xref: /openbmc/linux/fs/xfs/xfs_iops.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_attr.h"
17 #include "xfs_trans.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_symlink.h"
21 #include "xfs_dir2.h"
22 #include "xfs_iomap.h"
23 #include "xfs_error.h"
24 
25 #include <linux/xattr.h>
26 #include <linux/posix_acl.h>
27 #include <linux/security.h>
28 #include <linux/iversion.h>
29 
30 /*
31  * Directories have different lock order w.r.t. mmap_sem compared to regular
32  * files. This is due to readdir potentially triggering page faults on a user
33  * buffer inside filldir(), and this happens with the ilock on the directory
34  * held. For regular files, the lock order is the other way around - the
35  * mmap_sem is taken during the page fault, and then we lock the ilock to do
36  * block mapping. Hence we need a different class for the directory ilock so
37  * that lockdep can tell them apart.
38  */
39 static struct lock_class_key xfs_nondir_ilock_class;
40 static struct lock_class_key xfs_dir_ilock_class;
41 
42 static int
43 xfs_initxattrs(
44 	struct inode		*inode,
45 	const struct xattr	*xattr_array,
46 	void			*fs_info)
47 {
48 	const struct xattr	*xattr;
49 	struct xfs_inode	*ip = XFS_I(inode);
50 	int			error = 0;
51 
52 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
53 		error = xfs_attr_set(ip, xattr->name,
54 				     strlen(xattr->name),
55 				     xattr->value, xattr->value_len,
56 				     ATTR_SECURE);
57 		if (error < 0)
58 			break;
59 	}
60 	return error;
61 }
62 
63 /*
64  * Hook in SELinux.  This is not quite correct yet, what we really need
65  * here (as we do for default ACLs) is a mechanism by which creation of
66  * these attrs can be journalled at inode creation time (along with the
67  * inode, of course, such that log replay can't cause these to be lost).
68  */
69 
70 STATIC int
71 xfs_init_security(
72 	struct inode	*inode,
73 	struct inode	*dir,
74 	const struct qstr *qstr)
75 {
76 	return security_inode_init_security(inode, dir, qstr,
77 					     &xfs_initxattrs, NULL);
78 }
79 
80 static void
81 xfs_dentry_to_name(
82 	struct xfs_name	*namep,
83 	struct dentry	*dentry)
84 {
85 	namep->name = dentry->d_name.name;
86 	namep->len = dentry->d_name.len;
87 	namep->type = XFS_DIR3_FT_UNKNOWN;
88 }
89 
90 static int
91 xfs_dentry_mode_to_name(
92 	struct xfs_name	*namep,
93 	struct dentry	*dentry,
94 	int		mode)
95 {
96 	namep->name = dentry->d_name.name;
97 	namep->len = dentry->d_name.len;
98 	namep->type = xfs_mode_to_ftype(mode);
99 
100 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
101 		return -EFSCORRUPTED;
102 
103 	return 0;
104 }
105 
106 STATIC void
107 xfs_cleanup_inode(
108 	struct inode	*dir,
109 	struct inode	*inode,
110 	struct dentry	*dentry)
111 {
112 	struct xfs_name	teardown;
113 
114 	/* Oh, the horror.
115 	 * If we can't add the ACL or we fail in
116 	 * xfs_init_security we must back out.
117 	 * ENOSPC can hit here, among other things.
118 	 */
119 	xfs_dentry_to_name(&teardown, dentry);
120 
121 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
122 }
123 
124 STATIC int
125 xfs_generic_create(
126 	struct inode	*dir,
127 	struct dentry	*dentry,
128 	umode_t		mode,
129 	dev_t		rdev,
130 	bool		tmpfile)	/* unnamed file */
131 {
132 	struct inode	*inode;
133 	struct xfs_inode *ip = NULL;
134 	struct posix_acl *default_acl, *acl;
135 	struct xfs_name	name;
136 	int		error;
137 
138 	/*
139 	 * Irix uses Missed'em'V split, but doesn't want to see
140 	 * the upper 5 bits of (14bit) major.
141 	 */
142 	if (S_ISCHR(mode) || S_ISBLK(mode)) {
143 		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
144 			return -EINVAL;
145 	} else {
146 		rdev = 0;
147 	}
148 
149 	error = posix_acl_create(dir, &mode, &default_acl, &acl);
150 	if (error)
151 		return error;
152 
153 	/* Verify mode is valid also for tmpfile case */
154 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
155 	if (unlikely(error))
156 		goto out_free_acl;
157 
158 	if (!tmpfile) {
159 		error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip);
160 	} else {
161 		error = xfs_create_tmpfile(XFS_I(dir), mode, &ip);
162 	}
163 	if (unlikely(error))
164 		goto out_free_acl;
165 
166 	inode = VFS_I(ip);
167 
168 	error = xfs_init_security(inode, dir, &dentry->d_name);
169 	if (unlikely(error))
170 		goto out_cleanup_inode;
171 
172 #ifdef CONFIG_XFS_POSIX_ACL
173 	if (default_acl) {
174 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
175 		if (error)
176 			goto out_cleanup_inode;
177 	}
178 	if (acl) {
179 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
180 		if (error)
181 			goto out_cleanup_inode;
182 	}
183 #endif
184 
185 	xfs_setup_iops(ip);
186 
187 	if (tmpfile) {
188 		/*
189 		 * The VFS requires that any inode fed to d_tmpfile must have
190 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
191 		 * However, we created the temp file with nlink == 0 because
192 		 * we're not allowed to put an inode with nlink > 0 on the
193 		 * unlinked list.  Therefore we have to set nlink to 1 so that
194 		 * d_tmpfile can immediately set it back to zero.
