1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_attr.h" 17 #include "xfs_trans.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_symlink.h" 21 #include "xfs_dir2.h" 22 #include "xfs_iomap.h" 23 #include "xfs_error.h" 24 25 #include <linux/posix_acl.h> 26 #include <linux/security.h> 27 #include <linux/iversion.h> 28 #include <linux/fiemap.h> 29 30 /* 31 * Directories have different lock order w.r.t. mmap_lock compared to regular 32 * files. This is due to readdir potentially triggering page faults on a user 33 * buffer inside filldir(), and this happens with the ilock on the directory 34 * held. For regular files, the lock order is the other way around - the 35 * mmap_lock is taken during the page fault, and then we lock the ilock to do 36 * block mapping. Hence we need a different class for the directory ilock so 37 * that lockdep can tell them apart. 38 */ 39 static struct lock_class_key xfs_nondir_ilock_class; 40 static struct lock_class_key xfs_dir_ilock_class; 41 42 static int 43 xfs_initxattrs( 44 struct inode *inode, 45 const struct xattr *xattr_array, 46 void *fs_info) 47 { 48 const struct xattr *xattr; 49 struct xfs_inode *ip = XFS_I(inode); 50 int error = 0; 51 52 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 53 struct xfs_da_args args = { 54 .dp = ip, 55 .attr_filter = XFS_ATTR_SECURE, 56 .name = xattr->name, 57 .namelen = strlen(xattr->name), 58 .value = xattr->value, 59 .valuelen = xattr->value_len, 60 }; 61 error = xfs_attr_set(&args); 62 if (error < 0) 63 break; 64 } 65 return error; 66 } 67 68 /* 69 * Hook in SELinux. This is not quite correct yet, what we really need 70 * here (as we do for default ACLs) is a mechanism by which creation of 71 * these attrs can be journalled at inode creation time (along with the 72 * inode, of course, such that log replay can't cause these to be lost). 73 */ 74 75 STATIC int 76 xfs_init_security( 77 struct inode *inode, 78 struct inode *dir, 79 const struct qstr *qstr) 80 { 81 return security_inode_init_security(inode, dir, qstr, 82 &xfs_initxattrs, NULL); 83 } 84 85 static void 86 xfs_dentry_to_name( 87 struct xfs_name *namep, 88 struct dentry *dentry) 89 { 90 namep->name = dentry->d_name.name; 91 namep->len = dentry->d_name.len; 92 namep->type = XFS_DIR3_FT_UNKNOWN; 93 } 94 95 static int 96 xfs_dentry_mode_to_name( 97 struct xfs_name *namep, 98 struct dentry *dentry, 99 int mode) 100 { 101 namep->name = dentry->d_name.name; 102 namep->len = dentry->d_name.len; 103 namep->type = xfs_mode_to_ftype(mode); 104 105 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 106 return -EFSCORRUPTED; 107 108 return 0; 109 } 110 111 STATIC void 112 xfs_cleanup_inode( 113 struct inode *dir, 114 struct inode *inode, 115 struct dentry *dentry) 116 { 117 struct xfs_name teardown; 118 119 /* Oh, the horror. 120 * If we can't add the ACL or we fail in 121 * xfs_init_security we must back out. 122 * ENOSPC can hit here, among other things. 123 */ 124 xfs_dentry_to_name(&teardown, dentry); 125 126 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 127 } 128 129 STATIC int 130 xfs_generic_create( 131 struct inode *dir, 132 struct dentry *dentry, 133 umode_t mode, 134 dev_t rdev, 135 bool tmpfile) /* unnamed file */ 136 { 137 struct inode *inode; 138 struct xfs_inode *ip = NULL; 139 struct posix_acl *default_acl, *acl; 140 struct xfs_name name; 141 int error; 142 143 /* 144 * Irix uses Missed'em'V split, but doesn't want to see 145 * the upper 5 bits of (14bit) major. 146 */ 147 if (S_ISCHR(mode) || S_ISBLK(mode)) { 148 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff)) 149 return -EINVAL; 150 } else { 151 rdev = 0; 152 } 153 154 error = posix_acl_create(dir, &mode, &default_acl, &acl); 155 if (error) 156 return error; 157 158 /* Verify mode is valid also for tmpfile case */ 159 error = xfs_dentry_mode_to_name(&name, dentry, mode); 160 if (unlikely(error)) 161 goto out_free_acl; 162 163 if (!tmpfile) { 164 error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip); 165 } else { 166 error = xfs_create_tmpfile(XFS_I(dir), mode, &ip); 167 } 168 if (unlikely(error)) 169 goto out_free_acl; 170 171 inode = VFS_I(ip); 172 173 error = xfs_init_security(inode, dir, &dentry->d_name); 174 if (unlikely(error)) 175 goto out_cleanup_inode; 176 177 #ifdef CONFIG_XFS_POSIX_ACL 178 if (default_acl) { 179 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 180 if (error) 181 goto out_cleanup_inode; 182 } 183 if (acl) { 184 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 185 if (error) 186 goto out_cleanup_inode; 187 } 188 #endif 189 190 xfs_setup_iops(ip); 191 192 if (tmpfile) { 193 /* 194 * The VFS requires that any inode fed to d_tmpfile must have 195 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 196 * However, we created the temp file with nlink == 0 because 197 * we're not allowed to put an