1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_attr.h" 17 #include "xfs_trans.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_symlink.h" 21 #include "xfs_dir2.h" 22 #include "xfs_iomap.h" 23 #include "xfs_error.h" 24 #include "xfs_ioctl.h" 25 26 #include <linux/posix_acl.h> 27 #include <linux/security.h> 28 #include <linux/iversion.h> 29 #include <linux/fiemap.h> 30 31 /* 32 * Directories have different lock order w.r.t. mmap_lock compared to regular 33 * files. This is due to readdir potentially triggering page faults on a user 34 * buffer inside filldir(), and this happens with the ilock on the directory 35 * held. For regular files, the lock order is the other way around - the 36 * mmap_lock is taken during the page fault, and then we lock the ilock to do 37 * block mapping. Hence we need a different class for the directory ilock so 38 * that lockdep can tell them apart. 39 */ 40 static struct lock_class_key xfs_nondir_ilock_class; 41 static struct lock_class_key xfs_dir_ilock_class; 42 43 static int 44 xfs_initxattrs( 45 struct inode *inode, 46 const struct xattr *xattr_array, 47 void *fs_info) 48 { 49 const struct xattr *xattr; 50 struct xfs_inode *ip = XFS_I(inode); 51 int error = 0; 52 53 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 54 struct xfs_da_args args = { 55 .dp = ip, 56 .attr_filter = XFS_ATTR_SECURE, 57 .name = xattr->name, 58 .namelen = strlen(xattr->name), 59 .value = xattr->value, 60 .valuelen = xattr->value_len, 61 }; 62 error = xfs_attr_set(&args); 63 if (error < 0) 64 break; 65 } 66 return error; 67 } 68 69 /* 70 * Hook in SELinux. This is not quite correct yet, what we really need 71 * here (as we do for default ACLs) is a mechanism by which creation of 72 * these attrs can be journalled at inode creation time (along with the 73 * inode, of course, such that log replay can't cause these to be lost). 74 */ 75 76 STATIC int 77 xfs_init_security( 78 struct inode *inode, 79 struct inode *dir, 80 const struct qstr *qstr) 81 { 82 return security_inode_init_security(inode, dir, qstr, 83 &xfs_initxattrs, NULL); 84 } 85 86 static void 87 xfs_dentry_to_name( 88 struct xfs_name *namep, 89 struct dentry *dentry) 90 { 91 namep->name = dentry->d_name.name; 92 namep->len = dentry->d_name.len; 93 namep->type = XFS_DIR3_FT_UNKNOWN; 94 } 95 96 static int 97 xfs_dentry_mode_to_name( 98 struct xfs_name *namep, 99 struct dentry *dentry, 100 int mode) 101 { 102 namep->name = dentry->d_name.name; 103 namep->len = dentry->d_name.len; 104 namep->type = xfs_mode_to_ftype(mode); 105 106 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 107 return -EFSCORRUPTED; 108 109 return 0; 110 } 111 112 STATIC void 113 xfs_cleanup_inode( 114 struct inode *dir, 115 struct inode *inode, 116 struct dentry *dentry) 117 { 118 struct xfs_name teardown; 119 120 /* Oh, the horror. 121 * If we can't add the ACL or we fail in 122 * xfs_init_security we must back out. 123 * ENOSPC can hit here, among other things. 124 */ 125 xfs_dentry_to_name(&teardown, dentry); 126 127 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 128 } 129 130 /* 131 * Check to see if we are likely to need an extended attribute to be added to 132 * the inode we are about to allocate. This allows the attribute fork to be 133 * created during the inode allocation, reducing the number of transactions we 134 * need to do in this fast path. 135 * 136 * The security checks are optimistic, but not guaranteed. The two LSMs that 137 * require xattrs to be added here (selinux and smack) are also the only two 138 * LSMs that add a sb->s_security structure to the superblock. Hence if security 139 * is enabled and sb->s_security is set, we have a pretty good idea that we are 140 * going to be asked to add a security xattr immediately after allocating the 141 * xfs inode and instantiating the VFS inode. 142 */ 143 static inline bool 144 xfs_create_need_xattr( 145 struct inode *dir, 146 struct posix_acl *default_acl, 147 struct posix_acl *acl) 148 { 149 if (acl) 150 return true; 151 if (default_acl) 152 return true; 153 #if IS_ENABLED(CONFIG_SECURITY) 154 if (dir->i_sb->s_security) 155 return true; 156 #endif 157 return false; 158 } 159 160 161 STATIC int 162 xfs_generic_create( 163 struct user_namespace *mnt_userns, 164 struct inode *dir, 165 struct dentry *dentry, 166 umode_t mode, 167 dev_t rdev, 168 bool tmpfile) /* unnamed file */ 169 { 170 struct inode *inode; 171 struct xfs_inode *ip = NULL; 172 struct posix_acl *default_acl, *acl; 173 struct xfs_name name; 174 int error; 175 176 /* 177 * Irix uses Missed'em'V split, but doesn't want to see 178 * the upper 5 bits of (14bit) major. 