195 		 */
196 		set_nlink(inode, 1);
197 		d_tmpfile(dentry, inode);
198 	} else
199 		d_instantiate(dentry, inode);
200 
201 	xfs_finish_inode_setup(ip);
202 
203  out_free_acl:
204 	if (default_acl)
205 		posix_acl_release(default_acl);
206 	if (acl)
207 		posix_acl_release(acl);
208 	return error;
209 
210  out_cleanup_inode:
211 	xfs_finish_inode_setup(ip);
212 	if (!tmpfile)
213 		xfs_cleanup_inode(dir, inode, dentry);
214 	xfs_irele(ip);
215 	goto out_free_acl;
216 }
217 
218 STATIC int
219 xfs_vn_mknod(
220 	struct inode	*dir,
221 	struct dentry	*dentry,
222 	umode_t		mode,
223 	dev_t		rdev)
224 {
225 	return xfs_generic_create(dir, dentry, mode, rdev, false);
226 }
227 
228 STATIC int
229 xfs_vn_create(
230 	struct inode	*dir,
231 	struct dentry	*dentry,
232 	umode_t		mode,
233 	bool		flags)
234 {
235 	return xfs_vn_mknod(dir, dentry, mode, 0);
236 }
237 
238 STATIC int
239 xfs_vn_mkdir(
240 	struct inode	*dir,
241 	struct dentry	*dentry,
242 	umode_t		mode)
243 {
244 	return xfs_vn_mknod(dir, dentry, mode|S_IFDIR, 0);
245 }
246 
247 STATIC struct dentry *
248 xfs_vn_lookup(
249 	struct inode	*dir,
250 	struct dentry	*dentry,
251 	unsigned int flags)
252 {
253 	struct inode *inode;
254 	struct xfs_inode *cip;
255 	struct xfs_name	name;
256 	int		error;
257 
258 	if (dentry->d_name.len >= MAXNAMELEN)
259 		return ERR_PTR(-ENAMETOOLONG);
260 
261 	xfs_dentry_to_name(&name, dentry);
262 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
263 	if (likely(!error))
264 		inode = VFS_I(cip);
265 	else if (likely(error == -ENOENT))
266 		inode = NULL;
267 	else
268 		inode = ERR_PTR(error);
269 	return d_splice_alias(inode, dentry);
270 }
271 
272 STATIC struct dentry *
273 xfs_vn_ci_lookup(
274 	struct inode	*dir,
275 	struct dentry	*dentry,
276 	unsigned int flags)
277 {
278 	struct xfs_inode *ip;
279 	struct xfs_name	xname;
280 	struct xfs_name ci_name;
281 	struct qstr	dname;
282 	int		error;
283 
284 	if (dentry->d_name.len >= MAXNAMELEN)
285 		return ERR_PTR(-ENAMETOOLONG);
286 
287 	xfs_dentry_to_name(&xname, dentry);
288 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
289 	if (unlikely(error)) {
290 		if (unlikely(error != -ENOENT))
291 			return ERR_PTR(error);
292 		/*
293 		 * call d_add(dentry, NULL) here when d_drop_negative_children
294 		 * is called in xfs_vn_mknod (ie. allow negative dentries
295 		 * with CI filesystems).
296 		 */
297 		return NULL;
298 	}
299 
300 	/* if exact match, just splice and exit */
301 	if (!ci_name.name)
302 		return d_splice_alias(VFS_I(ip), dentry);
303 
304 	/* else case-insensitive match... */
305 	dname.name = ci_name.name;
306 	dname.len = ci_name.len;
307 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
308 	kmem_free(ci_name.name);
309 	return dentry;
310 }
311 
312 STATIC int
313 xfs_vn_link(
314 	struct dentry	*old_dentry,
315 	struct inode	*dir,
316 	struct dentry	*dentry)
317 {
318 	struct inode	*inode = d_inode(old_dentry);
319 	struct xfs_name	name;
320 	int		error;
321 
322 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
323 	if (unlikely(error))
324 		return error;
325 
326 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
327 	if (unlikely(error))
328 		return error;
329 
330 	ihold(inode);
331 	d_instantiate(dentry, inode);
332 	return 0;
333 }
334 
335 STATIC int
336 xfs_vn_unlink(
337 	struct inode	*dir,
338 	struct dentry	*dentry)
339 {
340 	struct xfs_name	name;
341 	int		error;
342 
343 	xfs_dentry_to_name(&name, dentry);
344 
345 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
346 	if (error)
347 		return error;
348 
349 	/*
350 	 * With unlink, the VFS makes the dentry "negative": no inode,
351 	 * but still hashed. This is incompatible with case-insensitive
352 	 * mode, so invalidate (unhash) the dentry in CI-mode.