inode with nlink > 0 on the 198 * unlinked list. Therefore we have to set nlink to 1 so that 199 * d_tmpfile can immediately set it back to zero. 200 */ 201 set_nlink(inode, 1); 202 d_tmpfile(dentry, inode); 203 } else 204 d_instantiate(dentry, inode); 205 206 xfs_finish_inode_setup(ip); 207 208 out_free_acl: 209 if (default_acl) 210 posix_acl_release(default_acl); 211 if (acl) 212 posix_acl_release(acl); 213 return error; 214 215 out_cleanup_inode: 216 xfs_finish_inode_setup(ip); 217 if (!tmpfile) 218 xfs_cleanup_inode(dir, inode, dentry); 219 xfs_irele(ip); 220 goto out_free_acl; 221 } 222 223 STATIC int 224 xfs_vn_mknod( 225 struct inode *dir, 226 struct dentry *dentry, 227 umode_t mode, 228 dev_t rdev) 229 { 230 return xfs_generic_create(dir, dentry, mode, rdev, false); 231 } 232 233 STATIC int 234 xfs_vn_create( 235 struct inode *dir, 236 struct dentry *dentry, 237 umode_t mode, 238 bool flags) 239 { 240 return xfs_vn_mknod(dir, dentry, mode, 0); 241 } 242 243 STATIC int 244 xfs_vn_mkdir( 245 struct inode *dir, 246 struct dentry *dentry, 247 umode_t mode) 248 { 249 return xfs_vn_mknod(dir, dentry, mode|S_IFDIR, 0); 250 } 251 252 STATIC struct dentry * 253 xfs_vn_lookup( 254 struct inode *dir, 255 struct dentry *dentry, 256 unsigned int flags) 257 { 258 struct inode *inode; 259 struct xfs_inode *cip; 260 struct xfs_name name; 261 int error; 262 263 if (dentry->d_name.len >= MAXNAMELEN) 264 return ERR_PTR(-ENAMETOOLONG); 265 266 xfs_dentry_to_name(&name, dentry); 267 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 268 if (likely(!error)) 269 inode = VFS_I(cip); 270 else if (likely(error == -ENOENT)) 271 inode = NULL; 272 else 273 inode = ERR_PTR(error); 274 return d_splice_alias(inode, dentry); 275 } 276 277 STATIC struct dentry * 278 xfs_vn_ci_lookup( 279 struct inode *dir, 280 struct dentry *dentry, 281 unsigned int flags) 282 { 283 struct xfs_inode *ip; 284 struct xfs_name xname; 285 struct xfs_name ci_name; 286 struct qstr dname; 287 int error; 288 289 if (dentry->d_name.len >= MAXNAMELEN) 290 return ERR_PTR(-ENAMETOOLONG); 291 292 xfs_dentry_to_name(&xname, dentry); 293 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 294 if (unlikely(error)) { 295 if (unlikely(error != -ENOENT)) 296 return ERR_PTR(error); 297 /* 298 * call d_add(dentry, NULL) here when d_drop_negative_children 299 * is called in xfs_vn_mknod (ie. allow negative dentries 300 * with CI filesystems). 301 */ 302 return NULL; 303 } 304 305 /* if exact match, just splice and exit */ 306 if (!ci_name.name) 307 return d_splice_alias(VFS_I(ip), dentry); 308 309 /* else case-insensitive match... */ 310 dname.name = ci_name.name; 311 dname.len = ci_name.len; 312 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 313 kmem_free(ci_name.name); 314 return dentry; 315 } 316 317 STATIC int 318 xfs_vn_link( 319 struct dentry *old_dentry, 320 struct inode *dir, 321 struct dentry *dentry) 322 { 323 struct inode *inode = d_inode(old_dentry); 324 struct xfs_name name; 325 int error; 326 327 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 328 if (unlikely(error)) 329 return error; 330 331 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 332 if (unlikely(error)) 333 return error; 334 335 ihold(inode); 336 d_instantiate(dentry, inode); 337 return 0; 338 } 339 340 STATIC int 341 xfs_vn_unlink( 342 struct inode *dir, 343 struct dentry *dentry) 344 { 345 struct xfs_name name; 346 int error; 347 348 xfs_dentry_to_name(&name, dentry); 349 350 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 351 if (error) 352 return error; 353 354 /* 355 * With unlink, the VFS makes the dentry "negative": no inode, 356 * but still hashed. This is incompatible with case-insensitive 357 * mode, so invalidate (unhash) the dentry in CI-mode. 358 */ 359 if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb)) 360 d_invalidate(dentry); 361 return 0; 362 } 363 364 STATIC int 365 xfs_vn_symlink( 366 struct inode *dir, 367 struct dentry *dentry, 368 const char *symname) 369 { 370 struct inode *inode; 371 struct xfs_inode *cip = NULL; 372 struct xfs_name name; 373 int error; 374 umode_t mode; 375 376 mode = S_IFLNK | 377 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 378 error = xfs_dentry_mode_to_name(&name, dentry, mode); 379 if (unlikely(error)) 380 goto out; 381 382 error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip); 383 if (unlikely(error)) 384 goto out; 385 386 inode = VFS_I(cip); 387 388 error = xfs_init_security(inode, dir, &dentry->d_name); 389 if (unlikely(error)) 390 goto out_cleanup_inode; 391 392 xfs_setup_iops(cip); 393 394 d_instantiate(dentry, inode); 395 xfs_finish_inode_setup(cip); 396 return 0; 397 398 out_cleanup_inode: 399 xfs_finish_inode_setup(cip); 400 xfs_cleanup_inode(dir, inode, dentry); 401 xfs_irele(cip); 402 out: 403 return error; 404 } 405 406 STATIC int 407 