1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_dquot_item.h" 28 #include "xfs_dquot.h" 29 #include "xfs_reflink.h" 30 31 32 #define XFS_WRITEIO_ALIGN(mp,off) (((off) >> mp->m_writeio_log) \ 33 << mp->m_writeio_log) 34 35 static int 36 xfs_alert_fsblock_zero( 37 xfs_inode_t *ip, 38 xfs_bmbt_irec_t *imap) 39 { 40 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 41 "Access to block zero in inode %llu " 42 "start_block: %llx start_off: %llx " 43 "blkcnt: %llx extent-state: %x", 44 (unsigned long long)ip->i_ino, 45 (unsigned long long)imap->br_startblock, 46 (unsigned long long)imap->br_startoff, 47 (unsigned long long)imap->br_blockcount, 48 imap->br_state); 49 return -EFSCORRUPTED; 50 } 51 52 int 53 xfs_bmbt_to_iomap( 54 struct xfs_inode *ip, 55 struct iomap *iomap, 56 struct xfs_bmbt_irec *imap, 57 bool shared) 58 { 59 struct xfs_mount *mp = ip->i_mount; 60 61 if (unlikely(!imap->br_startblock && !XFS_IS_REALTIME_INODE(ip))) 62 return xfs_alert_fsblock_zero(ip, imap); 63 64 if (imap->br_startblock == HOLESTARTBLOCK) { 65 iomap->addr = IOMAP_NULL_ADDR; 66 iomap->type = IOMAP_HOLE; 67 } else if (imap->br_startblock == DELAYSTARTBLOCK || 68 isnullstartblock(imap->br_startblock)) { 69 iomap->addr = IOMAP_NULL_ADDR; 70 iomap->type = IOMAP_DELALLOC; 71 } else { 72 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock)); 73 if (imap->br_state == XFS_EXT_UNWRITTEN) 74 iomap->type = IOMAP_UNWRITTEN; 75 else 76 iomap->type = IOMAP_MAPPED; 77 } 78 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 79 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 80 iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip)); 81 iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip)); 82 83 if (xfs_ipincount(ip) && 84 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 85 iomap->flags |= IOMAP_F_DIRTY; 86 if (shared) 87 iomap->flags |= IOMAP_F_SHARED; 88 return 0; 89 } 90 91 static void 92 xfs_hole_to_iomap( 93 struct xfs_inode *ip, 94 struct iomap *iomap, 95 xfs_fileoff_t offset_fsb, 96 xfs_fileoff_t end_fsb) 97 { 98 iomap->addr = IOMAP_NULL_ADDR; 99 iomap->type = IOMAP_HOLE; 100 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 101 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 102 iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip)); 103 iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip)); 104 } 105 106 xfs_extlen_t 107 xfs_eof_alignment( 108 struct xfs_inode *ip, 109 xfs_extlen_t extsize) 110 { 111 struct xfs_mount *mp = ip->i_mount; 112 xfs_extlen_t align = 0; 113 114 if (!XFS_IS_REALTIME_INODE(ip)) { 115 /* 116 * Round up the allocation request to a stripe unit 117 * (m_dalign) boundary if the file size is >= stripe unit 118 * size, and we are allocating past the allocation eof. 119 * 120 * If mounted with the "-o swalloc" option the alignment is 121 * increased from the strip unit size to the stripe width. 122 */ 123 if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC)) 124 align = mp->m_swidth; 125 else if (mp->m_dalign) 126 align = mp->m_dalign; 127 128 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 129 align = 0; 130 } 131 132 /* 133 * Always round up the allocation request to an extent boundary 134 * (when file on a real-time subvolume or has di_extsize hint). 135 */ 136 if (extsize) { 137 if (align) 138 align = roundup_64(align, extsize); 139 else 140 align = extsize; 141 } 142 143 return align; 144 } 145 146 STATIC int 147 xfs_iomap_eof_align_last_fsb( 148 struct xfs_inode *ip, 149 xfs_extlen_t extsize, 150 xfs_fileoff_t *last_fsb) 151 { 152 xfs_extlen_t align = xfs_eof_alignment(ip, extsize); 153 154 if (align) { 155 xfs_fileoff_t new_last_fsb = roundup_64(*last_fsb, align); 156 int eof, error; 157 158 error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof); 159 if (error) 160 return error; 161 if (eof) 162 *last_fsb = new_last_fsb; 163 } 164 return 0; 165 } 166 167 int 168 xfs_iomap_write_direct( 169 xfs_inode_t *ip, 170 xfs_off_t offset, 171 size_t count, 172 xfs_bmbt_irec_t *imap, 173 int nmaps) 174 { 175 xfs_mount_t *mp = ip->i_mount; 176 xfs_fileoff_t offset_fsb; 177 xfs_fileoff_t last_fsb; 178 xfs_filblks_t count_fsb, resaligned; 179 xfs_extlen_t extsz; 180 int nimaps; 181 int quota_flag; 182 int rt; 183 xfs_trans_t *tp; 184 uint qblocks, resblks, resrtextents; 185 int error; 186 int lockmode; 187 int bmapi_flags = XFS_BMAPI_PREALLOC; 188 uint tflags = 0; 189 190 rt = XFS_IS_REALTIME_INODE(ip); 191 extsz = xfs_get_extsz_hint(ip); 192 lockmode = XFS_ILOCK_SHARED; /* locked by caller */ 193 194 ASSERT(xfs_isilocked(ip, lockmode)); 195 196 offset_fsb = XFS_B_TO_FSBT(mp, offset); 197 last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count))); 198 if ((offset + count) > XFS_ISIZE(ip)) { 199 /* 200 * Assert that the in-core extent list is present since this can 201 * call xfs_iread_extents() and we only have the ilock shared. 