353 	 */
354 	if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb))
355 		d_invalidate(dentry);
356 	return 0;
357 }
358 
359 STATIC int
360 xfs_vn_symlink(
361 	struct inode	*dir,
362 	struct dentry	*dentry,
363 	const char	*symname)
364 {
365 	struct inode	*inode;
366 	struct xfs_inode *cip = NULL;
367 	struct xfs_name	name;
368 	int		error;
369 	umode_t		mode;
370 
371 	mode = S_IFLNK |
372 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
373 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
374 	if (unlikely(error))
375 		goto out;
376 
377 	error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip);
378 	if (unlikely(error))
379 		goto out;
380 
381 	inode = VFS_I(cip);
382 
383 	error = xfs_init_security(inode, dir, &dentry->d_name);
384 	if (unlikely(error))
385 		goto out_cleanup_inode;
386 
387 	xfs_setup_iops(cip);
388 
389 	d_instantiate(dentry, inode);
390 	xfs_finish_inode_setup(cip);
391 	return 0;
392 
393  out_cleanup_inode:
394 	xfs_finish_inode_setup(cip);
395 	xfs_cleanup_inode(dir, inode, dentry);
396 	xfs_irele(cip);
397  out:
398 	return error;
399 }
400 
401 STATIC int
402 xfs_vn_rename(
403 	struct inode	*odir,
404 	struct dentry	*odentry,
405 	struct inode	*ndir,
406 	struct dentry	*ndentry,
407 	unsigned int	flags)
408 {
409 	struct inode	*new_inode = d_inode(ndentry);
410 	int		omode = 0;
411 	int		error;
412 	struct xfs_name	oname;
413 	struct xfs_name	nname;
414 
415 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
416 		return -EINVAL;
417 
418 	/* if we are exchanging files, we need to set i_mode of both files */
419 	if (flags & RENAME_EXCHANGE)
420 		omode = d_inode(ndentry)->i_mode;
421 
422 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
423 	if (omode && unlikely(error))
424 		return error;
425 
426 	error = xfs_dentry_mode_to_name(&nname, ndentry,
427 					d_inode(odentry)->i_mode);
428 	if (unlikely(error))
429 		return error;
430 
431 	return xfs_rename(XFS_I(odir), &oname, XFS_I(d_inode(odentry)),
432 			  XFS_I(ndir), &nname,
433 			  new_inode ? XFS_I(new_inode) : NULL, flags);
434 }
435 
436 /*
437  * careful here - this function can get called recursively, so
438  * we need to be very careful about how much stack we use.
439  * uio is kmalloced for this reason...
440  */
441 STATIC const char *
442 xfs_vn_get_link(
443 	struct dentry		*dentry,
444 	struct inode		*inode,
445 	struct delayed_call	*done)
446 {
447 	char			*link;
448 	int			error = -ENOMEM;
449 
450 	if (!dentry)
451 		return ERR_PTR(-ECHILD);
452 
453 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
454 	if (!link)
455 		goto out_err;
456 
457 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
458 	if (unlikely(error))
459 		goto out_kfree;
460 
461 	set_delayed_call(done, kfree_link, link);
462 	return link;
463 
464  out_kfree:
465 	kfree(link);
466  out_err:
467 	return ERR_PTR(error);
468 }
469 
470 STATIC const char *
471 xfs_vn_get_link_inline(
472 	struct dentry		*dentry,
473 	struct inode		*inode,
474 	struct delayed_call	*done)
475 {
476 	struct xfs_inode	*ip = XFS_I(inode);
477 	char			*link;
478 
479 	ASSERT(ip->i_df.if_flags & XFS_IFINLINE);
480 
481 	/*
482 	 * The VFS crashes on a NULL pointer, so return -EFSCORRUPTED if
483 	 * if_data is junk.
484 	 */
485 	link = ip->i_df.if_u1.if_data;
486 	if (XFS_IS_CORRUPT(ip->i_mount, !link))
487 		return ERR_PTR(-EFSCORRUPTED);
488 	return link;
489 }
490 
491 static uint32_t
492 xfs_stat_blksize(
493 	struct xfs_inode	*ip)
494 {
495 	struct xfs_mount	*mp = ip->i_mount;
496 
497 	/*
498 	 * If the file blocks are being allocated from a realtime volume, then
499 	 * always return the realtime extent size.
500 	 */
501 	if (XFS_IS_REALTIME_INODE(ip))
502 		return xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog;
503 
504 	/*
505 	 * Allow large block sizes to be reported to userspace programs if the
506 	 * "largeio" mount option is used.
507 	 *
508 	 * If compatibility mode is specified, simply return the basic unit of
509 	 * caching so that we don't get inefficient read/modify/write I/O from
510 	 * user apps. Otherwise....
511 	 *
512 	 * If the underlying volume is a stripe, then return the stripe width in
513 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
514 	 * default buffered I/O size, return that, otherwise return the compat
515 	 * default.
516 	 */
517 	if (mp->m_flags & XFS_MOUNT_LARGEIO) {
518 		if (mp->m_swidth)
519 			return mp->m_swidth << mp->m_sb.sb_blocklog;
520 		if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
521 			return 1U << mp->m_allocsize_log;
522 	}
523 
524 	return PAGE_SIZE;
525 }
526 
527 STATIC int
528 xfs_vn_getattr(
529 	const struct path	*path,
530 	struct kstat		*stat,
531 	u32			request_mask,
532 	unsigned int		query_flags)
533 {
534 	struct inode		*inode = d_inode(path->dentry);
535 	struct xfs_inode	*ip = XFS_I(inode);
536 	struct xfs_mount	*mp = ip->i_mount;
537 
538 	trace_xfs_getattr(ip);
539 
540 	if (XFS_FORCED_SHUTDOWN(mp))
541 		return -EIO;
542 
543 	stat->size = XFS_ISIZE(ip);
544 	stat->dev = inode->i_sb->s_dev;
545 	stat->mode = inode->i_mode;
546 	stat->nlink = inode->i_nlink;
547 	stat->uid = inode->i_uid;
548 	stat->gid = inode->i_gid;
549 	stat->ino = ip->i_ino;
550 	stat->atime = inode->i_atime;
551 	stat->mtime = inode->i_mtime;
552 	stat->ctime = inode->i_ctime;
553 	stat->blocks =
554 		XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
555 
556 	if (ip->i_d.di_version == 3) {
557 		if (request_mask & STATX_BTIME) {
558 			stat->result_mask |= STATX_BTIME;
559 			stat->btime = ip->i_d.di_crtime;
560 		}
561 	}
562 
563 	/*
564 	 * Note: If you add another clause to set an attribute flag, please
565 	 * update attributes_mask below.