xfs_vn_rename( 408 struct inode *odir, 409 struct dentry *odentry, 410 struct inode *ndir, 411 struct dentry *ndentry, 412 unsigned int flags) 413 { 414 struct inode *new_inode = d_inode(ndentry); 415 int omode = 0; 416 int error; 417 struct xfs_name oname; 418 struct xfs_name nname; 419 420 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 421 return -EINVAL; 422 423 /* if we are exchanging files, we need to set i_mode of both files */ 424 if (flags & RENAME_EXCHANGE) 425 omode = d_inode(ndentry)->i_mode; 426 427 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 428 if (omode && unlikely(error)) 429 return error; 430 431 error = xfs_dentry_mode_to_name(&nname, ndentry, 432 d_inode(odentry)->i_mode); 433 if (unlikely(error)) 434 return error; 435 436 return xfs_rename(XFS_I(odir), &oname, XFS_I(d_inode(odentry)), 437 XFS_I(ndir), &nname, 438 new_inode ? XFS_I(new_inode) : NULL, flags); 439 } 440 441 /* 442 * careful here - this function can get called recursively, so 443 * we need to be very careful about how much stack we use. 444 * uio is kmalloced for this reason... 445 */ 446 STATIC const char * 447 xfs_vn_get_link( 448 struct dentry *dentry, 449 struct inode *inode, 450 struct delayed_call *done) 451 { 452 char *link; 453 int error = -ENOMEM; 454 455 if (!dentry) 456 return ERR_PTR(-ECHILD); 457 458 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 459 if (!link) 460 goto out_err; 461 462 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 463 if (unlikely(error)) 464 goto out_kfree; 465 466 set_delayed_call(done, kfree_link, link); 467 return link; 468 469 out_kfree: 470 kfree(link); 471 out_err: 472 return ERR_PTR(error); 473 } 474 475 STATIC const char * 476 xfs_vn_get_link_inline( 477 struct dentry *dentry, 478 struct inode *inode, 479 struct delayed_call *done) 480 { 481 struct xfs_inode *ip = XFS_I(inode); 482 char *link; 483 484 ASSERT(ip->i_df.if_flags & XFS_IFINLINE); 485 486 /* 487 * The VFS crashes on a NULL pointer, so return -EFSCORRUPTED if 488 * if_data is junk. 489 */ 490 link = ip->i_df.if_u1.if_data; 491 if (XFS_IS_CORRUPT(ip->i_mount, !link)) 492 return ERR_PTR(-EFSCORRUPTED); 493 return link; 494 } 495 496 static uint32_t 497 xfs_stat_blksize( 498 struct xfs_inode *ip) 499 { 500 struct xfs_mount *mp = ip->i_mount; 501 502 /* 503 * If the file blocks are being allocated from a realtime volume, then 504 * always return the realtime extent size. 505 */ 506 if (XFS_IS_REALTIME_INODE(ip)) 507 return xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog; 508 509 /* 510 * Allow large block sizes to be reported to userspace programs if the 511 * "largeio" mount option is used. 512 * 513 * If compatibility mode is specified, simply return the basic unit of 514 * caching so that we don't get inefficient read/modify/write I/O from 515 * user apps. Otherwise.... 516 * 517 * If the underlying volume is a stripe, then return the stripe width in 518 * bytes as the recommended I/O size. It is not a stripe and we've set a 519 * default buffered I/O size, return that, otherwise return the compat 520 * default. 521 */ 522 if (mp->m_flags & XFS_MOUNT_LARGEIO) { 523 if (mp->m_swidth) 524 return mp->m_swidth << mp->m_sb.sb_blocklog; 525 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 526 return 1U << mp->m_allocsize_log; 527 } 528 529 return PAGE_SIZE; 530 } 531 532 STATIC int 533 xfs_vn_getattr( 534 const struct path *path, 535 struct kstat *stat, 536 u32 request_mask, 537 unsigned int query_flags) 538 { 539 struct inode *inode = d_inode(path->dentry); 540 struct xfs_inode *ip = XFS_I(inode); 541 struct xfs_mount *mp = ip->i_mount; 542 543 trace_xfs_getattr(ip); 544 545 if (XFS_FORCED_SHUTDOWN(mp)) 546 return -EIO; 547 548 stat->size = XFS_ISIZE(ip); 549 stat->dev = inode->i_sb->s_dev; 550 stat->mode = inode->i_mode; 551 stat->nlink = inode->i_nlink; 552 stat->uid = inode->i_uid; 553 stat->gid = inode->i_gid; 554 stat->ino = ip->i_ino; 555 stat->atime = inode->i_atime; 556 stat->mtime = inode->i_mtime; 557 stat->ctime = inode->i_ctime; 558 stat->blocks = 559 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); 560 561 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 562 if (request_mask & STATX_BTIME) { 563 stat->result_mask |= STATX_BTIME; 564 stat->btime = ip->i_d.di_crtime; 565 } 566 } 567 568 /* 569 * Note: If you add another clause to set an attribute flag, please 570 * update attributes_mask below. 