1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_inode.h" 27 #include "xfs_bmap.h" 28 #include "xfs_bmap_util.h" 29 #include "xfs_acl.h" 30 #include "xfs_quota.h" 31 #include "xfs_error.h" 32 #include "xfs_attr.h" 33 #include "xfs_trans.h" 34 #include "xfs_trace.h" 35 #include "xfs_icache.h" 36 #include "xfs_symlink.h" 37 #include "xfs_da_btree.h" 38 #include "xfs_dir2.h" 39 #include "xfs_trans_space.h" 40 41 #include <linux/capability.h> 42 #include <linux/xattr.h> 43 #include <linux/namei.h> 44 #include <linux/posix_acl.h> 45 #include <linux/security.h> 46 #include <linux/fiemap.h> 47 #include <linux/slab.h> 48 49 /* 50 * Directories have different lock order w.r.t. mmap_sem compared to regular 51 * files. This is due to readdir potentially triggering page faults on a user 52 * buffer inside filldir(), and this happens with the ilock on the directory 53 * held. For regular files, the lock order is the other way around - the 54 * mmap_sem is taken during the page fault, and then we lock the ilock to do 55 * block mapping. Hence we need a different class for the directory ilock so 56 * that lockdep can tell them apart. 57 */ 58 static struct lock_class_key xfs_nondir_ilock_class; 59 static struct lock_class_key xfs_dir_ilock_class; 60 61 static int 62 xfs_initxattrs( 63 struct inode *inode, 64 const struct xattr *xattr_array, 65 void *fs_info) 66 { 67 const struct xattr *xattr; 68 struct xfs_inode *ip = XFS_I(inode); 69 int error = 0; 70 71 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 72 error = xfs_attr_set(ip, xattr->name, xattr->value, 73 xattr->value_len, ATTR_SECURE); 74 if (error < 0) 75 break; 76 } 77 return error; 78 } 79 80 /* 81 * Hook in SELinux. This is not quite correct yet, what we really need 82 * here (as we do for default ACLs) is a mechanism by which creation of 83 * these attrs can be journalled at inode creation time (along with the 84 * inode, of course, such that log replay can't cause these to be lost). 85 */ 86 87 STATIC int 88 xfs_init_security( 89 struct inode *inode, 90 struct inode *dir, 91 const struct qstr *qstr) 92 { 93 return security_inode_init_security(inode, dir, qstr, 94 &xfs_initxattrs, NULL); 95 } 96 97 static void 98 xfs_dentry_to_name( 99 struct xfs_name *namep, 100 struct dentry *dentry, 101 int mode) 102 { 103 namep->name = dentry->d_name.name; 104 namep->len = dentry->d_name.len; 105 namep->type = xfs_mode_to_ftype[(mode & S_IFMT) >> S_SHIFT]; 106 } 107 108 STATIC void 109 xfs_cleanup_inode( 110 struct inode *dir, 111 struct inode *inode, 112 struct dentry *dentry) 113 { 114 struct xfs_name teardown; 115 116 /* Oh, the horror. 117 * If we can't add the ACL or we fail in 118 * xfs_init_security we must back out. 119 * ENOSPC can hit here, among other things. 120 */ 121 xfs_dentry_to_name(&teardown, dentry, 0); 122 123 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 124 } 125 126 STATIC int 127 xfs_generic_create( 128 struct inode *dir, 129 struct dentry *dentry, 130 umode_t mode, 131 dev_t rdev, 132 bool tmpfile) /* unnamed file */ 133 { 134 struct inode *inode; 135 struct xfs_inode *ip = NULL; 136 struct posix_acl *default_acl, *acl; 137 struct xfs_name name; 138 int error; 139 140 /* 141 * Irix uses Missed'em'V split, but doesn't want to see 142 * the upper 5 bits of (14bit) major. 143 */ 144 if (S_ISCHR(mode) || S_ISBLK(mode)) { 145 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff)) 146 return -EINVAL; 147 rdev = sysv_encode_dev(rdev); 148 } else { 149 rdev = 0; 150 } 151 152 error = posix_acl_create(dir, &mode, &default_acl, &acl); 153 if (error) 154 return error; 155 156 if (!tmpfile) { 157 xfs_dentry_to_name(&name, dentry, mode); 158 error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip); 159 } else { 160 error = xfs_create_tmpfile(XFS_I(dir), dentry, mode, &ip); 161 } 162 if (unlikely(error)) 163 goto out_free_acl; 164 165 inode = VFS_I(ip); 166 167 error = xfs_init_security(inode, dir, &dentry->d_name); 168 if (unlikely(error)) 169 goto out_cleanup_inode; 170 171 #ifdef CONFIG_XFS_POSIX_ACL 172 if (default_acl) { 173 error = xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 174 if (error) 175 goto out_cleanup_inode; 176 } 177 if (acl) { 178 error = xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 179 if (error) 180 goto out_cleanup_inode; 181 } 182 #endif 183 184 if (tmpfile) 185 d_tmpfile(dentry, inode); 186 else 187 d_instantiate(dentry, inode); 188 189 out_free_acl: 190 if (default_acl) 191 posix_acl_release(default_acl); 192 if (acl) 193 posix_acl_release(acl); 194 return error; 195 196 out_cleanup_inode: 197 if (!tmpfile) 198 xfs_cleanup_inode(dir, inode, dentry); 199 iput(inode); 200 goto out_free_acl; 201 } 202 203 STATIC int 