1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_dquot_item.h" 28 #include "xfs_dquot.h" 29 #include "xfs_reflink.h" 30 31 #define XFS_ALLOC_ALIGN(mp, off) \ 32 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) 33 34 static int 35 xfs_alert_fsblock_zero( 36 xfs_inode_t *ip, 37 xfs_bmbt_irec_t *imap) 38 { 39 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 40 "Access to block zero in inode %llu " 41 "start_block: %llx start_off: %llx " 42 "blkcnt: %llx extent-state: %x", 43 (unsigned long long)ip->i_ino, 44 (unsigned long long)imap->br_startblock, 45 (unsigned long long)imap->br_startoff, 46 (unsigned long long)imap->br_blockcount, 47 imap->br_state); 48 return -EFSCORRUPTED; 49 } 50 51 u64 52 xfs_iomap_inode_sequence( 53 struct xfs_inode *ip, 54 u16 iomap_flags) 55 { 56 u64 cookie = 0; 57 58 if (iomap_flags & IOMAP_F_XATTR) 59 return READ_ONCE(ip->i_af.if_seq); 60 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) 61 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; 62 return cookie | READ_ONCE(ip->i_df.if_seq); 63 } 64 65 /* 66 * Check that the iomap passed to us is still valid for the given offset and 67 * length. 68 */ 69 static bool 70 xfs_iomap_valid( 71 struct inode *inode, 72 const struct iomap *iomap) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 76 if (iomap->validity_cookie != 77 xfs_iomap_inode_sequence(ip, iomap->flags)) { 78 trace_xfs_iomap_invalid(ip, iomap); 79 return false; 80 } 81 82 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); 83 return true; 84 } 85 86 static const struct iomap_folio_ops xfs_iomap_folio_ops = { 87 .iomap_valid = xfs_iomap_valid, 88 }; 89 90 int 91 xfs_bmbt_to_iomap( 92 struct xfs_inode *ip, 93 struct iomap *iomap, 94 struct xfs_bmbt_irec *imap, 95 unsigned int mapping_flags, 96 u16 iomap_flags, 97 u64 sequence_cookie) 98 { 99 struct xfs_mount *mp = ip->i_mount; 100 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 101 102 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) 103 return xfs_alert_fsblock_zero(ip, imap); 104 105 if (imap->br_startblock == HOLESTARTBLOCK) { 106 iomap->addr = IOMAP_NULL_ADDR; 107 iomap->type = IOMAP_HOLE; 108 } else if (imap->br_startblock == DELAYSTARTBLOCK || 109 isnullstartblock(imap->br_startblock)) { 110 iomap->addr = IOMAP_NULL_ADDR; 111 iomap->type = IOMAP_DELALLOC; 112 } else { 113 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock)); 114 if (mapping_flags & IOMAP_DAX) 115 iomap->addr += target->bt_dax_part_off; 116 117 if (imap->br_state == XFS_EXT_UNWRITTEN) 118 iomap->type = IOMAP_UNWRITTEN; 119 else 120 iomap->type = IOMAP_MAPPED; 121 122 } 123 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 124 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 125 if (mapping_flags & IOMAP_DAX) 126 iomap->dax_dev = target->bt_daxdev; 127 else 128 iomap->bdev = target->bt_bdev; 129 iomap->flags = iomap_flags; 130 131 if (xfs_ipincount(ip) && 132 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 133 iomap->flags |= IOMAP_F_DIRTY; 134 135 iomap->validity_cookie = sequence_cookie; 136 iomap->folio_ops = &xfs_iomap_folio_ops; 137 return 0; 138 } 139 140 static void 141 xfs_hole_to_iomap( 142 struct xfs_inode *ip, 143 struct iomap *iomap, 144 xfs_fileoff_t offset_fsb, 145 xfs_fileoff_t end_fsb) 146 { 147 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 148 149 iomap->addr = IOMAP_NULL_ADDR; 150 iomap->type = IOMAP_HOLE; 151 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 152 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 153 iomap->bdev = target->bt_bdev; 154 iomap->dax_dev = target->bt_daxdev; 155 } 156 157 static inline xfs_fileoff_t 158 xfs_iomap_end_fsb( 159 struct xfs_mount *mp, 160 loff_t offset, 161 loff_t count) 162 { 163 ASSERT(offset <= mp->m_super->s_maxbytes); 164 return min(XFS_B_TO_FSB(mp, offset + count), 165 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 166 } 167 168 static xfs_extlen_t 169 xfs_eof_alignment( 170 struct xfs_inode *ip) 171 { 172 struct xfs_mount *mp = ip->i_mount; 173 xfs_extlen_t align = 0; 174 175 if (!XFS_IS_REALTIME_INODE(ip)) { 176 /* 177 * Round up the allocation request to a stripe unit 178 * (m_dalign) boundary if the file size is >= stripe unit 179 * size, and we are allocating past the allocation eof. 180 * 181 * If mounted with the "-o swalloc" option the alignment is 182 * increased from the strip unit size to the stripe width. 