179 */ 180 if (S_ISCHR(mode) || S_ISBLK(mode)) { 181 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff)) 182 return -EINVAL; 183 } else { 184 rdev = 0; 185 } 186 187 error = posix_acl_create(dir, &mode, &default_acl, &acl); 188 if (error) 189 return error; 190 191 /* Verify mode is valid also for tmpfile case */ 192 error = xfs_dentry_mode_to_name(&name, dentry, mode); 193 if (unlikely(error)) 194 goto out_free_acl; 195 196 if (!tmpfile) { 197 error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev, 198 xfs_create_need_xattr(dir, default_acl, acl), 199 &ip); 200 } else { 201 error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip); 202 } 203 if (unlikely(error)) 204 goto out_free_acl; 205 206 inode = VFS_I(ip); 207 208 error = xfs_init_security(inode, dir, &dentry->d_name); 209 if (unlikely(error)) 210 goto out_cleanup_inode; 211 212 #ifdef CONFIG_XFS_POSIX_ACL 213 if (default_acl) { 214 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 215 if (error) 216 goto out_cleanup_inode; 217 } 218 if (acl) { 219 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 220 if (error) 221 goto out_cleanup_inode; 222 } 223 #endif 224 225 xfs_setup_iops(ip); 226 227 if (tmpfile) { 228 /* 229 * The VFS requires that any inode fed to d_tmpfile must have 230 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 231 * However, we created the temp file with nlink == 0 because 232 * we're not allowed to put an inode with nlink > 0 on the 233 * unlinked list. Therefore we have to set nlink to 1 so that 234 * d_tmpfile can immediately set it back to zero. 235 */ 236 set_nlink(inode, 1); 237 d_tmpfile(dentry, inode); 238 } else 239 d_instantiate(dentry, inode); 240 241 xfs_finish_inode_setup(ip); 242 243 out_free_acl: 244 posix_acl_release(default_acl); 245 posix_acl_release(acl); 246 return error; 247 248 out_cleanup_inode: 249 xfs_finish_inode_setup(ip); 250 if (!tmpfile) 251 xfs_cleanup_inode(dir, inode, dentry); 252 xfs_irele(ip); 253 goto out_free_acl; 254 } 255 256 STATIC int 257 xfs_vn_mknod( 258 struct user_namespace *mnt_userns, 259 struct inode *dir, 260 struct dentry *dentry, 261 umode_t mode, 262 dev_t rdev) 263 { 264 return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, false); 265 } 266 267 STATIC int 268 xfs_vn_create( 269 struct user_namespace *mnt_userns, 270 struct inode *dir, 271 struct dentry *dentry, 272 umode_t mode, 273 bool flags) 274 { 275 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, false); 276 } 277 278 STATIC int 279 xfs_vn_mkdir( 280 struct user_namespace *mnt_userns, 281 struct inode *dir, 282 struct dentry *dentry, 283 umode_t mode) 284 { 285 return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0, 286 false); 287 } 288 289 STATIC struct dentry * 290 xfs_vn_lookup( 291 struct inode *dir, 292 struct dentry *dentry, 293 unsigned int flags) 294 { 295 struct inode *inode; 296 struct xfs_inode *cip; 297 struct xfs_name name; 298 int error; 299 300 if (dentry->d_name.len >= MAXNAMELEN) 301 return ERR_PTR(-ENAMETOOLONG); 302 303 xfs_dentry_to_name(&name, dentry); 304 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 305 if (likely(!error)) 306 inode = VFS_I(cip); 307 else if (likely(error == -ENOENT)) 308 inode = NULL; 309 else 310 inode = ERR_PTR(error); 311 return d_splice_alias(inode, dentry); 312 } 313 314 STATIC struct dentry * 315 xfs_vn_ci_lookup( 316 struct inode *dir, 317 struct dentry *dentry, 318 unsigned int flags) 319 { 320 struct xfs_inode *ip; 321 struct xfs_name xname; 322 struct xfs_name ci_name; 323 struct qstr dname; 324 int error; 325 326 if (dentry->d_name.len >= MAXNAMELEN) 327 return ERR_PTR(-ENAMETOOLONG); 328 329 xfs_dentry_to_name(&xname, dentry); 330 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 331 if (unlikely(error)) { 332 if (unlikely(error != -ENOENT)) 333 return ERR_PTR(error); 334 /* 335 * call d_add(dentry, NULL) here when d_drop_negative_children 336 * is called in xfs_vn_mknod (ie. allow negative dentries 337 * with CI filesystems). 338 */ 339 return NULL; 340 } 341 342 /* if exact match, just splice and exit */ 343 if (!ci_name.name) 344 return d_splice_alias(VFS_I(ip), dentry); 345 346 /* else case-insensitive match... */ 347 dname.name = ci_name.name; 348 dname.len = ci_name.len; 349 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 350 kmem_free(ci_name.name); 351 return dentry; 352 } 353 354 STATIC int 355 xfs_vn_link( 356 struct dentry *old_dentry, 357 struct inode *dir, 358 struct dentry *dentry) 359 { 360 struct inode *inode = d_inode(old_dentry); 361 struct xfs_name name; 362 int error; 363 364 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 365 if (unlikely(error)) 366 return error; 367 368 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 