204 xfs_vn_mknod( 205 struct inode *dir, 206 struct dentry *dentry, 207 umode_t mode, 208 dev_t rdev) 209 { 210 return xfs_generic_create(dir, dentry, mode, rdev, false); 211 } 212 213 STATIC int 214 xfs_vn_create( 215 struct inode *dir, 216 struct dentry *dentry, 217 umode_t mode, 218 bool flags) 219 { 220 return xfs_vn_mknod(dir, dentry, mode, 0); 221 } 222 223 STATIC int 224 xfs_vn_mkdir( 225 struct inode *dir, 226 struct dentry *dentry, 227 umode_t mode) 228 { 229 return xfs_vn_mknod(dir, dentry, mode|S_IFDIR, 0); 230 } 231 232 STATIC struct dentry * 233 xfs_vn_lookup( 234 struct inode *dir, 235 struct dentry *dentry, 236 unsigned int flags) 237 { 238 struct xfs_inode *cip; 239 struct xfs_name name; 240 int error; 241 242 if (dentry->d_name.len >= MAXNAMELEN) 243 return ERR_PTR(-ENAMETOOLONG); 244 245 xfs_dentry_to_name(&name, dentry, 0); 246 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 247 if (unlikely(error)) { 248 if (unlikely(error != -ENOENT)) 249 return ERR_PTR(error); 250 d_add(dentry, NULL); 251 return NULL; 252 } 253 254 return d_splice_alias(VFS_I(cip), dentry); 255 } 256 257 STATIC struct dentry * 258 xfs_vn_ci_lookup( 259 struct inode *dir, 260 struct dentry *dentry, 261 unsigned int flags) 262 { 263 struct xfs_inode *ip; 264 struct xfs_name xname; 265 struct xfs_name ci_name; 266 struct qstr dname; 267 int error; 268 269 if (dentry->d_name.len >= MAXNAMELEN) 270 return ERR_PTR(-ENAMETOOLONG); 271 272 xfs_dentry_to_name(&xname, dentry, 0); 273 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 274 if (unlikely(error)) { 275 if (unlikely(error != -ENOENT)) 276 return ERR_PTR(error); 277 /* 278 * call d_add(dentry, NULL) here when d_drop_negative_children 279 * is called in xfs_vn_mknod (ie. allow negative dentries 280 * with CI filesystems). 281 */ 282 return NULL; 283 } 284 285 /* if exact match, just splice and exit */ 286 if (!ci_name.name) 287 return d_splice_alias(VFS_I(ip), dentry); 288 289 /* else case-insensitive match... */ 290 dname.name = ci_name.name; 291 dname.len = ci_name.len; 292 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 293 kmem_free(ci_name.name); 294 return dentry; 295 } 296 297 STATIC int 298 xfs_vn_link( 299 struct dentry *old_dentry, 300 struct inode *dir, 301 struct dentry *dentry) 302 { 303 struct inode *inode = old_dentry->d_inode; 304 struct xfs_name name; 305 int error; 306 307 xfs_dentry_to_name(&name, dentry, inode->i_mode); 308 309 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 310 if (unlikely(error)) 311 return error; 312 313 ihold(inode); 314 d_instantiate(dentry, inode); 315 return 0; 316 } 317 318 STATIC int 319 xfs_vn_unlink( 320 struct inode *dir, 321 struct dentry *dentry) 322 { 323 struct xfs_name name; 324 int error; 325 326 xfs_dentry_to_name(&name, dentry, 0); 327 328 error = xfs_remove(XFS_I(dir), &name, XFS_I(dentry->d_inode)); 329 if (error) 330 return error; 331 332 /* 333 * With unlink, the VFS makes the dentry "negative": no inode, 334 * but still hashed. This is incompatible with case-insensitive 335 * mode, so invalidate (unhash) the dentry in CI-mode. 336 */ 337 if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb)) 338 d_invalidate(dentry); 339 return 0; 340 } 341 342 STATIC int 343 xfs_vn_symlink( 344 struct inode *dir, 345 struct dentry *dentry, 346 const char *symname) 347 { 348 struct inode *inode; 349 struct xfs_inode *cip = NULL; 350 struct xfs_name name; 351 int error; 352 umode_t mode; 353 354 mode = S_IFLNK | 355 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 356 xfs_dentry_to_name(&name, dentry, mode); 357 358 error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip); 359 if (unlikely(error)) 360 goto out; 361 362 inode = VFS_I(cip); 363 364 error = xfs_init_security(inode, dir, &dentry->d_name); 365 if (unlikely(error)) 366 goto out_cleanup_inode; 367 368 d_instantiate(dentry, inode); 369 return 0; 370 371 out_cleanup_inode: 372 xfs_cleanup_inode(dir, inode, dentry); 373 iput(inode); 374 out: 375 return error; 376 } 377 378 STATIC int 379 xfs_vn_rename( 380 struct inode *odir, 381 struct dentry *odentry, 382 struct inode *ndir, 383 struct dentry *ndentry) 384 { 385 struct inode *new_inode = ndentry->d_inode; 386 struct xfs_name oname; 387 struct xfs_name nname; 388 389 xfs_dentry_to_name(&oname, odentry, 0); 390 xfs_dentry_to_name(&nname, ndentry, odentry->d_inode->i_mode); 391 392 return xfs_rename(XFS_I(odir), &oname, XFS_I(odentry->d_inode), 393 XFS_I(ndir), &nname, new_inode ? 394 XFS_I(new_inode) : NULL); 395 } 396 397 /* 398 * careful here - this function can get called recursively, so 399 * we need to be very careful about how much stack we use. 400 * uio is kmalloced for this reason... 