183 */ 184 if (mp->m_swidth && xfs_has_swalloc(mp)) 185 align = mp->m_swidth; 186 else if (mp->m_dalign) 187 align = mp->m_dalign; 188 189 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 190 align = 0; 191 } 192 193 return align; 194 } 195 196 /* 197 * Check if last_fsb is outside the last extent, and if so grow it to the next 198 * stripe unit boundary. 199 */ 200 xfs_fileoff_t 201 xfs_iomap_eof_align_last_fsb( 202 struct xfs_inode *ip, 203 xfs_fileoff_t end_fsb) 204 { 205 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 206 xfs_extlen_t extsz = xfs_get_extsz_hint(ip); 207 xfs_extlen_t align = xfs_eof_alignment(ip); 208 struct xfs_bmbt_irec irec; 209 struct xfs_iext_cursor icur; 210 211 ASSERT(!xfs_need_iread_extents(ifp)); 212 213 /* 214 * Always round up the allocation request to the extent hint boundary. 215 */ 216 if (extsz) { 217 if (align) 218 align = roundup_64(align, extsz); 219 else 220 align = extsz; 221 } 222 223 if (align) { 224 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); 225 226 xfs_iext_last(ifp, &icur); 227 if (!xfs_iext_get_extent(ifp, &icur, &irec) || 228 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) 229 return aligned_end_fsb; 230 } 231 232 return end_fsb; 233 } 234 235 int 236 xfs_iomap_write_direct( 237 struct xfs_inode *ip, 238 xfs_fileoff_t offset_fsb, 239 xfs_fileoff_t count_fsb, 240 unsigned int flags, 241 struct xfs_bmbt_irec *imap, 242 u64 *seq) 243 { 244 struct xfs_mount *mp = ip->i_mount; 245 struct xfs_trans *tp; 246 xfs_filblks_t resaligned; 247 int nimaps; 248 unsigned int dblocks, rblocks; 249 bool force = false; 250 int error; 251 int bmapi_flags = XFS_BMAPI_PREALLOC; 252 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; 253 254 ASSERT(count_fsb > 0); 255 256 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, 257 xfs_get_extsz_hint(ip)); 258 if (unlikely(XFS_IS_REALTIME_INODE(ip))) { 259 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 260 rblocks = resaligned; 261 } else { 262 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 263 rblocks = 0; 264 } 265 266 error = xfs_qm_dqattach(ip); 267 if (error) 268 return error; 269 270 /* 271 * For DAX, we do not allocate unwritten extents, but instead we zero 272 * the block before we commit the transaction. Ideally we'd like to do 273 * this outside the transaction context, but if we commit and then crash 274 * we may not have zeroed the blocks and this will be exposed on 275 * recovery of the allocation. Hence we must zero before commit. 276 * 277 * Further, if we are mapping unwritten extents here, we need to zero 278 * and convert them to written so that we don't need an unwritten extent 279 * callback for DAX. This also means that we need to be able to dip into 280 * the reserve block pool for bmbt block allocation if there is no space 281 * left but we need to do unwritten extent conversion. 282 */ 283 if (flags & IOMAP_DAX) { 284 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 285 if (imap->br_state == XFS_EXT_UNWRITTEN) { 286 force = true; 287 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; 288 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 289 } 290 } 291 292 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 293 rblocks, force, &tp); 294 if (error) 295 return error; 296 297 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts); 298 if (error == -EFBIG) 299 error = xfs_iext_count_upgrade(tp, ip, nr_exts); 300 if (error) 301 goto out_trans_cancel; 302 303 /* 304 * From this point onwards we overwrite the imap pointer that the 305 * caller gave to us. 306 */ 307 nimaps = 1; 308 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, 309 imap, &nimaps); 310 if (error) 311 goto out_trans_cancel; 312 313 /* 314 * Complete the transaction 315 */ 316 error = xfs_trans_commit(tp); 317 if (error) 318 goto out_unlock; 319 320 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) 321 error = xfs_alert_fsblock_zero(ip, imap); 322 323 out_unlock: 324 *seq = xfs_iomap_inode_sequence(ip, 0); 325 xfs_iunlock(ip, XFS_ILOCK_EXCL); 326 return error; 327 328 out_trans_cancel: 