566 	 */
567 	if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
568 		stat->attributes |= STATX_ATTR_IMMUTABLE;
569 	if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
570 		stat->attributes |= STATX_ATTR_APPEND;
571 	if (ip->i_d.di_flags & XFS_DIFLAG_NODUMP)
572 		stat->attributes |= STATX_ATTR_NODUMP;
573 
574 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
575 				  STATX_ATTR_APPEND |
576 				  STATX_ATTR_NODUMP);
577 
578 	switch (inode->i_mode & S_IFMT) {
579 	case S_IFBLK:
580 	case S_IFCHR:
581 		stat->blksize = BLKDEV_IOSIZE;
582 		stat->rdev = inode->i_rdev;
583 		break;
584 	default:
585 		stat->blksize = xfs_stat_blksize(ip);
586 		stat->rdev = 0;
587 		break;
588 	}
589 
590 	return 0;
591 }
592 
593 static void
594 xfs_setattr_mode(
595 	struct xfs_inode	*ip,
596 	struct iattr		*iattr)
597 {
598 	struct inode		*inode = VFS_I(ip);
599 	umode_t			mode = iattr->ia_mode;
600 
601 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
602 
603 	inode->i_mode &= S_IFMT;
604 	inode->i_mode |= mode & ~S_IFMT;
605 }
606 
607 void
608 xfs_setattr_time(
609 	struct xfs_inode	*ip,
610 	struct iattr		*iattr)
611 {
612 	struct inode		*inode = VFS_I(ip);
613 
614 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
615 
616 	if (iattr->ia_valid & ATTR_ATIME)
617 		inode->i_atime = iattr->ia_atime;
618 	if (iattr->ia_valid & ATTR_CTIME)
619 		inode->i_ctime = iattr->ia_ctime;
620 	if (iattr->ia_valid & ATTR_MTIME)
621 		inode->i_mtime = iattr->ia_mtime;
622 }
623 
624 static int
625 xfs_vn_change_ok(
626 	struct dentry	*dentry,
627 	struct iattr	*iattr)
628 {
629 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
630 
631 	if (mp->m_flags & XFS_MOUNT_RDONLY)
632 		return -EROFS;
633 
634 	if (XFS_FORCED_SHUTDOWN(mp))
635 		return -EIO;
636 
637 	return setattr_prepare(dentry, iattr);
638 }
639 
640 /*
641  * Set non-size attributes of an inode.
642  *
643  * Caution: The caller of this function is responsible for calling
644  * setattr_prepare() or otherwise verifying the change is fine.
645  */
646 int
647 xfs_setattr_nonsize(
648 	struct xfs_inode	*ip,
649 	struct iattr		*iattr,
650 	int			flags)
651 {
652 	xfs_mount_t		*mp = ip->i_mount;
653 	struct inode		*inode = VFS_I(ip);
654 	int			mask = iattr->ia_valid;
655 	xfs_trans_t		*tp;
656 	int			error;
657 	kuid_t			uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID;
658 	kgid_t			gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID;
659 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
660 	struct xfs_dquot	*olddquot1 = NULL, *olddquot2 = NULL;
661 
662 	ASSERT((mask & ATTR_SIZE) == 0);
663 
664 	/*
665 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
666 	 * before we start any other transactions. Trying to do this later
667 	 * is messy. We don't care to take a readlock to look at the ids
668 	 * in inode here, because we can't hold it across the trans_reserve.
669 	 * If the IDs do change before we take the ilock, we're covered
670 	 * because the i_*dquot fields will get updated anyway.
671 	 */
672 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
673 		uint	qflags = 0;
674 
675 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
676 			uid = iattr->ia_uid;
677 			qflags |= XFS_QMOPT_UQUOTA;
678 		} else {
679 			uid = inode->i_uid;
680 		}
681 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
682 			gid = iattr->ia_gid;
683 			qflags |= XFS_QMOPT_GQUOTA;
684 		}  else {
685 			gid = inode->i_gid;
686 		}
687 
688 		/*
689 		 * We take a reference when we initialize udqp and gdqp,
690 		 * so it is important that we never blindly double trip on
691 		 * the same variable. See xfs_create() for an example.
692 		 */
693 		ASSERT(udqp == NULL);
694 		ASSERT(gdqp == NULL);
695 		error = xfs_qm_vop_dqalloc(ip, xfs_kuid_to_uid(uid),
696 					   xfs_kgid_to_gid(gid),
697 					   ip->i_d.di_projid,
698 					   qflags, &udqp, &gdqp, NULL);
699 		if (error)
700 			return error;
701 	}
702 
703 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
704 	if (error)
705 		goto out_dqrele;
706 
707 	xfs_ilock(ip, XFS_ILOCK_EXCL);
708 	xfs_trans_ijoin(tp, ip, 0);
709 
710 	/*
711 	 * Change file ownership.  Must be the owner or privileged.
712 	 */
713 	if (mask & (ATTR_UID|ATTR_GID)) {
714 		/*
715 		 * These IDs could have changed since we last looked at them.
716 		 * But, we're assured that if the ownership did change
717 		 * while we didn't have the inode locked, inode's dquot(s)
718 		 * would have changed also.
719 		 */
720 		iuid = inode->i_uid;
721 		igid = inode->i_gid;
722 		gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
723 		uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
724 
725 		/*
726 		 * Do a quota reservation only if uid/gid is actually
727 		 * going to change.
728 		 */
729 		if (XFS_IS_QUOTA_RUNNING(mp) &&
730 		    ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) ||
731 		     (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) {
732 			ASSERT(tp);
733 			error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp,
734 						NULL, capable(CAP_FOWNER) ?
735 						XFS_QMOPT_FORCE_RES : 0);
736 			if (error)	/* out of quota */
737 				goto out_cancel;
738 		}
739 	}
740 
741 	/*
742 	 * Change file ownership.  Must be the owner or privileged.