401 */ 402 STATIC void * 403 xfs_vn_follow_link( 404 struct dentry *dentry, 405 struct nameidata *nd) 406 { 407 char *link; 408 int error = -ENOMEM; 409 410 link = kmalloc(MAXPATHLEN+1, GFP_KERNEL); 411 if (!link) 412 goto out_err; 413 414 error = xfs_readlink(XFS_I(dentry->d_inode), link); 415 if (unlikely(error)) 416 goto out_kfree; 417 418 nd_set_link(nd, link); 419 return NULL; 420 421 out_kfree: 422 kfree(link); 423 out_err: 424 nd_set_link(nd, ERR_PTR(error)); 425 return NULL; 426 } 427 428 STATIC int 429 xfs_vn_getattr( 430 struct vfsmount *mnt, 431 struct dentry *dentry, 432 struct kstat *stat) 433 { 434 struct inode *inode = dentry->d_inode; 435 struct xfs_inode *ip = XFS_I(inode); 436 struct xfs_mount *mp = ip->i_mount; 437 438 trace_xfs_getattr(ip); 439 440 if (XFS_FORCED_SHUTDOWN(mp)) 441 return -EIO; 442 443 stat->size = XFS_ISIZE(ip); 444 stat->dev = inode->i_sb->s_dev; 445 stat->mode = ip->i_d.di_mode; 446 stat->nlink = ip->i_d.di_nlink; 447 stat->uid = inode->i_uid; 448 stat->gid = inode->i_gid; 449 stat->ino = ip->i_ino; 450 stat->atime = inode->i_atime; 451 stat->mtime = inode->i_mtime; 452 stat->ctime = inode->i_ctime; 453 stat->blocks = 454 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); 455 456 457 switch (inode->i_mode & S_IFMT) { 458 case S_IFBLK: 459 case S_IFCHR: 460 stat->blksize = BLKDEV_IOSIZE; 461 stat->rdev = MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, 462 sysv_minor(ip->i_df.if_u2.if_rdev)); 463 break; 464 default: 465 if (XFS_IS_REALTIME_INODE(ip)) { 466 /* 467 * If the file blocks are being allocated from a 468 * realtime volume, then return the inode's realtime 469 * extent size or the realtime volume's extent size. 470 */ 471 stat->blksize = 472 xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog; 473 } else 474 stat->blksize = xfs_preferred_iosize(mp); 475 stat->rdev = 0; 476 break; 477 } 478 479 return 0; 480 } 481 482 static void 483 xfs_setattr_mode( 484 struct xfs_inode *ip, 485 struct iattr *iattr) 486 { 487 struct inode *inode = VFS_I(ip); 488 umode_t mode = iattr->ia_mode; 489 490 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 491 492 ip->i_d.di_mode &= S_IFMT; 493 ip->i_d.di_mode |= mode & ~S_IFMT; 494 495 inode->i_mode &= S_IFMT; 496 inode->i_mode |= mode & ~S_IFMT; 497 } 498 499 static void 500 xfs_setattr_time( 501 struct xfs_inode *ip, 502 struct iattr *iattr) 503 { 504 struct inode *inode = VFS_I(ip); 505 506 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 507 508 if (iattr->ia_valid & ATTR_ATIME) { 509 inode->i_atime = iattr->ia_atime; 510 ip->i_d.di_atime.t_sec = iattr->ia_atime.tv_sec; 511 ip->i_d.di_atime.t_nsec = iattr->ia_atime.tv_nsec; 512 } 513 if (iattr->ia_valid & ATTR_CTIME) { 514 inode->i_ctime = iattr->ia_ctime; 515 ip->i_d.di_ctime.t_sec = iattr->ia_ctime.tv_sec; 516 ip->i_d.di_ctime.t_nsec = iattr->ia_ctime.tv_nsec; 517 } 518 if (iattr->ia_valid & ATTR_MTIME) { 519 inode->i_mtime = iattr->ia_mtime; 520 ip->i_d.di_mtime.t_sec = iattr->ia_mtime.tv_sec; 521 ip->i_d.di_mtime.t_nsec = iattr->ia_mtime.tv_nsec; 522 } 523 } 524 525 int 526 xfs_setattr_nonsize( 527 struct xfs_inode *ip, 528 struct iattr *iattr, 529 int flags) 530 { 531 xfs_mount_t *mp = ip->i_mount; 532 struct inode *inode = VFS_I(ip); 533 int mask = iattr->ia_valid; 534 xfs_trans_t *tp; 535 int error; 536 kuid_t uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID; 537 kgid_t gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID; 538 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 539 struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL; 540 541 trace_xfs_setattr(ip); 542 543 /* If acls are being inherited, we already have this checked */ 544 if (!(flags & XFS_ATTR_NOACL)) { 545 if (mp->m_flags & XFS_MOUNT_RDONLY) 546 return -EROFS; 547 548 if (XFS_FORCED_SHUTDOWN(mp)) 549 return -EIO; 550 551 error = inode_change_ok(inode, iattr); 552 if (error) 553 return error; 554 } 555 556 ASSERT((mask & ATTR_SIZE) == 0); 557 558 /* 559 * If disk quotas is on, we make sure that the dquots do exist on disk, 560 * before we start any other transactions. Trying to do this later 561 * is messy. We don't care to take a readlock to look at the ids 562 * in inode here, because we can't hold it across the trans_reserve. 563 * If the IDs do change before we take the ilock, we're covered 564 * because the i_*dquot fields will get updated anyway. 565 */ 566 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 567 uint qflags = 0; 568 569 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 570 uid = iattr->ia_uid; 571 qflags |= XFS_QMOPT_UQUOTA; 572 } else { 573 uid = inode->i_uid; 574 } 575 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 576 gid = iattr->ia_gid; 577 qflags |= XFS_QMOPT_GQUOTA; 578 } else { 579 gid = inode->i_gid; 580 } 581 582 /* 583 * We take a reference when we initialize udqp and gdqp, 584 * so it is important that we never blindly double trip on 585 * the same variable. See xfs_create() for an example. 