bios, so that we can continue at the start. 1982 */ 1983 if (bno + BTOBB(count) > log->l_logBBsize) { 1984 struct bio *split; 1985 1986 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1987 GFP_NOIO, &fs_bio_set); 1988 bio_chain(split, &iclog->ic_bio); 1989 submit_bio(split); 1990 1991 /* restart at logical offset zero for the remainder */ 1992 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1993 } 1994 1995 submit_bio(&iclog->ic_bio); 1996 } 1997 1998 /* 1999 * We need to bump cycle number for the part of the iclog that is 2000 * written to the start of the log. Watch out for the header magic 2001 * number case, though. 2002 */ 2003 static void 2004 xlog_split_iclog( 2005 struct xlog *log, 2006 void *data, 2007 uint64_t bno, 2008 unsigned int count) 2009 { 2010 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 2011 unsigned int i; 2012 2013 for (i = split_offset; i < count; i += BBSIZE) { 2014 uint32_t cycle = get_unaligned_be32(data + i); 2015 2016 if (++cycle == XLOG_HEADER_MAGIC_NUM) 2017 cycle++; 2018 put_unaligned_be32(cycle, data + i); 2019 } 2020 } 2021 2022 static int 2023 xlog_calc_iclog_size( 2024 struct xlog *log, 2025 struct xlog_in_core *iclog, 2026 uint32_t *roundoff) 2027 { 2028 uint32_t count_init, count; 2029 2030 /* Add for LR header */ 2031 count_init = log->l_iclog_hsize + iclog->ic_offset; 2032 count = roundup(count_init, log->l_iclog_roundoff); 2033 2034 *roundoff = count - count_init; 2035 2036 ASSERT(count >= count_init); 2037 ASSERT(*roundoff < log->l_iclog_roundoff); 2038 return count; 2039 } 2040 2041 /* 2042 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 2043 * fashion. Previously, we should have moved the current iclog 2044 * ptr in the log to point to the next available iclog. This allows further 2045 * write to continue while this code syncs out an iclog ready to go. 2046 * Before an in-core log can be written out, the data section must be scanned 2047 * to save away the 1st word of each BBSIZE block into the header. We replace 2048 * it with the current cycle count. Each BBSIZE block is tagged with the 2049 * cycle count because there in an implicit assumption that drives will 2050 * guarantee that entire 512 byte blocks get written at once. In other words, 2051 * we can't have part of a 512 byte block written and part not written. By 2052 * tagging each block, we will know which blocks are valid when recovering 2053 * after an unclean shutdown. 2054 * 2055 * This routine is single threaded on the iclog. No other thread can be in 2056 * this routine with the same iclog. Changing contents of iclog can there- 2057 * fore be done without grabbing the state machine lock. Updating the global 2058 * log will require grabbing the lock though. 2059 * 2060 * The entire log manager uses a logical block numbering scheme. Only 2061 * xlog_write_iclog knows about the fact that the log may not start with 2062 * block zero on a given device. 2063 */ 2064 STATIC void 2065 xlog_sync( 2066 struct xlog *log, 2067 struct xlog_in_core *iclog, 2068 struct xlog_ticket *ticket) 2069 { 2070 unsigned int count; /* byte count of bwrite */ 2071 unsigned int roundoff; /* roundoff to BB or stripe */ 2072 uint64_t bno; 2073 unsigned int size; 2074 2075 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2076 trace_xlog_iclog_sync(iclog, _RET_IP_); 2077 2078 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2079 2080 /* 2081 * If we have a ticket, account for the roundoff via the ticket 2082 * reservation to avoid touching the hot grant heads needlessly. 2083 * Otherwise, we have to move grant heads directly. 2084 */ 2085 if (ticket) { 2086 ticket->t_curr_res -= roundoff; 2087 } else { 2088 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2089 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2090 } 2091 2092 /* put cycle number in every block */ 2093 xlog_pack_data(log, iclog, roundoff); 2094 2095 /* real byte length */ 2096 size = iclog->ic_offset; 2097 if (xfs_has_logv2(log->l_mp)) 2098 size += roundoff; 2099 iclog->ic_header.h_len = cpu_to_be32(size); 2100 2101 XFS_STATS_INC(log->l_mp, xs_log_writes); 2102 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2103 2104 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2105 2106 /* Do we need to split this write into 2 parts? */ 2107 if (bno + BTOBB(count) > log->l_logBBsize) 2108 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2109 2110 /* calculcate the checksum */ 2111 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2112 iclog->ic_datap, size); 2113 /* 2114 * Intentionally corrupt the log record CRC based on the error injection 2115 * frequency, if defined. This facilitates testing log recovery in the 2116 * event of torn writes. Hence, set the IOABORT state to abort the log 2117 * write on I/O completion and shutdown the fs. The subsequent mount 2118 * detects the bad CRC and attempts to recover. 2119 */ 2120 #ifdef DEBUG 2121 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2122 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2123 iclog->ic_fail_crc = true; 2124 xfs_warn(log->l_mp, 2125 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2126 be64_to_cpu(iclog->ic_header.h_lsn)); 2127 } 2128 #endif 2129 xlog_verify_iclog(log, iclog, count); 2130 xlog_write_iclog(log, iclog, bno, count); 2131 } 2132 2133 /* 2134 * Deallocate a log structure 2135 */ 2136 STATIC void 2137 xlog_dealloc_log( 2138 struct xlog *log) 2139 { 2140 xlog_in_core_t *iclog, *next_iclog; 2141 int i; 2142 2143 /* 2144 * Destroy the CIL after waiting for iclog IO completion because an 2145 * iclog EIO error will try to shut down the log, which accesses the 2146 * CIL to wake up the waiters. 2147 */ 2148 xlog_cil_destroy(log); 2149 2150 iclog = log->l_iclog; 2151 for (i = 0; i < log->l_iclog_bufs; i++) { 2152 next_iclog = iclog->ic_next; 2153 kmem_free(iclog->ic_data); 2154 kmem_free(iclog); 2155 iclog = next_iclog; 2156 } 2157 2158 log->l_mp->m_log = NULL; 2159 destroy_workqueue(log->l_ioend_workqueue); 2160 kmem_free(log); 2161 } 2162 2163 /* 2164 * Update counters atomically now that memcpy is done. 2165 */ 2166 static inline void 2167 xlog_state_finish_copy( 2168 struct xlog *log, 2169 struct xlog_in_core *iclog, 2170 int record_cnt, 2171 int copy_bytes) 2172 { 2173 lockdep_assert_held(&log->l_icloglock); 2174 2175 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2176 iclog->ic_offset += copy_bytes; 2177 } 2178 2179 /* 2180 * print out info relating to regions written which consume 2181 * the reservation 2182 */ 2183 void 2184 xlog_print_tic_res( 2185 struct xfs_mount *mp, 2186 struct xlog_ticket *ticket) 2187 { 2188 xfs_warn(mp, "ticket reservation summary:"); 2189 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 2190 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 2191 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 2192 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 2193 } 2194 2195 /* 2196 * Print a summary of the transaction. 