xref: /openbmc/linux/fs/xfs/xfs_iops.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans.h"
20 #include "xfs_trace.h"
21 #include "xfs_icache.h"
22 #include "xfs_symlink.h"
23 #include "xfs_dir2.h"
24 #include "xfs_iomap.h"
25 #include "xfs_error.h"
26 #include "xfs_ioctl.h"
27 #include "xfs_xattr.h"
28 
29 #include <linux/posix_acl.h>
30 #include <linux/security.h>
31 #include <linux/iversion.h>
32 #include <linux/fiemap.h>
33 
34 /*
35  * Directories have different lock order w.r.t. mmap_lock compared to regular
36  * files. This is due to readdir potentially triggering page faults on a user
37  * buffer inside filldir(), and this happens with the ilock on the directory
38  * held. For regular files, the lock order is the other way around - the
39  * mmap_lock is taken during the page fault, and then we lock the ilock to do
40  * block mapping. Hence we need a different class for the directory ilock so
41  * that lockdep can tell them apart.
42  */
43 static struct lock_class_key xfs_nondir_ilock_class;
44 static struct lock_class_key xfs_dir_ilock_class;
45 
46 static int
47 xfs_initxattrs(
48 	struct inode		*inode,
49 	const struct xattr	*xattr_array,
50 	void			*fs_info)
51 {
52 	const struct xattr	*xattr;
53 	struct xfs_inode	*ip = XFS_I(inode);
54 	int			error = 0;
55 
56 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
57 		struct xfs_da_args	args = {
58 			.dp		= ip,
59 			.attr_filter	= XFS_ATTR_SECURE,
60 			.name		= xattr->name,
61 			.namelen	= strlen(xattr->name),
62 			.value		= xattr->value,
63 			.valuelen	= xattr->value_len,
64 		};
65 		error = xfs_attr_change(&args);
66 		if (error < 0)
67 			break;
68 	}
69 	return error;
70 }
71 
72 /*
73  * Hook in SELinux.  This is not quite correct yet, what we really need
74  * here (as we do for default ACLs) is a mechanism by which creation of
75  * these attrs can be journalled at inode creation time (along with the
76  * inode, of course, such that log replay can't cause these to be lost).
77  */
78 int
79 xfs_inode_init_security(
80 	struct inode	*inode,
81 	struct inode	*dir,
82 	const struct qstr *qstr)
83 {
84 	return security_inode_init_security(inode, dir, qstr,
85 					     &xfs_initxattrs, NULL);
86 }
87 
88 static void
89 xfs_dentry_to_name(
90 	struct xfs_name	*namep,
91 	struct dentry	*dentry)
92 {
93 	namep->name = dentry->d_name.name;
94 	namep->len = dentry->d_name.len;
95 	namep->type = XFS_DIR3_FT_UNKNOWN;
96 }
97 
98 static int
99 xfs_dentry_mode_to_name(
100 	struct xfs_name	*namep,
101 	struct dentry	*dentry,
102 	int		mode)
103 {
104 	namep->name = dentry->d_name.name;
105 	namep->len = dentry->d_name.len;
106 	namep->type = xfs_mode_to_ftype(mode);
107 
108 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
109 		return -EFSCORRUPTED;
110 
111 	return 0;
112 }
113 
114 STATIC void
115 xfs_cleanup_inode(
116 	struct inode	*dir,
117 	struct inode	*inode,
118 	struct dentry	*dentry)
119 {
120 	struct xfs_name	teardown;
121 
122 	/* Oh, the horror.
123 	 * If we can't add the ACL or we fail in
124 	 * xfs_inode_init_security we must back out.
125 	 * ENOSPC can hit here, among other things.
126 	 */
127 	xfs_dentry_to_name(&teardown, dentry);
128 
129 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
130 }
131 
132 /*
133  * Check to see if we are likely to need an extended attribute to be added to
134  * the inode we are about to allocate. This allows the attribute fork to be
135  * created during the inode allocation, reducing the number of transactions we
136  * need to do in this fast path.
137  *
138  * The security checks are optimistic, but not guaranteed. The two LSMs that
139  * require xattrs to be added here (selinux and smack) are also the only two
140  * LSMs that add a sb->s_security structure to the superblock. Hence if security
141  * is enabled and sb->s_security is set, we have a pretty good idea that we are
142  * going to be asked to add a security xattr immediately after allocating the
143  * xfs inode and instantiating the VFS inode.
144  */
145 static inline bool
146 xfs_create_need_xattr(
147 	struct inode	*dir,
148 	struct posix_acl *default_acl,
149 	struct posix_acl *acl)
150 {
151 	if (acl)
152 		return true;
153 	if (default_acl)
154 		return true;
155 #if IS_ENABLED(CONFIG_SECURITY)
156 	if (dir->i_sb->s_security)
157 		return true;
158 #endif
159 	return false;
160 }
161 
162 
163 STATIC int
164 xfs_generic_create(
165 	struct user_namespace	*mnt_userns,
166 	struct inode	*dir,
167 	struct dentry	*dentry,
168 	umode_t		mode,
169 	dev_t		rdev,
170 	struct file	*tmpfile)	/* unnamed file */
171 {
172 	struct inode	*inode;
173 	struct xfs_inode *ip = NULL;
174 	struct posix_acl *default_acl, *acl;
175 	struct xfs_name	name;
176 	int		error;
177 
178 	/*
179 	 * Irix uses Missed'em'V split, but doesn't want to see
180 	 * the upper 5 bits of (14bit) major.