571 */ 572 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) 573 stat->attributes |= STATX_ATTR_IMMUTABLE; 574 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) 575 stat->attributes |= STATX_ATTR_APPEND; 576 if (ip->i_d.di_flags & XFS_DIFLAG_NODUMP) 577 stat->attributes |= STATX_ATTR_NODUMP; 578 579 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 580 STATX_ATTR_APPEND | 581 STATX_ATTR_NODUMP); 582 583 switch (inode->i_mode & S_IFMT) { 584 case S_IFBLK: 585 case S_IFCHR: 586 stat->blksize = BLKDEV_IOSIZE; 587 stat->rdev = inode->i_rdev; 588 break; 589 default: 590 stat->blksize = xfs_stat_blksize(ip); 591 stat->rdev = 0; 592 break; 593 } 594 595 return 0; 596 } 597 598 static void 599 xfs_setattr_mode( 600 struct xfs_inode *ip, 601 struct iattr *iattr) 602 { 603 struct inode *inode = VFS_I(ip); 604 umode_t mode = iattr->ia_mode; 605 606 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 607 608 inode->i_mode &= S_IFMT; 609 inode->i_mode |= mode & ~S_IFMT; 610 } 611 612 void 613 xfs_setattr_time( 614 struct xfs_inode *ip, 615 struct iattr *iattr) 616 { 617 struct inode *inode = VFS_I(ip); 618 619 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 620 621 if (iattr->ia_valid & ATTR_ATIME) 622 inode->i_atime = iattr->ia_atime; 623 if (iattr->ia_valid & ATTR_CTIME) 624 inode->i_ctime = iattr->ia_ctime; 625 if (iattr->ia_valid & ATTR_MTIME) 626 inode->i_mtime = iattr->ia_mtime; 627 } 628 629 static int 630 xfs_vn_change_ok( 631 struct dentry *dentry, 632 struct iattr *iattr) 633 { 634 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 635 636 if (mp->m_flags & XFS_MOUNT_RDONLY) 637 return -EROFS; 638 639 if (XFS_FORCED_SHUTDOWN(mp)) 640 return -EIO; 641 642 return setattr_prepare(dentry, iattr); 643 } 644 645 /* 646 * Set non-size attributes of an inode. 647 * 648 * Caution: The caller of this function is responsible for calling 649 * setattr_prepare() or otherwise verifying the change is fine. 650 */ 651 int 652 xfs_setattr_nonsize( 653 struct xfs_inode *ip, 654 struct iattr *iattr, 655 int flags) 656 { 657 xfs_mount_t *mp = ip->i_mount; 658 struct inode *inode = VFS_I(ip); 659 int mask = iattr->ia_valid; 660 xfs_trans_t *tp; 661 int error; 662 kuid_t uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID; 663 kgid_t gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID; 664 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 665 struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL; 666 667 ASSERT((mask & ATTR_SIZE) == 0); 668 669 /* 670 * If disk quotas is on, we make sure that the dquots do exist on disk, 671 * before we start any other transactions. Trying to do this later 672 * is messy. We don't care to take a readlock to look at the ids 673 * in inode here, because we can't hold it across the trans_reserve. 674 * If the IDs do change before we take the ilock, we're covered 675 * because the i_*dquot fields will get updated anyway. 676 */ 677 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 678 uint qflags = 0; 679 680 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 681 uid = iattr->ia_uid; 682 qflags |= XFS_QMOPT_UQUOTA; 683 } else { 684 uid = inode->i_uid; 685 } 686 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 687 gid = iattr->ia_gid; 688 qflags |= XFS_QMOPT_GQUOTA; 689 } else { 690 gid = inode->i_gid; 691 } 692 693 /* 694 * We take a reference when we initialize udqp and gdqp, 695 * so it is important that we never blindly double trip on 696 * the same variable. See xfs_create() for an example. 697 */ 698 ASSERT(udqp == NULL); 699 ASSERT(gdqp == NULL); 700 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_d.di_projid, 701 qflags, &udqp, &gdqp, NULL); 702 if (error) 703 return error; 704 } 705 706 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 707 if (error) 708 goto out_dqrele; 709 710 xfs_ilock(ip, XFS_ILOCK_EXCL); 711 xfs_trans_ijoin(tp, ip, 0); 712 713 /* 714 * Change file ownership. Must be the owner or privileged. 715 */ 716 if (mask & (ATTR_UID|ATTR_GID)) { 717 /* 718 * These IDs could have changed since we last looked at them. 719 * But, we're assured that if the ownership did change 720 * while we didn't have the inode locked, inode's dquot(s) 721 * would have changed also. 722 */ 723 iuid = inode->i_uid; 724 igid = inode->i_gid; 725 gid = (mask & ATTR_GID) ? iattr->ia_gid : igid; 726 uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid; 727 728 /* 729 * Do a quota reservation only if uid/gid is actually 730 * going to change. 731 */ 732 if (XFS_IS_QUOTA_RUNNING(mp) && 733 ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) || 734 (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) { 735 ASSERT(tp); 736 error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp, 737 NULL, capable(CAP_FOWNER) ? 738 XFS_QMOPT_FORCE_RES : 0); 739 if (error) /* out of quota */ 740 goto out_cancel; 741 } 742 743 /* 744 * CAP_FSETID overrides the following restrictions: 745 * 746 * The set-user-ID and set-group-ID bits of a file will be 747 * cleared upon successful return from chown() 748 */ 749 if ((inode->i_mode & (S_ISUID|S_ISGID)) && 750 !capable(CAP_FSETID)) 751 inode->i_mode &= ~(S_ISUID|S_ISGID); 752 753 /* 754 * Change the ownerships and register quota modifications 755 * in the transaction. 