743 	 */
744 	if (mask & (ATTR_UID|ATTR_GID)) {
745 		/*
746 		 * CAP_FSETID overrides the following restrictions:
747 		 *
748 		 * The set-user-ID and set-group-ID bits of a file will be
749 		 * cleared upon successful return from chown()
750 		 */
751 		if ((inode->i_mode & (S_ISUID|S_ISGID)) &&
752 		    !capable(CAP_FSETID))
753 			inode->i_mode &= ~(S_ISUID|S_ISGID);
754 
755 		/*
756 		 * Change the ownerships and register quota modifications
757 		 * in the transaction.
758 		 */
759 		if (!uid_eq(iuid, uid)) {
760 			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) {
761 				ASSERT(mask & ATTR_UID);
762 				ASSERT(udqp);
763 				olddquot1 = xfs_qm_vop_chown(tp, ip,
764 							&ip->i_udquot, udqp);
765 			}
766 			ip->i_d.di_uid = xfs_kuid_to_uid(uid);
767 			inode->i_uid = uid;
768 		}
769 		if (!gid_eq(igid, gid)) {
770 			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) {
771 				ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) ||
772 				       !XFS_IS_PQUOTA_ON(mp));
773 				ASSERT(mask & ATTR_GID);
774 				ASSERT(gdqp);
775 				olddquot2 = xfs_qm_vop_chown(tp, ip,
776 							&ip->i_gdquot, gdqp);
777 			}
778 			ip->i_d.di_gid = xfs_kgid_to_gid(gid);
779 			inode->i_gid = gid;
780 		}
781 	}
782 
783 	if (mask & ATTR_MODE)
784 		xfs_setattr_mode(ip, iattr);
785 	if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
786 		xfs_setattr_time(ip, iattr);
787 
788 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
789 
790 	XFS_STATS_INC(mp, xs_ig_attrchg);
791 
792 	if (mp->m_flags & XFS_MOUNT_WSYNC)
793 		xfs_trans_set_sync(tp);
794 	error = xfs_trans_commit(tp);
795 
796 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
797 
798 	/*
799 	 * Release any dquot(s) the inode had kept before chown.
800 	 */
801 	xfs_qm_dqrele(olddquot1);
802 	xfs_qm_dqrele(olddquot2);
803 	xfs_qm_dqrele(udqp);
804 	xfs_qm_dqrele(gdqp);
805 
806 	if (error)
807 		return error;
808 
809 	/*
810 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
811 	 * 	     update.  We could avoid this with linked transactions
812 	 * 	     and passing down the transaction pointer all the way
813 	 *	     to attr_set.  No previous user of the generic
814 	 * 	     Posix ACL code seems to care about this issue either.
815 	 */
816 	if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) {
817 		error = posix_acl_chmod(inode, inode->i_mode);
818 		if (error)
819 			return error;
820 	}
821 
822 	return 0;
823 
824 out_cancel:
825 	xfs_trans_cancel(tp);
826 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
827 out_dqrele:
828 	xfs_qm_dqrele(udqp);
829 	xfs_qm_dqrele(gdqp);
830 	return error;
831 }
832 
833 int
834 xfs_vn_setattr_nonsize(
835 	struct dentry		*dentry,
836 	struct iattr		*iattr)
837 {
838 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
839 	int error;
840 
841 	trace_xfs_setattr(ip);
842 
843 	error = xfs_vn_change_ok(dentry, iattr);
844 	if (error)
845 		return error;
846 	return xfs_setattr_nonsize(ip, iattr, 0);
847 }
848 
849 /*
850  * Truncate file.  Must have write permission and not be a directory.
851  *
852  * Caution: The caller of this function is responsible for calling
853  * setattr_prepare() or otherwise verifying the change is fine.
854  */
855 STATIC int
856 xfs_setattr_size(
857 	struct xfs_inode	*ip,
858 	struct iattr		*iattr)
859 {
860 	struct xfs_mount	*mp = ip->i_mount;
861 	struct inode		*inode = VFS_I(ip);
862 	xfs_off_t		oldsize, newsize;
863 	struct xfs_trans	*tp;
864 	int			error;
865 	uint			lock_flags = 0;
866 	bool			did_zeroing = false;
867 
868 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
869 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
870 	ASSERT(S_ISREG(inode->i_mode));
871 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
872 		ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0);
873 
874 	oldsize = inode->i_size;
875 	newsize = iattr->ia_size;
876 
877 	/*
878 	 * Short circuit the truncate case for zero length files.
879 	 */
880 	if (newsize == 0 && oldsize == 0 && ip->i_d.di_nextents == 0) {
881 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
882 			return 0;
883 
884 		/*
885 		 * Use the regular setattr path to update the timestamps.
886 		 */
887 		iattr->ia_valid &= ~ATTR_SIZE;
888 		return xfs_setattr_nonsize(ip, iattr, 0);
889 	}
890 
891 	/*
892 	 * Make sure that the dquots are attached to the inode.
893 	 */
894 	error = xfs_qm_dqattach(ip);
895 	if (error)
896 		return error;
897 
898 	/*
899 	 * Wait for all direct I/O to complete.
900 	 */
901 	inode_dio_wait(inode);
902 
903 	/*
904 	 * File data changes must be complete before we start the transaction to
905 	 * modify the inode.  This needs to be done before joining the inode to
906 	 * the transaction because the inode cannot be unlocked once it is a
907 	 * part of the transaction.
908 	 *
909 	 * Start with zeroing any data beyond EOF that we may expose on file
910 	 * extension, or zeroing out the rest of the block on a downward
911 	 * truncate.