2197 */ 2198 void 2199 xlog_print_trans( 2200 struct xfs_trans *tp) 2201 { 2202 struct xfs_mount *mp = tp->t_mountp; 2203 struct xfs_log_item *lip; 2204 2205 /* dump core transaction and ticket info */ 2206 xfs_warn(mp, "transaction summary:"); 2207 xfs_warn(mp, " log res = %d", tp->t_log_res); 2208 xfs_warn(mp, " log count = %d", tp->t_log_count); 2209 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2210 2211 xlog_print_tic_res(mp, tp->t_ticket); 2212 2213 /* dump each log item */ 2214 list_for_each_entry(lip, &tp->t_items, li_trans) { 2215 struct xfs_log_vec *lv = lip->li_lv; 2216 struct xfs_log_iovec *vec; 2217 int i; 2218 2219 xfs_warn(mp, "log item: "); 2220 xfs_warn(mp, " type = 0x%x", lip->li_type); 2221 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2222 if (!lv) 2223 continue; 2224 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2225 xfs_warn(mp, " size = %d", lv->lv_size); 2226 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2227 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2228 2229 /* dump each iovec for the log item */ 2230 vec = lv->lv_iovecp; 2231 for (i = 0; i < lv->lv_niovecs; i++) { 2232 int dumplen = min(vec->i_len, 32); 2233 2234 xfs_warn(mp, " iovec[%d]", i); 2235 xfs_warn(mp, " type = 0x%x", vec->i_type); 2236 xfs_warn(mp, " len = %d", vec->i_len); 2237 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2238 xfs_hex_dump(vec->i_addr, dumplen); 2239 2240 vec++; 2241 } 2242 } 2243 } 2244 2245 static inline void 2246 xlog_write_iovec( 2247 struct xlog_in_core *iclog, 2248 uint32_t *log_offset, 2249 void *data, 2250 uint32_t write_len, 2251 int *bytes_left, 2252 uint32_t *record_cnt, 2253 uint32_t *data_cnt) 2254 { 2255 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 2256 ASSERT(*log_offset % sizeof(int32_t) == 0); 2257 ASSERT(write_len % sizeof(int32_t) == 0); 2258 2259 memcpy(iclog->ic_datap + *log_offset, data, write_len); 2260 *log_offset += write_len; 2261 *bytes_left -= write_len; 2262 (*record_cnt)++; 2263 *data_cnt += write_len; 2264 } 2265 2266 /* 2267 * Write log vectors into a single iclog which is guaranteed by the caller 2268 * to have enough space to write the entire log vector into. 2269 */ 2270 static void 2271 xlog_write_full( 2272 struct xfs_log_vec *lv, 2273 struct xlog_ticket *ticket, 2274 struct xlog_in_core *iclog, 2275 uint32_t *log_offset, 2276 uint32_t *len, 2277 uint32_t *record_cnt, 2278 uint32_t *data_cnt) 2279 { 2280 int index; 2281 2282 ASSERT(*log_offset + *len <= iclog->ic_size || 2283 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2284 2285 /* 2286 * Ordered log vectors have no regions to write so this 2287 * loop will naturally skip them. 2288 */ 2289 for (index = 0; index < lv->lv_niovecs; index++) { 2290 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2291 struct xlog_op_header *ophdr = reg->i_addr; 2292 2293 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2294 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2295 reg->i_len, len, record_cnt, data_cnt); 2296 } 2297 } 2298 2299 static int 2300 xlog_write_get_more_iclog_space( 2301 struct xlog_ticket *ticket, 2302 struct xlog_in_core **iclogp, 2303 uint32_t *log_offset, 2304 uint32_t len, 2305 uint32_t *record_cnt, 2306 uint32_t *data_cnt) 2307 { 2308 struct xlog_in_core *iclog = *iclogp; 2309 struct xlog *log = iclog->ic_log; 2310 int error; 2311 2312 spin_lock(&log->l_icloglock); 2313 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2314 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2315 error = xlog_state_release_iclog(log, iclog, ticket); 2316 spin_unlock(&log->l_icloglock); 2317 if (error) 2318 return error; 2319 2320 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2321 log_offset); 2322 if (error) 2323 return error; 2324 *record_cnt = 0; 2325 *data_cnt = 0; 2326 *iclogp = iclog; 2327 return 0; 2328 } 2329 2330 /* 2331 * Write log vectors into a single iclog which is smaller than the current chain 2332 * length. We write until we cannot fit a full record into the remaining space 2333 * and then stop. We return the log vector that is to be written that cannot 2334 * wholly fit in the iclog. 2335 */ 2336 static int 2337 xlog_write_partial( 2338 struct xfs_log_vec *lv, 2339 struct xlog_ticket *ticket, 2340 struct xlog_in_core **iclogp, 2341 uint32_t *log_offset, 2342 uint32_t *len, 2343 uint32_t *record_cnt, 2344 uint32_t *data_cnt) 2345 { 2346 struct xlog_in_core *iclog = *iclogp; 2347 struct xlog_op_header *ophdr; 2348 int index = 0; 2349 uint32_t rlen; 2350 int error; 2351 2352 /* walk the logvec, copying until we run out of space in the iclog */ 2353 for (index = 0; index < lv->lv_niovecs; index++) { 2354 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2355 uint32_t reg_offset = 0; 2356 2357 /* 2358 * The first region of a continuation must have a non-zero 2359 * length otherwise log recovery will just skip over it and 2360 * start recovering from the next opheader it finds. Because we 2361 * mark the next opheader as a continuation, recovery will then 2362 * incorrectly add the continuation to the previous region and 2363 * that breaks stuff. 2364 * 2365 * Hence if there isn't space for region data after the 2366 * opheader, then we need to start afresh with a new iclog. 2367 */ 2368 if (iclog->ic_size - *log_offset <= 2369 sizeof(struct xlog_op_header)) { 2370 error = xlog_write_get_more_iclog_space(ticket, 2371 &iclog, log_offset, *len, record_cnt, 2372 data_cnt); 2373 if (error) 2374 return error; 2375 } 2376 2377 ophdr = reg->i_addr; 2378 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2379 2380 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2381 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2382 if (rlen != reg->i_len) 2383 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2384 2385 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2386 rlen, len, record_cnt, data_cnt); 2387 2388 /* If we wrote the whole region, move to the next. */ 2389 if (rlen == reg->i_len) 2390 continue; 2391 2392 /* 2393 * We now have a partially written iovec, but it can span 2394 * multiple iclogs so we loop here. First we release the iclog 2395 * we currently have, then we get a new iclog and add a new 2396 * opheader. Then we continue copying from where we were until 2397 * we either complete the iovec or fill the iclog. If we 2398 * complete the iovec, then we increment the index and go right 2399 * back to the top of the outer loop. if we fill the iclog, we 2400 * run the inner loop again. 2401 * 2402 * This is complicated by the tail of a region using all the 2403 * space in an iclog and hence requiring us to release the iclog 2404 * and get a new one before returning to the outer loop. We must 2405 * always guarantee that we exit this inner loop with at least 2406 * space for log transaction opheaders left in the current 2407 * iclog, hence we cannot just terminate the loop at the end 2408 * of the of the continuation. So we loop while there is no 2409 * space left in the current iclog, and check for the end of the 2410 * continuation after getting a new iclog. 2411 */ 2412 do { 2413 /* 2414 * Ensure we include the continuation opheader in the 2415 * space we need in the new iclog by adding that size 2416 * to the length we require. This continuation opheader 2417 * needs to be accounted to the ticket as the space it 2418 * consumes hasn't been accounted to the lv we are 2419 * writing. 2420 */ 2421 error = xlog_write_get_more_iclog_space(ticket, 2422 &iclog, log_offset, 2423 *len + sizeof(struct xlog_op_header), 2424 record_cnt, data_cnt); 2425 if (error) 2426 return error; 2427 2428 ophdr = iclog->ic_datap + *log_offset; 2429 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2430 ophdr->oh_clientid = XFS_TRANSACTION; 2431 ophdr->oh_res2 = 0; 2432 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2433 2434 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2435 *log_offset += sizeof(struct xlog_op_header); 2436 *data_cnt += sizeof(struct xlog_op_header); 2437 2438 /* 2439 * If rlen fits in the iclog, then end the region 2440 * continuation. Otherwise we're going around again. 2441 */ 2442 reg_offset += rlen; 2443 rlen = reg->i_len - reg_offset; 2444 if (rlen <= iclog->ic_size - *log_offset) 2445 ophdr->oh_flags |= XLOG_END_TRANS; 2446 else 2447 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2448 2449 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2450 ophdr->oh_len = cpu_to_be32(rlen); 2451 2452 xlog_write_iovec(iclog, log_offset, 2453 reg->i_addr + reg_offset, 2454 rlen, len, record_cnt, data_cnt); 2455 2456 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2457 } 2458 2459 /* 2460 * No more iovecs remain in this logvec so return the next log vec to 2461 * the caller so it can go back to fast path copying. 2462 */ 2463 *iclogp = iclog; 2464 return 0; 2465 } 2466 2467 /* 2468 * Write some region out to in-core log 2469 * 2470 * This will be called when writing externally provided regions or when 2471 * writing out a commit record for a given transaction. 