756 */ 757 if (!uid_eq(iuid, uid)) { 758 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) { 759 ASSERT(mask & ATTR_UID); 760 ASSERT(udqp); 761 olddquot1 = xfs_qm_vop_chown(tp, ip, 762 &ip->i_udquot, udqp); 763 } 764 inode->i_uid = uid; 765 } 766 if (!gid_eq(igid, gid)) { 767 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) { 768 ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) || 769 !XFS_IS_PQUOTA_ON(mp)); 770 ASSERT(mask & ATTR_GID); 771 ASSERT(gdqp); 772 olddquot2 = xfs_qm_vop_chown(tp, ip, 773 &ip->i_gdquot, gdqp); 774 } 775 inode->i_gid = gid; 776 } 777 } 778 779 if (mask & ATTR_MODE) 780 xfs_setattr_mode(ip, iattr); 781 if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) 782 xfs_setattr_time(ip, iattr); 783 784 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 785 786 XFS_STATS_INC(mp, xs_ig_attrchg); 787 788 if (mp->m_flags & XFS_MOUNT_WSYNC) 789 xfs_trans_set_sync(tp); 790 error = xfs_trans_commit(tp); 791 792 xfs_iunlock(ip, XFS_ILOCK_EXCL); 793 794 /* 795 * Release any dquot(s) the inode had kept before chown. 796 */ 797 xfs_qm_dqrele(olddquot1); 798 xfs_qm_dqrele(olddquot2); 799 xfs_qm_dqrele(udqp); 800 xfs_qm_dqrele(gdqp); 801 802 if (error) 803 return error; 804 805 /* 806 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 807 * update. We could avoid this with linked transactions 808 * and passing down the transaction pointer all the way 809 * to attr_set. No previous user of the generic 810 * Posix ACL code seems to care about this issue either. 811 */ 812 if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) { 813 error = posix_acl_chmod(inode, inode->i_mode); 814 if (error) 815 return error; 816 } 817 818 return 0; 819 820 out_cancel: 821 xfs_trans_cancel(tp); 822 xfs_iunlock(ip, XFS_ILOCK_EXCL); 823 out_dqrele: 824 xfs_qm_dqrele(udqp); 825 xfs_qm_dqrele(gdqp); 826 return error; 827 } 828 829 int 830 xfs_vn_setattr_nonsize( 831 struct dentry *dentry, 832 struct iattr *iattr) 833 { 834 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 835 int error; 836 837 trace_xfs_setattr(ip); 838 839 error = xfs_vn_change_ok(dentry, iattr); 840 if (error) 841 return error; 842 return xfs_setattr_nonsize(ip, iattr, 0); 843 } 844 845 /* 846 * Truncate file. Must have write permission and not be a directory. 847 * 848 * Caution: The caller of this function is responsible for calling 849 * setattr_prepare() or otherwise verifying the change is fine. 850 */ 851 STATIC int 852 xfs_setattr_size( 853 struct xfs_inode *ip, 854 struct iattr *iattr) 855 { 856 struct xfs_mount *mp = ip->i_mount; 857 struct inode *inode = VFS_I(ip); 858 xfs_off_t oldsize, newsize; 859 struct xfs_trans *tp; 860 int error; 861 uint lock_flags = 0; 862 bool did_zeroing = false; 863 864 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 865 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 866 ASSERT(S_ISREG(inode->i_mode)); 867 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 868 ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0); 869 870 oldsize = inode->i_size; 871 newsize = iattr->ia_size; 872 873 /* 874 * Short circuit the truncate case for zero length files. 875 */ 876 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 877 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 878 return 0; 879 880 /* 881 * Use the regular setattr path to update the timestamps. 882 */ 883 iattr->ia_valid &= ~ATTR_SIZE; 884 return xfs_setattr_nonsize(ip, iattr, 0); 885 } 886 887 /* 888 * Make sure that the dquots are attached to the inode. 889 */ 890 error = xfs_qm_dqattach(ip); 891 if (error) 892 return error; 893 894 /* 895 * Wait for all direct I/O to complete. 896 */ 897 inode_dio_wait(inode); 898 899 /* 900 * File data changes must be complete before we start the transaction to 901 * modify the inode. This needs to be done before joining the inode to 902 * the transaction because the inode cannot be unlocked once it is a 903 * part of the transaction. 904 * 905 * Start with zeroing any data beyond EOF that we may expose on file 906 * extension, or zeroing out the rest of the block on a downward 907 * truncate. 908 */ 909 if (newsize > oldsize) { 910 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 911 error = iomap_zero_range(inode, oldsize, newsize - oldsize, 912 &did_zeroing, &xfs_buffered_write_iomap_ops); 913 } else { 914 error = iomap_truncate_page(inode, newsize, &did_zeroing, 915 &xfs_buffered_write_iomap_ops); 916 } 917 918 if (error) 919 return error; 920 921 /* 922 * We've already locked out new page faults, so now we can safely remove 923 * pages from the page cache knowing they won't get refaulted until we 924 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 925 * complete. The truncate_setsize() call also cleans partial EOF page 926 * PTEs on extending truncates and hence ensures sub-page block size 927 * filesystems are correctly handled, too. 928 * 929 * We have to do all the page cache truncate work outside the 930 * transaction context as the "lock" order is page lock->log space 931 * reservation as defined by extent allocation in the writeback path. 932 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 933 * having already truncated the in-memory version of the file (i.e. made 934 * user visible changes). There's not much we can do about this, except 935 * to hope that the caller sees ENOMEM and retries the truncate 936 * operation. 