1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include <linux/iomap.h> 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_errortag.h" 22 #include "xfs_error.h" 23 #include "xfs_trans.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_inode_item.h" 26 #include "xfs_iomap.h" 27 #include "xfs_trace.h" 28 #include "xfs_icache.h" 29 #include "xfs_quota.h" 30 #include "xfs_dquot_item.h" 31 #include "xfs_dquot.h" 32 #include "xfs_reflink.h" 33 34 35 #define XFS_WRITEIO_ALIGN(mp,off) (((off) >> mp->m_writeio_log) \ 36 << mp->m_writeio_log) 37 38 static int 39 xfs_alert_fsblock_zero( 40 xfs_inode_t *ip, 41 xfs_bmbt_irec_t *imap) 42 { 43 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 44 "Access to block zero in inode %llu " 45 "start_block: %llx start_off: %llx " 46 "blkcnt: %llx extent-state: %x", 47 (unsigned long long)ip->i_ino, 48 (unsigned long long)imap->br_startblock, 49 (unsigned long long)imap->br_startoff, 50 (unsigned long long)imap->br_blockcount, 51 imap->br_state); 52 return -EFSCORRUPTED; 53 } 54 55 int 56 xfs_bmbt_to_iomap( 57 struct xfs_inode *ip, 58 struct iomap *iomap, 59 struct xfs_bmbt_irec *imap, 60 bool shared) 61 { 62 struct xfs_mount *mp = ip->i_mount; 63 64 if (unlikely(!imap->br_startblock && !XFS_IS_REALTIME_INODE(ip))) 65 return xfs_alert_fsblock_zero(ip, imap); 66 67 if (imap->br_startblock == HOLESTARTBLOCK) { 68 iomap->addr = IOMAP_NULL_ADDR; 69 iomap->type = IOMAP_HOLE; 70 } else if (imap->br_startblock == DELAYSTARTBLOCK || 71 isnullstartblock(imap->br_startblock)) { 72 iomap->addr = IOMAP_NULL_ADDR; 73 iomap->type = IOMAP_DELALLOC; 74 } else { 75 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock)); 76 if (imap->br_state == XFS_EXT_UNWRITTEN) 77 iomap->type = IOMAP_UNWRITTEN; 78 else 79 iomap->type = IOMAP_MAPPED; 80 } 81 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 82 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 83 iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip)); 84 iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip)); 85 86 if (xfs_ipincount(ip) && 87 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 88 iomap->flags |= IOMAP_F_DIRTY; 89 if (shared) 90 iomap->flags |= IOMAP_F_SHARED; 91 return 0; 92 } 93 94 static void 95 xfs_hole_to_iomap( 96 struct xfs_inode *ip, 97 struct iomap *iomap, 98 xfs_fileoff_t offset_fsb, 99 xfs_fileoff_t end_fsb) 100 { 101 iomap->addr = IOMAP_NULL_ADDR; 102 iomap->type = IOMAP_HOLE; 103 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 104 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 105 iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip)); 106 iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip)); 107 } 108 109 xfs_extlen_t 110 xfs_eof_alignment( 111 struct xfs_inode *ip, 112 xfs_extlen_t extsize) 113 { 114 struct xfs_mount *mp = ip->i_mount; 115 xfs_extlen_t align = 0; 116 117 if (!XFS_IS_REALTIME_INODE(ip)) { 118 /* 119 * Round up the allocation request to a stripe unit 120 * (m_dalign) boundary if the file size is >= stripe unit 121 * size, and we are allocating past the allocation eof. 122 * 123 * If mounted with the "-o swalloc" option the alignment is 124 * increased from the strip unit size to the stripe width. 125 */ 126 if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC)) 127 align = mp->m_swidth; 128 else if (mp->m_dalign) 129 align = mp->m_dalign; 130 131 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 132 align = 0; 133 } 134 135 /* 136 * Always round up the allocation request to an extent boundary 137 * (when file on a real-time subvolume or has di_extsize hint). 138 */ 139 if (extsize) { 140 if (align) 141 align = roundup_64(align, extsize); 142 else 143 align = extsize; 144 } 145 146 return align; 147 } 148 149 STATIC int 150 xfs_iomap_eof_align_last_fsb( 151 struct xfs_inode *ip, 152 xfs_extlen_t extsize, 153 xfs_fileoff_t *last_fsb) 154 { 155 xfs_extlen_t align = xfs_eof_alignment(ip, extsize); 156 157 if (align) { 158 xfs_fileoff_t new_last_fsb = roundup_64(*last_fsb, align); 159 int eof, error; 160 161 error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof); 162 if (error) 163 return error; 164 if (eof) 165 *last_fsb = new_last_fsb; 166 } 167 return 0; 168 } 169 170 int 171 xfs_iomap_write_direct( 172 xfs_inode_t *ip, 173 xfs_off_t offset, 174 size_t count, 175 xfs_bmbt_irec_t *imap, 176 int nmaps) 177 { 178 xfs_mount_t *mp = ip->i_mount; 179 xfs_fileoff_t offset_fsb; 180 xfs_fileoff_t last_fsb; 181 xfs_filblks_t count_fsb, resaligned; 182 xfs_extlen_t extsz; 183 int nimaps; 184 int quota_flag; 185 int rt; 186 xfs_trans_t *tp; 187 uint qblocks, resblks, resrtextents; 188 int error; 189 int lockmode; 190 int bmapi_flags = XFS_BMAPI_PREALLOC; 191 uint tflags = 0; 192 193 rt = XFS_IS_REALTIME_INODE(ip); 194 extsz = xfs_get_extsz_hint(ip); 195 lockmode = XFS_ILOCK_SHARED; /* locked by caller */ 196 197 ASSERT(xfs_isilocked(ip, lockmode)); 198 199 offset_fsb = XFS_B_TO_FSBT(mp, offset); 200 last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count))); 201 if ((offset + count) > XFS_ISIZE(ip)) { 202 /* 203 * Assert that the in-core extent list is present since this can 204 * call xfs_iread_extents() and we only have the ilock shared. 