181 	 */
182 	if (S_ISCHR(mode) || S_ISBLK(mode)) {
183 		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
184 			return -EINVAL;
185 	} else {
186 		rdev = 0;
187 	}
188 
189 	error = posix_acl_create(dir, &mode, &default_acl, &acl);
190 	if (error)
191 		return error;
192 
193 	/* Verify mode is valid also for tmpfile case */
194 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
195 	if (unlikely(error))
196 		goto out_free_acl;
197 
198 	if (!tmpfile) {
199 		error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev,
200 				xfs_create_need_xattr(dir, default_acl, acl),
201 				&ip);
202 	} else {
203 		error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip);
204 	}
205 	if (unlikely(error))
206 		goto out_free_acl;
207 
208 	inode = VFS_I(ip);
209 
210 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
211 	if (unlikely(error))
212 		goto out_cleanup_inode;
213 
214 	if (default_acl) {
215 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
216 		if (error)
217 			goto out_cleanup_inode;
218 	}
219 	if (acl) {
220 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
221 		if (error)
222 			goto out_cleanup_inode;
223 	}
224 
225 	xfs_setup_iops(ip);
226 
227 	if (tmpfile) {
228 		/*
229 		 * The VFS requires that any inode fed to d_tmpfile must have
230 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
231 		 * However, we created the temp file with nlink == 0 because
232 		 * we're not allowed to put an inode with nlink > 0 on the
233 		 * unlinked list.  Therefore we have to set nlink to 1 so that
234 		 * d_tmpfile can immediately set it back to zero.
235 		 */
236 		set_nlink(inode, 1);
237 		d_tmpfile(tmpfile, inode);
238 	} else
239 		d_instantiate(dentry, inode);
240 
241 	xfs_finish_inode_setup(ip);
242 
243  out_free_acl:
244 	posix_acl_release(default_acl);
245 	posix_acl_release(acl);
246 	return error;
247 
248  out_cleanup_inode:
249 	xfs_finish_inode_setup(ip);
250 	if (!tmpfile)
251 		xfs_cleanup_inode(dir, inode, dentry);
252 	xfs_irele(ip);
253 	goto out_free_acl;
254 }
255 
256 STATIC int
257 xfs_vn_mknod(
258 	struct user_namespace	*mnt_userns,
259 	struct inode		*dir,
260 	struct dentry		*dentry,
261 	umode_t			mode,
262 	dev_t			rdev)
263 {
264 	return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, NULL);
265 }
266 
267 STATIC int
268 xfs_vn_create(
269 	struct user_namespace	*mnt_userns,
270 	struct inode		*dir,
271 	struct dentry		*dentry,
272 	umode_t			mode,
273 	bool			flags)
274 {
275 	return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, NULL);
276 }
277 
278 STATIC int
279 xfs_vn_mkdir(
280 	struct user_namespace	*mnt_userns,
281 	struct inode		*dir,
282 	struct dentry		*dentry,
283 	umode_t			mode)
284 {
285 	return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0,
286 				  NULL);
287 }
288 
289 STATIC struct dentry *
290 xfs_vn_lookup(
291 	struct inode	*dir,
292 	struct dentry	*dentry,
293 	unsigned int flags)
294 {
295 	struct inode *inode;
296 	struct xfs_inode *cip;
297 	struct xfs_name	name;
298 	int		error;
299 
300 	if (dentry->d_name.len >= MAXNAMELEN)
301 		return ERR_PTR(-ENAMETOOLONG);
302 
303 	xfs_dentry_to_name(&name, dentry);
304 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
305 	if (likely(!error))
306 		inode = VFS_I(cip);
307 	else if (likely(error == -ENOENT))
308 		inode = NULL;
309 	else
310 		inode = ERR_PTR(error);
311 	return d_splice_alias(inode, dentry);
312 }
313 
314 STATIC struct dentry *
315 xfs_vn_ci_lookup(
316 	struct inode	*dir,
317 	struct dentry	*dentry,
318 	unsigned int flags)
319 {
320 	struct xfs_inode *ip;
321 	struct xfs_name	xname;
322 	struct xfs_name ci_name;
323 	struct qstr	dname;
324 	int		error;
325 
326 	if (dentry->d_name.len >= MAXNAMELEN)
327 		return ERR_PTR(-ENAMETOOLONG);
328 
329 	xfs_dentry_to_name(&xname, dentry);
330 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
331 	if (unlikely(error)) {
332 		if (unlikely(error != -ENOENT))
333 			return ERR_PTR(error);
334 		/*
335 		 * call d_add(dentry, NULL) here when d_drop_negative_children
336 		 * is called in xfs_vn_mknod (ie. allow negative dentries
337 		 * with CI filesystems).
338 		 */
339 		return NULL;
340 	}
341 
342 	/* if exact match, just splice and exit */
343 	if (!ci_name.name)
344 		return d_splice_alias(VFS_I(ip), dentry);
345 
346 	/* else case-insensitive match... */
347 	dname.name = ci_name.name;
348 	dname.len = ci_name.len;
349 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
350 	kmem_free(ci_name.name);
351 	return dentry;
352 }
353 
354 STATIC int
355 xfs_vn_link(
356 	struct dentry	*old_dentry,
357 	struct inode	*dir,
358 	struct dentry	*dentry)
359 {
360 	struct inode	*inode = d_inode(old_dentry);
361 	struct xfs_name	name;
362 	int		error;
363 
364 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
365 	if (unlikely(error))
366 		return error;
367 
368 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
369 	if (unlikely(error))
370 		return error;
371 
372 	ihold(inode);
373 	d_instantiate(dentry, inode);
374 	return 0;
375 }
376 
377 STATIC int
378 xfs_vn_unlink(
379 	struct inode	*dir,
380 	struct dentry	*dentry)
381 {
382 	struct xfs_name	name;
383 	int		error;
384 
385 	xfs_dentry_to_name(&name, dentry);
386 
387 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
388 	if (error)
389 		return error;
390 
391 	/*
392 	 * With unlink, the VFS makes the dentry "negative": no inode,
393 	 * but still hashed. This is incompatible with case-insensitive
394 	 * mode, so invalidate (unhash) the dentry in CI-mode.