586 */ 587 ASSERT(udqp == NULL); 588 ASSERT(gdqp == NULL); 589 error = xfs_qm_vop_dqalloc(ip, xfs_kuid_to_uid(uid), 590 xfs_kgid_to_gid(gid), 591 xfs_get_projid(ip), 592 qflags, &udqp, &gdqp, NULL); 593 if (error) 594 return error; 595 } 596 597 tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_NOT_SIZE); 598 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0); 599 if (error) 600 goto out_dqrele; 601 602 xfs_ilock(ip, XFS_ILOCK_EXCL); 603 604 /* 605 * Change file ownership. Must be the owner or privileged. 606 */ 607 if (mask & (ATTR_UID|ATTR_GID)) { 608 /* 609 * These IDs could have changed since we last looked at them. 610 * But, we're assured that if the ownership did change 611 * while we didn't have the inode locked, inode's dquot(s) 612 * would have changed also. 613 */ 614 iuid = inode->i_uid; 615 igid = inode->i_gid; 616 gid = (mask & ATTR_GID) ? iattr->ia_gid : igid; 617 uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid; 618 619 /* 620 * Do a quota reservation only if uid/gid is actually 621 * going to change. 622 */ 623 if (XFS_IS_QUOTA_RUNNING(mp) && 624 ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) || 625 (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) { 626 ASSERT(tp); 627 error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp, 628 NULL, capable(CAP_FOWNER) ? 629 XFS_QMOPT_FORCE_RES : 0); 630 if (error) /* out of quota */ 631 goto out_trans_cancel; 632 } 633 } 634 635 xfs_trans_ijoin(tp, ip, 0); 636 637 /* 638 * Change file ownership. Must be the owner or privileged. 639 */ 640 if (mask & (ATTR_UID|ATTR_GID)) { 641 /* 642 * CAP_FSETID overrides the following restrictions: 643 * 644 * The set-user-ID and set-group-ID bits of a file will be 645 * cleared upon successful return from chown() 646 */ 647 if ((ip->i_d.di_mode & (S_ISUID|S_ISGID)) && 648 !capable(CAP_FSETID)) 649 ip->i_d.di_mode &= ~(S_ISUID|S_ISGID); 650 651 /* 652 * Change the ownerships and register quota modifications 653 * in the transaction. 654 */ 655 if (!uid_eq(iuid, uid)) { 656 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) { 657 ASSERT(mask & ATTR_UID); 658 ASSERT(udqp); 659 olddquot1 = xfs_qm_vop_chown(tp, ip, 660 &ip->i_udquot, udqp); 661 } 662 ip->i_d.di_uid = xfs_kuid_to_uid(uid); 663 inode->i_uid = uid; 664 } 665 if (!gid_eq(igid, gid)) { 666 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) { 667 ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) || 668 !XFS_IS_PQUOTA_ON(mp)); 669 ASSERT(mask & ATTR_GID); 670 ASSERT(gdqp); 671 olddquot2 = xfs_qm_vop_chown(tp, ip, 672 &ip->i_gdquot, gdqp); 673 } 674 ip->i_d.di_gid = xfs_kgid_to_gid(gid); 675 inode->i_gid = gid; 676 } 677 } 678 679 if (mask & ATTR_MODE) 680 xfs_setattr_mode(ip, iattr); 681 if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) 682 xfs_setattr_time(ip, iattr); 683 684 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 685 686 XFS_STATS_INC(xs_ig_attrchg); 687 688 if (mp->m_flags & XFS_MOUNT_WSYNC) 689 xfs_trans_set_sync(tp); 690 error = xfs_trans_commit(tp, 0); 691 692 xfs_iunlock(ip, XFS_ILOCK_EXCL); 693 694 /* 695 * Release any dquot(s) the inode had kept before chown. 696 */ 697 xfs_qm_dqrele(olddquot1); 698 xfs_qm_dqrele(olddquot2); 699 xfs_qm_dqrele(udqp); 700 xfs_qm_dqrele(gdqp); 701 702 if (error) 703 return error; 704 705 /* 706 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 707 * update. We could avoid this with linked transactions 708 * and passing down the transaction pointer all the way 709 * to attr_set. No previous user of the generic 710 * Posix ACL code seems to care about this issue either. 711 */ 712 if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) { 713 error = posix_acl_chmod(inode, inode->i_mode); 714 if (error) 715 return error; 716 } 717 718 return 0; 719 720 out_trans_cancel: 721 xfs_trans_cancel(tp, 0); 722 xfs_iunlock(ip, XFS_ILOCK_EXCL); 723 out_dqrele: 724 xfs_qm_dqrele(udqp); 725 xfs_qm_dqrele(gdqp); 726 return error; 727 } 728 729 /* 730 * Truncate file. Must have write permission and not be a directory. 