202 * This should be safe because the lock was held around a bmapi 203 * call in the caller and we only need it to access the in-core 204 * list. 205 */ 206 ASSERT(XFS_IFORK_PTR(ip, XFS_DATA_FORK)->if_flags & 207 XFS_IFEXTENTS); 208 error = xfs_iomap_eof_align_last_fsb(ip, extsz, &last_fsb); 209 if (error) 210 goto out_unlock; 211 } else { 212 if (nmaps && (imap->br_startblock == HOLESTARTBLOCK)) 213 last_fsb = min(last_fsb, (xfs_fileoff_t) 214 imap->br_blockcount + 215 imap->br_startoff); 216 } 217 count_fsb = last_fsb - offset_fsb; 218 ASSERT(count_fsb > 0); 219 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, extsz); 220 221 if (unlikely(rt)) { 222 resrtextents = qblocks = resaligned; 223 resrtextents /= mp->m_sb.sb_rextsize; 224 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 225 quota_flag = XFS_QMOPT_RES_RTBLKS; 226 } else { 227 resrtextents = 0; 228 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 229 quota_flag = XFS_QMOPT_RES_REGBLKS; 230 } 231 232 /* 233 * Drop the shared lock acquired by the caller, attach the dquot if 234 * necessary and move on to transaction setup. 235 */ 236 xfs_iunlock(ip, lockmode); 237 error = xfs_qm_dqattach(ip); 238 if (error) 239 return error; 240 241 /* 242 * For DAX, we do not allocate unwritten extents, but instead we zero 243 * the block before we commit the transaction. Ideally we'd like to do 244 * this outside the transaction context, but if we commit and then crash 245 * we may not have zeroed the blocks and this will be exposed on 246 * recovery of the allocation. Hence we must zero before commit. 247 * 248 * Further, if we are mapping unwritten extents here, we need to zero 249 * and convert them to written so that we don't need an unwritten extent 250 * callback for DAX. This also means that we need to be able to dip into 251 * the reserve block pool for bmbt block allocation if there is no space 252 * left but we need to do unwritten extent conversion. 253 */ 254 if (IS_DAX(VFS_I(ip))) { 255 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 256 if (imap->br_state == XFS_EXT_UNWRITTEN) { 257 tflags |= XFS_TRANS_RESERVE; 258 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 259 } 260 } 261 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents, 262 tflags, &tp); 263 if (error) 264 return error; 265 266 lockmode = XFS_ILOCK_EXCL; 267 xfs_ilock(ip, lockmode); 268 269 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag); 270 if (error) 271 goto out_trans_cancel; 272 273 xfs_trans_ijoin(tp, ip, 0); 274 275 /* 276 * From this point onwards we overwrite the imap pointer that the 277 * caller gave to us. 278 */ 279 nimaps = 1; 280 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 281 bmapi_flags, resblks, imap, &nimaps); 282 if (error) 283 goto out_res_cancel; 284 285 /* 286 * Complete the transaction 287 */ 288 error = xfs_trans_commit(tp); 289 if (error) 290 goto out_unlock; 291 292 /* 293 * Copy any maps to caller's array and return any error. 294 */ 295 if (nimaps == 0) { 296 error = -ENOSPC; 297 goto out_unlock; 298 } 299 300 if (!(imap->br_startblock || XFS_IS_REALTIME_INODE(ip))) 301 error = xfs_alert_fsblock_zero(ip, imap); 302 303 out_unlock: 304 xfs_iunlock(ip, lockmode); 305 return error; 306 307 out_res_cancel: 308 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 309 out_trans_cancel: 310 xfs_trans_cancel(tp); 311 goto out_unlock; 312 } 313 314 STATIC bool 315 xfs_quota_need_throttle( 316 struct xfs_inode *ip, 317 int type, 318 xfs_fsblock_t alloc_blocks) 319 { 320 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 321 322 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 323 return false; 324 325 /* no hi watermark, no throttle */ 326 if (!dq->q_prealloc_hi_wmark) 327 return false; 328 329 /* under the lo watermark, no throttle */ 330 if (dq->q_res_bcount + alloc_blocks < dq->q_prealloc_lo_wmark) 331 return false; 332 333 return true; 334 } 335 336 STATIC void 337 xfs_quota_calc_throttle( 338 struct xfs_inode *ip, 339 int type, 340 xfs_fsblock_t *qblocks, 341 int *qshift, 342 int64_t *qfreesp) 343 { 344 int64_t freesp; 345 int shift = 0; 346 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 347 348 /* no dq, or over hi wmark, squash the prealloc completely */ 349 if (!dq || dq->q_res_bcount >= dq->q_prealloc_hi_wmark) { 350 *qblocks = 0; 351 *qfreesp = 0; 352 return; 353 } 354 355 freesp = dq->q_prealloc_hi_wmark - dq->q_res_bcount; 356 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) { 357 shift = 2; 358 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT]) 359 shift += 2; 360 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT]) 361 shift += 2; 362 } 363 364 if (freesp < *qfreesp) 365 *qfreesp = freesp; 366 367 /* only overwrite the throttle values if we are more aggressive */ 368 if ((freesp >> shift) < (*qblocks >> *qshift)) { 369 *qblocks = freesp; 370 *qshift = shift; 371 } 372 } 373 374 /* 375 * If we are doing a write at the end of the file and there are no allocations 376 * past this one, then extend the allocation out to the file system's write 377 * iosize. 