2472 * 2473 * General algorithm: 2474 * 1. Find total length of this write. This may include adding to the 2475 * lengths passed in. 2476 * 2. Check whether we violate the tickets reservation. 2477 * 3. While writing to this iclog 2478 * A. Reserve as much space in this iclog as can get 2479 * B. If this is first write, save away start lsn 2480 * C. While writing this region: 2481 * 1. If first write of transaction, write start record 2482 * 2. Write log operation header (header per region) 2483 * 3. Find out if we can fit entire region into this iclog 2484 * 4. Potentially, verify destination memcpy ptr 2485 * 5. Memcpy (partial) region 2486 * 6. If partial copy, release iclog; otherwise, continue 2487 * copying more regions into current iclog 2488 * 4. Mark want sync bit (in simulation mode) 2489 * 5. Release iclog for potential flush to on-disk log. 2490 * 2491 * ERRORS: 2492 * 1. Panic if reservation is overrun. This should never happen since 2493 * reservation amounts are generated internal to the filesystem. 2494 * NOTES: 2495 * 1. Tickets are single threaded data structures. 2496 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2497 * syncing routine. When a single log_write region needs to span 2498 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2499 * on all log operation writes which don't contain the end of the 2500 * region. The XLOG_END_TRANS bit is used for the in-core log 2501 * operation which contains the end of the continued log_write region. 2502 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2503 * we don't really know exactly how much space will be used. As a result, 2504 * we don't update ic_offset until the end when we know exactly how many 2505 * bytes have been written out. 2506 */ 2507 int 2508 xlog_write( 2509 struct xlog *log, 2510 struct xfs_cil_ctx *ctx, 2511 struct list_head *lv_chain, 2512 struct xlog_ticket *ticket, 2513 uint32_t len) 2514 2515 { 2516 struct xlog_in_core *iclog = NULL; 2517 struct xfs_log_vec *lv; 2518 uint32_t record_cnt = 0; 2519 uint32_t data_cnt = 0; 2520 int error = 0; 2521 int log_offset; 2522 2523 if (ticket->t_curr_res < 0) { 2524 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2525 "ctx ticket reservation ran out. Need to up reservation"); 2526 xlog_print_tic_res(log->l_mp, ticket); 2527 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2528 } 2529 2530 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2531 &log_offset); 2532 if (error) 2533 return error; 2534 2535 ASSERT(log_offset <= iclog->ic_size - 1); 2536 2537 /* 2538 * If we have a context pointer, pass it the first iclog we are 2539 * writing to so it can record state needed for iclog write 2540 * ordering. 2541 */ 2542 if (ctx) 2543 xlog_cil_set_ctx_write_state(ctx, iclog); 2544 2545 list_for_each_entry(lv, lv_chain, lv_list) { 2546 /* 2547 * If the entire log vec does not fit in the iclog, punt it to 2548 * the partial copy loop which can handle this case. 2549 */ 2550 if (lv->lv_niovecs && 2551 lv->lv_bytes > iclog->ic_size - log_offset) { 2552 error = xlog_write_partial(lv, ticket, &iclog, 2553 &log_offset, &len, &record_cnt, 2554 &data_cnt); 2555 if (error) { 2556 /* 2557 * We have no iclog to release, so just return 2558 * the error immediately. 2559 */ 2560 return error; 2561 } 2562 } else { 2563 xlog_write_full(lv, ticket, iclog, &log_offset, 2564 &len, &record_cnt, &data_cnt); 2565 } 2566 } 2567 ASSERT(len == 0); 2568 2569 /* 2570 * We've already been guaranteed that the last writes will fit inside 2571 * the current iclog, and hence it will already have the space used by 2572 * those writes accounted to it. Hence we do not need to update the 2573 * iclog with the number of bytes written here. 2574 */ 2575 spin_lock(&log->l_icloglock); 2576 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2577 error = xlog_state_release_iclog(log, iclog, ticket); 2578 spin_unlock(&log->l_icloglock); 2579 2580 return error; 2581 } 2582 2583 static void 2584 xlog_state_activate_iclog( 2585 struct xlog_in_core *iclog, 2586 int *iclogs_changed) 2587 { 2588 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2589 trace_xlog_iclog_activate(iclog, _RET_IP_); 2590 2591 /* 2592 * If the number of ops in this iclog indicate it just contains the 2593 * dummy transaction, we can change state into IDLE (the second time 2594 * around). Otherwise we should change the state into NEED a dummy. 2595 * We don't need to cover the dummy. 2596 */ 2597 if (*iclogs_changed == 0 && 2598 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2599 *iclogs_changed = 1; 2600 } else { 2601 /* 2602 * We have two dirty iclogs so start over. This could also be 2603 * num of ops indicating this is not the dummy going out. 2604 */ 2605 *iclogs_changed = 2; 2606 } 2607 2608 iclog->ic_state = XLOG_STATE_ACTIVE; 2609 iclog->ic_offset = 0; 2610 iclog->ic_header.h_num_logops = 0; 2611 memset(iclog->ic_header.h_cycle_data, 0, 2612 sizeof(iclog->ic_header.h_cycle_data)); 2613 iclog->ic_header.h_lsn = 0; 2614 iclog->ic_header.h_tail_lsn = 0; 2615 } 2616 2617 /* 2618 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2619 * ACTIVE after iclog I/O has completed. 2620 */ 2621 static void 2622 xlog_state_activate_iclogs( 2623 struct xlog *log, 2624 int *iclogs_changed) 2625 { 2626 struct xlog_in_core *iclog = log->l_iclog; 2627 2628 do { 2629 if (iclog->ic_state == XLOG_STATE_DIRTY) 2630 xlog_state_activate_iclog(iclog, iclogs_changed); 2631 /* 2632 * The ordering of marking iclogs ACTIVE must be maintained, so 2633 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2634 */ 2635 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2636 break; 2637 } while ((iclog = iclog->ic_next) != log->l_iclog); 2638 } 2639 2640 static int 2641 xlog_covered_state( 2642 int prev_state, 2643 int iclogs_changed) 2644 { 2645 /* 2646 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2647 * wrote the first covering record (DONE). We go to IDLE if we just 2648 * wrote the second covering record (DONE2) and remain in IDLE until a 2649 * non-covering write occurs. 2650 */ 2651 switch (prev_state) { 2652 case XLOG_STATE_COVER_IDLE: 2653 if (iclogs_changed == 1) 2654 return XLOG_STATE_COVER_IDLE; 2655 fallthrough; 2656 case XLOG_STATE_COVER_NEED: 2657 case XLOG_STATE_COVER_NEED2: 2658 break; 2659 case XLOG_STATE_COVER_DONE: 2660 if (iclogs_changed == 1) 2661 return XLOG_STATE_COVER_NEED2; 2662 break; 2663 case XLOG_STATE_COVER_DONE2: 2664 if (iclogs_changed == 1) 2665 return XLOG_STATE_COVER_IDLE; 2666 break; 2667 default: 2668 ASSERT(0); 2669 } 2670 2671 return XLOG_STATE_COVER_NEED; 2672 } 2673 2674 STATIC void 2675 xlog_state_clean_iclog( 2676 struct xlog *log, 2677 struct xlog_in_core *dirty_iclog) 2678 { 2679 int iclogs_changed = 0; 2680 2681 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2682 2683 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2684 2685 xlog_state_activate_iclogs(log, &iclogs_changed); 2686 wake_up_all(&dirty_iclog->ic_force_wait); 2687 2688 if (iclogs_changed) { 2689 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2690 iclogs_changed); 2691 } 2692 } 2693 2694 STATIC xfs_lsn_t 2695 xlog_get_lowest_lsn( 2696 struct xlog *log) 2697 { 2698 struct xlog_in_core *iclog = log->l_iclog; 2699 xfs_lsn_t lowest_lsn = 0, lsn; 2700 2701 do { 2702 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2703 iclog->ic_state == XLOG_STATE_DIRTY) 2704 continue; 2705 2706 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2707 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2708 lowest_lsn = lsn; 2709 } while ((iclog = iclog->ic_next) != log->l_iclog); 2710 2711 return lowest_lsn; 2712 } 2713 2714 /* 2715 * Completion of a iclog IO does not imply that a transaction has completed, as 2716 * transactions can be large enough to span many iclogs. We cannot change the 2717 * tail of the log half way through a transaction as this may be the only 2718 * transaction in the log and moving the tail to point to the middle of it 2719 * will prevent recovery from finding the start of the transaction. Hence we 2720 * should only update the last_sync_lsn if this iclog contains transaction 2721 * completion callbacks on it. 2722 * 2723 * We have to do this before we drop the icloglock to ensure we are the only one 2724 * that can update it. 2725 * 2726 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2727 * the reservation grant head pushing. This is due to the fact that the push 2728 * target is bound by the current last_sync_lsn value. Hence if we have a large 2729 * amount of log space bound up in this committing transaction then the 2730 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2731 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2732 * should push the AIL to ensure the push target (and hence the grant head) is 2733 * no longer bound by the old log head location and can move forwards and make 2734 * progress again. 