912 	 */
913 	if (newsize > oldsize) {
914 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
915 		error = iomap_zero_range(inode, oldsize, newsize - oldsize,
916 				&did_zeroing, &xfs_buffered_write_iomap_ops);
917 	} else {
918 		error = iomap_truncate_page(inode, newsize, &did_zeroing,
919 				&xfs_buffered_write_iomap_ops);
920 	}
921 
922 	if (error)
923 		return error;
924 
925 	/*
926 	 * We've already locked out new page faults, so now we can safely remove
927 	 * pages from the page cache knowing they won't get refaulted until we
928 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
929 	 * complete. The truncate_setsize() call also cleans partial EOF page
930 	 * PTEs on extending truncates and hence ensures sub-page block size
931 	 * filesystems are correctly handled, too.
932 	 *
933 	 * We have to do all the page cache truncate work outside the
934 	 * transaction context as the "lock" order is page lock->log space
935 	 * reservation as defined by extent allocation in the writeback path.
936 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
937 	 * having already truncated the in-memory version of the file (i.e. made
938 	 * user visible changes). There's not much we can do about this, except
939 	 * to hope that the caller sees ENOMEM and retries the truncate
940 	 * operation.
941 	 *
942 	 * And we update in-core i_size and truncate page cache beyond newsize
943 	 * before writeback the [di_size, newsize] range, so we're guaranteed
944 	 * not to write stale data past the new EOF on truncate down.
945 	 */
946 	truncate_setsize(inode, newsize);
947 
948 	/*
949 	 * We are going to log the inode size change in this transaction so
950 	 * any previous writes that are beyond the on disk EOF and the new
951 	 * EOF that have not been written out need to be written here.  If we
952 	 * do not write the data out, we expose ourselves to the null files
953 	 * problem. Note that this includes any block zeroing we did above;
954 	 * otherwise those blocks may not be zeroed after a crash.
955 	 */
956 	if (did_zeroing ||
957 	    (newsize > ip->i_d.di_size && oldsize != ip->i_d.di_size)) {
958 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
959 						ip->i_d.di_size, newsize - 1);
960 		if (error)
961 			return error;
962 	}
963 
964 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
965 	if (error)
966 		return error;
967 
968 	lock_flags |= XFS_ILOCK_EXCL;
969 	xfs_ilock(ip, XFS_ILOCK_EXCL);
970 	xfs_trans_ijoin(tp, ip, 0);
971 
972 	/*
973 	 * Only change the c/mtime if we are changing the size or we are
974 	 * explicitly asked to change it.  This handles the semantic difference
975 	 * between truncate() and ftruncate() as implemented in the VFS.
976 	 *
977 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
978 	 * special case where we need to update the times despite not having
979 	 * these flags set.  For all other operations the VFS set these flags
980 	 * explicitly if it wants a timestamp update.
981 	 */
982 	if (newsize != oldsize &&
983 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
984 		iattr->ia_ctime = iattr->ia_mtime =
985 			current_time(inode);
986 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
987 	}
988 
989 	/*
990 	 * The first thing we do is set the size to new_size permanently on
991 	 * disk.  This way we don't have to worry about anyone ever being able
992 	 * to look at the data being freed even in the face of a crash.
993 	 * What we're getting around here is the case where we free a block, it
994 	 * is allocated to another file, it is written to, and then we crash.
995 	 * If the new data gets written to the file but the log buffers
996 	 * containing the free and reallocation don't, then we'd end up with
997 	 * garbage in the blocks being freed.  As long as we make the new size
998 	 * permanent before actually freeing any blocks it doesn't matter if
999 	 * they get written to.
1000 	 */
1001 	ip->i_d.di_size = newsize;
1002 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1003 
1004 	if (newsize <= oldsize) {
1005 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
1006 		if (error)
1007 			goto out_trans_cancel;
1008 
1009 		/*
1010 		 * Truncated "down", so we're removing references to old data
1011 		 * here - if we delay flushing for a long time, we expose
1012 		 * ourselves unduly to the notorious NULL files problem.  So,
1013 		 * we mark this inode and flush it when the file is closed,
1014 		 * and do not wait the usual (long) time for writeout.
1015 		 */
1016 		xfs_iflags_set(ip, XFS_ITRUNCATED);
1017 
1018 		/* A truncate down always removes post-EOF blocks. */
1019 		xfs_inode_clear_eofblocks_tag(ip);
1020 	}
1021 
1022 	if (iattr->ia_valid & ATTR_MODE)
1023 		xfs_setattr_mode(ip, iattr);
1024 	if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
1025 		xfs_setattr_time(ip, iattr);
1026 
1027 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1028 
1029 	XFS_STATS_INC(mp, xs_ig_attrchg);
1030 