937 * 938 * And we update in-core i_size and truncate page cache beyond newsize 939 * before writeback the [di_size, newsize] range, so we're guaranteed 940 * not to write stale data past the new EOF on truncate down. 941 */ 942 truncate_setsize(inode, newsize); 943 944 /* 945 * We are going to log the inode size change in this transaction so 946 * any previous writes that are beyond the on disk EOF and the new 947 * EOF that have not been written out need to be written here. If we 948 * do not write the data out, we expose ourselves to the null files 949 * problem. Note that this includes any block zeroing we did above; 950 * otherwise those blocks may not be zeroed after a crash. 951 */ 952 if (did_zeroing || 953 (newsize > ip->i_d.di_size && oldsize != ip->i_d.di_size)) { 954 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 955 ip->i_d.di_size, newsize - 1); 956 if (error) 957 return error; 958 } 959 960 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 961 if (error) 962 return error; 963 964 lock_flags |= XFS_ILOCK_EXCL; 965 xfs_ilock(ip, XFS_ILOCK_EXCL); 966 xfs_trans_ijoin(tp, ip, 0); 967 968 /* 969 * Only change the c/mtime if we are changing the size or we are 970 * explicitly asked to change it. This handles the semantic difference 971 * between truncate() and ftruncate() as implemented in the VFS. 972 * 973 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 974 * special case where we need to update the times despite not having 975 * these flags set. For all other operations the VFS set these flags 976 * explicitly if it wants a timestamp update. 977 */ 978 if (newsize != oldsize && 979 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 980 iattr->ia_ctime = iattr->ia_mtime = 981 current_time(inode); 982 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 983 } 984 985 /* 986 * The first thing we do is set the size to new_size permanently on 987 * disk. This way we don't have to worry about anyone ever being able 988 * to look at the data being freed even in the face of a crash. 989 * What we're getting around here is the case where we free a block, it 990 * is allocated to another file, it is written to, and then we crash. 991 * If the new data gets written to the file but the log buffers 992 * containing the free and reallocation don't, then we'd end up with 993 * garbage in the blocks being freed. As long as we make the new size 994 * permanent before actually freeing any blocks it doesn't matter if 995 * they get written to. 996 */ 997 ip->i_d.di_size = newsize; 998 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 999 1000 if (newsize <= oldsize) { 1001 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 1002 if (error) 1003 goto out_trans_cancel; 1004 1005 /* 1006 * Truncated "down", so we're removing references to old data 1007 * here - if we delay flushing for a long time, we expose 1008 * ourselves unduly to the notorious NULL files problem. So, 1009 * we mark this inode and flush it when the file is closed, 1010 * and do not wait the usual (long) time for writeout. 1011 */ 1012 xfs_iflags_set(ip, XFS_ITRUNCATED); 1013 1014 /* A truncate down always removes post-EOF blocks. */ 1015 xfs_inode_clear_eofblocks_tag(ip); 1016 } 1017 1018 if (iattr->ia_valid & ATTR_MODE) 1019 xfs_setattr_mode(ip, iattr); 1020 if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) 1021 xfs_setattr_time(ip, iattr); 1022 1023 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1024 1025 XFS_STATS_INC(mp, xs_ig_attrchg); 1026 1027 if (mp->m_flags & XFS_MOUNT_WSYNC) 1028 xfs_trans_set_sync(tp); 1029 1030 error = xfs_trans_commit(tp); 1031 out_unlock: 1032 if (lock_flags) 1033 xfs_iunlock(ip, lock_flags); 1034 return error; 1035 1036 out_trans_cancel: 1037 xfs_trans_cancel(tp); 1038 goto out_unlock; 1039 } 1040 1041 int 1042 xfs_vn_setattr_size( 1043 struct dentry *dentry, 1044 struct iattr *iattr) 1045 { 1046 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 1047 int error; 1048 1049 trace_xfs_setattr(ip); 1050 1051 error = xfs_vn_change_ok(dentry, iattr); 1052 if (error) 1053 return error; 1054 return xfs_setattr_size(ip, iattr); 1055 } 1056 1057 STATIC int 1058 xfs_vn_setattr( 1059 struct dentry *dentry, 1060 struct iattr *iattr) 1061 { 1062 int error; 1063 1064 if (iattr->ia_valid & ATTR_SIZE) { 1065 struct