2735 */ 2736 static void 2737 xlog_state_set_callback( 2738 struct xlog *log, 2739 struct xlog_in_core *iclog, 2740 xfs_lsn_t header_lsn) 2741 { 2742 trace_xlog_iclog_callback(iclog, _RET_IP_); 2743 iclog->ic_state = XLOG_STATE_CALLBACK; 2744 2745 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2746 header_lsn) <= 0); 2747 2748 if (list_empty_careful(&iclog->ic_callbacks)) 2749 return; 2750 2751 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2752 xlog_grant_push_ail(log, 0); 2753 } 2754 2755 /* 2756 * Return true if we need to stop processing, false to continue to the next 2757 * iclog. The caller will need to run callbacks if the iclog is returned in the 2758 * XLOG_STATE_CALLBACK state. 2759 */ 2760 static bool 2761 xlog_state_iodone_process_iclog( 2762 struct xlog *log, 2763 struct xlog_in_core *iclog) 2764 { 2765 xfs_lsn_t lowest_lsn; 2766 xfs_lsn_t header_lsn; 2767 2768 switch (iclog->ic_state) { 2769 case XLOG_STATE_ACTIVE: 2770 case XLOG_STATE_DIRTY: 2771 /* 2772 * Skip all iclogs in the ACTIVE & DIRTY states: 2773 */ 2774 return false; 2775 case XLOG_STATE_DONE_SYNC: 2776 /* 2777 * Now that we have an iclog that is in the DONE_SYNC state, do 2778 * one more check here to see if we have chased our tail around. 2779 * If this is not the lowest lsn iclog, then we will leave it 2780 * for another completion to process. 2781 */ 2782 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2783 lowest_lsn = xlog_get_lowest_lsn(log); 2784 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2785 return false; 2786 xlog_state_set_callback(log, iclog, header_lsn); 2787 return false; 2788 default: 2789 /* 2790 * Can only perform callbacks in order. Since this iclog is not 2791 * in the DONE_SYNC state, we skip the rest and just try to 2792 * clean up. 2793 */ 2794 return true; 2795 } 2796 } 2797 2798 /* 2799 * Loop over all the iclogs, running attached callbacks on them. Return true if 2800 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2801 * to handle transient shutdown state here at all because 2802 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2803 * cleanup of the callbacks. 2804 */ 2805 static bool 2806 xlog_state_do_iclog_callbacks( 2807 struct xlog *log) 2808 __releases(&log->l_icloglock) 2809 __acquires(&log->l_icloglock) 2810 { 2811 struct xlog_in_core *first_iclog = log->l_iclog; 2812 struct xlog_in_core *iclog = first_iclog; 2813 bool ran_callback = false; 2814 2815 do { 2816 LIST_HEAD(cb_list); 2817 2818 if (xlog_state_iodone_process_iclog(log, iclog)) 2819 break; 2820 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2821 iclog = iclog->ic_next; 2822 continue; 2823 } 2824 list_splice_init(&iclog->ic_callbacks, &cb_list); 2825 spin_unlock(&log->l_icloglock); 2826 2827 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2828 xlog_cil_process_committed(&cb_list); 2829 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2830 ran_callback = true; 2831 2832 spin_lock(&log->l_icloglock); 2833 xlog_state_clean_iclog(log, iclog); 2834 iclog = iclog->ic_next; 2835 } while (iclog != first_iclog); 2836 2837 return ran_callback; 2838 } 2839 2840 2841 /* 2842 * Loop running iclog completion callbacks until there are no more iclogs in a 2843 * state that can run callbacks. 2844 */ 2845 STATIC void 2846 xlog_state_do_callback( 2847 struct xlog *log) 2848 { 2849 int flushcnt = 0; 2850 int repeats = 0; 2851 2852 spin_lock(&log->l_icloglock); 2853 while (xlog_state_do_iclog_callbacks(log)) { 2854 if (xlog_is_shutdown(log)) 2855 break; 2856 2857 if (++repeats > 5000) { 2858 flushcnt += repeats; 2859 repeats = 0; 2860 xfs_warn(log->l_mp, 2861 "%s: possible infinite loop (%d iterations)", 2862 __func__, flushcnt); 2863 } 2864 } 2865 2866 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2867 wake_up_all(&log->l_flush_wait); 2868 2869 spin_unlock(&log->l_icloglock); 2870 } 2871 2872 2873 /* 2874 * Finish transitioning this iclog to the dirty state. 2875 * 2876 * Callbacks could take time, so they are done outside the scope of the 2877 * global state machine log lock. 2878 */ 2879 STATIC void 2880 xlog_state_done_syncing( 2881 struct xlog_in_core *iclog) 2882 { 2883 struct xlog *log = iclog->ic_log; 2884 2885 spin_lock(&log->l_icloglock); 2886 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2887 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2888 2889 /* 2890 * If we got an error, either on the first buffer, or in the case of 2891 * split log writes, on the second, we shut down the file system and 2892 * no iclogs should ever be attempted to be written to disk again. 2893 */ 2894 if (!xlog_is_shutdown(log)) { 2895 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2896 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2897 } 2898 2899 /* 2900 * Someone could be sleeping prior to writing out the next 2901 * iclog buffer, we wake them all, one will get to do the 2902 * I/O, the others get to wait for the result. 2903 */ 2904 wake_up_all(&iclog->ic_write_wait); 2905 spin_unlock(&log->l_icloglock); 2906 xlog_state_do_callback(log); 2907 } 2908 2909 /* 2910 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2911 * sleep. We wait on the flush queue on the head iclog as that should be 2912 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2913 * we will wait here and all new writes will sleep until a sync completes. 2914 * 2915 * The in-core logs are used in a circular fashion. They are not used 2916 * out-of-order even when an iclog past the head is free. 2917 * 2918 * return: 2919 * * log_offset where xlog_write() can start writing into the in-core 2920 * log's data space. 2921 * * in-core log pointer to which xlog_write() should write. 2922 * * boolean indicating this is a continued write to an in-core log. 2923 * If this is the last write, then the in-core log's offset field 2924 * needs to be incremented, depending on the amount of data which 2925 * is copied. 2926 */ 2927 STATIC int 2928 xlog_state_get_iclog_space( 2929 struct xlog *log, 2930 int len, 2931 struct xlog_in_core **iclogp, 2932 struct xlog_ticket *ticket, 2933 int *logoffsetp) 2934 { 2935 int log_offset; 2936 xlog_rec_header_t *head; 2937 xlog_in_core_t *iclog; 2938 2939 restart: 2940 spin_lock(&log->l_icloglock); 2941 if (xlog_is_shutdown(log)) { 2942 spin_unlock(&log->l_icloglock); 2943 return -EIO; 2944 } 2945 2946 iclog = log->l_iclog; 2947 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2948 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2949 2950 /* Wait for log writes to have flushed */ 2951 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2952 goto restart; 2953 } 2954 2955 head = &iclog->ic_header; 2956 2957 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2958 log_offset = iclog->ic_offset; 2959 2960 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2961 2962 /* On the 1st write to an iclog, figure out lsn. This works 2963 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2964 * committing to. If the offset is set, that's how many blocks 2965 * must be written. 