731 */ 732 int 733 xfs_setattr_size( 734 struct xfs_inode *ip, 735 struct iattr *iattr) 736 { 737 struct xfs_mount *mp = ip->i_mount; 738 struct inode *inode = VFS_I(ip); 739 xfs_off_t oldsize, newsize; 740 struct xfs_trans *tp; 741 int error; 742 uint lock_flags = 0; 743 uint commit_flags = 0; 744 745 trace_xfs_setattr(ip); 746 747 if (mp->m_flags & XFS_MOUNT_RDONLY) 748 return -EROFS; 749 750 if (XFS_FORCED_SHUTDOWN(mp)) 751 return -EIO; 752 753 error = inode_change_ok(inode, iattr); 754 if (error) 755 return error; 756 757 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 758 ASSERT(S_ISREG(ip->i_d.di_mode)); 759 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 760 ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0); 761 762 oldsize = inode->i_size; 763 newsize = iattr->ia_size; 764 765 /* 766 * Short circuit the truncate case for zero length files. 767 */ 768 if (newsize == 0 && oldsize == 0 && ip->i_d.di_nextents == 0) { 769 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 770 return 0; 771 772 /* 773 * Use the regular setattr path to update the timestamps. 774 */ 775 iattr->ia_valid &= ~ATTR_SIZE; 776 return xfs_setattr_nonsize(ip, iattr, 0); 777 } 778 779 /* 780 * Make sure that the dquots are attached to the inode. 781 */ 782 error = xfs_qm_dqattach(ip, 0); 783 if (error) 784 return error; 785 786 /* 787 * Now we can make the changes. Before we join the inode to the 788 * transaction, take care of the part of the truncation that must be 789 * done without the inode lock. This needs to be done before joining 790 * the inode to the transaction, because the inode cannot be unlocked 791 * once it is a part of the transaction. 792 */ 793 if (newsize > oldsize) { 794 /* 795 * Do the first part of growing a file: zero any data in the 796 * last block that is beyond the old EOF. We need to do this 797 * before the inode is joined to the transaction to modify 798 * i_size. 799 */ 800 error = xfs_zero_eof(ip, newsize, oldsize); 801 if (error) 802 return error; 803 } 804 805 /* 806 * We are going to log the inode size change in this transaction so 807 * any previous writes that are beyond the on disk EOF and the new 808 * EOF that have not been written out need to be written here. If we 809 * do not write the data out, we expose ourselves to the null files 810 * problem. 811 * 812 * Only flush from the on disk size to the smaller of the in memory 813 * file size or the new size as that's the range we really care about 814 * here and prevents waiting for other data not within the range we 815 * care about here. 816 */ 817 if (oldsize != ip->i_d.di_size && newsize > ip->i_d.di_size) { 818 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 819 ip->i_d.di_size, newsize); 820 if (error) 821 return error; 822 } 823 824 /* 825 * Wait for all direct I/O to complete. 826 */ 827 inode_dio_wait(inode); 828 829 /* 830 * Do all the page cache truncate work outside the transaction context 831 * as the "lock" order is page lock->log space reservation. i.e. 832 * locking pages inside the transaction can ABBA deadlock with 833 * writeback. We have to do the VFS inode size update before we truncate 834 * the pagecache, however, to avoid racing with page faults beyond the 835 * new EOF they are not serialised against truncate operations except by 836 * page locks and size updates. 837 * 838 * Hence we are in a situation where a truncate can fail with ENOMEM 839 * from xfs_trans_reserve(), but having already truncated the in-memory 840 * version of the file (i.e. made user visible changes). There's not 841 * much we can do about this, except to hope that the caller sees ENOMEM 842 * and retries the truncate operation. 843 */ 844 error = block_truncate_page(inode->i_mapping, newsize, xfs_get_blocks); 845 if (error) 846 return error; 847 truncate_setsize(inode, newsize); 848 849 /* 850 * The "we can't serialise against page faults" pain gets worse. 851 * 852 * If the file is mapped then we have to clean the page at the old EOF 853 * when extending the file. Extending the file can expose changes the 854 * underlying page mapping (e.g. from beyond EOF to a hole or 855 * unwritten), and so on the next attempt to write to that page we need 856 * to remap it for write. i.e. we need .page_mkwrite() to be called. 857 * Hence we need to clean the page to clean the pte and so a new write 858 * fault will be triggered appropriately. 859 * 860 * If we do it before we change the inode size, then we can race with a 861 * page fault that maps the page with exactly the same problem. If we do 862 * it after we change the file size, then a new page fault can come in 863 * and allocate space before we've run the rest of the truncate 864 * transaction. That's kinda grotesque, but it's better than have data 865 * over a hole, and so that's the lesser evil that has been chosen here. 866 * 867 * The real solution, however, is to have some mechanism for locking out 868 * page faults while a truncate is in progress. 