329 xfs_trans_cancel(tp); 330 goto out_unlock; 331 } 332 333 STATIC bool 334 xfs_quota_need_throttle( 335 struct xfs_inode *ip, 336 xfs_dqtype_t type, 337 xfs_fsblock_t alloc_blocks) 338 { 339 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 340 341 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 342 return false; 343 344 /* no hi watermark, no throttle */ 345 if (!dq->q_prealloc_hi_wmark) 346 return false; 347 348 /* under the lo watermark, no throttle */ 349 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark) 350 return false; 351 352 return true; 353 } 354 355 STATIC void 356 xfs_quota_calc_throttle( 357 struct xfs_inode *ip, 358 xfs_dqtype_t type, 359 xfs_fsblock_t *qblocks, 360 int *qshift, 361 int64_t *qfreesp) 362 { 363 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 364 int64_t freesp; 365 int shift = 0; 366 367 /* no dq, or over hi wmark, squash the prealloc completely */ 368 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) { 369 *qblocks = 0; 370 *qfreesp = 0; 371 return; 372 } 373 374 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved; 375 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) { 376 shift = 2; 377 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT]) 378 shift += 2; 379 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT]) 380 shift += 2; 381 } 382 383 if (freesp < *qfreesp) 384 *qfreesp = freesp; 385 386 /* only overwrite the throttle values if we are more aggressive */ 387 if ((freesp >> shift) < (*qblocks >> *qshift)) { 388 *qblocks = freesp; 389 *qshift = shift; 390 } 391 } 392 393 /* 394 * If we don't have a user specified preallocation size, dynamically increase 395 * the preallocation size as the size of the file grows. Cap the maximum size 396 * at a single extent or less if the filesystem is near full. The closer the 397 * filesystem is to being full, the smaller the maximum preallocation. 398 */ 399 STATIC xfs_fsblock_t 400 xfs_iomap_prealloc_size( 401 struct xfs_inode *ip, 402 int whichfork, 403 loff_t offset, 404 loff_t count, 405 struct xfs_iext_cursor *icur) 406 { 407 struct xfs_iext_cursor ncur = *icur; 408 struct xfs_bmbt_irec prev, got; 409 struct xfs_mount *mp = ip->i_mount; 410 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 411 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 412 int64_t freesp; 413 xfs_fsblock_t qblocks; 414 xfs_fsblock_t alloc_blocks = 0; 415 xfs_extlen_t plen; 416 int shift = 0; 417 int qshift = 0; 418 419 /* 420 * As an exception we don't do any preallocation at all if the file is 421 * smaller than the minimum preallocation and we are using the default 422 * dynamic preallocation scheme, as it is likely this is the only write 423 * to the file that is going to be done. 424 */ 425 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) 426 return 0; 427 428 /* 429 * Use the minimum preallocation size for small files or if we are 430 * writing right after a hole. 431 */ 432 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 433 !xfs_iext_prev_extent(ifp, &ncur, &prev) || 434 prev.br_startoff + prev.br_blockcount < offset_fsb) 435 return mp->m_allocsize_blocks; 436 437 /* 438 * Take the size of the preceding data extents as the basis for the 439 * preallocation size. Note that we don't care if the previous extents 440 * are written or not. 441 */ 442 plen = prev.br_blockcount; 443 while (xfs_iext_prev_extent(ifp, &ncur, &got)) { 444 if (plen > XFS_MAX_BMBT_EXTLEN / 2 || 445 isnullstartblock(got.br_startblock) || 446 got.br_startoff + got.br_blockcount != prev.br_startoff || 447 got.br_startblock + got.br_blockcount != prev.br_startblock) 448 break; 449 plen += got.br_blockcount; 450 prev = got; 451 } 452 453 /* 454 * If the size of the extents is greater than half the maximum extent 455 * length, then use the current offset as the basis. This ensures that 456 * for large files the preallocation size always extends to 457 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe 458 * unit/width alignment of real extents. 