205 * This should be safe because the lock was held around a bmapi 206 * call in the caller and we only need it to access the in-core 207 * list. 208 */ 209 ASSERT(XFS_IFORK_PTR(ip, XFS_DATA_FORK)->if_flags & 210 XFS_IFEXTENTS); 211 error = xfs_iomap_eof_align_last_fsb(ip, extsz, &last_fsb); 212 if (error) 213 goto out_unlock; 214 } else { 215 if (nmaps && (imap->br_startblock == HOLESTARTBLOCK)) 216 last_fsb = min(last_fsb, (xfs_fileoff_t) 217 imap->br_blockcount + 218 imap->br_startoff); 219 } 220 count_fsb = last_fsb - offset_fsb; 221 ASSERT(count_fsb > 0); 222 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, extsz); 223 224 if (unlikely(rt)) { 225 resrtextents = qblocks = resaligned; 226 resrtextents /= mp->m_sb.sb_rextsize; 227 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 228 quota_flag = XFS_QMOPT_RES_RTBLKS; 229 } else { 230 resrtextents = 0; 231 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 232 quota_flag = XFS_QMOPT_RES_REGBLKS; 233 } 234 235 /* 236 * Drop the shared lock acquired by the caller, attach the dquot if 237 * necessary and move on to transaction setup. 238 */ 239 xfs_iunlock(ip, lockmode); 240 error = xfs_qm_dqattach(ip); 241 if (error) 242 return error; 243 244 /* 245 * For DAX, we do not allocate unwritten extents, but instead we zero 246 * the block before we commit the transaction. Ideally we'd like to do 247 * this outside the transaction context, but if we commit and then crash 248 * we may not have zeroed the blocks and this will be exposed on 249 * recovery of the allocation. Hence we must zero before commit. 250 * 251 * Further, if we are mapping unwritten extents here, we need to zero 252 * and convert them to written so that we don't need an unwritten extent 253 * callback for DAX. This also means that we need to be able to dip into 254 * the reserve block pool for bmbt block allocation if there is no space 255 * left but we need to do unwritten extent conversion. 256 */ 257 if (IS_DAX(VFS_I(ip))) { 258 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 259 if (imap->br_state == XFS_EXT_UNWRITTEN) { 260 tflags |= XFS_TRANS_RESERVE; 261 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 262 } 263 } 264 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents, 265 tflags, &tp); 266 if (error) 267 return error; 268 269 lockmode = XFS_ILOCK_EXCL; 270 xfs_ilock(ip, lockmode); 271 272 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag); 273 if (error) 274 goto out_trans_cancel; 275 276 xfs_trans_ijoin(tp, ip, 0); 277 278 /* 279 * From this point onwards we overwrite the imap pointer that the 280 * caller gave to us. 281 */ 282 nimaps = 1; 283 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 284 bmapi_flags, resblks, imap, &nimaps); 285 if (error) 286 goto out_res_cancel; 287 288 /* 289 * Complete the transaction 290 */ 291 error = xfs_trans_commit(tp); 292 if (error) 293 goto out_unlock; 294 295 /* 296 * Copy any maps to caller's array and return any error. 297 */ 298 if (nimaps == 0) { 299 error = -ENOSPC; 300 goto out_unlock; 301 } 302 303 if (!(imap->br_startblock || XFS_IS_REALTIME_INODE(ip))) 304 error = xfs_alert_fsblock_zero(ip, imap); 305 306 out_unlock: 307 xfs_iunlock(ip, lockmode); 308 return error; 309 310 out_res_cancel: 311 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 312 out_trans_cancel: 313 xfs_trans_cancel(tp); 314 goto out_unlock; 315 } 316 317 STATIC bool 318 xfs_quota_need_throttle( 319 struct xfs_inode *ip, 320 int type, 321 xfs_fsblock_t alloc_blocks) 322 { 323 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 324 325 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 326 return false; 327 328 /* no hi watermark, no throttle */ 329 if (!dq->q_prealloc_hi_wmark) 330 return false; 331 332 /* under the lo watermark, no throttle */ 333 if (dq->q_res_bcount + alloc_blocks < dq->q_prealloc_lo_wmark) 334 return false; 335 336 return true; 337 } 338 339 STATIC void 340 xfs_quota_calc_throttle( 341 struct xfs_inode *ip, 342 int type, 343 xfs_fsblock_t *qblocks, 344 int *qshift, 345 int64_t *qfreesp) 346 { 347 int64_t freesp; 348 int shift = 0; 349 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 350 351 /* no dq, or over hi wmark, squash the prealloc completely */ 352 if (!dq || dq->q_res_bcount >= dq->q_prealloc_hi_wmark) { 353 *qblocks = 0; 354 *qfreesp = 0; 355 return; 356 } 357 358 freesp = dq->q_prealloc_hi_wmark - dq->q_res_bcount; 359 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) { 360 shift = 2; 361 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT]) 362 shift += 2; 363 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT]) 364 shift += 2; 365 } 366 367 if (freesp < *qfreesp) 368 *qfreesp = freesp; 369 370 /* only overwrite the throttle values if we are more aggressive */ 371 if ((freesp >> shift) < (*qblocks >> *qshift)) { 372 *qblocks = freesp; 373 *qshift = shift; 374 } 375 } 376 377 /* 378 * If we are doing a write at the end of the file and there are no allocations 379 * past this one, then extend the allocation out to the file system's write 380 * iosize. 381 * 382 * If we don't have a user specified preallocation size, dynamically increase 383 * the preallocation size as the size of the file grows. Cap the maximum size 384 * at a single extent or less if the filesystem is near full. The closer the 385 * filesystem is to full, the smaller the maximum prealocation. 386 * 387 * As an exception we don't do any preallocation at all if the file is smaller 388 * than the minimum preallocation and we are using the default dynamic 389 * preallocation scheme, as it is likely this is the only write to the file that 390 * is going to be done. 391 * 392 * We clean up any extra space left over when the file is closed in 393 * xfs_inactive(). 394 */ 395 STATIC xfs_fsblock_t 396 xfs_iomap_prealloc_size( 397 struct xfs_inode *ip, 398 int whichfork, 399 loff_t offset, 400 loff_t count, 401 struct xfs_iext_cursor *icur) 402 { 403 struct xfs_mount *mp = ip->i_mount; 404 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 405 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 406 struct xfs_bmbt_irec prev; 407 int shift = 0; 408 int64_t freesp; 409 xfs_fsblock_t qblocks; 410 int qshift = 0; 411 xfs_fsblock_t alloc_blocks = 0; 412 413 if (offset + count <= XFS_ISIZE(ip)) 414 return 0; 415 416 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) && 417 (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_writeio_blocks))) 418 return 0; 419 420 /* 421 * If an explicit allocsize is set, the file is small, or we 422 * are writing behind a hole, then use the minimum prealloc: 423 */ 424 if ((mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) || 425 XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 426 !xfs_iext_peek_prev_extent(ifp, icur, &prev) || 427 prev.br_startoff + prev.br_blockcount < offset_fsb) 428 return mp->m_writeio_blocks; 429 430 /* 431 * Determine the initial size of the preallocation. We are beyond the 432 * current EOF here, but we need to take into account whether this is 433 * a sparse write or an extending write when determining the 434 * preallocation size. Hence we need to look up the extent that ends 435 * at the current write offset and use the result to determine the 436 * preallocation size. 437 * 438 * If the extent is a hole, then preallocation is essentially disabled. 439 * Otherwise we take the size of the preceding data extent as the basis 440 * for the preallocation size. If the size of the extent is greater than 441 * half the maximum extent length, then use the current offset as the 442 * basis. This ensures that for large files the preallocation size 443 * always extends to MAXEXTLEN rather than falling short due to things 444 * like stripe unit/width alignment of real extents. 445 */ 446 if (prev.br_blockcount <= (MAXEXTLEN >> 1)) 447 alloc_blocks = prev.br_blockcount << 1; 448 else 449 alloc_blocks = XFS_B_TO_FSB(mp, offset); 450 if (!alloc_blocks) 451 goto check_writeio; 452 qblocks = alloc_blocks; 453 454 /* 455 * MAXEXTLEN is not a power of two value but we round the prealloc down 456 * to the nearest power of two value after throttling. To prevent the 457 * round down from unconditionally reducing the maximum supported prealloc 458 * size, we round up first, apply appropriate throttling, round down and 459 * cap the value to MAXEXTLEN. 460 */ 461 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN), 462 alloc_blocks); 463 464 freesp = percpu_counter_read_positive(&mp->m_fdblocks); 465 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) { 466 shift = 2; 467 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT]) 468 shift++; 469 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT]) 470 shift++; 471 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT]) 472 shift++; 473 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT]) 474 shift++; 475 } 476 477 /* 478 * Check each quota to cap the prealloc size, provide a shift value to 479 * throttle with and adjust amount of available space. 