378 * 379 * If we don't have a user specified preallocation size, dynamically increase 380 * the preallocation size as the size of the file grows. Cap the maximum size 381 * at a single extent or less if the filesystem is near full. The closer the 382 * filesystem is to full, the smaller the maximum prealocation. 383 * 384 * As an exception we don't do any preallocation at all if the file is smaller 385 * than the minimum preallocation and we are using the default dynamic 386 * preallocation scheme, as it is likely this is the only write to the file that 387 * is going to be done. 388 * 389 * We clean up any extra space left over when the file is closed in 390 * xfs_inactive(). 391 */ 392 STATIC xfs_fsblock_t 393 xfs_iomap_prealloc_size( 394 struct xfs_inode *ip, 395 int whichfork, 396 loff_t offset, 397 loff_t count, 398 struct xfs_iext_cursor *icur) 399 { 400 struct xfs_mount *mp = ip->i_mount; 401 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 402 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 403 struct xfs_bmbt_irec prev; 404 int shift = 0; 405 int64_t freesp; 406 xfs_fsblock_t qblocks; 407 int qshift = 0; 408 xfs_fsblock_t alloc_blocks = 0; 409 410 if (offset + count <= XFS_ISIZE(ip)) 411 return 0; 412 413 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) && 414 (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_writeio_blocks))) 415 return 0; 416 417 /* 418 * If an explicit allocsize is set, the file is small, or we 419 * are writing behind a hole, then use the minimum prealloc: 420 */ 421 if ((mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) || 422 XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 423 !xfs_iext_peek_prev_extent(ifp, icur, &prev) || 424 prev.br_startoff + prev.br_blockcount < offset_fsb) 425 return mp->m_writeio_blocks; 426 427 /* 428 * Determine the initial size of the preallocation. We are beyond the 429 * current EOF here, but we need to take into account whether this is 430 * a sparse write or an extending write when determining the 431 * preallocation size. Hence we need to look up the extent that ends 432 * at the current write offset and use the result to determine the 433 * preallocation size. 434 * 435 * If the extent is a hole, then preallocation is essentially disabled. 436 * Otherwise we take the size of the preceding data extent as the basis 437 * for the preallocation size. If the size of the extent is greater than 438 * half the maximum extent length, then use the current offset as the 439 * basis. This ensures that for large files the preallocation size 440 * always extends to MAXEXTLEN rather than falling short due to things 441 * like stripe unit/width alignment of real extents. 442 */ 443 if (prev.br_blockcount <= (MAXEXTLEN >> 1)) 444 alloc_blocks = prev.br_blockcount << 1; 445 else 446 alloc_blocks = XFS_B_TO_FSB(mp, offset); 447 if (!alloc_blocks) 448 goto check_writeio; 449 qblocks = alloc_blocks; 450 451 /* 452 * MAXEXTLEN is not a power of two value but we round the prealloc down 453 * to the nearest power of two value after throttling. To prevent the 454 * round down from unconditionally reducing the maximum supported prealloc 455 * size, we round up first, apply appropriate throttling, round down and 456 * cap the value to MAXEXTLEN. 457 */ 458 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN), 459 alloc_blocks); 460 461 freesp = percpu_counter_read_positive(&mp->m_fdblocks); 462 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) { 463 shift = 2; 464 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT]) 465 shift++; 466 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT]) 467 shift++; 468 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT]) 469 shift++; 470 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT]) 471 shift++; 472 } 473 474 /* 475 * Check each quota to cap the prealloc size, provide a shift value to 476 * throttle with and adjust amount of available space. 