869 */ 870 if (newsize > oldsize && mapping_mapped(VFS_I(ip)->i_mapping)) { 871 error = filemap_write_and_wait_range( 872 VFS_I(ip)->i_mapping, 873 round_down(oldsize, PAGE_CACHE_SIZE), 874 round_up(oldsize, PAGE_CACHE_SIZE) - 1); 875 if (error) 876 return error; 877 } 878 879 tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_SIZE); 880 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 881 if (error) 882 goto out_trans_cancel; 883 884 commit_flags = XFS_TRANS_RELEASE_LOG_RES; 885 lock_flags |= XFS_ILOCK_EXCL; 886 xfs_ilock(ip, XFS_ILOCK_EXCL); 887 xfs_trans_ijoin(tp, ip, 0); 888 889 /* 890 * Only change the c/mtime if we are changing the size or we are 891 * explicitly asked to change it. This handles the semantic difference 892 * between truncate() and ftruncate() as implemented in the VFS. 893 * 894 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 895 * special case where we need to update the times despite not having 896 * these flags set. For all other operations the VFS set these flags 897 * explicitly if it wants a timestamp update. 898 */ 899 if (newsize != oldsize && 900 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 901 iattr->ia_ctime = iattr->ia_mtime = 902 current_fs_time(inode->i_sb); 903 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 904 } 905 906 /* 907 * The first thing we do is set the size to new_size permanently on 908 * disk. This way we don't have to worry about anyone ever being able 909 * to look at the data being freed even in the face of a crash. 910 * What we're getting around here is the case where we free a block, it 911 * is allocated to another file, it is written to, and then we crash. 912 * If the new data gets written to the file but the log buffers 913 * containing the free and reallocation don't, then we'd end up with 914 * garbage in the blocks being freed. As long as we make the new size 915 * permanent before actually freeing any blocks it doesn't matter if 916 * they get written to. 917 */ 918 ip->i_d.di_size = newsize; 919 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 920 921 if (newsize <= oldsize) { 922 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 923 if (error) 924 goto out_trans_abort; 925 926 /* 927 * Truncated "down", so we're removing references to old data 928 * here - if we delay flushing for a long time, we expose 929 * ourselves unduly to the notorious NULL files problem. So, 930 * we mark this inode and flush it when the file is closed, 931 * and do not wait the usual (long) time for writeout. 932 */ 933 xfs_iflags_set(ip, XFS_ITRUNCATED); 934 935 /* A truncate down always removes post-EOF blocks. */ 936 xfs_inode_clear_eofblocks_tag(ip); 937 } 938 939 if (iattr->ia_valid & ATTR_MODE) 940 xfs_setattr_mode(ip, iattr); 941 if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) 942 xfs_setattr_time(ip, iattr); 943 944 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 945 946 XFS_STATS_INC(xs_ig_attrchg); 947 948 if (mp->m_flags & XFS_MOUNT_WSYNC) 949 xfs_trans_set_sync(tp); 950 951 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 952 out_unlock: 953 if (lock_flags) 954 xfs_iunlock(ip, lock_flags); 955 return error; 956 957 out_trans_abort: 958 commit_flags |= XFS_TRANS_ABORT; 959 out_trans_cancel: 960 xfs_trans_cancel(tp, commit_flags); 961 goto out_unlock; 962 } 963 964 STATIC int 965 xfs_vn_setattr( 966 struct dentry *dentry, 967 struct iattr *iattr) 968 { 969 struct xfs_inode *ip = XFS_I(dentry->d_inode); 970 int error; 971 972 if (iattr->ia_valid & ATTR_SIZE) { 973 xfs_ilock(ip, XFS_IOLOCK_EXCL); 974 error = xfs_setattr_size(ip, iattr); 975 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 976 } else { 977 error = xfs_setattr_nonsize(ip, iattr, 0); 978 } 979 980 return error; 981 } 982 983 STATIC int 984 xfs_vn_update_time( 985 struct inode *inode, 986 struct timespec *now, 987 int flags) 988 { 989 struct xfs_inode *ip = XFS_I(inode); 990 struct xfs_mount *mp = ip->i_mount; 991 struct xfs_trans *tp; 992 int error; 993 994 trace_xfs_update_time(ip); 995 996 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 997 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 998 if (error) { 999 xfs_trans_cancel(tp, 0); 1000 return error; 1001 } 1002 1003 xfs_ilock(ip, XFS_ILOCK_EXCL); 1004 if (flags & S_CTIME) { 1005 inode->i_ctime = *now; 1006 ip->i_d.di_ctime.t_sec = (__int32_t)now->tv_sec; 1007 ip->i_d.di_ctime.t_nsec = (__int32_t)now->tv_nsec; 1008 } 1009 if (flags & S_MTIME) { 1010 inode->i_mtime = *now; 1011 ip->i_d.di_mtime.t_sec = (__int32_t)now->tv_sec; 1012 ip->i_d.di_mtime.t_nsec = (__int32_t)now->tv_nsec; 1013 } 1014 if (flags & S_ATIME) { 1015 inode->i_atime = *now; 1016 ip->i_d.di_atime.t_sec = (__int32_t)now->tv_sec; 1017 ip->i_d.di_atime.t_nsec = (__int32_t)now->tv_nsec; 1018 } 1019 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1020 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 1021 return xfs_trans_commit(tp, 0); 1022 } 1023 1024 #define XFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 1025 1026 /* 1027 * Call fiemap helper to fill in user data. 1028 * Returns positive errors to xfs_getbmap. 