480 */ 481 if (xfs_quota_need_throttle(ip, XFS_DQ_USER, alloc_blocks)) 482 xfs_quota_calc_throttle(ip, XFS_DQ_USER, &qblocks, &qshift, 483 &freesp); 484 if (xfs_quota_need_throttle(ip, XFS_DQ_GROUP, alloc_blocks)) 485 xfs_quota_calc_throttle(ip, XFS_DQ_GROUP, &qblocks, &qshift, 486 &freesp); 487 if (xfs_quota_need_throttle(ip, XFS_DQ_PROJ, alloc_blocks)) 488 xfs_quota_calc_throttle(ip, XFS_DQ_PROJ, &qblocks, &qshift, 489 &freesp); 490 491 /* 492 * The final prealloc size is set to the minimum of free space available 493 * in each of the quotas and the overall filesystem. 494 * 495 * The shift throttle value is set to the maximum value as determined by 496 * the global low free space values and per-quota low free space values. 497 */ 498 alloc_blocks = min(alloc_blocks, qblocks); 499 shift = max(shift, qshift); 500 501 if (shift) 502 alloc_blocks >>= shift; 503 /* 504 * rounddown_pow_of_two() returns an undefined result if we pass in 505 * alloc_blocks = 0. 506 */ 507 if (alloc_blocks) 508 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 509 if (alloc_blocks > MAXEXTLEN) 510 alloc_blocks = MAXEXTLEN; 511 512 /* 513 * If we are still trying to allocate more space than is 514 * available, squash the prealloc hard. This can happen if we 515 * have a large file on a small filesystem and the above 516 * lowspace thresholds are smaller than MAXEXTLEN. 517 */ 518 while (alloc_blocks && alloc_blocks >= freesp) 519 alloc_blocks >>= 4; 520 check_writeio: 521 if (alloc_blocks < mp->m_writeio_blocks) 522 alloc_blocks = mp->m_writeio_blocks; 523 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 524 mp->m_writeio_blocks); 525 return alloc_blocks; 526 } 527 528 static int 529 xfs_file_iomap_begin_delay( 530 struct inode *inode, 531 loff_t offset, 532 loff_t count, 533 unsigned flags, 534 struct iomap *iomap) 535 { 536 struct xfs_inode *ip = XFS_I(inode); 537 struct xfs_mount *mp = ip->i_mount; 538 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 539 xfs_fileoff_t maxbytes_fsb = 540 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 541 xfs_fileoff_t end_fsb; 542 struct xfs_bmbt_irec imap, cmap; 543 struct xfs_iext_cursor icur, ccur; 544 xfs_fsblock_t prealloc_blocks = 0; 545 bool eof = false, cow_eof = false, shared = false; 546 int whichfork = XFS_DATA_FORK; 547 int error = 0; 548 549 ASSERT(!XFS_IS_REALTIME_INODE(ip)); 550 ASSERT(!xfs_get_extsz_hint(ip)); 551 552 xfs_ilock(ip, XFS_ILOCK_EXCL); 553 554 if (unlikely(XFS_TEST_ERROR( 555 (XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_EXTENTS && 556 XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_BTREE), 557 mp, XFS_ERRTAG_BMAPIFORMAT))) { 558 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); 559 error = -EFSCORRUPTED; 560 goto out_unlock; 561 } 562 563 XFS_STATS_INC(mp, xs_blk_mapw); 564 565 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 566 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 567 if (error) 568 goto out_unlock; 569 } 570 571 end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb); 572 573 /* 574 * Search the data fork fork first to look up our source mapping. We 575 * always need the data fork map, as we have to return it to the 576 * iomap code so that the higher level write code can read data in to 577 * perform read-modify-write cycles for unaligned writes. 578 */ 579 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 580 if (eof) 581 imap.br_startoff = end_fsb; /* fake hole until the end */ 582 583 /* We never need to allocate blocks for zeroing a hole. */ 584 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) { 585 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 586 goto out_unlock; 587 } 588 589 /* 590 * Search the COW fork extent list even if we did not find a data fork 591 * extent. This serves two purposes: first this implements the 592 * speculative preallocation using cowextsize, so that we also unshare 593 * block adjacent to shared blocks instead of just the shared blocks 594 * themselves. Second the lookup in the extent list is generally faster 595 * than going out to the shared extent tree. 596 */ 597 if (xfs_is_cow_inode(ip)) { 598 if (!ip->i_cowfp) { 599 ASSERT(!xfs_is_reflink_inode(ip)); 600 xfs_ifork_init_cow(ip); 601 } 602 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 603 &ccur, &cmap); 604 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 605 trace_xfs_reflink_cow_found(ip, &cmap); 606 whichfork = XFS_COW_FORK; 607 goto done; 608 } 609 } 610 611 if (imap.br_startoff <= offset_fsb) { 612 /* 613 * For reflink files we may need a delalloc reservation when 614 * overwriting shared extents. This includes zeroing of 615 * existing extents that contain data. 616 */ 617 if (!xfs_is_cow_inode(ip) || 618 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 619 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 620 &imap); 621 goto done; 622 } 623 624 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 625 626 /* Trim the mapping to the nearest shared extent boundary. */ 627 error = xfs_inode_need_cow(ip, &imap, &shared); 628 if (error) 629 goto out_unlock; 630 631 /* Not shared? Just report the (potentially capped) extent. */ 632 if (!shared) { 633 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 634 &imap); 635 goto done; 636 } 637 638 /* 639 * Fork all the shared blocks from our write offset until the 640 * end of the extent. 