369 if (unlikely(error)) 370 return error; 371 372 ihold(inode); 373 d_instantiate(dentry, inode); 374 return 0; 375 } 376 377 STATIC int 378 xfs_vn_unlink( 379 struct inode *dir, 380 struct dentry *dentry) 381 { 382 struct xfs_name name; 383 int error; 384 385 xfs_dentry_to_name(&name, dentry); 386 387 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 388 if (error) 389 return error; 390 391 /* 392 * With unlink, the VFS makes the dentry "negative": no inode, 393 * but still hashed. This is incompatible with case-insensitive 394 * mode, so invalidate (unhash) the dentry in CI-mode. 395 */ 396 if (xfs_has_asciici(XFS_M(dir->i_sb))) 397 d_invalidate(dentry); 398 return 0; 399 } 400 401 STATIC int 402 xfs_vn_symlink( 403 struct user_namespace *mnt_userns, 404 struct inode *dir, 405 struct dentry *dentry, 406 const char *symname) 407 { 408 struct inode *inode; 409 struct xfs_inode *cip = NULL; 410 struct xfs_name name; 411 int error; 412 umode_t mode; 413 414 mode = S_IFLNK | 415 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 416 error = xfs_dentry_mode_to_name(&name, dentry, mode); 417 if (unlikely(error)) 418 goto out; 419 420 error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip); 421 if (unlikely(error)) 422 goto out; 423 424 inode = VFS_I(cip); 425 426 error = xfs_init_security(inode, dir, &dentry->d_name); 427 if (unlikely(error)) 428 goto out_cleanup_inode; 429 430 xfs_setup_iops(cip); 431 432 d_instantiate(dentry, inode); 433 xfs_finish_inode_setup(cip); 434 return 0; 435 436 out_cleanup_inode: 437 xfs_finish_inode_setup(cip); 438 xfs_cleanup_inode(dir, inode, dentry); 439 xfs_irele(cip); 440 out: 441 return error; 442 } 443 444 STATIC int 445 xfs_vn_rename( 446 struct user_namespace *mnt_userns, 447 struct inode *odir, 448 struct dentry *odentry, 449 struct inode *ndir, 450 struct dentry *ndentry, 451 unsigned int flags) 452 { 453 struct inode *new_inode = d_inode(ndentry); 454 int omode = 0; 455 int error; 456 struct xfs_name oname; 457 struct xfs_name nname; 458 459 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 460 return -EINVAL; 461 462 /* if we are exchanging files, we need to set i_mode of both files */ 463 if (flags & RENAME_EXCHANGE) 464 omode = d_inode(ndentry)->i_mode; 465 466 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 467 if (omode && unlikely(error)) 468 return error; 469 470 error = xfs_dentry_mode_to_name(&nname, ndentry, 471 d_inode(odentry)->i_mode); 472 if (unlikely(error)) 473 return error; 474 475 return xfs_rename(mnt_userns, XFS_I(odir), &oname, 476 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname, 477 new_inode ? XFS_I(new_inode) : NULL, flags); 478 } 479 480 /* 481 * careful here - this function can get called recursively, so 482 * we need to be very careful about how much stack we use. 483 * uio is kmalloced for this reason... 484 */ 485 STATIC const char * 486 xfs_vn_get_link( 487 struct dentry *dentry, 488 struct inode *inode, 489 struct delayed_call *done) 490 { 491 char *link; 492 int error = -ENOMEM; 493 494 if (!dentry) 495 return ERR_PTR(-ECHILD); 496 497 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 498 if (!link) 499 goto out_err; 500 501 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 502 if (unlikely(error)) 503 goto out_kfree; 504 505 set_delayed_call(done, kfree_link, link); 506 return link; 507 508 out_kfree: 509 kfree(link); 510 out_err: 511 return ERR_PTR(error); 512 } 513 514 static uint32_t 515 xfs_stat_blksize( 516 struct xfs_inode *ip) 517 { 518 struct xfs_mount *mp = ip->i_mount; 519 520 /* 521 * If the file blocks are being allocated from a realtime volume, then 522 * always return the realtime extent size. 523 */ 524 if (XFS_IS_REALTIME_INODE(ip)) 525 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip)); 526 527 /* 528 * Allow large block sizes to be reported to userspace programs if the 529 * "largeio" mount option is used. 530 * 531 * If compatibility mode is specified, simply return the basic unit of 532 * caching so that we don't get inefficient read/modify/write I/O from 533 * user apps. Otherwise.... 534 * 535 * If the underlying volume is a stripe, then return the stripe width in 536 * bytes as the recommended I/O size. It is not a stripe and we've set a 537 * default buffered I/O size, return that, otherwise return the compat 538 * default. 