2966 */ 2967 if (log_offset == 0) { 2968 ticket->t_curr_res -= log->l_iclog_hsize; 2969 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2970 head->h_lsn = cpu_to_be64( 2971 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2972 ASSERT(log->l_curr_block >= 0); 2973 } 2974 2975 /* If there is enough room to write everything, then do it. Otherwise, 2976 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2977 * bit is on, so this will get flushed out. Don't update ic_offset 2978 * until you know exactly how many bytes get copied. Therefore, wait 2979 * until later to update ic_offset. 2980 * 2981 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2982 * can fit into remaining data section. 2983 */ 2984 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2985 int error = 0; 2986 2987 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2988 2989 /* 2990 * If we are the only one writing to this iclog, sync it to 2991 * disk. We need to do an atomic compare and decrement here to 2992 * avoid racing with concurrent atomic_dec_and_lock() calls in 2993 * xlog_state_release_iclog() when there is more than one 2994 * reference to the iclog. 2995 */ 2996 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2997 error = xlog_state_release_iclog(log, iclog, ticket); 2998 spin_unlock(&log->l_icloglock); 2999 if (error) 3000 return error; 3001 goto restart; 3002 } 3003 3004 /* Do we have enough room to write the full amount in the remainder 3005 * of this iclog? Or must we continue a write on the next iclog and 3006 * mark this iclog as completely taken? In the case where we switch 3007 * iclogs (to mark it taken), this particular iclog will release/sync 3008 * to disk in xlog_write(). 3009 */ 3010 if (len <= iclog->ic_size - iclog->ic_offset) 3011 iclog->ic_offset += len; 3012 else 3013 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3014 *iclogp = iclog; 3015 3016 ASSERT(iclog->ic_offset <= iclog->ic_size); 3017 spin_unlock(&log->l_icloglock); 3018 3019 *logoffsetp = log_offset; 3020 return 0; 3021 } 3022 3023 /* 3024 * The first cnt-1 times a ticket goes through here we don't need to move the 3025 * grant write head because the permanent reservation has reserved cnt times the 3026 * unit amount. Release part of current permanent unit reservation and reset 3027 * current reservation to be one units worth. Also move grant reservation head 3028 * forward. 3029 */ 3030 void 3031 xfs_log_ticket_regrant( 3032 struct xlog *log, 3033 struct xlog_ticket *ticket) 3034 { 3035 trace_xfs_log_ticket_regrant(log, ticket); 3036 3037 if (ticket->t_cnt > 0) 3038 ticket->t_cnt--; 3039 3040 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3041 ticket->t_curr_res); 3042 xlog_grant_sub_space(log, &log->l_write_head.grant, 3043 ticket->t_curr_res); 3044 ticket->t_curr_res = ticket->t_unit_res; 3045 3046 trace_xfs_log_ticket_regrant_sub(log, ticket); 3047 3048 /* just return if we still have some of the pre-reserved space */ 3049 if (!ticket->t_cnt) { 3050 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3051 ticket->t_unit_res); 3052 trace_xfs_log_ticket_regrant_exit(log, ticket); 3053 3054 ticket->t_curr_res = ticket->t_unit_res; 3055 } 3056 3057 xfs_log_ticket_put(ticket); 3058 } 3059 3060 /* 3061 * Give back the space left from a reservation. 3062 * 3063 * All the information we need to make a correct determination of space left 3064 * is present. For non-permanent reservations, things are quite easy. The 3065 * count should have been decremented to zero. We only need to deal with the 3066 * space remaining in the current reservation part of the ticket. If the 3067 * ticket contains a permanent reservation, there may be left over space which 3068 * needs to be released. A count of N means that N-1 refills of the current 3069 * reservation can be done before we need to ask for more space. The first 3070 * one goes to fill up the first current reservation. Once we run out of 3071 * space, the count will stay at zero and the only space remaining will be 3072 * in the current reservation field. 3073 */ 3074 void 3075 xfs_log_ticket_ungrant( 3076 struct xlog *log, 3077 struct xlog_ticket *ticket) 3078 { 3079 int bytes; 3080 3081 trace_xfs_log_ticket_ungrant(log, ticket); 3082 3083 if (ticket->t_cnt > 0) 3084 ticket->t_cnt--; 3085 3086 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3087 3088 /* 3089 * If this is a permanent reservation ticket, we may be able to free 3090 * up more space based on the remaining count. 3091 */ 3092 bytes = ticket->t_curr_res; 3093 if (ticket->t_cnt > 0) { 3094 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3095 bytes += ticket->t_unit_res*ticket->t_cnt; 3096 } 3097 3098 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3099 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3100 3101 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3102 3103 xfs_log_space_wake(log->l_mp); 3104 xfs_log_ticket_put(ticket); 3105 } 3106 3107 /* 3108 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3109 * the current iclog pointer to the next iclog in the ring. 3110 */ 3111 void 3112 xlog_state_switch_iclogs( 3113 struct xlog *log, 3114 struct xlog_in_core *iclog, 3115 int eventual_size) 3116 { 3117 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3118 assert_spin_locked(&log->l_icloglock); 3119 trace_xlog_iclog_switch(iclog, _RET_IP_); 3120 3121 if (!eventual_size) 3122 eventual_size = iclog->ic_offset; 3123 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3124 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3125 log->l_prev_block = log->l_curr_block; 3126 log->l_prev_cycle = log->l_curr_cycle; 3127 3128 /* roll log?: ic_offset changed later */ 3129 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3130 3131 /* Round up to next log-sunit */ 3132 if (log->l_iclog_roundoff > BBSIZE) { 3133 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3134 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3135 } 3136 3137 if (log->l_curr_block >= log->l_logBBsize) { 3138 /* 3139 * Rewind the current block before the cycle is bumped to make 3140 * sure that the combined LSN never transiently moves forward 3141 * when the log wraps to the next cycle. This is to support the 3142 * unlocked sample of these fields from xlog_valid_lsn(). Most 3143 * other cases should acquire l_icloglock. 3144 */ 3145 log->l_curr_block -= log->l_logBBsize; 3146 ASSERT(log->l_curr_block >= 0); 3147 smp_wmb(); 3148 log->l_curr_cycle++; 3149 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3150 log->l_curr_cycle++; 3151 } 3152 ASSERT(iclog == log->l_iclog); 3153 log->l_iclog = iclog->ic_next; 3154 } 3155 3156 /* 3157 * Force the iclog to disk and check if the iclog has been completed before 3158 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3159 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3160 * If completion has already occurred, tell the caller so that it can avoid an 3161 * unnecessary wait on the iclog. 3162 */ 3163 static int 3164 xlog_force_and_check_iclog( 3165 struct xlog_in_core *iclog, 3166 bool *completed) 3167 { 3168 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3169 int error; 3170 3171 *completed = false; 3172 error = xlog_force_iclog(iclog); 3173 if (error) 3174 return error; 3175 3176 /* 3177 * If the iclog has already been completed and reused the header LSN 3178 * will have been rewritten by completion 3179 */ 3180 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3181 *completed = true; 3182 return 0; 3183 } 3184 3185 /* 3186 * Write out all data in the in-core log as of this exact moment in time. 3187 * 3188 * Data may be written to the in-core log during this call. However, 3189 * we don't guarantee this data will be written out. A change from past 3190 * implementation means this routine will *not* write out zero length LRs. 3191 * 3192 * Basically, we try and perform an intelligent scan of the in-core logs. 3193 * If we determine there is no flushable data, we just return. There is no 3194 * flushable data if: 3195 * 3196 * 1. the current iclog is active and has no data; the previous iclog 3197 * is in the active or dirty state. 3198 * 2. the current iclog is drity, and the previous iclog is in the 3199 * active or dirty state. 