477 */ 478 if (xfs_quota_need_throttle(ip, XFS_DQ_USER, alloc_blocks)) 479 xfs_quota_calc_throttle(ip, XFS_DQ_USER, &qblocks, &qshift, 480 &freesp); 481 if (xfs_quota_need_throttle(ip, XFS_DQ_GROUP, alloc_blocks)) 482 xfs_quota_calc_throttle(ip, XFS_DQ_GROUP, &qblocks, &qshift, 483 &freesp); 484 if (xfs_quota_need_throttle(ip, XFS_DQ_PROJ, alloc_blocks)) 485 xfs_quota_calc_throttle(ip, XFS_DQ_PROJ, &qblocks, &qshift, 486 &freesp); 487 488 /* 489 * The final prealloc size is set to the minimum of free space available 490 * in each of the quotas and the overall filesystem. 491 * 492 * The shift throttle value is set to the maximum value as determined by 493 * the global low free space values and per-quota low free space values. 494 */ 495 alloc_blocks = min(alloc_blocks, qblocks); 496 shift = max(shift, qshift); 497 498 if (shift) 499 alloc_blocks >>= shift; 500 /* 501 * rounddown_pow_of_two() returns an undefined result if we pass in 502 * alloc_blocks = 0. 503 */ 504 if (alloc_blocks) 505 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 506 if (alloc_blocks > MAXEXTLEN) 507 alloc_blocks = MAXEXTLEN; 508 509 /* 510 * If we are still trying to allocate more space than is 511 * available, squash the prealloc hard. This can happen if we 512 * have a large file on a small filesystem and the above 513 * lowspace thresholds are smaller than MAXEXTLEN. 514 */ 515 while (alloc_blocks && alloc_blocks >= freesp) 516 alloc_blocks >>= 4; 517 check_writeio: 518 if (alloc_blocks < mp->m_writeio_blocks) 519 alloc_blocks = mp->m_writeio_blocks; 520 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 521 mp->m_writeio_blocks); 522 return alloc_blocks; 523 } 524 525 static int 526 xfs_file_iomap_begin_delay( 527 struct inode *inode, 528 loff_t offset, 529 loff_t count, 530 unsigned flags, 531 struct iomap *iomap) 532 { 533 struct xfs_inode *ip = XFS_I(inode); 534 struct xfs_mount *mp = ip->i_mount; 535 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 536 xfs_fileoff_t maxbytes_fsb = 537 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 538 xfs_fileoff_t end_fsb; 539 struct xfs_bmbt_irec imap, cmap; 540 struct xfs_iext_cursor icur, ccur; 541 xfs_fsblock_t prealloc_blocks = 0; 542 bool eof = false, cow_eof = false, shared = false; 543 int whichfork = XFS_DATA_FORK; 544 int error = 0; 545 546 ASSERT(!XFS_IS_REALTIME_INODE(ip)); 547 ASSERT(!xfs_get_extsz_hint(ip)); 548 549 xfs_ilock(ip, XFS_ILOCK_EXCL); 550 551 if (unlikely(XFS_TEST_ERROR( 552 (XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_EXTENTS && 553 XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_BTREE), 554 mp, XFS_ERRTAG_BMAPIFORMAT))) { 555 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); 556 error = -EFSCORRUPTED; 557 goto out_unlock; 558 } 559 560 XFS_STATS_INC(mp, xs_blk_mapw); 561 562 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 563 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 564 if (error) 565 goto out_unlock; 566 } 567 568 end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb); 569 570 /* 571 * Search the data fork fork first to look up our source mapping. We 572 * always need the data fork map, as we have to return it to the 573 * iomap code so that the higher level write code can read data in to 574 * perform read-modify-write cycles for unaligned writes. 575 */ 576 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 577 if (eof) 578 imap.br_startoff = end_fsb; /* fake hole until the end */ 579 580 /* We never need to allocate blocks for zeroing a hole. */ 581 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) { 582 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 583 goto out_unlock; 584 } 585 586 /* 587 * Search the COW fork extent list even if we did not find a data fork 588 * extent. This serves two purposes: first this implements the 589 * speculative preallocation using cowextsize, so that we also unshare 590 * block adjacent to shared blocks instead of just the shared blocks 591 * themselves. Second the lookup in the extent list is generally faster 592 * than going out to the shared extent tree. 593 */ 594 if (xfs_is_cow_inode(ip)) { 595 if (!ip->i_cowfp) { 596 ASSERT(!xfs_is_reflink_inode(ip)); 597 xfs_ifork_init_cow(ip); 598 } 599 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 600 &ccur, &cmap); 601 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 602 trace_xfs_reflink_cow_found(ip, &cmap); 603 whichfork = XFS_COW_FORK; 604 goto done; 605 } 606 } 607 608 if (imap.br_startoff <= offset_fsb) { 609 /* 610 * For reflink files we may need a delalloc reservation when 611 * overwriting shared extents. This includes zeroing of 612 * existing extents that contain data. 613 */ 614 if (!xfs_is_cow_inode(ip) || 615 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 616 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 617 &imap); 618 goto done; 619 } 620 621 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 622 623 /* Trim the mapping to the nearest shared extent boundary. */ 624 error = xfs_inode_need_cow(ip, &imap, &shared); 625 if (error) 626 goto out_unlock; 627 628 /* Not shared? Just report the (potentially capped) extent. */ 629 if (!shared) { 630 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 631 &imap); 632 goto done; 633 } 634 635 /* 636 * Fork all the shared blocks from our write offset until the 637 * end of the extent. 