539 */ 540 if (xfs_has_large_iosize(mp)) { 541 if (mp->m_swidth) 542 return XFS_FSB_TO_B(mp, mp->m_swidth); 543 if (xfs_has_allocsize(mp)) 544 return 1U << mp->m_allocsize_log; 545 } 546 547 return PAGE_SIZE; 548 } 549 550 STATIC int 551 xfs_vn_getattr( 552 struct user_namespace *mnt_userns, 553 const struct path *path, 554 struct kstat *stat, 555 u32 request_mask, 556 unsigned int query_flags) 557 { 558 struct inode *inode = d_inode(path->dentry); 559 struct xfs_inode *ip = XFS_I(inode); 560 struct xfs_mount *mp = ip->i_mount; 561 562 trace_xfs_getattr(ip); 563 564 if (xfs_is_shutdown(mp)) 565 return -EIO; 566 567 stat->size = XFS_ISIZE(ip); 568 stat->dev = inode->i_sb->s_dev; 569 stat->mode = inode->i_mode; 570 stat->nlink = inode->i_nlink; 571 stat->uid = i_uid_into_mnt(mnt_userns, inode); 572 stat->gid = i_gid_into_mnt(mnt_userns, inode); 573 stat->ino = ip->i_ino; 574 stat->atime = inode->i_atime; 575 stat->mtime = inode->i_mtime; 576 stat->ctime = inode->i_ctime; 577 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks); 578 579 if (xfs_has_v3inodes(mp)) { 580 if (request_mask & STATX_BTIME) { 581 stat->result_mask |= STATX_BTIME; 582 stat->btime = ip->i_crtime; 583 } 584 } 585 586 /* 587 * Note: If you add another clause to set an attribute flag, please 588 * update attributes_mask below. 589 */ 590 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 591 stat->attributes |= STATX_ATTR_IMMUTABLE; 592 if (ip->i_diflags & XFS_DIFLAG_APPEND) 593 stat->attributes |= STATX_ATTR_APPEND; 594 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 595 stat->attributes |= STATX_ATTR_NODUMP; 596 597 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 598 STATX_ATTR_APPEND | 599 STATX_ATTR_NODUMP); 600 601 switch (inode->i_mode & S_IFMT) { 602 case S_IFBLK: 603 case S_IFCHR: 604 stat->blksize = BLKDEV_IOSIZE; 605 stat->rdev = inode->i_rdev; 606 break; 607 default: 608 stat->blksize = xfs_stat_blksize(ip); 609 stat->rdev = 0; 610 break; 611 } 612 613 return 0; 614 } 615 616 static int 617 xfs_vn_change_ok( 618 struct user_namespace *mnt_userns, 619 struct dentry *dentry, 620 struct iattr *iattr) 621 { 622 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 623 624 if (xfs_is_readonly(mp)) 625 return -EROFS; 626 627 if (xfs_is_shutdown(mp)) 628 return -EIO; 629 630 return setattr_prepare(mnt_userns, dentry, iattr); 631 } 632 633 /* 634 * Set non-size attributes of an inode. 635 * 636 * Caution: The caller of this function is responsible for calling 637 * setattr_prepare() or otherwise verifying the change is fine. 638 */ 639 static int 640 xfs_setattr_nonsize( 641 struct user_namespace *mnt_userns, 642 struct xfs_inode *ip, 643 struct iattr *iattr) 644 { 645 xfs_mount_t *mp = ip->i_mount; 646 struct inode *inode = VFS_I(ip); 647 int mask = iattr->ia_valid; 648 xfs_trans_t *tp; 649 int error; 650 kuid_t uid = GLOBAL_ROOT_UID; 651 kgid_t gid = GLOBAL_ROOT_GID; 652 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 653 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL; 654 655 ASSERT((mask & ATTR_SIZE) == 0); 656 657 /* 658 * If disk quotas is on, we make sure that the dquots do exist on disk, 659 * before we start any other transactions. Trying to do this later 660 * is messy. We don't care to take a readlock to look at the ids 661 * in inode here, because we can't hold it across the trans_reserve. 662 * If the IDs do change before we take the ilock, we're covered 663 * because the i_*dquot fields will get updated anyway. 664 */ 665 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 666 uint qflags = 0; 667 668 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 669 uid = iattr->ia_uid; 670 qflags |= XFS_QMOPT_UQUOTA; 671 } else { 672 uid = inode->i_uid; 673 } 674 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 675 gid = iattr->ia_gid; 676 qflags |= XFS_QMOPT_GQUOTA; 677 } else { 678 gid = inode->i_gid; 679 } 680 681 /* 682 * We take a reference when we initialize udqp and gdqp, 683 * so it is important that we never blindly double trip on 684 * the same variable. See xfs_create() for an example. 685 */ 686 ASSERT(udqp == NULL); 687 ASSERT(gdqp == NULL); 688 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid, 689 qflags, &udqp, &gdqp, NULL); 690 if (error) 691 return error; 692 } 693 694 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL, 695 has_capability_noaudit(current, CAP_FOWNER), &tp); 696 if (error) 697 goto out_dqrele; 698 699 /* 700 * Register quota modifications in the transaction. Must be the owner 701 * or privileged. These IDs could have changed since we last looked at 702 * them. But, we're assured that if the ownership did change while we 703 * didn't have the inode locked, inode's dquot(s) would have changed 704 * also. 705 */ 706 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp) && 707 !uid_eq(inode->i_uid, iattr->ia_uid)) { 708 ASSERT(udqp); 709 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); 710 } 711 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp) && 712 !gid_eq(inode->i_gid, iattr->ia_gid)) { 713 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp)); 714 ASSERT(gdqp); 715 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); 716 } 717 718 setattr_copy(mnt_userns, inode, iattr); 719 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 720 721 XFS_STATS_INC(mp, xs_ig_attrchg); 722 723 if (xfs_has_wsync(mp)) 724 xfs_trans_set_sync(tp); 725 error = xfs_trans_commit(tp); 726 727 /* 728 * Release any dquot(s) the inode had kept before chown. 