3200 * 3201 * We may sleep if: 3202 * 3203 * 1. the current iclog is not in the active nor dirty state. 3204 * 2. the current iclog dirty, and the previous iclog is not in the 3205 * active nor dirty state. 3206 * 3. the current iclog is active, and there is another thread writing 3207 * to this particular iclog. 3208 * 4. a) the current iclog is active and has no other writers 3209 * b) when we return from flushing out this iclog, it is still 3210 * not in the active nor dirty state. 3211 */ 3212 int 3213 xfs_log_force( 3214 struct xfs_mount *mp, 3215 uint flags) 3216 { 3217 struct xlog *log = mp->m_log; 3218 struct xlog_in_core *iclog; 3219 3220 XFS_STATS_INC(mp, xs_log_force); 3221 trace_xfs_log_force(mp, 0, _RET_IP_); 3222 3223 xlog_cil_force(log); 3224 3225 spin_lock(&log->l_icloglock); 3226 if (xlog_is_shutdown(log)) 3227 goto out_error; 3228 3229 iclog = log->l_iclog; 3230 trace_xlog_iclog_force(iclog, _RET_IP_); 3231 3232 if (iclog->ic_state == XLOG_STATE_DIRTY || 3233 (iclog->ic_state == XLOG_STATE_ACTIVE && 3234 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3235 /* 3236 * If the head is dirty or (active and empty), then we need to 3237 * look at the previous iclog. 3238 * 3239 * If the previous iclog is active or dirty we are done. There 3240 * is nothing to sync out. Otherwise, we attach ourselves to the 3241 * previous iclog and go to sleep. 3242 */ 3243 iclog = iclog->ic_prev; 3244 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3245 if (atomic_read(&iclog->ic_refcnt) == 0) { 3246 /* We have exclusive access to this iclog. */ 3247 bool completed; 3248 3249 if (xlog_force_and_check_iclog(iclog, &completed)) 3250 goto out_error; 3251 3252 if (completed) 3253 goto out_unlock; 3254 } else { 3255 /* 3256 * Someone else is still writing to this iclog, so we 3257 * need to ensure that when they release the iclog it 3258 * gets synced immediately as we may be waiting on it. 3259 */ 3260 xlog_state_switch_iclogs(log, iclog, 0); 3261 } 3262 } 3263 3264 /* 3265 * The iclog we are about to wait on may contain the checkpoint pushed 3266 * by the above xlog_cil_force() call, but it may not have been pushed 3267 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3268 * are flushed when this iclog is written. 3269 */ 3270 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3271 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3272 3273 if (flags & XFS_LOG_SYNC) 3274 return xlog_wait_on_iclog(iclog); 3275 out_unlock: 3276 spin_unlock(&log->l_icloglock); 3277 return 0; 3278 out_error: 3279 spin_unlock(&log->l_icloglock); 3280 return -EIO; 3281 } 3282 3283 /* 3284 * Force the log to a specific LSN. 3285 * 3286 * If an iclog with that lsn can be found: 3287 * If it is in the DIRTY state, just return. 3288 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3289 * state and go to sleep or return. 3290 * If it is in any other state, go to sleep or return. 3291 * 3292 * Synchronous forces are implemented with a wait queue. All callers trying 3293 * to force a given lsn to disk must wait on the queue attached to the 3294 * specific in-core log. When given in-core log finally completes its write 3295 * to disk, that thread will wake up all threads waiting on the queue. 3296 */ 3297 static int 3298 xlog_force_lsn( 3299 struct xlog *log, 3300 xfs_lsn_t lsn, 3301 uint flags, 3302 int *log_flushed, 3303 bool already_slept) 3304 { 3305 struct xlog_in_core *iclog; 3306 bool completed; 3307 3308 spin_lock(&log->l_icloglock); 3309 if (xlog_is_shutdown(log)) 3310 goto out_error; 3311 3312 iclog = log->l_iclog; 3313 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3314 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3315 iclog = iclog->ic_next; 3316 if (iclog == log->l_iclog) 3317 goto out_unlock; 3318 } 3319 3320 switch (iclog->ic_state) { 3321 case XLOG_STATE_ACTIVE: 3322 /* 3323 * We sleep here if we haven't already slept (e.g. this is the 3324 * first time we've looked at the correct iclog buf) and the 3325 * buffer before us is going to be sync'ed. The reason for this 3326 * is that if we are doing sync transactions here, by waiting 3327 * for the previous I/O to complete, we can allow a few more 3328 * transactions into this iclog before we close it down. 3329 * 3330 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3331 * refcnt so we can release the log (which drops the ref count). 3332 * The state switch keeps new transaction commits from using 3333 * this buffer. When the current commits finish writing into 3334 * the buffer, the refcount will drop to zero and the buffer 3335 * will go out then. 3336 */ 3337 if (!already_slept && 3338 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3339 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3340 xlog_wait(&iclog->ic_prev->ic_write_wait, 3341 &log->l_icloglock); 3342 return -EAGAIN; 3343 } 3344 if (xlog_force_and_check_iclog(iclog, &completed)) 3345 goto out_error; 3346 if (log_flushed) 3347 *log_flushed = 1; 3348 if (completed) 3349 goto out_unlock; 3350 break; 3351 case XLOG_STATE_WANT_SYNC: 3352 /* 3353 * This iclog may contain the checkpoint pushed by the 3354 * xlog_cil_force_seq() call, but there are other writers still 3355 * accessing it so it hasn't been pushed to disk yet. Like the 3356 * ACTIVE case above, we need to make sure caches are flushed 3357 * when this iclog is written. 3358 */ 3359 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3360 break; 3361 default: 3362 /* 3363 * The entire checkpoint was written by the CIL force and is on 3364 * its way to disk already. It will be stable when it 3365 * completes, so we don't need to manipulate caches here at all. 3366 * We just need to wait for completion if necessary. 3367 */ 3368 break; 3369 } 3370 3371 if (flags & XFS_LOG_SYNC) 3372 return xlog_wait_on_iclog(iclog); 3373 out_unlock: 3374 spin_unlock(&log->l_icloglock); 3375 return 0; 3376 out_error: 3377 spin_unlock(&log->l_icloglock); 3378 return -EIO; 3379 } 3380 3381 /* 3382 * Force the log to a specific checkpoint sequence. 3383 * 3384 * First force the CIL so that all the required changes have been flushed to the 3385 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3386 * the iclog that needs to be flushed to stable storage. If the caller needs 3387 * a synchronous log force, we will wait on the iclog with the LSN returned by 3388 * xlog_cil_force_seq() to be completed. 3389 */ 3390 int 3391 xfs_log_force_seq( 3392 struct xfs_mount *mp, 3393 xfs_csn_t seq, 3394 uint flags, 3395 int *log_flushed) 3396 { 3397 struct xlog *log = mp->m_log; 3398 xfs_lsn_t lsn; 3399 int ret; 3400 ASSERT(seq != 0); 3401 3402 XFS_STATS_INC(mp, xs_log_force); 3403 trace_xfs_log_force(mp, seq, _RET_IP_); 3404 3405 lsn = xlog_cil_force_seq(log, seq); 3406 if (lsn == NULLCOMMITLSN) 3407 return 0; 3408 3409 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3410 if (ret == -EAGAIN) { 3411 XFS_STATS_INC(mp, xs_log_force_sleep); 3412 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3413 } 3414 return ret; 3415 } 3416 3417 /* 3418 * Free a used ticket when its refcount falls to zero. 3419 */ 3420 void 3421 xfs_log_ticket_put( 3422 xlog_ticket_t *ticket) 3423 { 3424 ASSERT(atomic_read(&ticket->t_ref) > 0); 3425 if (atomic_dec_and_test(&ticket->t_ref)) 3426 kmem_cache_free(xfs_log_ticket_cache, ticket); 3427 } 3428 3429 xlog_ticket_t * 3430 xfs_log_ticket_get( 3431 xlog_ticket_t *ticket) 3432 { 3433 ASSERT(atomic_read(&ticket->t_ref) > 0); 3434 atomic_inc(&ticket->t_ref); 3435 return ticket; 3436 } 3437 3438 /* 3439 * Figure out the total log space unit (in bytes) that would be 3440 * required for a log ticket. 3441 */ 3442 static int 3443 xlog_calc_unit_res( 3444 struct xlog *log, 3445 int unit_bytes, 3446 int *niclogs) 3447 { 3448 int iclog_space; 3449 uint num_headers; 3450 3451 /* 3452 * Permanent reservations have up to 'cnt'-1 active log operations 3453 * in the log. A unit in this case is the amount of space for one 3454 * of these log operations. Normal reservations have a cnt of 1 3455 * and their unit amount is the total amount of space required. 