395 	 */
396 	if (xfs_has_asciici(XFS_M(dir->i_sb)))
397 		d_invalidate(dentry);
398 	return 0;
399 }
400 
401 STATIC int
402 xfs_vn_symlink(
403 	struct user_namespace	*mnt_userns,
404 	struct inode		*dir,
405 	struct dentry		*dentry,
406 	const char		*symname)
407 {
408 	struct inode	*inode;
409 	struct xfs_inode *cip = NULL;
410 	struct xfs_name	name;
411 	int		error;
412 	umode_t		mode;
413 
414 	mode = S_IFLNK |
415 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
416 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
417 	if (unlikely(error))
418 		goto out;
419 
420 	error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip);
421 	if (unlikely(error))
422 		goto out;
423 
424 	inode = VFS_I(cip);
425 
426 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
427 	if (unlikely(error))
428 		goto out_cleanup_inode;
429 
430 	xfs_setup_iops(cip);
431 
432 	d_instantiate(dentry, inode);
433 	xfs_finish_inode_setup(cip);
434 	return 0;
435 
436  out_cleanup_inode:
437 	xfs_finish_inode_setup(cip);
438 	xfs_cleanup_inode(dir, inode, dentry);
439 	xfs_irele(cip);
440  out:
441 	return error;
442 }
443 
444 STATIC int
445 xfs_vn_rename(
446 	struct user_namespace	*mnt_userns,
447 	struct inode		*odir,
448 	struct dentry		*odentry,
449 	struct inode		*ndir,
450 	struct dentry		*ndentry,
451 	unsigned int		flags)
452 {
453 	struct inode	*new_inode = d_inode(ndentry);
454 	int		omode = 0;
455 	int		error;
456 	struct xfs_name	oname;
457 	struct xfs_name	nname;
458 
459 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
460 		return -EINVAL;
461 
462 	/* if we are exchanging files, we need to set i_mode of both files */
463 	if (flags & RENAME_EXCHANGE)
464 		omode = d_inode(ndentry)->i_mode;
465 
466 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
467 	if (omode && unlikely(error))
468 		return error;
469 
470 	error = xfs_dentry_mode_to_name(&nname, ndentry,
471 					d_inode(odentry)->i_mode);
472 	if (unlikely(error))
473 		return error;
474 
475 	return xfs_rename(mnt_userns, XFS_I(odir), &oname,
476 			  XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
477 			  new_inode ? XFS_I(new_inode) : NULL, flags);
478 }
479 
480 /*
481  * careful here - this function can get called recursively, so
482  * we need to be very careful about how much stack we use.
483  * uio is kmalloced for this reason...
484  */
485 STATIC const char *
486 xfs_vn_get_link(
487 	struct dentry		*dentry,
488 	struct inode		*inode,
489 	struct delayed_call	*done)
490 {
491 	char			*link;
492 	int			error = -ENOMEM;
493 
494 	if (!dentry)
495 		return ERR_PTR(-ECHILD);
496 
497 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
498 	if (!link)
499 		goto out_err;
500 
501 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
502 	if (unlikely(error))
503 		goto out_kfree;
504 
505 	set_delayed_call(done, kfree_link, link);
506 	return link;
507 
508  out_kfree:
509 	kfree(link);
510  out_err:
511 	return ERR_PTR(error);
512 }
513 
514 static uint32_t
515 xfs_stat_blksize(
516 	struct xfs_inode	*ip)
517 {
518 	struct xfs_mount	*mp = ip->i_mount;
519 
520 	/*
521 	 * If the file blocks are being allocated from a realtime volume, then
522 	 * always return the realtime extent size.
523 	 */
524 	if (XFS_IS_REALTIME_INODE(ip))
525 		return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
526 
527 	/*
528 	 * Allow large block sizes to be reported to userspace programs if the
529 	 * "largeio" mount option is used.
530 	 *
531 	 * If compatibility mode is specified, simply return the basic unit of
532 	 * caching so that we don't get inefficient read/modify/write I/O from
533 	 * user apps. Otherwise....
534 	 *
535 	 * If the underlying volume is a stripe, then return the stripe width in
536 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
537 	 * default buffered I/O size, return that, otherwise return the compat
538 	 * default.