729 */ 730 xfs_qm_dqrele(old_udqp); 731 xfs_qm_dqrele(old_gdqp); 732 xfs_qm_dqrele(udqp); 733 xfs_qm_dqrele(gdqp); 734 735 if (error) 736 return error; 737 738 /* 739 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 740 * update. We could avoid this with linked transactions 741 * and passing down the transaction pointer all the way 742 * to attr_set. No previous user of the generic 743 * Posix ACL code seems to care about this issue either. 744 */ 745 if (mask & ATTR_MODE) { 746 error = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 747 if (error) 748 return error; 749 } 750 751 return 0; 752 753 out_dqrele: 754 xfs_qm_dqrele(udqp); 755 xfs_qm_dqrele(gdqp); 756 return error; 757 } 758 759 /* 760 * Truncate file. Must have write permission and not be a directory. 761 * 762 * Caution: The caller of this function is responsible for calling 763 * setattr_prepare() or otherwise verifying the change is fine. 764 */ 765 STATIC int 766 xfs_setattr_size( 767 struct user_namespace *mnt_userns, 768 struct xfs_inode *ip, 769 struct iattr *iattr) 770 { 771 struct xfs_mount *mp = ip->i_mount; 772 struct inode *inode = VFS_I(ip); 773 xfs_off_t oldsize, newsize; 774 struct xfs_trans *tp; 775 int error; 776 uint lock_flags = 0; 777 bool did_zeroing = false; 778 779 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 780 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 781 ASSERT(S_ISREG(inode->i_mode)); 782 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 783 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0); 784 785 oldsize = inode->i_size; 786 newsize = iattr->ia_size; 787 788 /* 789 * Short circuit the truncate case for zero length files. 790 */ 791 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 792 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 793 return 0; 794 795 /* 796 * Use the regular setattr path to update the timestamps. 797 */ 798 iattr->ia_valid &= ~ATTR_SIZE; 799 return xfs_setattr_nonsize(mnt_userns, ip, iattr); 800 } 801 802 /* 803 * Make sure that the dquots are attached to the inode. 804 */ 805 error = xfs_qm_dqattach(ip); 806 if (error) 807 return error; 808 809 /* 810 * Wait for all direct I/O to complete. 811 */ 812 inode_dio_wait(inode); 813 814 /* 815 * File data changes must be complete before we start the transaction to 816 * modify the inode. This needs to be done before joining the inode to 817 * the transaction because the inode cannot be unlocked once it is a 818 * part of the transaction. 819 * 820 * Start with zeroing any data beyond EOF that we may expose on file 821 * extension, or zeroing out the rest of the block on a downward 822 * truncate. 823 */ 824 if (newsize > oldsize) { 825 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 826 error = xfs_zero_range(ip, oldsize, newsize - oldsize, 827 &did_zeroing); 828 } else { 829 /* 830 * iomap won't detect a dirty page over an unwritten block (or a 831 * cow block over a hole) and subsequently skips zeroing the 832 * newly post-EOF portion of the page. Flush the new EOF to 833 * convert the block before the pagecache truncate. 834 */ 835 error = filemap_write_and_wait_range(inode->i_mapping, newsize, 836 newsize); 837 if (error) 838 return error; 839 error = xfs_truncate_page(ip, newsize, &did_zeroing); 840 } 841 842 if (error) 843 return error; 844 845 /* 846 * We've already locked out new page faults, so now we can safely remove 847 * pages from the page cache knowing they won't get refaulted until we 848 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 849 * complete. The truncate_setsize() call also cleans partial EOF page 850 * PTEs on extending truncates and hence ensures sub-page block size 851 * filesystems are correctly handled, too. 852 * 853 * We have to do all the page cache truncate work outside the 854 * transaction context as the "lock" order is page lock->log space 855 * reservation as defined by extent allocation in the writeback path. 856 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 857 * having already truncated the in-memory version of the file (i.e. made 858 * user visible changes). There's not much we can do about this, except 859 * to hope that the caller sees ENOMEM and retries the truncate 860 * operation. 