3456 * 3457 * The following lines of code account for non-transaction data 3458 * which occupy space in the on-disk log. 3459 * 3460 * Normal form of a transaction is: 3461 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3462 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3463 * 3464 * We need to account for all the leadup data and trailer data 3465 * around the transaction data. 3466 * And then we need to account for the worst case in terms of using 3467 * more space. 3468 * The worst case will happen if: 3469 * - the placement of the transaction happens to be such that the 3470 * roundoff is at its maximum 3471 * - the transaction data is synced before the commit record is synced 3472 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3473 * Therefore the commit record is in its own Log Record. 3474 * This can happen as the commit record is called with its 3475 * own region to xlog_write(). 3476 * This then means that in the worst case, roundoff can happen for 3477 * the commit-rec as well. 3478 * The commit-rec is smaller than padding in this scenario and so it is 3479 * not added separately. 3480 */ 3481 3482 /* for trans header */ 3483 unit_bytes += sizeof(xlog_op_header_t); 3484 unit_bytes += sizeof(xfs_trans_header_t); 3485 3486 /* for start-rec */ 3487 unit_bytes += sizeof(xlog_op_header_t); 3488 3489 /* 3490 * for LR headers - the space for data in an iclog is the size minus 3491 * the space used for the headers. If we use the iclog size, then we 3492 * undercalculate the number of headers required. 3493 * 3494 * Furthermore - the addition of op headers for split-recs might 3495 * increase the space required enough to require more log and op 3496 * headers, so take that into account too. 3497 * 3498 * IMPORTANT: This reservation makes the assumption that if this 3499 * transaction is the first in an iclog and hence has the LR headers 3500 * accounted to it, then the remaining space in the iclog is 3501 * exclusively for this transaction. i.e. if the transaction is larger 3502 * than the iclog, it will be the only thing in that iclog. 3503 * Fundamentally, this means we must pass the entire log vector to 3504 * xlog_write to guarantee this. 3505 */ 3506 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3507 num_headers = howmany(unit_bytes, iclog_space); 3508 3509 /* for split-recs - ophdrs added when data split over LRs */ 3510 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3511 3512 /* add extra header reservations if we overrun */ 3513 while (!num_headers || 3514 howmany(unit_bytes, iclog_space) > num_headers) { 3515 unit_bytes += sizeof(xlog_op_header_t); 3516 num_headers++; 3517 } 3518 unit_bytes += log->l_iclog_hsize * num_headers; 3519 3520 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3521 unit_bytes += log->l_iclog_hsize; 3522 3523 /* roundoff padding for transaction data and one for commit record */ 3524 unit_bytes += 2 * log->l_iclog_roundoff; 3525 3526 if (niclogs) 3527 *niclogs = num_headers; 3528 return unit_bytes; 3529 } 3530 3531 int 3532 xfs_log_calc_unit_res( 3533 struct xfs_mount *mp, 3534 int unit_bytes) 3535 { 3536 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3537 } 3538 3539 /* 3540 * Allocate and initialise a new log ticket. 3541 */ 3542 struct xlog_ticket * 3543 xlog_ticket_alloc( 3544 struct xlog *log, 3545 int unit_bytes, 3546 int cnt, 3547 bool permanent) 3548 { 3549 struct xlog_ticket *tic; 3550 int unit_res; 3551 3552 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3553 3554 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3555 3556 atomic_set(&tic->t_ref, 1); 3557 tic->t_task = current; 3558 INIT_LIST_HEAD(&tic->t_queue); 3559 tic->t_unit_res = unit_res; 3560 tic->t_curr_res = unit_res; 3561 tic->t_cnt = cnt; 3562 tic->t_ocnt = cnt; 3563 tic->t_tid = get_random_u32(); 3564 if (permanent) 3565 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3566 3567 return tic; 3568 } 3569 3570 #if defined(DEBUG) 3571 /* 3572 * Check to make sure the grant write head didn't just over lap the tail. If 3573 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3574 * the cycles differ by exactly one and check the byte count. 3575 * 3576 * This check is run unlocked, so can give false positives. Rather than assert 3577 * on failures, use a warn-once flag and a panic tag to allow the admin to 3578 * determine if they want to panic the machine when such an error occurs. For 3579 * debug kernels this will have the same effect as using an assert but, unlinke 3580 * an assert, it can be turned off at runtime. 3581 */ 3582 STATIC void 3583 xlog_verify_grant_tail( 3584 struct xlog *log) 3585 { 3586 int tail_cycle, tail_blocks; 3587 int cycle, space; 3588 3589 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3590 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3591 if (tail_cycle != cycle) { 3592 if (cycle - 1 != tail_cycle && 3593 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3594 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3595 "%s: cycle - 1 != tail_cycle", __func__); 3596 } 3597 3598 if (space > BBTOB(tail_blocks) && 3599 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3600 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3601 "%s: space > BBTOB(tail_blocks)", __func__); 3602 } 3603 } 3604 } 3605 3606 /* check if it will fit */ 3607 STATIC void 3608 xlog_verify_tail_lsn( 3609 struct xlog *log, 3610 struct xlog_in_core *iclog) 3611 { 3612 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3613 int blocks; 3614 3615 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3616 blocks = 3617 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3618 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3619 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3620 } else { 3621 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3622 3623 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3624 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3625 3626 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3627 if (blocks < BTOBB(iclog->ic_offset) + 1) 3628 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3629 } 3630 } 3631 3632 /* 3633 * Perform a number of checks on the iclog before writing to disk. 3634 * 3635 * 1. Make sure the iclogs are still circular 3636 * 2. Make sure we have a good magic number 3637 * 3. Make sure we don't have magic numbers in the data 3638 * 4. Check fields of each log operation header for: 3639 * A. Valid client identifier 3640 * B. tid ptr value falls in valid ptr space (user space code) 3641 * C. Length in log record header is correct according to the 3642 * individual operation headers within record. 3643 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3644 * log, check the preceding blocks of the physical log to make sure all 3645 * the cycle numbers agree with the current cycle number. 