539 	 */
540 	if (xfs_has_large_iosize(mp)) {
541 		if (mp->m_swidth)
542 			return XFS_FSB_TO_B(mp, mp->m_swidth);
543 		if (xfs_has_allocsize(mp))
544 			return 1U << mp->m_allocsize_log;
545 	}
546 
547 	return PAGE_SIZE;
548 }
549 
550 STATIC int
551 xfs_vn_getattr(
552 	struct user_namespace	*mnt_userns,
553 	const struct path	*path,
554 	struct kstat		*stat,
555 	u32			request_mask,
556 	unsigned int		query_flags)
557 {
558 	struct inode		*inode = d_inode(path->dentry);
559 	struct xfs_inode	*ip = XFS_I(inode);
560 	struct xfs_mount	*mp = ip->i_mount;
561 	vfsuid_t		vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
562 	vfsgid_t		vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
563 
564 	trace_xfs_getattr(ip);
565 
566 	if (xfs_is_shutdown(mp))
567 		return -EIO;
568 
569 	stat->size = XFS_ISIZE(ip);
570 	stat->dev = inode->i_sb->s_dev;
571 	stat->mode = inode->i_mode;
572 	stat->nlink = inode->i_nlink;
573 	stat->uid = vfsuid_into_kuid(vfsuid);
574 	stat->gid = vfsgid_into_kgid(vfsgid);
575 	stat->ino = ip->i_ino;
576 	stat->atime = inode->i_atime;
577 	stat->mtime = inode->i_mtime;
578 	stat->ctime = inode->i_ctime;
579 	stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
580 
581 	if (xfs_has_v3inodes(mp)) {
582 		if (request_mask & STATX_BTIME) {
583 			stat->result_mask |= STATX_BTIME;
584 			stat->btime = ip->i_crtime;
585 		}
586 	}
587 
588 	/*
589 	 * Note: If you add another clause to set an attribute flag, please
590 	 * update attributes_mask below.
591 	 */
592 	if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
593 		stat->attributes |= STATX_ATTR_IMMUTABLE;
594 	if (ip->i_diflags & XFS_DIFLAG_APPEND)
595 		stat->attributes |= STATX_ATTR_APPEND;
596 	if (ip->i_diflags & XFS_DIFLAG_NODUMP)
597 		stat->attributes |= STATX_ATTR_NODUMP;
598 
599 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
600 				  STATX_ATTR_APPEND |
601 				  STATX_ATTR_NODUMP);
602 
603 	switch (inode->i_mode & S_IFMT) {
604 	case S_IFBLK:
605 	case S_IFCHR:
606 		stat->blksize = BLKDEV_IOSIZE;
607 		stat->rdev = inode->i_rdev;
608 		break;
609 	case S_IFREG:
610 		if (request_mask & STATX_DIOALIGN) {
611 			struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
612 			struct block_device	*bdev = target->bt_bdev;
613 
614 			stat->result_mask |= STATX_DIOALIGN;
615 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
616 			stat->dio_offset_align = bdev_logical_block_size(bdev);
617 		}
618 		fallthrough;
619 	default:
620 		stat->blksize = xfs_stat_blksize(ip);
621 		stat->rdev = 0;
622 		break;
623 	}
624 
625 	return 0;
626 }
627 
628 static int
629 xfs_vn_change_ok(
630 	struct user_namespace	*mnt_userns,
631 	struct dentry		*dentry,
632 	struct iattr		*iattr)
633 {
634 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
635 
636 	if (xfs_is_readonly(mp))
637 		return -EROFS;
638 
639 	if (xfs_is_shutdown(mp))
640 		return -EIO;
641 
642 	return setattr_prepare(mnt_userns, dentry, iattr);
643 }
644 
645 /*
646  * Set non-size attributes of an inode.
647  *
648  * Caution: The caller of this function is responsible for calling
649  * setattr_prepare() or otherwise verifying the change is fine.
650  */
651 static int
652 xfs_setattr_nonsize(
653 	struct user_namespace	*mnt_userns,
654 	struct xfs_inode	*ip,
655 	struct iattr		*iattr)
656 {
657 	xfs_mount_t		*mp = ip->i_mount;
658 	struct inode		*inode = VFS_I(ip);
659 	int			mask = iattr->ia_valid;
660 	xfs_trans_t		*tp;
661 	int			error;
662 	kuid_t			uid = GLOBAL_ROOT_UID;
663 	kgid_t			gid = GLOBAL_ROOT_GID;
664 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
665 	struct xfs_dquot	*old_udqp = NULL, *old_gdqp = NULL;
666 
667 	ASSERT((mask & ATTR_SIZE) == 0);
668 
669 	/*
670 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
671 	 * before we start any other transactions. Trying to do this later
672 	 * is messy. We don't care to take a readlock to look at the ids
673 	 * in inode here, because we can't hold it across the trans_reserve.
674 	 * If the IDs do change before we take the ilock, we're covered
675 	 * because the i_*dquot fields will get updated anyway.
676 	 */
677 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
678 		uint	qflags = 0;
679 
680 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
681 			uid = from_vfsuid(mnt_userns, i_user_ns(inode),
682 					  iattr->ia_vfsuid);
683 			qflags |= XFS_QMOPT_UQUOTA;
684 		} else {
685 			uid = inode->i_uid;
686 		}
687 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
688 			gid = from_vfsgid(mnt_userns, i_user_ns(inode),
689 					  iattr->ia_vfsgid);
690 			qflags |= XFS_QMOPT_GQUOTA;
691 		}  else {
692 			gid = inode->i_gid;
693 		}
694 
695 		/*
696 		 * We take a reference when we initialize udqp and gdqp,
697 		 * so it is important that we never blindly double trip on
698 		 * the same variable. See xfs_create() for an example.
699 		 */
700 		ASSERT(udqp == NULL);
701 		ASSERT(gdqp == NULL);
702 		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
703 					   qflags, &udqp, &gdqp, NULL);
704 		if (error)
705 			return error;
706 	}
707 
708 	error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
709 			has_capability_noaudit(current, CAP_FOWNER), &tp);
710 	if (error)
711 		goto out_dqrele;
712 
713 	/*
714 	 * Register quota modifications in the transaction.  Must be the owner
715 	 * or privileged.  These IDs could have changed since we last looked at
716 	 * them.  But, we're assured that if the ownership did change while we
717 	 * didn't have the inode locked, inode's dquot(s) would have changed
718 	 * also.