641 */ 642 whichfork = XFS_COW_FORK; 643 end_fsb = imap.br_startoff + imap.br_blockcount; 644 } else { 645 /* 646 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 647 * pages to keep the chunks of work done where somewhat 648 * symmetric with the work writeback does. This is a completely 649 * arbitrary number pulled out of thin air. 650 * 651 * Note that the values needs to be less than 32-bits wide until 652 * the lower level functions are updated. 653 */ 654 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 655 end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb); 656 657 if (xfs_is_always_cow_inode(ip)) 658 whichfork = XFS_COW_FORK; 659 } 660 661 error = xfs_qm_dqattach_locked(ip, false); 662 if (error) 663 goto out_unlock; 664 665 if (eof) { 666 prealloc_blocks = xfs_iomap_prealloc_size(ip, whichfork, offset, 667 count, &icur); 668 if (prealloc_blocks) { 669 xfs_extlen_t align; 670 xfs_off_t end_offset; 671 xfs_fileoff_t p_end_fsb; 672 673 end_offset = XFS_WRITEIO_ALIGN(mp, offset + count - 1); 674 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 675 prealloc_blocks; 676 677 align = xfs_eof_alignment(ip, 0); 678 if (align) 679 p_end_fsb = roundup_64(p_end_fsb, align); 680 681 p_end_fsb = min(p_end_fsb, maxbytes_fsb); 682 ASSERT(p_end_fsb > offset_fsb); 683 prealloc_blocks = p_end_fsb - end_fsb; 684 } 685 } 686 687 retry: 688 error = xfs_bmapi_reserve_delalloc(ip, whichfork, offset_fsb, 689 end_fsb - offset_fsb, prealloc_blocks, 690 whichfork == XFS_DATA_FORK ? &imap : &cmap, 691 whichfork == XFS_DATA_FORK ? &icur : &ccur, 692 whichfork == XFS_DATA_FORK ? eof : cow_eof); 693 switch (error) { 694 case 0: 695 break; 696 case -ENOSPC: 697 case -EDQUOT: 698 /* retry without any preallocation */ 699 trace_xfs_delalloc_enospc(ip, offset, count); 700 if (prealloc_blocks) { 701 prealloc_blocks = 0; 702 goto retry; 703 } 704 /*FALLTHRU*/ 705 default: 706 goto out_unlock; 707 } 708 709 /* 710 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 711 * them out if the write happens to fail. 712 */ 713 iomap->flags |= IOMAP_F_NEW; 714 trace_xfs_iomap_alloc(ip, offset, count, whichfork, 715 whichfork == XFS_DATA_FORK ? &imap : &cmap); 716 done: 717 if (whichfork == XFS_COW_FORK) { 718 if (imap.br_startoff > offset_fsb) { 719 xfs_trim_extent(&cmap, offset_fsb, 720 imap.br_startoff - offset_fsb); 721 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, true); 722 goto out_unlock; 723 } 724 /* ensure we only report blocks we have a reservation for */ 725 xfs_trim_extent(&imap, cmap.br_startoff, cmap.br_blockcount); 726 shared = true; 727 } 728 error = xfs_bmbt_to_iomap(ip, iomap, &imap, shared); 729 out_unlock: 730 xfs_iunlock(ip, XFS_ILOCK_EXCL); 731 return error; 732 } 733 734 int 735 xfs_iomap_write_unwritten( 736 xfs_inode_t *ip, 737 xfs_off_t offset, 738 xfs_off_t count, 739 bool update_isize) 740 { 741 xfs_mount_t *mp = ip->i_mount; 742 xfs_fileoff_t offset_fsb; 743 xfs_filblks_t count_fsb; 744 xfs_filblks_t numblks_fsb; 745 int nimaps; 746 xfs_trans_t *tp; 747 xfs_bmbt_irec_t imap; 748 struct inode *inode = VFS_I(ip); 749 xfs_fsize_t i_size; 750 uint resblks; 751 int error; 752 753 trace_xfs_unwritten_convert(ip, offset, count); 754 755 offset_fsb = XFS_B_TO_FSBT(mp, offset); 756 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 757 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 758 759 /* 760 * Reserve enough blocks in this transaction for two complete extent 761 * btree splits. We may be converting the middle part of an unwritten 762 * extent and in this case we will insert two new extents in the btree 763 * each of which could cause a full split. 764 * 765 * This reservation amount will be used in the first call to 766 * xfs_bmbt_split() to select an AG with enough space to satisfy the 767 * rest of the operation. 768 */ 769 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 770 771 do { 772 /* 773 * Set up a transaction to convert the range of extents 774 * from unwritten to real. Do allocations in a loop until 775 * we have covered the range passed in. 776 * 777 * Note that we can't risk to recursing back into the filesystem 778 * here as we might be asked to write out the same inode that we 779 * complete here and might deadlock on the iolock. 