861 * 862 * And we update in-core i_size and truncate page cache beyond newsize 863 * before writeback the [i_disk_size, newsize] range, so we're 864 * guaranteed not to write stale data past the new EOF on truncate down. 865 */ 866 truncate_setsize(inode, newsize); 867 868 /* 869 * We are going to log the inode size change in this transaction so 870 * any previous writes that are beyond the on disk EOF and the new 871 * EOF that have not been written out need to be written here. If we 872 * do not write the data out, we expose ourselves to the null files 873 * problem. Note that this includes any block zeroing we did above; 874 * otherwise those blocks may not be zeroed after a crash. 875 */ 876 if (did_zeroing || 877 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) { 878 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 879 ip->i_disk_size, newsize - 1); 880 if (error) 881 return error; 882 } 883 884 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 885 if (error) 886 return error; 887 888 lock_flags |= XFS_ILOCK_EXCL; 889 xfs_ilock(ip, XFS_ILOCK_EXCL); 890 xfs_trans_ijoin(tp, ip, 0); 891 892 /* 893 * Only change the c/mtime if we are changing the size or we are 894 * explicitly asked to change it. This handles the semantic difference 895 * between truncate() and ftruncate() as implemented in the VFS. 896 * 897 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 898 * special case where we need to update the times despite not having 899 * these flags set. For all other operations the VFS set these flags 900 * explicitly if it wants a timestamp update. 901 */ 902 if (newsize != oldsize && 903 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 904 iattr->ia_ctime = iattr->ia_mtime = 905 current_time(inode); 906 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 907 } 908 909 /* 910 * The first thing we do is set the size to new_size permanently on 911 * disk. This way we don't have to worry about anyone ever being able 912 * to look at the data being freed even in the face of a crash. 913 * What we're getting around here is the case where we free a block, it 914 * is allocated to another file, it is written to, and then we crash. 915 * If the new data gets written to the file but the log buffers 916 * containing the free and reallocation don't, then we'd end up with 917 * garbage in the blocks being freed. As long as we make the new size 918 * permanent before actually freeing any blocks it doesn't matter if 919 * they get written to. 920 */ 921 ip->i_disk_size = newsize; 922 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 923 924 if (newsize <= oldsize) { 925 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 926 if (error) 927 goto out_trans_cancel; 928 929 /* 930 * Truncated "down", so we're removing references to old data 931 * here - if we delay flushing for a long time, we expose 932 * ourselves unduly to the notorious NULL files problem. So, 933 * we mark this inode and flush it when the file is closed, 934 * and do not wait the usual (long) time for writeout. 935 */ 936 xfs_iflags_set(ip, XFS_ITRUNCATED); 937 938 /* A truncate down always removes post-EOF blocks. */ 939 xfs_inode_clear_eofblocks_tag(ip); 940 } 941 942 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID))); 943 setattr_copy(mnt_userns, inode, iattr); 944 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 945 946 XFS_STATS_INC(mp, xs_ig_attrchg); 947 948 if (xfs_has_wsync(mp)) 949 xfs_trans_set_sync(tp); 950 951 error = xfs_trans_commit(tp); 952 out_unlock: 953 if (lock_flags) 954 xfs_iunlock(ip, lock_flags); 955 return error; 956 957 out_trans_cancel: 958 xfs_trans_cancel(tp); 959 goto out_unlock; 960 } 961 962 int 963 xfs_vn_setattr_size( 964 struct user_namespace *mnt_userns, 965 struct dentry *dentry, 966 struct iattr *iattr) 967 { 968 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 969 int error; 970 971 trace_xfs_setattr(ip); 972 973 error = xfs_vn_change_ok(mnt_userns, dentry, iattr); 974 if (error) 975 return error; 976 return xfs_setattr_size(mnt_userns, ip, iattr); 977 } 978 979 STATIC int 980 xfs_vn_setattr( 981 struct user_namespace *mnt_userns, 982 struct dentry *dentry, 983 struct iattr *iattr) 984 { 985 struct inode *inode = d_inode(dentry); 986 struct xfs_inode *ip = XFS_I(inode); 987 int error; 988 989 if (iattr->ia_valid & ATTR_SIZE) { 990 uint iolock; 991 992 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 993 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 994 995 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 996 if (error) { 997 