719 	 */
720 	if (XFS_IS_UQUOTA_ON(mp) &&
721 	    i_uid_needs_update(mnt_userns, iattr, inode)) {
722 		ASSERT(udqp);
723 		old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
724 	}
725 	if (XFS_IS_GQUOTA_ON(mp) &&
726 	    i_gid_needs_update(mnt_userns, iattr, inode)) {
727 		ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
728 		ASSERT(gdqp);
729 		old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
730 	}
731 
732 	setattr_copy(mnt_userns, inode, iattr);
733 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
734 
735 	XFS_STATS_INC(mp, xs_ig_attrchg);
736 
737 	if (xfs_has_wsync(mp))
738 		xfs_trans_set_sync(tp);
739 	error = xfs_trans_commit(tp);
740 
741 	/*
742 	 * Release any dquot(s) the inode had kept before chown.
743 	 */
744 	xfs_qm_dqrele(old_udqp);
745 	xfs_qm_dqrele(old_gdqp);
746 	xfs_qm_dqrele(udqp);
747 	xfs_qm_dqrele(gdqp);
748 
749 	if (error)
750 		return error;
751 
752 	/*
753 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
754 	 * 	     update.  We could avoid this with linked transactions
755 	 * 	     and passing down the transaction pointer all the way
756 	 *	     to attr_set.  No previous user of the generic
757 	 * 	     Posix ACL code seems to care about this issue either.
758 	 */
759 	if (mask & ATTR_MODE) {
760 		error = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
761 		if (error)
762 			return error;
763 	}
764 
765 	return 0;
766 
767 out_dqrele:
768 	xfs_qm_dqrele(udqp);
769 	xfs_qm_dqrele(gdqp);
770 	return error;
771 }
772 
773 /*
774  * Truncate file.  Must have write permission and not be a directory.
775  *
776  * Caution: The caller of this function is responsible for calling
777  * setattr_prepare() or otherwise verifying the change is fine.
778  */
779 STATIC int
780 xfs_setattr_size(
781 	struct user_namespace	*mnt_userns,
782 	struct xfs_inode	*ip,
783 	struct iattr		*iattr)
784 {
785 	struct xfs_mount	*mp = ip->i_mount;
786 	struct inode		*inode = VFS_I(ip);
787 	xfs_off_t		oldsize, newsize;
788 	struct xfs_trans	*tp;
789 	int			error;
790 	uint			lock_flags = 0;
791 	bool			did_zeroing = false;
792 
793 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
794 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
795 	ASSERT(S_ISREG(inode->i_mode));
796 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
797 		ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
798 
799 	oldsize = inode->i_size;
800 	newsize = iattr->ia_size;
801 
802 	/*
803 	 * Short circuit the truncate case for zero length files.
804 	 */
805 	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
806 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
807 			return 0;
808 
809 		/*
810 		 * Use the regular setattr path to update the timestamps.
811 		 */
812 		iattr->ia_valid &= ~ATTR_SIZE;
813 		return xfs_setattr_nonsize(mnt_userns, ip, iattr);
814 	}
815 
816 	/*
817 	 * Make sure that the dquots are attached to the inode.
818 	 */
819 	error = xfs_qm_dqattach(ip);
820 	if (error)
821 		return error;
822 
823 	/*
824 	 * Wait for all direct I/O to complete.
825 	 */
826 	inode_dio_wait(inode);
827 
828 	/*
829 	 * File data changes must be complete before we start the transaction to
830 	 * modify the inode.  This needs to be done before joining the inode to
831 	 * the transaction because the inode cannot be unlocked once it is a
832 	 * part of the transaction.
833 	 *
834 	 * Start with zeroing any data beyond EOF that we may expose on file
835 	 * extension, or zeroing out the rest of the block on a downward
836 	 * truncate.
837 	 */
838 	if (newsize > oldsize) {
839 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
840 		error = xfs_zero_range(ip, oldsize, newsize - oldsize,
841 				&did_zeroing);
842 	} else {
843 		/*
844 		 * iomap won't detect a dirty page over an unwritten block (or a
845 		 * cow block over a hole) and subsequently skips zeroing the
846 		 * newly post-EOF portion of the page. Flush the new EOF to
847 		 * convert the block before the pagecache truncate.
848 		 */
849 		error = filemap_write_and_wait_range(inode->i_mapping, newsize,
850 						     newsize);
851 		if (error)
852 			return error;
853 		error = xfs_truncate_page(ip, newsize, &did_zeroing);
854 	}
855 
856 	if (error)
857 		return error;
858 
859 	/*
860 	 * We've already locked out new page faults, so now we can safely remove
861 	 * pages from the page cache knowing they won't get refaulted until we
862 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
863 	 * complete. The truncate_setsize() call also cleans partial EOF page
864 	 * PTEs on extending truncates and hence ensures sub-page block size
865 	 * filesystems are correctly handled, too.
866 	 *
867 	 * We have to do all the page cache truncate work outside the
868 	 * transaction context as the "lock" order is page lock->log space
869 	 * reservation as defined by extent allocation in the writeback path.
870 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
871 	 * having already truncated the in-memory version of the file (i.e. made
872 	 * user visible changes). There's not much we can do about this, except
873 	 * to hope that the caller sees ENOMEM and retries the truncate
874 	 * operation.