inode *inode = d_inode(dentry); 1066 struct xfs_inode *ip = XFS_I(inode); 1067 uint iolock; 1068 1069 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1070 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1071 1072 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1073 if (error) { 1074 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1075 return error; 1076 } 1077 1078 error = xfs_vn_setattr_size(dentry, iattr); 1079 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1080 } else { 1081 error = xfs_vn_setattr_nonsize(dentry, iattr); 1082 } 1083 1084 return error; 1085 } 1086 1087 STATIC int 1088 xfs_vn_update_time( 1089 struct inode *inode, 1090 struct timespec64 *now, 1091 int flags) 1092 { 1093 struct xfs_inode *ip = XFS_I(inode); 1094 struct xfs_mount *mp = ip->i_mount; 1095 int log_flags = XFS_ILOG_TIMESTAMP; 1096 struct xfs_trans *tp; 1097 int error; 1098 1099 trace_xfs_update_time(ip); 1100 1101 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1102 if (!((flags & S_VERSION) && 1103 inode_maybe_inc_iversion(inode, false))) 1104 return generic_update_time(inode, now, flags); 1105 1106 /* Capture the iversion update that just occurred */ 1107 log_flags |= XFS_ILOG_CORE; 1108 } 1109 1110 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1111 if (error) 1112 return error; 1113 1114 xfs_ilock(ip, XFS_ILOCK_EXCL); 1115 if (flags & S_CTIME) 1116 inode->i_ctime = *now; 1117 if (flags & S_MTIME) 1118 inode->i_mtime = *now; 1119 if (flags & S_ATIME) 1120 inode->i_atime = *now; 1121 1122 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1123 xfs_trans_log_inode(tp, ip, log_flags); 1124 return xfs_trans_commit(tp); 1125 } 1126 1127 STATIC int 1128 xfs_vn_fiemap( 1129 struct inode *inode, 1130 struct fiemap_extent_info *fieinfo, 1131 u64 start, 1132 u64 length) 1133 { 1134 int error; 1135 1136 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1137 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1138 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1139 error = iomap_fiemap(inode, fieinfo, start, length, 1140 &xfs_xattr_iomap_ops); 1141 } else { 1142 error = iomap_fiemap(inode, fieinfo, start, length, 1143 &xfs_read_iomap_ops); 1144 } 1145 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1146 1147 return error; 1148 } 1149 1150 STATIC int 1151 xfs_vn_tmpfile( 1152 struct inode *dir, 1153 struct dentry *dentry, 1154 umode_t mode) 1155 { 1156 return xfs_generic_create(dir, dentry, mode, 0, true); 1157 } 1158 1159 static const struct inode_operations xfs_inode_operations = { 1160 .get_acl = xfs_get_acl, 1161 .set_acl = xfs_set_acl, 1162 .getattr = xfs_vn_getattr, 1163 .setattr = xfs_vn_setattr, 1164 .listxattr = xfs_vn_listxattr, 1165 .fiemap = xfs_vn_fiemap, 1166 .update_time = xfs_vn_update_time, 1167 }; 1168 1169 static const struct inode_operations xfs_dir_inode_operations = { 1170 .create = xfs_vn_create, 1171 .lookup = xfs_vn_lookup, 1172 .link = xfs_vn_link, 1173 .unlink = xfs_vn_unlink, 1174 .symlink = xfs_vn_symlink, 1175 .mkdir = xfs_vn_mkdir, 1176 /* 1177 * Yes, XFS uses the same method for rmdir and unlink. 1178 * 1179 * There are some subtile differences deeper in the code, 1180 * but we use S_ISDIR to check for those. 1181 */ 1182 .rmdir = xfs_vn_unlink, 1183 .mknod = xfs_vn_mknod, 1184 .rename = xfs_vn_rename, 1185 .get_acl = xfs_get_acl, 1186 .set_acl = xfs_set_acl, 1187 .getattr = xfs_vn_getattr, 1188 .setattr = xfs_vn_setattr, 1189 .listxattr = xfs_vn_listxattr, 1190 .update_time = xfs_vn_update_time, 1191 .tmpfile = xfs_vn_tmpfile, 1192 }; 1193 1194 static const struct inode_operations xfs_dir_ci_inode_operations = { 1195 .create = xfs_vn_create, 1196 .lookup = xfs_vn_ci_lookup, 1197 .link = xfs_vn_link, 1198 .unlink = xfs_vn_unlink, 1199 .symlink = xfs_vn_symlink, 1200 .mkdir = xfs_vn_mkdir, 1201 /* 1202 * Yes, XFS uses the same method for rmdir and unlink. 1203 * 1204 * There are some subtile differences deeper in the code, 1205 * but we use S_ISDIR to check for those. 1206 */ 1207 .rmdir = xfs_vn_unlink, 1208 .mknod = xfs_vn_mknod, 1209 .rename = xfs_vn_rename, 1210 .get_acl = xfs_get_acl, 1211 .set_acl = xfs_set_acl, 1212 .getattr = xfs_vn_getattr, 1213 .setattr = xfs_vn_setattr, 1214 .listxattr = xfs_vn_listxattr, 1215 .update_time = xfs_vn_update_time, 1216 .tmpfile = xfs_vn_tmpfile, 1217 }; 1218 1219 static const struct inode_operations xfs_symlink_inode_operations = { 1220 .get_link = xfs_vn_get_link, 1221 .getattr = xfs_vn_getattr, 1222 .setattr = xfs_vn_setattr, 1223 .listxattr = xfs_vn_listxattr, 1224 .update_time = xfs_vn_update_time, 1225 }; 1226 1227 static const struct inode_operations xfs_inline_symlink_inode_operations = { 1228 .get_link = xfs_vn_get_link_inline, 1229 .getattr = xfs_vn_getattr, 1230 .setattr = xfs_vn_setattr, 1231 .listxattr = xfs_vn_listxattr, 1232 .update_time = xfs_vn_update_time, 1233 }; 1234 1235 /* Figure out if this file actually supports DAX. */ 1236 static bool 1237 xfs_inode_supports_dax( 1238 struct xfs_inode *ip) 1239 { 1240 struct xfs_mount *mp = ip->i_mount; 1241 1242 /* Only supported on regular files. */ 1243 if (!S_ISREG(VFS_I(ip)->i_mode)) 1244 return false; 1245 1246 /* Only supported on non-reflinked files. */ 1247 if (xfs_is_reflink_inode(ip)) 1248 return false; 1249 1250 /* Block size must match page size */ 1251 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1252 return false; 1253 1254 /* Device has to support DAX too. */ 1255 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1256 } 1257 1258 static bool 1259 xfs_inode_should_enable_dax( 1260 struct xfs_inode *ip) 1261 { 1262 if (!IS_ENABLED(CONFIG_FS_DAX)) 1263 return false; 1264 if (ip->i_mount->m_flags & XFS_MOUNT_DAX_NEVER) 1265 return false; 1266 if (!xfs_inode_supports_dax(ip)) 1267 return false; 1268 if (ip->i_mount->m_flags & XFS_MOUNT_DAX_ALWAYS) 1269 return true; 1270 if (ip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 1271 return true; 1272 return false; 1273 } 1274 1275 void 1276 xfs_diflags_to_iflags( 1277 struct xfs_inode *ip, 1278 bool init) 1279 { 1280 struct inode *inode = VFS_I(ip); 1281 unsigned int xflags = xfs_ip2xflags(ip); 1282 unsigned int flags = 0; 1283 1284 ASSERT(!(IS_DAX(inode) && init)); 1285 1286 if (xflags & FS_XFLAG_IMMUTABLE) 1287 flags |= S_IMMUTABLE; 1288 if (xflags & FS_XFLAG_APPEND) 1289 flags |= S_APPEND; 1290 if (xflags & FS_XFLAG_SYNC) 1291 flags |= S_SYNC; 1292 if (xflags & FS_XFLAG_NOATIME) 1293 flags |= S_NOATIME; 1294 if (init && xfs_inode_should_enable_dax(ip)) 1295 flags |= S_DAX; 1296 1297 /* 1298 * S_DAX can only be set during inode initialization and is never set by 1299 * the VFS, so we cannot mask off S_DAX in i_flags. 1300 */ 1301 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1302 inode->i_flags |= flags; 1303 } 1304 1305 /* 1306 * Initialize the Linux inode. 1307 * 1308 * When reading existing inodes from disk this is called directly from xfs_iget, 1309 * when creating a new inode it is called from xfs_ialloc after setting up the 1310 * inode. These callers have different criteria for clearing XFS_INEW, so leave 1311 * it up to the caller to deal with unlocking the inode appropriately. 1312 */ 1313 void 1314 xfs_setup_inode( 1315 struct xfs_inode *ip) 1316 { 1317 struct inode *inode = &ip->i_vnode; 1318 gfp_t gfp_mask; 1319 1320 inode->i_ino = ip->i_ino; 1321 inode->i_state = I_NEW; 1322 1323 inode_sb_list_add(inode); 1324 /* make the inode look hashed for the writeback code */ 1325 inode_fake_hash(inode); 1326 1327 i_size_write(inode, ip->i_d.di_size); 1328 xfs_diflags_to_iflags(ip, true); 1329 1330 if (S_ISDIR(inode->i_mode)) { 1331 /* 1332 * We set the i_rwsem class here to avoid potential races with 1333 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1334 * after a filehandle lookup has already found the inode in 1335 * cache before it has been unlocked via unlock_new_inode(). 1336 */ 1337 lockdep_set_class(&inode->i_rwsem, 1338 &inode->i_sb->s_type->i_mutex_dir_key); 1339 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class); 1340 } else { 1341 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class); 1342 } 1343 1344 /* 1345 * Ensure all page cache allocations are done from GFP_NOFS context to 1346 * prevent direct reclaim recursion back into the filesystem and blowing 1347 * stacks or deadlocking. 1348 */ 1349 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1350 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1351 1352 /* 1353 * If there is no attribute fork no ACL can exist on this inode, 1354 * and it can't have any file capabilities attached to it either. 1355 */ 1356 if (!XFS_IFORK_Q(ip)) { 1357 inode_has_no_xattr(inode); 1358 cache_no_acl(inode); 1359 } 1360 } 1361 1362 void 1363 xfs_setup_iops( 1364 struct xfs_inode *ip) 1365 { 1366 struct inode *inode = &ip->i_vnode; 1367 1368 switch (inode->i_mode & S_IFMT) { 1369 case S_IFREG: 1370 inode->i_op = &xfs_inode_operations; 1371 inode->i_fop = &xfs_file_operations; 1372 if (IS_DAX(inode)) 1373 inode->i_mapping->a_ops = &xfs_dax_aops; 1374 else 1375 inode->i_mapping->a_ops = &xfs_address_space_operations; 1376 break; 1377 case S_IFDIR: 1378 if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb)) 1379 inode->i_op = &xfs_dir_ci_inode_operations; 1380 else 1381 inode->i_op = &xfs_dir_inode_operations; 1382 inode->i_fop = &xfs_dir_file_operations; 1383 break; 1384 case S_IFLNK: 1385 if (ip->i_df.if_flags & XFS_IFINLINE) 1386 inode->i_op = &xfs_inline_symlink_inode_operations; 1387 else 1388 inode->i_op = &xfs_symlink_inode_operations; 1389 break; 1390 default: 1391 inode->i_op = &xfs_inode_operations; 1392 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1393 break; 1394 } 1395 } 1396