638 */ 639 whichfork = XFS_COW_FORK; 640 end_fsb = imap.br_startoff + imap.br_blockcount; 641 } else { 642 /* 643 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 644 * pages to keep the chunks of work done where somewhat 645 * symmetric with the work writeback does. This is a completely 646 * arbitrary number pulled out of thin air. 647 * 648 * Note that the values needs to be less than 32-bits wide until 649 * the lower level functions are updated. 650 */ 651 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 652 end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb); 653 654 if (xfs_is_always_cow_inode(ip)) 655 whichfork = XFS_COW_FORK; 656 } 657 658 error = xfs_qm_dqattach_locked(ip, false); 659 if (error) 660 goto out_unlock; 661 662 if (eof) { 663 prealloc_blocks = xfs_iomap_prealloc_size(ip, whichfork, offset, 664 count, &icur); 665 if (prealloc_blocks) { 666 xfs_extlen_t align; 667 xfs_off_t end_offset; 668 xfs_fileoff_t p_end_fsb; 669 670 end_offset = XFS_WRITEIO_ALIGN(mp, offset + count - 1); 671 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 672 prealloc_blocks; 673 674 align = xfs_eof_alignment(ip, 0); 675 if (align) 676 p_end_fsb = roundup_64(p_end_fsb, align); 677 678 p_end_fsb = min(p_end_fsb, maxbytes_fsb); 679 ASSERT(p_end_fsb > offset_fsb); 680 prealloc_blocks = p_end_fsb - end_fsb; 681 } 682 } 683 684 retry: 685 error = xfs_bmapi_reserve_delalloc(ip, whichfork, offset_fsb, 686 end_fsb - offset_fsb, prealloc_blocks, 687 whichfork == XFS_DATA_FORK ? &imap : &cmap, 688 whichfork == XFS_DATA_FORK ? &icur : &ccur, 689 whichfork == XFS_DATA_FORK ? eof : cow_eof); 690 switch (error) { 691 case 0: 692 break; 693 case -ENOSPC: 694 case -EDQUOT: 695 /* retry without any preallocation */ 696 trace_xfs_delalloc_enospc(ip, offset, count); 697 if (prealloc_blocks) { 698 prealloc_blocks = 0; 699 goto retry; 700 } 701 /*FALLTHRU*/ 702 default: 703 goto out_unlock; 704 } 705 706 /* 707 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 708 * them out if the write happens to fail. 709 */ 710 iomap->flags |= IOMAP_F_NEW; 711 trace_xfs_iomap_alloc(ip, offset, count, whichfork, 712 whichfork == XFS_DATA_FORK ? &imap : &cmap); 713 done: 714 if (whichfork == XFS_COW_FORK) { 715 if (imap.br_startoff > offset_fsb) { 716 xfs_trim_extent(&cmap, offset_fsb, 717 imap.br_startoff - offset_fsb); 718 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, true); 719 goto out_unlock; 720 } 721 /* ensure we only report blocks we have a reservation for */ 722 xfs_trim_extent(&imap, cmap.br_startoff, cmap.br_blockcount); 723 shared = true; 724 } 725 error = xfs_bmbt_to_iomap(ip, iomap, &imap, shared); 726 out_unlock: 727 xfs_iunlock(ip, XFS_ILOCK_EXCL); 728 return error; 729 } 730 731 int 732 xfs_iomap_write_unwritten( 733 xfs_inode_t *ip, 734 xfs_off_t offset, 735 xfs_off_t count, 736 bool update_isize) 737 { 738 xfs_mount_t *mp = ip->i_mount; 739 xfs_fileoff_t offset_fsb; 740 xfs_filblks_t count_fsb; 741 xfs_filblks_t numblks_fsb; 742 int nimaps; 743 xfs_trans_t *tp; 744 xfs_bmbt_irec_t imap; 745 struct inode *inode = VFS_I(ip); 746 xfs_fsize_t i_size; 747 uint resblks; 748 int error; 749 750 trace_xfs_unwritten_convert(ip, offset, count); 751 752 offset_fsb = XFS_B_TO_FSBT(mp, offset); 753 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 754 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 755 756 /* 757 * Reserve enough blocks in this transaction for two complete extent 758 * btree splits. We may be converting the middle part of an unwritten 759 * extent and in this case we will insert two new extents in the btree 760 * each of which could cause a full split. 761 * 762 * This reservation amount will be used in the first call to 763 * xfs_bmbt_split() to select an AG with enough space to satisfy the 764 * rest of the operation. 765 */ 766 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 767 768 do { 769 /* 770 * Set up a transaction to convert the range of extents 771 * from unwritten to real. Do allocations in a loop until 772 * we have covered the range passed in. 773 * 774 * Note that we can't risk to recursing back into the filesystem 775 * here as we might be asked to write out the same inode that we 776 * complete here and might deadlock on the iolock. 