459 */ 460 alloc_blocks = plen * 2; 461 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 462 alloc_blocks = XFS_B_TO_FSB(mp, offset); 463 qblocks = alloc_blocks; 464 465 /* 466 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc 467 * down to the nearest power of two value after throttling. To prevent 468 * the round down from unconditionally reducing the maximum supported 469 * prealloc size, we round up first, apply appropriate throttling, round 470 * down and cap the value to XFS_BMBT_MAX_EXTLEN. 471 */ 472 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), 473 alloc_blocks); 474 475 freesp = percpu_counter_read_positive(&mp->m_fdblocks); 476 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) { 477 shift = 2; 478 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT]) 479 shift++; 480 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT]) 481 shift++; 482 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT]) 483 shift++; 484 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT]) 485 shift++; 486 } 487 488 /* 489 * Check each quota to cap the prealloc size, provide a shift value to 490 * throttle with and adjust amount of available space. 491 */ 492 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) 493 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, 494 &freesp); 495 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) 496 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, 497 &freesp); 498 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) 499 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, 500 &freesp); 501 502 /* 503 * The final prealloc size is set to the minimum of free space available 504 * in each of the quotas and the overall filesystem. 505 * 506 * The shift throttle value is set to the maximum value as determined by 507 * the global low free space values and per-quota low free space values. 508 */ 509 alloc_blocks = min(alloc_blocks, qblocks); 510 shift = max(shift, qshift); 511 512 if (shift) 513 alloc_blocks >>= shift; 514 /* 515 * rounddown_pow_of_two() returns an undefined result if we pass in 516 * alloc_blocks = 0. 517 */ 518 if (alloc_blocks) 519 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 520 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 521 alloc_blocks = XFS_MAX_BMBT_EXTLEN; 522 523 /* 524 * If we are still trying to allocate more space than is 525 * available, squash the prealloc hard. This can happen if we 526 * have a large file on a small filesystem and the above 527 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. 528 */ 529 while (alloc_blocks && alloc_blocks >= freesp) 530 alloc_blocks >>= 4; 531 if (alloc_blocks < mp->m_allocsize_blocks) 532 alloc_blocks = mp->m_allocsize_blocks; 533 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 534 mp->m_allocsize_blocks); 535 return alloc_blocks; 536 } 537 538 int 539 xfs_iomap_write_unwritten( 540 xfs_inode_t *ip, 541 xfs_off_t offset, 542 xfs_off_t count, 543 bool update_isize) 544 { 545 xfs_mount_t *mp = ip->i_mount; 546 xfs_fileoff_t offset_fsb; 547 xfs_filblks_t count_fsb; 548 xfs_filblks_t numblks_fsb; 549 int nimaps; 550 xfs_trans_t *tp; 551 xfs_bmbt_irec_t imap; 552 struct inode *inode = VFS_I(ip); 553 xfs_fsize_t i_size; 554 uint resblks; 555 int error; 556 557 trace_xfs_unwritten_convert(ip, offset, count); 558 559 offset_fsb = XFS_B_TO_FSBT(mp, offset); 560 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 561 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 562 563 /* 564 * Reserve enough blocks in this transaction for two complete extent 565 * btree splits. We may be converting the middle part of an unwritten 566 * extent and in this case we will insert two new extents in the btree 567 * each of which could cause a full split. 568 * 569 * This reservation amount will be used in the first call to 570 * xfs_bmbt_split() to select an AG with enough space to satisfy the 571 * rest of the operation. 572 */ 573 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 574 575 /* Attach dquots so that bmbt splits are accounted correctly. */ 576 error = xfs_qm_dqattach(ip); 577 if (error) 578 return error; 579 580 do { 581 /* 582 * Set up a transaction to convert the range of extents 583 * from unwritten to real. Do allocations in a loop until 584 * we have covered the range passed in. 585 * 586 * Note that we can't risk to recursing back into the filesystem 587 * here as we might be asked to write out the same inode that we 588 * complete here and might deadlock on the iolock. 