780 */ 781 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 782 XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp); 783 if (error) 784 return error; 785 786 xfs_ilock(ip, XFS_ILOCK_EXCL); 787 xfs_trans_ijoin(tp, ip, 0); 788 789 /* 790 * Modify the unwritten extent state of the buffer. 791 */ 792 nimaps = 1; 793 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 794 XFS_BMAPI_CONVERT, resblks, &imap, 795 &nimaps); 796 if (error) 797 goto error_on_bmapi_transaction; 798 799 /* 800 * Log the updated inode size as we go. We have to be careful 801 * to only log it up to the actual write offset if it is 802 * halfway into a block. 803 */ 804 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 805 if (i_size > offset + count) 806 i_size = offset + count; 807 if (update_isize && i_size > i_size_read(inode)) 808 i_size_write(inode, i_size); 809 i_size = xfs_new_eof(ip, i_size); 810 if (i_size) { 811 ip->i_d.di_size = i_size; 812 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 813 } 814 815 error = xfs_trans_commit(tp); 816 xfs_iunlock(ip, XFS_ILOCK_EXCL); 817 if (error) 818 return error; 819 820 if (!(imap.br_startblock || XFS_IS_REALTIME_INODE(ip))) 821 return xfs_alert_fsblock_zero(ip, &imap); 822 823 if ((numblks_fsb = imap.br_blockcount) == 0) { 824 /* 825 * The numblks_fsb value should always get 826 * smaller, otherwise the loop is stuck. 827 */ 828 ASSERT(imap.br_blockcount); 829 break; 830 } 831 offset_fsb += numblks_fsb; 832 count_fsb -= numblks_fsb; 833 } while (count_fsb > 0); 834 835 return 0; 836 837 error_on_bmapi_transaction: 838 xfs_trans_cancel(tp); 839 xfs_iunlock(ip, XFS_ILOCK_EXCL); 840 return error; 841 } 842 843 static inline bool 844 imap_needs_alloc( 845 struct inode *inode, 846 struct xfs_bmbt_irec *imap, 847 int nimaps) 848 { 849 return !nimaps || 850 imap->br_startblock == HOLESTARTBLOCK || 851 imap->br_startblock == DELAYSTARTBLOCK || 852 (IS_DAX(inode) && imap->br_state == XFS_EXT_UNWRITTEN); 853 } 854 855 static inline bool 856 needs_cow_for_zeroing( 857 struct xfs_bmbt_irec *imap, 858 int nimaps) 859 { 860 return nimaps && 861 imap->br_startblock != HOLESTARTBLOCK && 862 imap->br_state != XFS_EXT_UNWRITTEN; 863 } 864 865 static int 866 xfs_ilock_for_iomap( 867 struct xfs_inode *ip, 868 unsigned flags, 869 unsigned *lockmode) 870 { 871 unsigned mode = XFS_ILOCK_SHARED; 872 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO); 873 874 /* 875 * COW writes may allocate delalloc space or convert unwritten COW 876 * extents, so we need to make sure to take the lock exclusively here. 877 */ 878 if (xfs_is_cow_inode(ip) && is_write) { 879 /* 880 * FIXME: It could still overwrite on unshared extents and not 881 * need allocation. 882 */ 883 if (flags & IOMAP_NOWAIT) 884 return -EAGAIN; 885 mode = XFS_ILOCK_EXCL; 886 } 887 888 /* 889 * Extents not yet cached requires exclusive access, don't block. This 890 * is an opencoded xfs_ilock_data_map_shared() call but with 891 * non-blocking behaviour. 892 */ 893 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 894 if (flags & IOMAP_NOWAIT) 895 return -EAGAIN; 896 mode = XFS_ILOCK_EXCL; 897 } 898 899 relock: 900 if (flags & IOMAP_NOWAIT) { 901 if (!xfs_ilock_nowait(ip, mode)) 902 return -EAGAIN; 903 } else { 904 xfs_ilock(ip, mode); 905 } 906 907 /* 908 * The reflink iflag could have changed since the earlier unlocked 909 * check, so if we got ILOCK_SHARED for a write and but we're now a 910 * reflink inode we have to switch to ILOCK_EXCL and relock. 911 */ 912 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) { 913 xfs_iunlock(ip, mode); 914 mode = XFS_ILOCK_EXCL; 915 goto relock; 916 } 917 918 *lockmode = mode; 919 return 0; 920 } 921 922 static int 923 xfs_file_iomap_begin( 924 struct inode *inode, 925 loff_t offset, 926 loff_t length, 927 unsigned flags, 928 struct iomap *iomap) 929 { 930 struct xfs_inode *ip = XFS_I(inode); 931 struct xfs_mount *mp = ip->i_mount; 932 struct xfs_bmbt_irec imap; 933 xfs_fileoff_t offset_fsb, end_fsb; 934 int nimaps = 1, error = 0; 935 bool shared = false; 936 unsigned lockmode; 937 938 if (XFS_FORCED_SHUTDOWN(mp)) 939 return -EIO; 940 941 if ((flags & (IOMAP_WRITE | IOMAP_ZERO)) && !(flags & IOMAP_DIRECT) && 942 !IS_DAX(inode) && !xfs_get_extsz_hint(ip)) { 943 /* Reserve delalloc blocks for regular writeback. */ 944 return xfs_file_iomap_begin_delay(inode, offset, length, flags, 945 iomap); 946 } 947 948 /* 949 * Lock the inode in the manner required for the specified operation and 950 * check for as many conditions that would result in blocking as 951 * possible. This removes most of the non-blocking checks from the 952 * mapping code below. 