1029 */ 1030 STATIC int 1031 xfs_fiemap_format( 1032 void **arg, 1033 struct getbmapx *bmv, 1034 int *full) 1035 { 1036 int error; 1037 struct fiemap_extent_info *fieinfo = *arg; 1038 u32 fiemap_flags = 0; 1039 u64 logical, physical, length; 1040 1041 /* Do nothing for a hole */ 1042 if (bmv->bmv_block == -1LL) 1043 return 0; 1044 1045 logical = BBTOB(bmv->bmv_offset); 1046 physical = BBTOB(bmv->bmv_block); 1047 length = BBTOB(bmv->bmv_length); 1048 1049 if (bmv->bmv_oflags & BMV_OF_PREALLOC) 1050 fiemap_flags |= FIEMAP_EXTENT_UNWRITTEN; 1051 else if (bmv->bmv_oflags & BMV_OF_DELALLOC) { 1052 fiemap_flags |= (FIEMAP_EXTENT_DELALLOC | 1053 FIEMAP_EXTENT_UNKNOWN); 1054 physical = 0; /* no block yet */ 1055 } 1056 if (bmv->bmv_oflags & BMV_OF_LAST) 1057 fiemap_flags |= FIEMAP_EXTENT_LAST; 1058 1059 error = fiemap_fill_next_extent(fieinfo, logical, physical, 1060 length, fiemap_flags); 1061 if (error > 0) { 1062 error = 0; 1063 *full = 1; /* user array now full */ 1064 } 1065 1066 return error; 1067 } 1068 1069 STATIC int 1070 xfs_vn_fiemap( 1071 struct inode *inode, 1072 struct fiemap_extent_info *fieinfo, 1073 u64 start, 1074 u64 length) 1075 { 1076 xfs_inode_t *ip = XFS_I(inode); 1077 struct getbmapx bm; 1078 int error; 1079 1080 error = fiemap_check_flags(fieinfo, XFS_FIEMAP_FLAGS); 1081 if (error) 1082 return error; 1083 1084 /* Set up bmap header for xfs internal routine */ 1085 bm.bmv_offset = BTOBBT(start); 1086 /* Special case for whole file */ 1087 if (length == FIEMAP_MAX_OFFSET) 1088 bm.bmv_length = -1LL; 1089 else 1090 bm.bmv_length = BTOBB(start + length) - bm.bmv_offset; 1091 1092 /* We add one because in getbmap world count includes the header */ 1093 bm.bmv_count = !fieinfo->fi_extents_max ? MAXEXTNUM : 1094 fieinfo->fi_extents_max + 1; 1095 bm.bmv_count = min_t(__s32, bm.bmv_count, 1096 (PAGE_SIZE * 16 / sizeof(struct getbmapx))); 1097 bm.bmv_iflags = BMV_IF_PREALLOC | BMV_IF_NO_HOLES; 1098 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) 1099 bm.bmv_iflags |= BMV_IF_ATTRFORK; 1100 if (!(fieinfo->fi_flags & FIEMAP_FLAG_SYNC)) 1101 bm.bmv_iflags |= BMV_IF_DELALLOC; 1102 1103 error = xfs_getbmap(ip, &bm, xfs_fiemap_format, fieinfo); 1104 if (error) 1105 return error; 1106 1107 return 0; 1108 } 1109 1110 STATIC int 1111 xfs_vn_tmpfile( 1112 struct inode *dir, 1113 struct dentry *dentry, 1114 umode_t mode) 1115 { 1116 return xfs_generic_create(dir, dentry, mode, 0, true); 1117 } 1118 1119 static const struct inode_operations xfs_inode_operations = { 1120 .get_acl = xfs_get_acl, 1121 .set_acl = xfs_set_acl, 1122 .getattr = xfs_vn_getattr, 1123 .setattr = xfs_vn_setattr, 1124 .setxattr = generic_setxattr, 1125 .getxattr = generic_getxattr, 1126 .removexattr = generic_removexattr, 1127 .listxattr = xfs_vn_listxattr, 1128 .fiemap = xfs_vn_fiemap, 1129 .update_time = xfs_vn_update_time, 1130 }; 1131 1132 static const struct inode_operations xfs_dir_inode_operations = { 1133 .create = xfs_vn_create, 1134 .lookup = xfs_vn_lookup, 1135 .link = xfs_vn_link, 1136 .unlink = xfs_vn_unlink, 1137 .symlink = xfs_vn_symlink, 1138 .mkdir = xfs_vn_mkdir, 1139 /* 1140 * Yes, XFS uses the same method for rmdir and unlink. 1141 * 1142 * There are some subtile differences deeper in the code, 1143 * but we use S_ISDIR to check for those. 1144 */ 1145 .rmdir = xfs_vn_unlink, 1146 .mknod = xfs_vn_mknod, 1147 .rename = xfs_vn_rename, 1148 .get_acl = xfs_get_acl, 1149 .set_acl = xfs_set_acl, 1150 .getattr = xfs_vn_getattr, 1151 .setattr = xfs_vn_setattr, 1152 .setxattr = generic_setxattr, 1153 .getxattr = generic_getxattr, 1154 .removexattr = generic_removexattr, 1155 .listxattr = xfs_vn_listxattr, 1156 .update_time = xfs_vn_update_time, 1157 .tmpfile = xfs_vn_tmpfile, 1158 }; 1159 1160 static const struct inode_operations xfs_dir_ci_inode_operations = { 1161 .create = xfs_vn_create, 1162 .lookup = xfs_vn_ci_lookup, 1163 .link = xfs_vn_link, 1164 .unlink = xfs_vn_unlink, 1165 .symlink = xfs_vn_symlink, 1166 .mkdir = xfs_vn_mkdir, 1167 /* 1168 * Yes, XFS uses the same method for rmdir and unlink. 1169 * 1170 * There are some subtile differences deeper in the code, 1171 * but we use S_ISDIR to check for those. 