3646 */ 3647 STATIC void 3648 xlog_verify_iclog( 3649 struct xlog *log, 3650 struct xlog_in_core *iclog, 3651 int count) 3652 { 3653 xlog_op_header_t *ophead; 3654 xlog_in_core_t *icptr; 3655 xlog_in_core_2_t *xhdr; 3656 void *base_ptr, *ptr, *p; 3657 ptrdiff_t field_offset; 3658 uint8_t clientid; 3659 int len, i, j, k, op_len; 3660 int idx; 3661 3662 /* check validity of iclog pointers */ 3663 spin_lock(&log->l_icloglock); 3664 icptr = log->l_iclog; 3665 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3666 ASSERT(icptr); 3667 3668 if (icptr != log->l_iclog) 3669 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3670 spin_unlock(&log->l_icloglock); 3671 3672 /* check log magic numbers */ 3673 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3674 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3675 3676 base_ptr = ptr = &iclog->ic_header; 3677 p = &iclog->ic_header; 3678 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3679 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3680 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3681 __func__); 3682 } 3683 3684 /* check fields */ 3685 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3686 base_ptr = ptr = iclog->ic_datap; 3687 ophead = ptr; 3688 xhdr = iclog->ic_data; 3689 for (i = 0; i < len; i++) { 3690 ophead = ptr; 3691 3692 /* clientid is only 1 byte */ 3693 p = &ophead->oh_clientid; 3694 field_offset = p - base_ptr; 3695 if (field_offset & 0x1ff) { 3696 clientid = ophead->oh_clientid; 3697 } else { 3698 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3699 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3700 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3701 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3702 clientid = xlog_get_client_id( 3703 xhdr[j].hic_xheader.xh_cycle_data[k]); 3704 } else { 3705 clientid = xlog_get_client_id( 3706 iclog->ic_header.h_cycle_data[idx]); 3707 } 3708 } 3709 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3710 xfs_warn(log->l_mp, 3711 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3712 __func__, i, clientid, ophead, 3713 (unsigned long)field_offset); 3714 } 3715 3716 /* check length */ 3717 p = &ophead->oh_len; 3718 field_offset = p - base_ptr; 3719 if (field_offset & 0x1ff) { 3720 op_len = be32_to_cpu(ophead->oh_len); 3721 } else { 3722 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3723 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3724 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3725 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3726 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3727 } else { 3728 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3729 } 3730 } 3731 ptr += sizeof(xlog_op_header_t) + op_len; 3732 } 3733 } 3734 #endif 3735 3736 /* 3737 * Perform a forced shutdown on the log. 3738 * 3739 * This can be called from low level log code to trigger a shutdown, or from the 3740 * high level mount shutdown code when the mount shuts down. 3741 * 3742 * Our main objectives here are to make sure that: 3743 * a. if the shutdown was not due to a log IO error, flush the logs to 3744 * disk. Anything modified after this is ignored. 3745 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3746 * parties to find out. Nothing new gets queued after this is done. 3747 * c. Tasks sleeping on log reservations, pinned objects and 3748 * other resources get woken up. 3749 * d. The mount is also marked as shut down so that log triggered shutdowns 3750 * still behave the same as if they called xfs_forced_shutdown(). 3751 * 3752 * Return true if the shutdown cause was a log IO error and we actually shut the 3753 * log down. 3754 */ 3755 bool 3756 xlog_force_shutdown( 3757 struct xlog *log, 3758 uint32_t shutdown_flags) 3759 { 3760 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3761 3762 if (!log) 3763 return false; 3764 3765 /* 3766 * Flush all the completed transactions to disk before marking the log 3767 * being shut down. We need to do this first as shutting down the log 3768 * before the force will prevent the log force from flushing the iclogs 3769 * to disk. 3770 * 3771 * When we are in recovery, there are no transactions to flush, and 3772 * we don't want to touch the log because we don't want to perturb the 3773 * current head/tail for future recovery attempts. Hence we need to 3774 * avoid a log force in this case. 3775 * 3776 * If we are shutting down due to a log IO error, then we must avoid 3777 * trying to write the log as that may just result in more IO errors and 3778 * an endless shutdown/force loop. 3779 */ 3780 if (!log_error && !xlog_in_recovery(log)) 3781 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3782 3783 /* 3784 * Atomically set the shutdown state. If the shutdown state is already 3785 * set, there someone else is performing the shutdown and so we are done 3786 * here. This should never happen because we should only ever get called 3787 * once by the first shutdown caller. 3788 * 3789 * Much of the log state machine transitions assume that shutdown state 3790 * cannot change once they hold the log->l_icloglock. Hence we need to 3791 * hold that lock here, even though we use the atomic test_and_set_bit() 3792 * operation to set the shutdown state. 3793 */ 3794 spin_lock(&log->l_icloglock); 3795 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3796 spin_unlock(&log->l_icloglock); 3797 return false; 3798 } 3799 spin_unlock(&log->l_icloglock); 3800 3801 /* 3802 * If this log shutdown also sets the mount shutdown state, issue a 3803 * shutdown warning message. 3804 */ 3805 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) { 3806 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3807 "Filesystem has been shut down due to log error (0x%x).", 3808 shutdown_flags); 3809 xfs_alert(log->l_mp, 3810 "Please unmount the filesystem and rectify the problem(s)."); 3811 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3812 xfs_stack_trace(); 3813 } 3814 3815 /* 3816 * We don't want anybody waiting for log reservations after this. That 3817 * means we have to wake up everybody queued up on reserveq as well as 3818 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3819 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3820 * action is protected by the grant locks. 3821 */ 3822 xlog_grant_head_wake_all(&log->l_reserve_head); 3823 xlog_grant_head_wake_all(&log->l_write_head); 3824 3825 /* 3826 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3827 * as if the log writes were completed. The abort handling in the log 3828 * item committed callback functions will do this again under lock to 3829 * avoid races. 3830 */ 3831 spin_lock(&log->l_cilp->xc_push_lock); 3832 wake_up_all(&log->l_cilp->xc_start_wait); 3833 wake_up_all(&log->l_cilp->xc_commit_wait); 3834 spin_unlock(&log->l_cilp->xc_push_lock); 3835 3836 spin_lock(&log->l_icloglock); 3837 xlog_state_shutdown_callbacks(log); 3838 spin_unlock(&log->l_icloglock); 3839 3840 wake_up_var(&log->l_opstate); 3841 return log_error; 3842 } 3843 3844 STATIC int 3845 xlog_iclogs_empty( 3846 struct xlog *log) 3847 { 3848 xlog_in_core_t *iclog; 3849 3850 iclog = log->l_iclog; 3851 do { 3852 /* endianness does not matter here, zero is zero in 3853 * any language. 3854 */ 3855 if (iclog->ic_header.h_num_logops) 3856 return 0; 3857 iclog = iclog->ic_next; 3858 } while (iclog != log->l_iclog); 3859 return 1; 3860 } 3861 3862 /* 3863 * Verify that an LSN stamped into a piece of metadata is valid. This is 3864 * intended for use in read verifiers on v5 superblocks. 3865 */ 3866 bool 3867 xfs_log_check_lsn( 3868 struct xfs_mount *mp, 3869 xfs_lsn_t lsn) 3870 { 3871 struct xlog *log = mp->m_log; 3872 bool valid; 3873 3874 /* 3875 * norecovery mode skips mount-time log processing and unconditionally 3876 * resets the in-core LSN. We can't validate in this mode, but 3877 * modifications are not allowed anyways so just return true. 3878 */ 3879 if (xfs_has_norecovery(mp)) 3880 return true; 3881 3882 /* 3883 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3884 * handled by recovery and thus safe to ignore here. 3885 */ 3886 if (lsn == NULLCOMMITLSN) 3887 return true; 3888 3889 valid = xlog_valid_lsn(mp->m_log, lsn); 3890 3891 /* warn the user about what's gone wrong before verifier failure */ 3892 if (!valid) { 3893 spin_lock(&log->l_icloglock); 3894 xfs_warn(mp, 3895 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3896 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3897 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3898 log->l_curr_cycle, log->l_curr_block); 3899 spin_unlock(&log->l_icloglock); 3900 } 3901 3902 return valid; 3903 } 3904 3905 /* 3906 * Notify the log that we're about to start using a feature that is protected 3907 * by a log incompat feature flag. This will prevent log covering from 3908 * clearing those flags. 3909 */ 3910 void 3911 xlog_use_incompat_feat( 3912 struct xlog *log) 3913 { 3914 down_read(&log->l_incompat_users); 3915 } 3916 3917 /* Notify the log that we've finished using log incompat features. */ 3918 void 3919 xlog_drop_incompat_feat( 3920 struct xlog *log) 3921 { 3922 up_read(&log->l_incompat_users); 3923 } 3924