953 */ 954 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 955 if (error) 956 return error; 957 958 ASSERT(offset <= mp->m_super->s_maxbytes); 959 if (offset > mp->m_super->s_maxbytes - length) 960 length = mp->m_super->s_maxbytes - offset; 961 offset_fsb = XFS_B_TO_FSBT(mp, offset); 962 end_fsb = XFS_B_TO_FSB(mp, offset + length); 963 964 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 965 &nimaps, 0); 966 if (error) 967 goto out_unlock; 968 969 if (flags & IOMAP_REPORT) { 970 /* Trim the mapping to the nearest shared extent boundary. */ 971 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 972 if (error) 973 goto out_unlock; 974 } 975 976 /* Non-modifying mapping requested, so we are done */ 977 if (!(flags & (IOMAP_WRITE | IOMAP_ZERO))) 978 goto out_found; 979 980 /* 981 * Break shared extents if necessary. Checks for non-blocking IO have 982 * been done up front, so we don't need to do them here. 983 */ 984 if (xfs_is_cow_inode(ip)) { 985 struct xfs_bmbt_irec cmap; 986 bool directio = (flags & IOMAP_DIRECT); 987 988 /* if zeroing doesn't need COW allocation, then we are done. */ 989 if ((flags & IOMAP_ZERO) && 990 !needs_cow_for_zeroing(&imap, nimaps)) 991 goto out_found; 992 993 /* may drop and re-acquire the ilock */ 994 cmap = imap; 995 error = xfs_reflink_allocate_cow(ip, &cmap, &shared, &lockmode, 996 directio); 997 if (error) 998 goto out_unlock; 999 1000 /* 1001 * For buffered writes we need to report the address of the 1002 * previous block (if there was any) so that the higher level 1003 * write code can perform read-modify-write operations; we 1004 * won't need the CoW fork mapping until writeback. For direct 1005 * I/O, which must be block aligned, we need to report the 1006 * newly allocated address. If the data fork has a hole, copy 1007 * the COW fork mapping to avoid allocating to the data fork. 1008 */ 1009 if (directio || imap.br_startblock == HOLESTARTBLOCK) 1010 imap = cmap; 1011 1012 end_fsb = imap.br_startoff + imap.br_blockcount; 1013 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 1014 } 1015 1016 /* Don't need to allocate over holes when doing zeroing operations. */ 1017 if (flags & IOMAP_ZERO) 1018 goto out_found; 1019 1020 if (!imap_needs_alloc(inode, &imap, nimaps)) 1021 goto out_found; 1022 1023 /* If nowait is set bail since we are going to make allocations. */ 1024 if (flags & IOMAP_NOWAIT) { 1025 error = -EAGAIN; 1026 goto out_unlock; 1027 } 1028 1029 /* 1030 * We cap the maximum length we map to a sane size to keep the chunks 1031 * of work done where somewhat symmetric with the work writeback does. 1032 * This is a completely arbitrary number pulled out of thin air as a 1033 * best guess for initial testing. 1034 * 1035 * Note that the values needs to be less than 32-bits wide until the 1036 * lower level functions are updated. 1037 */ 1038 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 1039 1040 /* 1041 * xfs_iomap_write_direct() expects the shared lock. It is unlocked on 1042 * return. 1043 */ 1044 if (lockmode == XFS_ILOCK_EXCL) 1045 xfs_ilock_demote(ip, lockmode); 1046 error = xfs_iomap_write_direct(ip, offset, length, &imap, 1047 nimaps); 1048 if (error) 1049 return error; 1050 1051 iomap->flags |= IOMAP_F_NEW; 1052 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 1053 1054 out_finish: 1055 return xfs_bmbt_to_iomap(ip, iomap, &imap, shared); 1056 1057 out_found: 1058 ASSERT(nimaps); 1059 xfs_iunlock(ip, lockmode); 1060 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1061 goto out_finish; 1062 1063 out_unlock: 1064 xfs_iunlock(ip, lockmode); 1065 return error; 1066 } 1067 1068 static int 1069 xfs_file_iomap_end_delalloc( 1070 struct xfs_inode *ip, 1071 loff_t offset, 1072 loff_t length, 1073 ssize_t written, 1074 struct iomap *iomap) 1075 { 1076 struct xfs_mount *mp = ip->i_mount; 1077 xfs_fileoff_t start_fsb; 1078 xfs_fileoff_t end_fsb; 1079 int error = 0; 1080 1081 /* 1082 * Behave as if the write failed if drop writes is enabled. Set the NEW 1083 * flag to force delalloc cleanup. 1084 */ 1085 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) { 1086 iomap->flags |= IOMAP_F_NEW; 1087 written = 0; 1088 } 1089 1090 /* 1091 * start_fsb refers to the first unused block after a short write. If 1092 * nothing was written, round offset down to point at the first block in 1093 * the range. 1094 */ 1095 if (unlikely(!written)) 1096 start_fsb = XFS_B_TO_FSBT(mp, offset); 1097 else 1098 start_fsb = XFS_B_TO_FSB(mp, offset + written); 1099 end_fsb = XFS_B_TO_FSB(mp, offset + length); 1100 1101 /* 1102 * Trim delalloc blocks if they were allocated by this write and we 1103 * didn't manage to write the whole range. 