1031 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1032 		xfs_trans_set_sync(tp);
1033 
1034 	error = xfs_trans_commit(tp);
1035 out_unlock:
1036 	if (lock_flags)
1037 		xfs_iunlock(ip, lock_flags);
1038 	return error;
1039 
1040 out_trans_cancel:
1041 	xfs_trans_cancel(tp);
1042 	goto out_unlock;
1043 }
1044 
1045 int
1046 xfs_vn_setattr_size(
1047 	struct dentry		*dentry,
1048 	struct iattr		*iattr)
1049 {
1050 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1051 	int error;
1052 
1053 	trace_xfs_setattr(ip);
1054 
1055 	error = xfs_vn_change_ok(dentry, iattr);
1056 	if (error)
1057 		return error;
1058 	return xfs_setattr_size(ip, iattr);
1059 }
1060 
1061 STATIC int
1062 xfs_vn_setattr(
1063 	struct dentry		*dentry,
1064 	struct iattr		*iattr)
1065 {
1066 	int			error;
1067 
1068 	if (iattr->ia_valid & ATTR_SIZE) {
1069 		struct inode		*inode = d_inode(dentry);
1070 		struct xfs_inode	*ip = XFS_I(inode);
1071 		uint			iolock;
1072 
1073 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1074 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1075 
1076 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1077 		if (error) {
1078 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1079 			return error;
1080 		}
1081 
1082 		error = xfs_vn_setattr_size(dentry, iattr);
1083 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1084 	} else {
1085 		error = xfs_vn_setattr_nonsize(dentry, iattr);
1086 	}
1087 
1088 	return error;
1089 }
1090 
1091 STATIC int
1092 xfs_vn_update_time(
1093 	struct inode		*inode,
1094 	struct timespec64	*now,
1095 	int			flags)
1096 {
1097 	struct xfs_inode	*ip = XFS_I(inode);
1098 	struct xfs_mount	*mp = ip->i_mount;
1099 	int			log_flags = XFS_ILOG_TIMESTAMP;
1100 	struct xfs_trans	*tp;
1101 	int			error;
1102 
1103 	trace_xfs_update_time(ip);
1104 
1105 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1106 		if (!((flags & S_VERSION) &&
1107 		      inode_maybe_inc_iversion(inode, false)))
1108 			return generic_update_time(inode, now, flags);
1109 
1110 		/* Capture the iversion update that just occurred */
1111 		log_flags |= XFS_ILOG_CORE;
1112 	}
1113 
1114 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1115 	if (error)
1116 		return error;
1117 
1118 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1119 	if (flags & S_CTIME)
1120 		inode->i_ctime = *now;
1121 	if (flags & S_MTIME)
1122 		inode->i_mtime = *now;
1123 	if (flags & S_ATIME)
1124 		inode->i_atime = *now;
1125 
1126 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1127 	xfs_trans_log_inode(tp, ip, log_flags);
1128 	return xfs_trans_commit(tp);
1129 }
1130 
1131 STATIC int
1132 xfs_vn_fiemap(
1133 	struct inode		*inode,
1134 	struct fiemap_extent_info *fieinfo,
1135 	u64			start,
1136 	u64			length)
1137 {
1138 	int			error;
1139 
1140 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1141 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1142 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1143 		error = iomap_fiemap(inode, fieinfo, start, length,
1144 				&xfs_xattr_iomap_ops);
1145 	} else {
1146 		error = iomap_fiemap(inode, fieinfo, start, length,
1147 				&xfs_read_iomap_ops);
1148 	}
1149 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1150 
1151 	return error;
1152 }
1153 
1154 STATIC int
1155 xfs_vn_tmpfile(
1156 	struct inode	*dir,
1157 	struct dentry	*dentry,
1158 	umode_t		mode)
1159 {
1160 	return xfs_generic_create(dir, dentry, mode, 0, true);
1161 }
1162 
1163 static const struct inode_operations xfs_inode_operations = {
1164 	.get_acl		= xfs_get_acl,
1165 	.set_acl		= xfs_set_acl,
1166 	.getattr		= xfs_vn_getattr,
1167 	.setattr		= xfs_vn_setattr,
1168 	.listxattr		= xfs_vn_listxattr,
1169 	.fiemap			= xfs_vn_fiemap,
1170 	.update_time		= xfs_vn_update_time,
1171 };
1172 
1173 static const struct inode_operations xfs_dir_inode_operations = {
1174 	.create			= xfs_vn_create,
1175 	.lookup			= xfs_vn_lookup,
1176 	.link			= xfs_vn_link,
1177 	.unlink			= xfs_vn_unlink,
1178 	.symlink		= xfs_vn_symlink,
1179 	.mkdir			= xfs_vn_mkdir,
1180 	/*
1181 	 * Yes, XFS uses the same method for rmdir and unlink.
1182 	 *
1183 	 * There are some subtile differences deeper in the code,
1184 	 * but we use S_ISDIR to check for those.
1185 	 */
1186 	.rmdir			= xfs_vn_unlink,
1187 	.mknod			= xfs_vn_mknod,
1188 	.rename			= xfs_vn_rename,
1189 	.get_acl		= xfs_get_acl,
1190 	.set_acl		= xfs_set_acl,
1191 	.getattr		= xfs_vn_getattr,
1192 	.setattr		= xfs_vn_setattr,
1193 	.listxattr		= xfs_vn_listxattr,
1194 	.update_time		= xfs_vn_update_time,
1195 	.tmpfile		= xfs_vn_tmpfile,
1196 };
1197 
1198 static const struct inode_operations xfs_dir_ci_inode_operations = {
1199 	.create			= xfs_vn_create,
1200 	.lookup			= xfs_vn_ci_lookup,
1201 	.link			= xfs_vn_link,
1202 	.unlink			= xfs_vn_unlink,
1203 	.symlink		= xfs_vn_symlink,
1204 	.mkdir			= xfs_vn_mkdir,
1205 	/*
1206 	 * Yes, XFS uses the same method for rmdir and unlink.
1207 	 *
1208 	 * There are some subtile differences deeper in the code,
1209 	 * but we use S_ISDIR to check for those.