875 	 *
876 	 * And we update in-core i_size and truncate page cache beyond newsize
877 	 * before writeback the [i_disk_size, newsize] range, so we're
878 	 * guaranteed not to write stale data past the new EOF on truncate down.
879 	 */
880 	truncate_setsize(inode, newsize);
881 
882 	/*
883 	 * We are going to log the inode size change in this transaction so
884 	 * any previous writes that are beyond the on disk EOF and the new
885 	 * EOF that have not been written out need to be written here.  If we
886 	 * do not write the data out, we expose ourselves to the null files
887 	 * problem. Note that this includes any block zeroing we did above;
888 	 * otherwise those blocks may not be zeroed after a crash.
889 	 */
890 	if (did_zeroing ||
891 	    (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
892 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
893 						ip->i_disk_size, newsize - 1);
894 		if (error)
895 			return error;
896 	}
897 
898 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
899 	if (error)
900 		return error;
901 
902 	lock_flags |= XFS_ILOCK_EXCL;
903 	xfs_ilock(ip, XFS_ILOCK_EXCL);
904 	xfs_trans_ijoin(tp, ip, 0);
905 
906 	/*
907 	 * Only change the c/mtime if we are changing the size or we are
908 	 * explicitly asked to change it.  This handles the semantic difference
909 	 * between truncate() and ftruncate() as implemented in the VFS.
910 	 *
911 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
912 	 * special case where we need to update the times despite not having
913 	 * these flags set.  For all other operations the VFS set these flags
914 	 * explicitly if it wants a timestamp update.
915 	 */
916 	if (newsize != oldsize &&
917 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
918 		iattr->ia_ctime = iattr->ia_mtime =
919 			current_time(inode);
920 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
921 	}
922 
923 	/*
924 	 * The first thing we do is set the size to new_size permanently on
925 	 * disk.  This way we don't have to worry about anyone ever being able
926 	 * to look at the data being freed even in the face of a crash.
927 	 * What we're getting around here is the case where we free a block, it
928 	 * is allocated to another file, it is written to, and then we crash.
929 	 * If the new data gets written to the file but the log buffers
930 	 * containing the free and reallocation don't, then we'd end up with
931 	 * garbage in the blocks being freed.  As long as we make the new size
932 	 * permanent before actually freeing any blocks it doesn't matter if
933 	 * they get written to.
934 	 */
935 	ip->i_disk_size = newsize;
936 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
937 
938 	if (newsize <= oldsize) {
939 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
940 		if (error)
941 			goto out_trans_cancel;
942 
943 		/*
944 		 * Truncated "down", so we're removing references to old data
945 		 * here - if we delay flushing for a long time, we expose
946 		 * ourselves unduly to the notorious NULL files problem.  So,
947 		 * we mark this inode and flush it when the file is closed,
948 		 * and do not wait the usual (long) time for writeout.
949 		 */
950 		xfs_iflags_set(ip, XFS_ITRUNCATED);
951 
952 		/* A truncate down always removes post-EOF blocks. */
953 		xfs_inode_clear_eofblocks_tag(ip);
954 	}
955 
956 	ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
957 	setattr_copy(mnt_userns, inode, iattr);
958 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
959 
960 	XFS_STATS_INC(mp, xs_ig_attrchg);
961 
962 	if (xfs_has_wsync(mp))
963 		xfs_trans_set_sync(tp);
964 
965 	error = xfs_trans_commit(tp);
966 out_unlock:
967 	if (lock_flags)
968 		xfs_iunlock(ip, lock_flags);
969 	return error;
970 
971 out_trans_cancel:
972 	xfs_trans_cancel(tp);
973 	goto out_unlock;
974 }
975 
976 int
977 xfs_vn_setattr_size(
978 	struct user_namespace	*mnt_userns,
979 	struct dentry		*dentry,
980 	struct iattr		*iattr)
981 {
982 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
983 	int error;
984 
985 	trace_xfs_setattr(ip);
986 
987 	error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
988 	if (error)
989 		return error;
990 	return xfs_setattr_size(mnt_userns, ip, iattr);
991 }
992 
993 STATIC int
994 xfs_vn_setattr(
995 	struct user_namespace	*mnt_userns,
996 	struct dentry		*dentry,
997 	struct iattr		*iattr)
998 {
999 	struct inode		*inode = d_inode(dentry);
1000 	struct xfs_inode	*ip = XFS_I(inode);
1001 	int			error;
1002 
1003 	if (iattr->ia_valid & ATTR_SIZE) {
1004 		uint			iolock;