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 998 return error; 999 } 1000 1001 error = xfs_vn_setattr_size(mnt_userns, dentry, iattr); 1002 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1003 } else { 1004 trace_xfs_setattr(ip); 1005 1006 error = xfs_vn_change_ok(mnt_userns, dentry, iattr); 1007 if (!error) 1008 error = xfs_setattr_nonsize(mnt_userns, ip, iattr); 1009 } 1010 1011 return error; 1012 } 1013 1014 STATIC int 1015 xfs_vn_update_time( 1016 struct inode *inode, 1017 struct timespec64 *now, 1018 int flags) 1019 { 1020 struct xfs_inode *ip = XFS_I(inode); 1021 struct xfs_mount *mp = ip->i_mount; 1022 int log_flags = XFS_ILOG_TIMESTAMP; 1023 struct xfs_trans *tp; 1024 int error; 1025 1026 trace_xfs_update_time(ip); 1027 1028 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1029 if (!((flags & S_VERSION) && 1030 inode_maybe_inc_iversion(inode, false))) 1031 return generic_update_time(inode, now, flags); 1032 1033 /* Capture the iversion update that just occurred */ 1034 log_flags |= XFS_ILOG_CORE; 1035 } 1036 1037 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1038 if (error) 1039 return error; 1040 1041 xfs_ilock(ip, XFS_ILOCK_EXCL); 1042 if (flags & S_CTIME) 1043 inode->i_ctime = *now; 1044 if (flags & S_MTIME) 1045 inode->i_mtime = *now; 1046 if (flags & S_ATIME) 1047 inode->i_atime = *now; 1048 1049 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1050 xfs_trans_log_inode(tp, ip, log_flags); 1051 return xfs_trans_commit(tp); 1052 } 1053 1054 STATIC int 1055 xfs_vn_fiemap( 1056 struct inode *inode, 1057 struct fiemap_extent_info *fieinfo, 1058 u64 start, 1059 u64 length) 1060 { 1061 int error; 1062 1063 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1064 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1065 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1066 error = iomap_fiemap(inode, fieinfo, start, length, 1067 &xfs_xattr_iomap_ops); 1068 } else { 1069 error = iomap_fiemap(inode, fieinfo, start, length, 1070 &xfs_read_iomap_ops); 1071 } 1072 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1073 1074 return error; 1075 } 1076 1077 STATIC int 1078 xfs_vn_tmpfile( 1079 struct user_namespace *mnt_userns, 1080 struct inode *dir, 1081 struct dentry *dentry, 1082 umode_t mode) 1083 { 1084 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, true); 1085 } 1086 1087 static const struct inode_operations xfs_inode_operations = { 1088 .get_acl = xfs_get_acl, 1089 .set_acl = xfs_set_acl, 1090 .getattr = xfs_vn_getattr, 1091 .setattr = xfs_vn_setattr, 1092 .listxattr = xfs_vn_listxattr, 1093 .fiemap = xfs_vn_fiemap, 1094 .update_time = xfs_vn_update_time, 1095 .fileattr_get = xfs_fileattr_get, 1096 .fileattr_set = xfs_fileattr_set, 1097 }; 1098 1099 static const struct inode_operations xfs_dir_inode_operations = { 1100 .create = xfs_vn_create, 1101 .lookup = xfs_vn_lookup, 1102 .link = xfs_vn_link, 1103 .unlink = xfs_vn_unlink, 1104 .symlink = xfs_vn_symlink, 1105 .mkdir = xfs_vn_mkdir, 1106 /* 1107 * Yes, XFS uses the same method for rmdir and unlink. 1108 * 1109 * There are some subtile differences deeper in the code, 1110 * but we use S_ISDIR to check for those. 1111 */ 1112 .rmdir = xfs_vn_unlink, 1113 .mknod = xfs_vn_mknod, 1114 .rename = xfs_vn_rename, 1115 .get_acl = xfs_get_acl, 1116 .set_acl = xfs_set_acl, 1117 .getattr = xfs_vn_getattr, 1118 .setattr = xfs_vn_setattr, 1119 .listxattr = xfs_vn_listxattr, 1120 .update_time = xfs_vn_update_time, 1121 .tmpfile = xfs_vn_tmpfile, 1122 .fileattr_get = xfs_fileattr_get, 1123 .fileattr_set = xfs_fileattr_set, 1124 }; 1125 1126 static const struct inode_operations xfs_dir_ci_inode_operations = { 1127 .create = xfs_vn_create, 1128 .lookup = xfs_vn_ci_lookup, 1129 .link = xfs_vn_link, 1130 .unlink = xfs_vn_unlink, 1131 .symlink = xfs_vn_symlink, 1132 .mkdir = xfs_vn_mkdir, 1133 /* 1134 * Yes, XFS uses the same method for rmdir and unlink. 1135 * 1136 * There are some subtile differences deeper in the code, 1137 * but we use S_ISDIR to check for those. 