777 */ 778 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 779 XFS_TRANS_RESERVE, &tp); 780 if (error) 781 return error; 782 783 xfs_ilock(ip, XFS_ILOCK_EXCL); 784 xfs_trans_ijoin(tp, ip, 0); 785 786 /* 787 * Modify the unwritten extent state of the buffer. 788 */ 789 nimaps = 1; 790 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 791 XFS_BMAPI_CONVERT, resblks, &imap, 792 &nimaps); 793 if (error) 794 goto error_on_bmapi_transaction; 795 796 /* 797 * Log the updated inode size as we go. We have to be careful 798 * to only log it up to the actual write offset if it is 799 * halfway into a block. 800 */ 801 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 802 if (i_size > offset + count) 803 i_size = offset + count; 804 if (update_isize && i_size > i_size_read(inode)) 805 i_size_write(inode, i_size); 806 i_size = xfs_new_eof(ip, i_size); 807 if (i_size) { 808 ip->i_d.di_size = i_size; 809 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 810 } 811 812 error = xfs_trans_commit(tp); 813 xfs_iunlock(ip, XFS_ILOCK_EXCL); 814 if (error) 815 return error; 816 817 if (!(imap.br_startblock || XFS_IS_REALTIME_INODE(ip))) 818 return xfs_alert_fsblock_zero(ip, &imap); 819 820 if ((numblks_fsb = imap.br_blockcount) == 0) { 821 /* 822 * The numblks_fsb value should always get 823 * smaller, otherwise the loop is stuck. 824 */ 825 ASSERT(imap.br_blockcount); 826 break; 827 } 828 offset_fsb += numblks_fsb; 829 count_fsb -= numblks_fsb; 830 } while (count_fsb > 0); 831 832 return 0; 833 834 error_on_bmapi_transaction: 835 xfs_trans_cancel(tp); 836 xfs_iunlock(ip, XFS_ILOCK_EXCL); 837 return error; 838 } 839 840 static inline bool 841 imap_needs_alloc( 842 struct inode *inode, 843 struct xfs_bmbt_irec *imap, 844 int nimaps) 845 { 846 return !nimaps || 847 imap->br_startblock == HOLESTARTBLOCK || 848 imap->br_startblock == DELAYSTARTBLOCK || 849 (IS_DAX(inode) && imap->br_state == XFS_EXT_UNWRITTEN); 850 } 851 852 static inline bool 853 needs_cow_for_zeroing( 854 struct xfs_bmbt_irec *imap, 855 int nimaps) 856 { 857 return nimaps && 858 imap->br_startblock != HOLESTARTBLOCK && 859 imap->br_state != XFS_EXT_UNWRITTEN; 860 } 861 862 static int 863 xfs_ilock_for_iomap( 864 struct xfs_inode *ip, 865 unsigned flags, 866 unsigned *lockmode) 867 { 868 unsigned mode = XFS_ILOCK_SHARED; 869 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO); 870 871 /* 872 * COW writes may allocate delalloc space or convert unwritten COW 873 * extents, so we need to make sure to take the lock exclusively here. 874 */ 875 if (xfs_is_cow_inode(ip) && is_write) { 876 /* 877 * FIXME: It could still overwrite on unshared extents and not 878 * need allocation. 879 */ 880 if (flags & IOMAP_NOWAIT) 881 return -EAGAIN; 882 mode = XFS_ILOCK_EXCL; 883 } 884 885 /* 886 * Extents not yet cached requires exclusive access, don't block. This 887 * is an opencoded xfs_ilock_data_map_shared() call but with 888 * non-blocking behaviour. 889 */ 890 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 891 if (flags & IOMAP_NOWAIT) 892 return -EAGAIN; 893 mode = XFS_ILOCK_EXCL; 894 } 895 896 relock: 897 if (flags & IOMAP_NOWAIT) { 898 if (!xfs_ilock_nowait(ip, mode)) 899 return -EAGAIN; 900 } else { 901 xfs_ilock(ip, mode); 902 } 903 904 /* 905 * The reflink iflag could have changed since the earlier unlocked 906 * check, so if we got ILOCK_SHARED for a write and but we're now a 907 * reflink inode we have to switch to ILOCK_EXCL and relock. 908 */ 909 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) { 910 xfs_iunlock(ip, mode); 911 mode = XFS_ILOCK_EXCL; 912 goto relock; 913 } 914 915 *lockmode = mode; 916 return 0; 917 } 918 919 static int 920 xfs_file_iomap_begin( 921 struct inode *inode, 922 loff_t offset, 923 loff_t length, 924 unsigned flags, 925 struct iomap *iomap) 926 { 927 struct xfs_inode *ip = XFS_I(inode); 928 struct xfs_mount *mp = ip->i_mount; 929 struct xfs_bmbt_irec imap; 930 xfs_fileoff_t offset_fsb, end_fsb; 931 int nimaps = 1, error = 0; 932 bool shared = false; 933 unsigned lockmode; 934 935 if (XFS_FORCED_SHUTDOWN(mp)) 936 return -EIO; 937 938 if ((flags & (IOMAP_WRITE | IOMAP_ZERO)) && !(flags & IOMAP_DIRECT) && 939 !IS_DAX(inode) && !xfs_get_extsz_hint(ip)) { 940 /* Reserve delalloc blocks for regular writeback. */ 941 return xfs_file_iomap_begin_delay(inode, offset, length, flags, 942 iomap); 943 } 944 945 /* 946 * Lock the inode in the manner required for the specified operation and 947 * check for as many conditions that would result in blocking as 948 * possible. This removes most of the non-blocking checks from the 949 * mapping code below. 