1005 
1006 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1007 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1008 
1009 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1010 		if (error) {
1011 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1012 			return error;
1013 		}
1014 
1015 		error = xfs_vn_setattr_size(mnt_userns, dentry, iattr);
1016 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1017 	} else {
1018 		trace_xfs_setattr(ip);
1019 
1020 		error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
1021 		if (!error)
1022 			error = xfs_setattr_nonsize(mnt_userns, ip, iattr);
1023 	}
1024 
1025 	return error;
1026 }
1027 
1028 STATIC int
1029 xfs_vn_update_time(
1030 	struct inode		*inode,
1031 	struct timespec64	*now,
1032 	int			flags)
1033 {
1034 	struct xfs_inode	*ip = XFS_I(inode);
1035 	struct xfs_mount	*mp = ip->i_mount;
1036 	int			log_flags = XFS_ILOG_TIMESTAMP;
1037 	struct xfs_trans	*tp;
1038 	int			error;
1039 
1040 	trace_xfs_update_time(ip);
1041 
1042 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1043 		if (!((flags & S_VERSION) &&
1044 		      inode_maybe_inc_iversion(inode, false)))
1045 			return generic_update_time(inode, now, flags);
1046 
1047 		/* Capture the iversion update that just occurred */
1048 		log_flags |= XFS_ILOG_CORE;
1049 	}
1050 
1051 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1052 	if (error)
1053 		return error;
1054 
1055 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1056 	if (flags & S_CTIME)
1057 		inode->i_ctime = *now;
1058 	if (flags & S_MTIME)
1059 		inode->i_mtime = *now;
1060 	if (flags & S_ATIME)
1061 		inode->i_atime = *now;
1062 
1063 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1064 	xfs_trans_log_inode(tp, ip, log_flags);
1065 	return xfs_trans_commit(tp);
1066 }
1067 
1068 STATIC int
1069 xfs_vn_fiemap(
1070 	struct inode		*inode,
1071 	struct fiemap_extent_info *fieinfo,
1072 	u64			start,
1073 	u64			length)
1074 {
1075 	int			error;
1076 
1077 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1078 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1079 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1080 		error = iomap_fiemap(inode, fieinfo, start, length,
1081 				&xfs_xattr_iomap_ops);
1082 	} else {
1083 		error = iomap_fiemap(inode, fieinfo, start, length,
1084 				&xfs_read_iomap_ops);
1085 	}
1086 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1087 
1088 	return error;
1089 }
1090 
1091 STATIC int
1092 xfs_vn_tmpfile(
1093 	struct user_namespace	*mnt_userns,
1094 	struct inode		*dir,
1095 	struct file		*file,
1096 	umode_t			mode)
1097 {
1098 	int err = xfs_generic_create(mnt_userns, dir, file->f_path.dentry, mode, 0, file);
1099 
1100 	return finish_open_simple(file, err);
1101 }
1102 
1103 static const struct inode_operations xfs_inode_operations = {
1104 	.get_acl		= xfs_get_acl,
1105 	.set_acl		= xfs_set_acl,
1106 	.getattr		= xfs_vn_getattr,
1107 	.setattr		= xfs_vn_setattr,
1108 	.listxattr		= xfs_vn_listxattr,
1109 	.fiemap			= xfs_vn_fiemap,
1110 	.update_time		= xfs_vn_update_time,
1111 	.fileattr_get		= xfs_fileattr_get,
1112 	.fileattr_set		= xfs_fileattr_set,
1113 };
1114 
1115 static const struct inode_operations xfs_dir_inode_operations = {
1116 	.create			= xfs_vn_create,
1117 	.lookup			= xfs_vn_lookup,
1118 	.link			= xfs_vn_link,
1119 	.unlink			= xfs_vn_unlink,
1120 	.symlink		= xfs_vn_symlink,
1121 	.mkdir			= xfs_vn_mkdir,
1122 	/*
1123 	 * Yes, XFS uses the same method for rmdir and unlink.
1124 	 *
1125 	 * There are some subtile differences deeper in the code,
1126 	 * but we use S_ISDIR to check for those.
1127 	 */
1128 	.rmdir			= xfs_vn_unlink,
1129 	.mknod			= xfs_vn_mknod,
1130 	.rename			= xfs_vn_rename,
1131 	.get_acl		= xfs_get_acl,
1132 	.set_acl		= xfs_set_acl,
1133 	.getattr		= xfs_vn_getattr,
1134 	.setattr		= xfs_vn_setattr,
1135 	.listxattr		= xfs_vn_listxattr,
1136 	.update_time		= xfs_vn_update_time,
1137 	.tmpfile		= xfs_vn_tmpfile,
1138 	.fileattr_get		= xfs_fileattr_get,
1139 	.fileattr_set		= xfs_fileattr_set,
1140 };
1141 
1142 static const struct inode_operations xfs_dir_ci_inode_operations = {
1143 	.create			= xfs_vn_create,
1144 	.lookup			= xfs_vn_ci_lookup,
1145 	.link			= xfs_vn_link,
1146 	.unlink			= xfs_vn_unlink,
1147 	.symlink		= xfs_vn_symlink,
1148 	.mkdir			= xfs_vn_mkdir,
1149 	/*
1150 	 * Yes, XFS uses the same method for rmdir and unlink.
1151 	 *
1152 	 * There are some subtile differences deeper in the code,
1153 	 * but we use S_ISDIR to check for those.