589 */ 590 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 591 0, true, &tp); 592 if (error) 593 return error; 594 595 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, 596 XFS_IEXT_WRITE_UNWRITTEN_CNT); 597 if (error == -EFBIG) 598 error = xfs_iext_count_upgrade(tp, ip, 599 XFS_IEXT_WRITE_UNWRITTEN_CNT); 600 if (error) 601 goto error_on_bmapi_transaction; 602 603 /* 604 * Modify the unwritten extent state of the buffer. 605 */ 606 nimaps = 1; 607 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 608 XFS_BMAPI_CONVERT, resblks, &imap, 609 &nimaps); 610 if (error) 611 goto error_on_bmapi_transaction; 612 613 /* 614 * Log the updated inode size as we go. We have to be careful 615 * to only log it up to the actual write offset if it is 616 * halfway into a block. 617 */ 618 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 619 if (i_size > offset + count) 620 i_size = offset + count; 621 if (update_isize && i_size > i_size_read(inode)) 622 i_size_write(inode, i_size); 623 i_size = xfs_new_eof(ip, i_size); 624 if (i_size) { 625 ip->i_disk_size = i_size; 626 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 627 } 628 629 error = xfs_trans_commit(tp); 630 xfs_iunlock(ip, XFS_ILOCK_EXCL); 631 if (error) 632 return error; 633 634 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) 635 return xfs_alert_fsblock_zero(ip, &imap); 636 637 if ((numblks_fsb = imap.br_blockcount) == 0) { 638 /* 639 * The numblks_fsb value should always get 640 * smaller, otherwise the loop is stuck. 641 */ 642 ASSERT(imap.br_blockcount); 643 break; 644 } 645 offset_fsb += numblks_fsb; 646 count_fsb -= numblks_fsb; 647 } while (count_fsb > 0); 648 649 return 0; 650 651 error_on_bmapi_transaction: 652 xfs_trans_cancel(tp); 653 xfs_iunlock(ip, XFS_ILOCK_EXCL); 654 return error; 655 } 656 657 static inline bool 658 imap_needs_alloc( 659 struct inode *inode, 660 unsigned flags, 661 struct xfs_bmbt_irec *imap, 662 int nimaps) 663 { 664 /* don't allocate blocks when just zeroing */ 665 if (flags & IOMAP_ZERO) 666 return false; 667 if (!nimaps || 668 imap->br_startblock == HOLESTARTBLOCK || 669 imap->br_startblock == DELAYSTARTBLOCK) 670 return true; 671 /* we convert unwritten extents before copying the data for DAX */ 672 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) 673 return true; 674 return false; 675 } 676 677 static inline bool 678 imap_needs_cow( 679 struct xfs_inode *ip, 680 unsigned int flags, 681 struct xfs_bmbt_irec *imap, 682 int nimaps) 683 { 684 if (!xfs_is_cow_inode(ip)) 685 return false; 686 687 /* when zeroing we don't have to COW holes or unwritten extents */ 688 if (flags & IOMAP_ZERO) { 689 if (!nimaps || 690 imap->br_startblock == HOLESTARTBLOCK || 691 imap->br_state == XFS_EXT_UNWRITTEN) 692 return false; 693 } 694 695 return true; 696 } 697 698 static int 699 xfs_ilock_for_iomap( 700 struct xfs_inode *ip, 701 unsigned flags, 702 unsigned *lockmode) 703 { 704 unsigned int mode = *lockmode; 705 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO); 706 707 /* 708 * COW writes may allocate delalloc space or convert unwritten COW 709 * extents, so we need to make sure to take the lock exclusively here. 710 */ 711 if (xfs_is_cow_inode(ip) && is_write) 712 mode = XFS_ILOCK_EXCL; 713 714 /* 715 * Extents not yet cached requires exclusive access, don't block. This 716 * is an opencoded xfs_ilock_data_map_shared() call but with 717 * non-blocking behaviour. 718 */ 719 if (xfs_need_iread_extents(&ip->i_df)) { 720 if (flags & IOMAP_NOWAIT) 721 return -EAGAIN; 722 mode = XFS_ILOCK_EXCL; 723 } 724 725 relock: 726 if (flags & IOMAP_NOWAIT) { 727 if (!xfs_ilock_nowait(ip, mode)) 728 return -EAGAIN; 729 } else { 730 xfs_ilock(ip, mode); 731 } 732 733 /* 734 * The reflink iflag could have changed since the earlier unlocked 735 * check, so if we got ILOCK_SHARED for a write and but we're now a 736 * reflink inode we have to switch to ILOCK_EXCL and relock. 