1210 	 */
1211 	.rmdir			= xfs_vn_unlink,
1212 	.mknod			= xfs_vn_mknod,
1213 	.rename			= xfs_vn_rename,
1214 	.get_acl		= xfs_get_acl,
1215 	.set_acl		= xfs_set_acl,
1216 	.getattr		= xfs_vn_getattr,
1217 	.setattr		= xfs_vn_setattr,
1218 	.listxattr		= xfs_vn_listxattr,
1219 	.update_time		= xfs_vn_update_time,
1220 	.tmpfile		= xfs_vn_tmpfile,
1221 };
1222 
1223 static const struct inode_operations xfs_symlink_inode_operations = {
1224 	.get_link		= xfs_vn_get_link,
1225 	.getattr		= xfs_vn_getattr,
1226 	.setattr		= xfs_vn_setattr,
1227 	.listxattr		= xfs_vn_listxattr,
1228 	.update_time		= xfs_vn_update_time,
1229 };
1230 
1231 static const struct inode_operations xfs_inline_symlink_inode_operations = {
1232 	.get_link		= xfs_vn_get_link_inline,
1233 	.getattr		= xfs_vn_getattr,
1234 	.setattr		= xfs_vn_setattr,
1235 	.listxattr		= xfs_vn_listxattr,
1236 	.update_time		= xfs_vn_update_time,
1237 };
1238 
1239 /* Figure out if this file actually supports DAX. */
1240 static bool
1241 xfs_inode_supports_dax(
1242 	struct xfs_inode	*ip)
1243 {
1244 	struct xfs_mount	*mp = ip->i_mount;
1245 
1246 	/* Only supported on non-reflinked files. */
1247 	if (!S_ISREG(VFS_I(ip)->i_mode) || xfs_is_reflink_inode(ip))
1248 		return false;
1249 
1250 	/* DAX mount option or DAX iflag must be set. */
1251 	if (!(mp->m_flags & XFS_MOUNT_DAX) &&
1252 	    !(ip->i_d.di_flags2 & XFS_DIFLAG2_DAX))
1253 		return false;
1254 
1255 	/* Block size must match page size */
1256 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1257 		return false;
1258 
1259 	/* Device has to support DAX too. */
1260 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1261 }
1262 
1263 STATIC void
1264 xfs_diflags_to_iflags(
1265 	struct inode		*inode,
1266 	struct xfs_inode	*ip)
1267 {
1268 	uint16_t		flags = ip->i_d.di_flags;
1269 
1270 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC |
1271 			    S_NOATIME | S_DAX);
1272 
1273 	if (flags & XFS_DIFLAG_IMMUTABLE)
1274 		inode->i_flags |= S_IMMUTABLE;
1275 	if (flags & XFS_DIFLAG_APPEND)
1276 		inode->i_flags |= S_APPEND;
1277 	if (flags & XFS_DIFLAG_SYNC)
1278 		inode->i_flags |= S_SYNC;
1279 	if (flags & XFS_DIFLAG_NOATIME)
1280 		inode->i_flags |= S_NOATIME;
1281 	if (xfs_inode_supports_dax(ip))
1282 		inode->i_flags |= S_DAX;
1283 }
1284 
1285 /*
1286  * Initialize the Linux inode.
1287  *
1288  * When reading existing inodes from disk this is called directly from xfs_iget,
1289  * when creating a new inode it is called from xfs_ialloc after setting up the
1290  * inode. These callers have different criteria for clearing XFS_INEW, so leave
1291  * it up to the caller to deal with unlocking the inode appropriately.
1292  */
1293 void
1294 xfs_setup_inode(
1295 	struct xfs_inode	*ip)
1296 {
1297 	struct inode		*inode = &ip->i_vnode;
1298 	gfp_t			gfp_mask;
1299 
1300 	inode->i_ino = ip->i_ino;
1301 	inode->i_state = I_NEW;
1302 
1303 	inode_sb_list_add(inode);
1304 	/* make the inode look hashed for the writeback code */
1305 	inode_fake_hash(inode);
1306 
1307 	inode->i_uid    = xfs_uid_to_kuid(ip->i_d.di_uid);
1308 	inode->i_gid    = xfs_gid_to_kgid(ip->i_d.di_gid);
1309 
1310 	i_size_write(inode, ip->i_d.di_size);
1311 	xfs_diflags_to_iflags(inode, ip);
1312 
1313 	if (S_ISDIR(inode->i_mode)) {
1314 		/*
1315 		 * We set the i_rwsem class here to avoid potential races with
1316 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1317 		 * after a filehandle lookup has already found the inode in
1318 		 * cache before it has been unlocked via unlock_new_inode().
1319 		 */
1320 		lockdep_set_class(&inode->i_rwsem,
1321 				  &inode->i_sb->s_type->i_mutex_dir_key);
1322 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1323 	} else {
1324 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1325 	}
1326 
1327 	/*
1328 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1329 	 * prevent direct reclaim recursion back into the filesystem and blowing
1330 	 * stacks or deadlocking.
1331 	 */
1332 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1333 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1334 
1335 	/*
1336 	 * If there is no attribute fork no ACL can exist on this inode,
1337 	 * and it can't have any file capabilities attached to it either.
1338 	 */
1339 	if (!XFS_IFORK_Q(ip)) {
1340 		inode_has_no_xattr(inode);
1341 		cache_no_acl(inode);
1342 	}
1343 }
1344 
1345 void
1346 xfs_setup_iops(
1347 	struct xfs_inode	*ip)
1348 {
1349 	struct inode		*inode = &ip->i_vnode;
1350 
1351 	switch (inode->i_mode & S_IFMT) {
1352 	case S_IFREG:
1353 		inode->i_op = &xfs_inode_operations;
1354 		inode->i_fop = &xfs_file_operations;
1355 		if (IS_DAX(inode))
1356 			inode->i_mapping->a_ops = &xfs_dax_aops;
1357 		else
1358 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1359 		break;
1360 	case S_IFDIR:
1361 		if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb))
1362 			inode->i_op = &xfs_dir_ci_inode_operations;
1363 		else
1364 			inode->i_op = &xfs_dir_inode_operations;
1365 		inode->i_fop = &xfs_dir_file_operations;
1366 		break;
1367 	case S_IFLNK:
1368 		if (ip->i_df.if_flags & XFS_IFINLINE)
1369 			inode->i_op = &xfs_inline_symlink_inode_operations;
1370 		else
1371 			inode->i_op = &xfs_symlink_inode_operations;
1372 		break;
1373 	default:
1374 		inode->i_op = &xfs_inode_operations;
1375 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1376 		break;
1377 	}
1378 }
1379