1154 	 */
1155 	.rmdir			= xfs_vn_unlink,
1156 	.mknod			= xfs_vn_mknod,
1157 	.rename			= xfs_vn_rename,
1158 	.get_acl		= xfs_get_acl,
1159 	.set_acl		= xfs_set_acl,
1160 	.getattr		= xfs_vn_getattr,
1161 	.setattr		= xfs_vn_setattr,
1162 	.listxattr		= xfs_vn_listxattr,
1163 	.update_time		= xfs_vn_update_time,
1164 	.tmpfile		= xfs_vn_tmpfile,
1165 	.fileattr_get		= xfs_fileattr_get,
1166 	.fileattr_set		= xfs_fileattr_set,
1167 };
1168 
1169 static const struct inode_operations xfs_symlink_inode_operations = {
1170 	.get_link		= xfs_vn_get_link,
1171 	.getattr		= xfs_vn_getattr,
1172 	.setattr		= xfs_vn_setattr,
1173 	.listxattr		= xfs_vn_listxattr,
1174 	.update_time		= xfs_vn_update_time,
1175 };
1176 
1177 /* Figure out if this file actually supports DAX. */
1178 static bool
1179 xfs_inode_supports_dax(
1180 	struct xfs_inode	*ip)
1181 {
1182 	struct xfs_mount	*mp = ip->i_mount;
1183 
1184 	/* Only supported on regular files. */
1185 	if (!S_ISREG(VFS_I(ip)->i_mode))
1186 		return false;
1187 
1188 	/* Only supported on non-reflinked files. */
1189 	if (xfs_is_reflink_inode(ip))
1190 		return false;
1191 
1192 	/* Block size must match page size */
1193 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1194 		return false;
1195 
1196 	/* Device has to support DAX too. */
1197 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1198 }
1199 
1200 static bool
1201 xfs_inode_should_enable_dax(
1202 	struct xfs_inode *ip)
1203 {
1204 	if (!IS_ENABLED(CONFIG_FS_DAX))
1205 		return false;
1206 	if (xfs_has_dax_never(ip->i_mount))
1207 		return false;
1208 	if (!xfs_inode_supports_dax(ip))
1209 		return false;
1210 	if (xfs_has_dax_always(ip->i_mount))
1211 		return true;
1212 	if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1213 		return true;
1214 	return false;
1215 }
1216 
1217 void
1218 xfs_diflags_to_iflags(
1219 	struct xfs_inode	*ip,
1220 	bool init)
1221 {
1222 	struct inode            *inode = VFS_I(ip);
1223 	unsigned int            xflags = xfs_ip2xflags(ip);
1224 	unsigned int            flags = 0;
1225 
1226 	ASSERT(!(IS_DAX(inode) && init));
1227 
1228 	if (xflags & FS_XFLAG_IMMUTABLE)
1229 		flags |= S_IMMUTABLE;
1230 	if (xflags & FS_XFLAG_APPEND)
1231 		flags |= S_APPEND;
1232 	if (xflags & FS_XFLAG_SYNC)
1233 		flags |= S_SYNC;
1234 	if (xflags & FS_XFLAG_NOATIME)
1235 		flags |= S_NOATIME;
1236 	if (init && xfs_inode_should_enable_dax(ip))
1237 		flags |= S_DAX;
1238 
1239 	/*
1240 	 * S_DAX can only be set during inode initialization and is never set by
1241 	 * the VFS, so we cannot mask off S_DAX in i_flags.
1242 	 */
1243 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1244 	inode->i_flags |= flags;
1245 }
1246 
1247 /*
1248  * Initialize the Linux inode.
1249  *
1250  * When reading existing inodes from disk this is called directly from xfs_iget,
1251  * when creating a new inode it is called from xfs_init_new_inode after setting
1252  * up the inode. These callers have different criteria for clearing XFS_INEW, so
1253  * leave it up to the caller to deal with unlocking the inode appropriately.
1254  */
1255 void
1256 xfs_setup_inode(
1257 	struct xfs_inode	*ip)
1258 {
1259 	struct inode		*inode = &ip->i_vnode;
1260 	gfp_t			gfp_mask;
1261 
1262 	inode->i_ino = ip->i_ino;
1263 	inode->i_state |= I_NEW;
1264 
1265 	inode_sb_list_add(inode);
1266 	/* make the inode look hashed for the writeback code */
1267 	inode_fake_hash(inode);
1268 
1269 	i_size_write(inode, ip->i_disk_size);
1270 	xfs_diflags_to_iflags(ip, true);
1271 
1272 	if (S_ISDIR(inode->i_mode)) {
1273 		/*
1274 		 * We set the i_rwsem class here to avoid potential races with
1275 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1276 		 * after a filehandle lookup has already found the inode in
1277 		 * cache before it has been unlocked via unlock_new_inode().
1278 		 */
1279 		lockdep_set_class(&inode->i_rwsem,
1280 				  &inode->i_sb->s_type->i_mutex_dir_key);
1281 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1282 	} else {
1283 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1284 	}
1285 
1286 	/*
1287 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1288 	 * prevent direct reclaim recursion back into the filesystem and blowing
1289 	 * stacks or deadlocking.
1290 	 */
1291 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1292 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1293 
1294 	/*
1295 	 * If there is no attribute fork no ACL can exist on this inode,
1296 	 * and it can't have any file capabilities attached to it either.
1297 	 */
1298 	if (!xfs_inode_has_attr_fork(ip)) {
1299 		inode_has_no_xattr(inode);
1300 		cache_no_acl(inode);
1301 	}
1302 }
1303 
1304 void
1305 xfs_setup_iops(
1306 	struct xfs_inode	*ip)
1307 {
1308 	struct inode		*inode = &ip->i_vnode;
1309 
1310 	switch (inode->i_mode & S_IFMT) {
1311 	case S_IFREG:
1312 		inode->i_op = &xfs_inode_operations;
1313 		inode->i_fop = &xfs_file_operations;
1314 		if (IS_DAX(inode))
1315 			inode->i_mapping->a_ops = &xfs_dax_aops;
1316 		else
1317 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1318 		break;
1319 	case S_IFDIR:
1320 		if (xfs_has_asciici(XFS_M(inode->i_sb)))
1321 			inode->i_op = &xfs_dir_ci_inode_operations;
1322 		else
1323 			inode->i_op = &xfs_dir_inode_operations;
1324 		inode->i_fop = &xfs_dir_file_operations;
1325 		break;
1326 	case S_IFLNK:
1327 		inode->i_op = &xfs_symlink_inode_operations;
1328 		break;
1329 	default:
1330 		inode->i_op = &xfs_inode_operations;
1331 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1332 		break;
1333 	}
1334 }
1335