1138 */ 1139 .rmdir = xfs_vn_unlink, 1140 .mknod = xfs_vn_mknod, 1141 .rename = xfs_vn_rename, 1142 .get_acl = xfs_get_acl, 1143 .set_acl = xfs_set_acl, 1144 .getattr = xfs_vn_getattr, 1145 .setattr = xfs_vn_setattr, 1146 .listxattr = xfs_vn_listxattr, 1147 .update_time = xfs_vn_update_time, 1148 .tmpfile = xfs_vn_tmpfile, 1149 .fileattr_get = xfs_fileattr_get, 1150 .fileattr_set = xfs_fileattr_set, 1151 }; 1152 1153 static const struct inode_operations xfs_symlink_inode_operations = { 1154 .get_link = xfs_vn_get_link, 1155 .getattr = xfs_vn_getattr, 1156 .setattr = xfs_vn_setattr, 1157 .listxattr = xfs_vn_listxattr, 1158 .update_time = xfs_vn_update_time, 1159 }; 1160 1161 /* Figure out if this file actually supports DAX. */ 1162 static bool 1163 xfs_inode_supports_dax( 1164 struct xfs_inode *ip) 1165 { 1166 struct xfs_mount *mp = ip->i_mount; 1167 1168 /* Only supported on regular files. */ 1169 if (!S_ISREG(VFS_I(ip)->i_mode)) 1170 return false; 1171 1172 /* Only supported on non-reflinked files. */ 1173 if (xfs_is_reflink_inode(ip)) 1174 return false; 1175 1176 /* Block size must match page size */ 1177 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1178 return false; 1179 1180 /* Device has to support DAX too. */ 1181 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1182 } 1183 1184 static bool 1185 xfs_inode_should_enable_dax( 1186 struct xfs_inode *ip) 1187 { 1188 if (!IS_ENABLED(CONFIG_FS_DAX)) 1189 return false; 1190 if (xfs_has_dax_never(ip->i_mount)) 1191 return false; 1192 if (!xfs_inode_supports_dax(ip)) 1193 return false; 1194 if (xfs_has_dax_always(ip->i_mount)) 1195 return true; 1196 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 1197 return true; 1198 return false; 1199 } 1200 1201 void 1202 xfs_diflags_to_iflags( 1203 struct xfs_inode *ip, 1204 bool init) 1205 { 1206 struct inode *inode = VFS_I(ip); 1207 unsigned int xflags = xfs_ip2xflags(ip); 1208 unsigned int flags = 0; 1209 1210 ASSERT(!(IS_DAX(inode) && init)); 1211 1212 if (xflags & FS_XFLAG_IMMUTABLE) 1213 flags |= S_IMMUTABLE; 1214 if (xflags & FS_XFLAG_APPEND) 1215 flags |= S_APPEND; 1216 if (xflags & FS_XFLAG_SYNC) 1217 flags |= S_SYNC; 1218 if (xflags & FS_XFLAG_NOATIME) 1219 flags |= S_NOATIME; 1220 if (init && xfs_inode_should_enable_dax(ip)) 1221 flags |= S_DAX; 1222 1223 /* 1224 * S_DAX can only be set during inode initialization and is never set by 1225 * the VFS, so we cannot mask off S_DAX in i_flags. 1226 */ 1227 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1228 inode->i_flags |= flags; 1229 } 1230 1231 /* 1232 * Initialize the Linux inode. 1233 * 1234 * When reading existing inodes from disk this is called directly from xfs_iget, 1235 * when creating a new inode it is called from xfs_init_new_inode after setting 1236 * up the inode. These callers have different criteria for clearing XFS_INEW, so 1237 * leave it up to the caller to deal with unlocking the inode appropriately. 1238 */ 1239 void 1240 xfs_setup_inode( 1241 struct xfs_inode *ip) 1242 { 1243 struct inode *inode = &ip->i_vnode; 1244 gfp_t gfp_mask; 1245 1246 inode->i_ino = ip->i_ino; 1247 inode->i_state |= I_NEW; 1248 1249 inode_sb_list_add(inode); 1250 /* make the inode look hashed for the writeback code */ 1251 inode_fake_hash(inode); 1252 1253 i_size_write(inode, ip->i_disk_size); 1254 xfs_diflags_to_iflags(ip, true); 1255 1256 if (S_ISDIR(inode->i_mode)) { 1257 /* 1258 * We set the i_rwsem class here to avoid potential races with 1259 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1260 * after a filehandle lookup has already found the inode in 1261 * cache before it has been unlocked via unlock_new_inode(). 1262 */ 1263 lockdep_set_class(&inode->i_rwsem, 1264 &inode->i_sb->s_type->i_mutex_dir_key); 1265 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class); 1266 } else { 1267 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class); 1268 } 1269 1270 /* 1271 * Ensure all page cache allocations are done from GFP_NOFS context to 1272 * prevent direct reclaim recursion back into the filesystem and blowing 1273 * stacks or deadlocking. 1274 */ 1275 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1276 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1277 1278 /* 1279 * If there is no attribute fork no ACL can exist on this inode, 1280 * and it can't have any file capabilities attached to it either. 1281 */ 1282 if (!XFS_IFORK_Q(ip)) { 1283 inode_has_no_xattr(inode); 1284 cache_no_acl(inode); 1285 } 1286 } 1287 1288 void 1289 xfs_setup_iops( 1290 struct xfs_inode *ip) 1291 { 1292 struct inode *inode = &ip->i_vnode; 1293 1294 switch (inode->i_mode & S_IFMT) { 1295 case S_IFREG: 1296 inode->i_op = &xfs_inode_operations; 1297 inode->i_fop = &xfs_file_operations; 1298 if (IS_DAX(inode)) 1299 inode->i_mapping->a_ops = &xfs_dax_aops; 1300 else 1301 inode->i_mapping->a_ops = &xfs_address_space_operations; 1302 break; 1303 case S_IFDIR: 1304 if (xfs_has_asciici(XFS_M(inode->i_sb))) 1305 inode->i_op = &xfs_dir_ci_inode_operations; 1306 else 1307 inode->i_op = &xfs_dir_inode_operations; 1308 inode->i_fop = &xfs_dir_file_operations; 1309 break; 1310 case S_IFLNK: 1311 inode->i_op = &xfs_symlink_inode_operations; 1312 break; 1313 default: 1314 inode->i_op = &xfs_inode_operations; 1315 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1316 break; 1317 } 1318 } 1319