1104 * 1105 * We don't need to care about racing delalloc as we hold i_mutex 1106 * across the reserve/allocate/unreserve calls. If there are delalloc 1107 * blocks in the range, they are ours. 1108 */ 1109 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) { 1110 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb), 1111 XFS_FSB_TO_B(mp, end_fsb) - 1); 1112 1113 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1114 end_fsb - start_fsb); 1115 if (error && !XFS_FORCED_SHUTDOWN(mp)) { 1116 xfs_alert(mp, "%s: unable to clean up ino %lld", 1117 __func__, ip->i_ino); 1118 return error; 1119 } 1120 } 1121 1122 return 0; 1123 } 1124 1125 static int 1126 xfs_file_iomap_end( 1127 struct inode *inode, 1128 loff_t offset, 1129 loff_t length, 1130 ssize_t written, 1131 unsigned flags, 1132 struct iomap *iomap) 1133 { 1134 if ((flags & IOMAP_WRITE) && iomap->type == IOMAP_DELALLOC) 1135 return xfs_file_iomap_end_delalloc(XFS_I(inode), offset, 1136 length, written, iomap); 1137 return 0; 1138 } 1139 1140 const struct iomap_ops xfs_iomap_ops = { 1141 .iomap_begin = xfs_file_iomap_begin, 1142 .iomap_end = xfs_file_iomap_end, 1143 }; 1144 1145 static int 1146 xfs_seek_iomap_begin( 1147 struct inode *inode, 1148 loff_t offset, 1149 loff_t length, 1150 unsigned flags, 1151 struct iomap *iomap) 1152 { 1153 struct xfs_inode *ip = XFS_I(inode); 1154 struct xfs_mount *mp = ip->i_mount; 1155 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1156 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1157 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1158 struct xfs_iext_cursor icur; 1159 struct xfs_bmbt_irec imap, cmap; 1160 int error = 0; 1161 unsigned lockmode; 1162 1163 if (XFS_FORCED_SHUTDOWN(mp)) 1164 return -EIO; 1165 1166 lockmode = xfs_ilock_data_map_shared(ip); 1167 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 1168 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1169 if (error) 1170 goto out_unlock; 1171 } 1172 1173 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1174 /* 1175 * If we found a data extent we are done. 1176 */ 1177 if (imap.br_startoff <= offset_fsb) 1178 goto done; 1179 data_fsb = imap.br_startoff; 1180 } else { 1181 /* 1182 * Fake a hole until the end of the file. 1183 */ 1184 data_fsb = min(XFS_B_TO_FSB(mp, offset + length), 1185 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1186 } 1187 1188 /* 1189 * If a COW fork extent covers the hole, report it - capped to the next 1190 * data fork extent: 1191 */ 1192 if (xfs_inode_has_cow_data(ip) && 1193 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1194 cow_fsb = cmap.br_startoff; 1195 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1196 if (data_fsb < cow_fsb + cmap.br_blockcount) 1197 end_fsb = min(end_fsb, data_fsb); 1198 xfs_trim_extent(&cmap, offset_fsb, end_fsb); 1199 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, true); 1200 /* 1201 * This is a COW extent, so we must probe the page cache 1202 * because there could be dirty page cache being backed 1203 * by this extent. 1204 */ 1205 iomap->type = IOMAP_UNWRITTEN; 1206 goto out_unlock; 1207 } 1208 1209 /* 1210 * Else report a hole, capped to the next found data or COW extent. 1211 */ 1212 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1213 imap.br_blockcount = cow_fsb - offset_fsb; 1214 else 1215 imap.br_blockcount = data_fsb - offset_fsb; 1216 imap.br_startoff = offset_fsb; 1217 imap.br_startblock = HOLESTARTBLOCK; 1218 imap.br_state = XFS_EXT_NORM; 1219 done: 1220 xfs_trim_extent(&imap, offset_fsb, end_fsb); 1221 error = xfs_bmbt_to_iomap(ip, iomap, &imap, false); 1222 out_unlock: 1223 xfs_iunlock(ip, lockmode); 1224 return error; 1225 } 1226 1227 const struct iomap_ops xfs_seek_iomap_ops = { 1228 .iomap_begin = xfs_seek_iomap_begin, 1229 }; 1230 1231 static int 1232 xfs_xattr_iomap_begin( 1233 struct inode *inode, 1234 loff_t offset, 1235 loff_t length, 1236 unsigned flags, 1237 struct iomap *iomap) 1238 { 1239 struct xfs_inode *ip = XFS_I(inode); 1240 struct xfs_mount *mp = ip->i_mount; 1241 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1242 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1243 struct xfs_bmbt_irec imap; 1244 int nimaps = 1, error = 0; 1245 unsigned lockmode; 1246 1247 if (XFS_FORCED_SHUTDOWN(mp)) 1248 return -EIO; 1249 1250 lockmode = xfs_ilock_attr_map_shared(ip); 1251 1252 /* if there are no attribute fork or extents, return ENOENT */ 1253 if (!XFS_IFORK_Q(ip) || !ip->i_d.di_anextents) { 1254 error = -ENOENT; 1255 goto out_unlock; 1256 } 1257 1258 ASSERT(ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL); 1259 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1260 &nimaps, XFS_BMAPI_ATTRFORK); 1261 out_unlock: 1262 xfs_iunlock(ip, lockmode); 1263 1264 if (error) 1265 return error; 1266 ASSERT(nimaps); 1267 return xfs_bmbt_to_iomap(ip, iomap, &imap, false); 1268 } 1269 1270 const struct iomap_ops xfs_xattr_iomap_ops = { 1271 .iomap_begin = xfs_xattr_iomap_begin, 1272 }; 1273