950 */ 951 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 952 if (error) 953 return error; 954 955 ASSERT(offset <= mp->m_super->s_maxbytes); 956 if (offset > mp->m_super->s_maxbytes - length) 957 length = mp->m_super->s_maxbytes - offset; 958 offset_fsb = XFS_B_TO_FSBT(mp, offset); 959 end_fsb = XFS_B_TO_FSB(mp, offset + length); 960 961 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 962 &nimaps, 0); 963 if (error) 964 goto out_unlock; 965 966 if (flags & IOMAP_REPORT) { 967 /* Trim the mapping to the nearest shared extent boundary. */ 968 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 969 if (error) 970 goto out_unlock; 971 } 972 973 /* Non-modifying mapping requested, so we are done */ 974 if (!(flags & (IOMAP_WRITE | IOMAP_ZERO))) 975 goto out_found; 976 977 /* 978 * Break shared extents if necessary. Checks for non-blocking IO have 979 * been done up front, so we don't need to do them here. 980 */ 981 if (xfs_is_cow_inode(ip)) { 982 struct xfs_bmbt_irec cmap; 983 bool directio = (flags & IOMAP_DIRECT); 984 985 /* if zeroing doesn't need COW allocation, then we are done. */ 986 if ((flags & IOMAP_ZERO) && 987 !needs_cow_for_zeroing(&imap, nimaps)) 988 goto out_found; 989 990 /* may drop and re-acquire the ilock */ 991 cmap = imap; 992 error = xfs_reflink_allocate_cow(ip, &cmap, &shared, &lockmode, 993 directio); 994 if (error) 995 goto out_unlock; 996 997 /* 998 * For buffered writes we need to report the address of the 999 * previous block (if there was any) so that the higher level 1000 * write code can perform read-modify-write operations; we 1001 * won't need the CoW fork mapping until writeback. For direct 1002 * I/O, which must be block aligned, we need to report the 1003 * newly allocated address. If the data fork has a hole, copy 1004 * the COW fork mapping to avoid allocating to the data fork. 1005 */ 1006 if (directio || imap.br_startblock == HOLESTARTBLOCK) 1007 imap = cmap; 1008 1009 end_fsb = imap.br_startoff + imap.br_blockcount; 1010 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 1011 } 1012 1013 /* Don't need to allocate over holes when doing zeroing operations. */ 1014 if (flags & IOMAP_ZERO) 1015 goto out_found; 1016 1017 if (!imap_needs_alloc(inode, &imap, nimaps)) 1018 goto out_found; 1019 1020 /* If nowait is set bail since we are going to make allocations. */ 1021 if (flags & IOMAP_NOWAIT) { 1022 error = -EAGAIN; 1023 goto out_unlock; 1024 } 1025 1026 /* 1027 * We cap the maximum length we map to a sane size to keep the chunks 1028 * of work done where somewhat symmetric with the work writeback does. 1029 * This is a completely arbitrary number pulled out of thin air as a 1030 * best guess for initial testing. 1031 * 1032 * Note that the values needs to be less than 32-bits wide until the 1033 * lower level functions are updated. 1034 */ 1035 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 1036 1037 /* 1038 * xfs_iomap_write_direct() expects the shared lock. It is unlocked on 1039 * return. 1040 */ 1041 if (lockmode == XFS_ILOCK_EXCL) 1042 xfs_ilock_demote(ip, lockmode); 1043 error = xfs_iomap_write_direct(ip, offset, length, &imap, 1044 nimaps); 1045 if (error) 1046 return error; 1047 1048 iomap->flags |= IOMAP_F_NEW; 1049 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 1050 1051 out_finish: 1052 return xfs_bmbt_to_iomap(ip, iomap, &imap, shared); 1053 1054 out_found: 1055 ASSERT(nimaps); 1056 xfs_iunlock(ip, lockmode); 1057 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1058 goto out_finish; 1059 1060 out_unlock: 1061 xfs_iunlock(ip, lockmode); 1062 return error; 1063 } 1064 1065 static int 1066 xfs_file_iomap_end_delalloc( 1067 struct xfs_inode *ip, 1068 loff_t offset, 1069 loff_t length, 1070 ssize_t written, 1071 struct iomap *iomap) 1072 { 1073 struct xfs_mount *mp = ip->i_mount; 1074 xfs_fileoff_t start_fsb; 1075 xfs_fileoff_t end_fsb; 1076 int error = 0; 1077 1078 /* 1079 * Behave as if the write failed if drop writes is enabled. Set the NEW 1080 * flag to force delalloc cleanup. 1081 */ 1082 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) { 1083 iomap->flags |= IOMAP_F_NEW; 1084 written = 0; 1085 } 1086 1087 /* 1088 * start_fsb refers to the first unused block after a short write. If 1089 * nothing was written, round offset down to point at the first block in 1090 * the range. 1091 */ 1092 if (unlikely(!written)) 1093 start_fsb = XFS_B_TO_FSBT(mp, offset); 1094 else 1095 start_fsb = XFS_B_TO_FSB(mp, offset + written); 1096 end_fsb = XFS_B_TO_FSB(mp, offset + length); 1097 1098 /* 1099 * Trim delalloc blocks if they were allocated by this write and we 1100 * didn't manage to write the whole range. 