1172 */ 1173 .rmdir = xfs_vn_unlink, 1174 .mknod = xfs_vn_mknod, 1175 .rename = xfs_vn_rename, 1176 .get_acl = xfs_get_acl, 1177 .set_acl = xfs_set_acl, 1178 .getattr = xfs_vn_getattr, 1179 .setattr = xfs_vn_setattr, 1180 .setxattr = generic_setxattr, 1181 .getxattr = generic_getxattr, 1182 .removexattr = generic_removexattr, 1183 .listxattr = xfs_vn_listxattr, 1184 .update_time = xfs_vn_update_time, 1185 .tmpfile = xfs_vn_tmpfile, 1186 }; 1187 1188 static const struct inode_operations xfs_symlink_inode_operations = { 1189 .readlink = generic_readlink, 1190 .follow_link = xfs_vn_follow_link, 1191 .put_link = kfree_put_link, 1192 .getattr = xfs_vn_getattr, 1193 .setattr = xfs_vn_setattr, 1194 .setxattr = generic_setxattr, 1195 .getxattr = generic_getxattr, 1196 .removexattr = generic_removexattr, 1197 .listxattr = xfs_vn_listxattr, 1198 .update_time = xfs_vn_update_time, 1199 }; 1200 1201 STATIC void 1202 xfs_diflags_to_iflags( 1203 struct inode *inode, 1204 struct xfs_inode *ip) 1205 { 1206 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) 1207 inode->i_flags |= S_IMMUTABLE; 1208 else 1209 inode->i_flags &= ~S_IMMUTABLE; 1210 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) 1211 inode->i_flags |= S_APPEND; 1212 else 1213 inode->i_flags &= ~S_APPEND; 1214 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) 1215 inode->i_flags |= S_SYNC; 1216 else 1217 inode->i_flags &= ~S_SYNC; 1218 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) 1219 inode->i_flags |= S_NOATIME; 1220 else 1221 inode->i_flags &= ~S_NOATIME; 1222 } 1223 1224 /* 1225 * Initialize the Linux inode, set up the operation vectors and 1226 * unlock the inode. 1227 * 1228 * When reading existing inodes from disk this is called directly 1229 * from xfs_iget, when creating a new inode it is called from 1230 * xfs_ialloc after setting up the inode. 1231 * 1232 * We are always called with an uninitialised linux inode here. 1233 * We need to initialise the necessary fields and take a reference 1234 * on it. 1235 */ 1236 void 1237 xfs_setup_inode( 1238 struct xfs_inode *ip) 1239 { 1240 struct inode *inode = &ip->i_vnode; 1241 gfp_t gfp_mask; 1242 1243 inode->i_ino = ip->i_ino; 1244 inode->i_state = I_NEW; 1245 1246 inode_sb_list_add(inode); 1247 /* make the inode look hashed for the writeback code */ 1248 hlist_add_fake(&inode->i_hash); 1249 1250 inode->i_mode = ip->i_d.di_mode; 1251 set_nlink(inode, ip->i_d.di_nlink); 1252 inode->i_uid = xfs_uid_to_kuid(ip->i_d.di_uid); 1253 inode->i_gid = xfs_gid_to_kgid(ip->i_d.di_gid); 1254 1255 switch (inode->i_mode & S_IFMT) { 1256 case S_IFBLK: 1257 case S_IFCHR: 1258 inode->i_rdev = 1259 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, 1260 sysv_minor(ip->i_df.if_u2.if_rdev)); 1261 break; 1262 default: 1263 inode->i_rdev = 0; 1264 break; 1265 } 1266 1267 inode->i_generation = ip->i_d.di_gen; 1268 i_size_write(inode, ip->i_d.di_size); 1269 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec; 1270 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec; 1271 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec; 1272 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec; 1273 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec; 1274 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec; 1275 xfs_diflags_to_iflags(inode, ip); 1276 1277 ip->d_ops = ip->i_mount->m_nondir_inode_ops; 1278 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class); 1279 switch (inode->i_mode & S_IFMT) { 1280 case S_IFREG: 1281 inode->i_op = &xfs_inode_operations; 1282 inode->i_fop = &xfs_file_operations; 1283 inode->i_mapping->a_ops = &xfs_address_space_operations; 1284 break; 1285 case S_IFDIR: 1286 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class); 1287 if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb)) 1288 inode->i_op = &xfs_dir_ci_inode_operations; 1289 else 1290 inode->i_op = &xfs_dir_inode_operations; 1291 inode->i_fop = &xfs_dir_file_operations; 1292 ip->d_ops = ip->i_mount->m_dir_inode_ops; 1293 break; 1294 case S_IFLNK: 1295 inode->i_op = &xfs_symlink_inode_operations; 1296 if (!(ip->i_df.if_flags & XFS_IFINLINE)) 1297 inode->i_mapping->a_ops = &xfs_address_space_operations; 1298 break; 1299 default: 1300 inode->i_op = &xfs_inode_operations; 1301 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1302 break; 1303 } 1304 1305 /* 1306 * Ensure all page cache allocations are done from GFP_NOFS context to 1307 * prevent direct reclaim recursion back into the filesystem and blowing 1308 * stacks or deadlocking. 1309 */ 1310 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1311 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1312 1313 /* 1314 * If there is no attribute fork no ACL can exist on this inode, 1315 * and it can't have any file capabilities attached to it either. 1316 */ 1317 if (!XFS_IFORK_Q(ip)) { 1318 inode_has_no_xattr(inode); 1319 cache_no_acl(inode); 1320 } 1321 1322 xfs_iflags_clear(ip, XFS_INEW); 1323 barrier(); 1324 1325 unlock_new_inode(inode); 1326 } 1327