1101 * 1102 * We don't need to care about racing delalloc as we hold i_mutex 1103 * across the reserve/allocate/unreserve calls. If there are delalloc 1104 * blocks in the range, they are ours. 1105 */ 1106 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) { 1107 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb), 1108 XFS_FSB_TO_B(mp, end_fsb) - 1); 1109 1110 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1111 end_fsb - start_fsb); 1112 if (error && !XFS_FORCED_SHUTDOWN(mp)) { 1113 xfs_alert(mp, "%s: unable to clean up ino %lld", 1114 __func__, ip->i_ino); 1115 return error; 1116 } 1117 } 1118 1119 return 0; 1120 } 1121 1122 static int 1123 xfs_file_iomap_end( 1124 struct inode *inode, 1125 loff_t offset, 1126 loff_t length, 1127 ssize_t written, 1128 unsigned flags, 1129 struct iomap *iomap) 1130 { 1131 if ((flags & IOMAP_WRITE) && iomap->type == IOMAP_DELALLOC) 1132 return xfs_file_iomap_end_delalloc(XFS_I(inode), offset, 1133 length, written, iomap); 1134 return 0; 1135 } 1136 1137 const struct iomap_ops xfs_iomap_ops = { 1138 .iomap_begin = xfs_file_iomap_begin, 1139 .iomap_end = xfs_file_iomap_end, 1140 }; 1141 1142 static int 1143 xfs_seek_iomap_begin( 1144 struct inode *inode, 1145 loff_t offset, 1146 loff_t length, 1147 unsigned flags, 1148 struct iomap *iomap) 1149 { 1150 struct xfs_inode *ip = XFS_I(inode); 1151 struct xfs_mount *mp = ip->i_mount; 1152 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1153 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1154 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1155 struct xfs_iext_cursor icur; 1156 struct xfs_bmbt_irec imap, cmap; 1157 int error = 0; 1158 unsigned lockmode; 1159 1160 if (XFS_FORCED_SHUTDOWN(mp)) 1161 return -EIO; 1162 1163 lockmode = xfs_ilock_data_map_shared(ip); 1164 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 1165 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1166 if (error) 1167 goto out_unlock; 1168 } 1169 1170 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1171 /* 1172 * If we found a data extent we are done. 1173 */ 1174 if (imap.br_startoff <= offset_fsb) 1175 goto done; 1176 data_fsb = imap.br_startoff; 1177 } else { 1178 /* 1179 * Fake a hole until the end of the file. 1180 */ 1181 data_fsb = min(XFS_B_TO_FSB(mp, offset + length), 1182 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1183 } 1184 1185 /* 1186 * If a COW fork extent covers the hole, report it - capped to the next 1187 * data fork extent: 1188 */ 1189 if (xfs_inode_has_cow_data(ip) && 1190 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1191 cow_fsb = cmap.br_startoff; 1192 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1193 if (data_fsb < cow_fsb + cmap.br_blockcount) 1194 end_fsb = min(end_fsb, data_fsb); 1195 xfs_trim_extent(&cmap, offset_fsb, end_fsb); 1196 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, true); 1197 /* 1198 * This is a COW extent, so we must probe the page cache 1199 * because there could be dirty page cache being backed 1200 * by this extent. 1201 */ 1202 iomap->type = IOMAP_UNWRITTEN; 1203 goto out_unlock; 1204 } 1205 1206 /* 1207 * Else report a hole, capped to the next found data or COW extent. 1208 */ 1209 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1210 imap.br_blockcount = cow_fsb - offset_fsb; 1211 else 1212 imap.br_blockcount = data_fsb - offset_fsb; 1213 imap.br_startoff = offset_fsb; 1214 imap.br_startblock = HOLESTARTBLOCK; 1215 imap.br_state = XFS_EXT_NORM; 1216 done: 1217 xfs_trim_extent(&imap, offset_fsb, end_fsb); 1218 error = xfs_bmbt_to_iomap(ip, iomap, &imap, false); 1219 out_unlock: 1220 xfs_iunlock(ip, lockmode); 1221 return error; 1222 } 1223 1224 const struct iomap_ops xfs_seek_iomap_ops = { 1225 .iomap_begin = xfs_seek_iomap_begin, 1226 }; 1227 1228 static int 1229 xfs_xattr_iomap_begin( 1230 struct inode *inode, 1231 loff_t offset, 1232 loff_t length, 1233 unsigned flags, 1234 struct iomap *iomap) 1235 { 1236 struct xfs_inode *ip = XFS_I(inode); 1237 struct xfs_mount *mp = ip->i_mount; 1238 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1239 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1240 struct xfs_bmbt_irec imap; 1241 int nimaps = 1, error = 0; 1242 unsigned lockmode; 1243 1244 if (XFS_FORCED_SHUTDOWN(mp)) 1245 return -EIO; 1246 1247 lockmode = xfs_ilock_attr_map_shared(ip); 1248 1249 /* if there are no attribute fork or extents, return ENOENT */ 1250 if (!XFS_IFORK_Q(ip) || !ip->i_d.di_anextents) { 1251 error = -ENOENT; 1252 goto out_unlock; 1253 } 1254 1255 ASSERT(ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL); 1256 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1257 &nimaps, XFS_BMAPI_ATTRFORK); 1258 out_unlock: 1259 xfs_iunlock(ip, lockmode); 1260 1261 if (error) 1262 return error; 1263 ASSERT(nimaps); 1264 return xfs_bmbt_to_iomap(ip, iomap, &imap, false); 1265 } 1266 1267 const struct iomap_ops xfs_xattr_iomap_ops = { 1268 .iomap_begin = xfs_xattr_iomap_begin, 1269 }; 1270