737 */ 738 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) { 739 xfs_iunlock(ip, mode); 740 mode = XFS_ILOCK_EXCL; 741 goto relock; 742 } 743 744 *lockmode = mode; 745 return 0; 746 } 747 748 /* 749 * Check that the imap we are going to return to the caller spans the entire 750 * range that the caller requested for the IO. 751 */ 752 static bool 753 imap_spans_range( 754 struct xfs_bmbt_irec *imap, 755 xfs_fileoff_t offset_fsb, 756 xfs_fileoff_t end_fsb) 757 { 758 if (imap->br_startoff > offset_fsb) 759 return false; 760 if (imap->br_startoff + imap->br_blockcount < end_fsb) 761 return false; 762 return true; 763 } 764 765 static int 766 xfs_direct_write_iomap_begin( 767 struct inode *inode, 768 loff_t offset, 769 loff_t length, 770 unsigned flags, 771 struct iomap *iomap, 772 struct iomap *srcmap) 773 { 774 struct xfs_inode *ip = XFS_I(inode); 775 struct xfs_mount *mp = ip->i_mount; 776 struct xfs_bmbt_irec imap, cmap; 777 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 778 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 779 int nimaps = 1, error = 0; 780 bool shared = false; 781 u16 iomap_flags = 0; 782 unsigned int lockmode = XFS_ILOCK_SHARED; 783 u64 seq; 784 785 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); 786 787 if (xfs_is_shutdown(mp)) 788 return -EIO; 789 790 /* 791 * Writes that span EOF might trigger an IO size update on completion, 792 * so consider them to be dirty for the purposes of O_DSYNC even if 793 * there is no other metadata changes pending or have been made here. 794 */ 795 if (offset + length > i_size_read(inode)) 796 iomap_flags |= IOMAP_F_DIRTY; 797 798 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 799 if (error) 800 return error; 801 802 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 803 &nimaps, 0); 804 if (error) 805 goto out_unlock; 806 807 if (imap_needs_cow(ip, flags, &imap, nimaps)) { 808 error = -EAGAIN; 809 if (flags & IOMAP_NOWAIT) 810 goto out_unlock; 811 812 /* may drop and re-acquire the ilock */ 813 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, 814 &lockmode, 815 (flags & IOMAP_DIRECT) || IS_DAX(inode)); 816 if (error) 817 goto out_unlock; 818 if (shared) 819 goto out_found_cow; 820 end_fsb = imap.br_startoff + imap.br_blockcount; 821 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 822 } 823 824 if (imap_needs_alloc(inode, flags, &imap, nimaps)) 825 goto allocate_blocks; 826 827 /* 828 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with 829 * a single map so that we avoid partial IO failures due to the rest of 830 * the I/O range not covered by this map triggering an EAGAIN condition 831 * when it is subsequently mapped and aborting the I/O. 832 */ 833 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { 834 error = -EAGAIN; 835 if (!imap_spans_range(&imap, offset_fsb, end_fsb)) 836 goto out_unlock; 837 } 838 839 /* 840 * For overwrite only I/O, we cannot convert unwritten extents without 841 * requiring sub-block zeroing. This can only be done under an 842 * exclusive IOLOCK, hence return -EAGAIN if this is not a written 843 * extent to tell the caller to try again. 844 */ 845 if (flags & IOMAP_OVERWRITE_ONLY) { 846 error = -EAGAIN; 847 if (imap.br_state != XFS_EXT_NORM && 848 ((offset | length) & mp->m_blockmask)) 849 goto out_unlock; 850 } 851 852 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 853 xfs_iunlock(ip, lockmode); 854 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 855 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 856 857 allocate_blocks: 858 error = -EAGAIN; 859 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) 860 goto out_unlock; 861 862 /* 863 * We cap the maximum length we map to a sane size to keep the chunks 864 * of work done where somewhat symmetric with the work writeback does. 865 * This is a completely arbitrary number pulled out of thin air as a 866 * best guess for initial testing. 867 * 868 * Note that the values needs to be less than 32-bits wide until the 869 * lower level functions are updated. 870 */ 871 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 872 end_fsb = xfs_iomap_end_fsb(mp, offset, length); 873 874 if (offset + length > XFS_ISIZE(ip)) 875 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); 876 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 877 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 878 xfs_iunlock(ip, lockmode); 879 880 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, 881 flags, &imap, &seq); 882 if (error) 883 return error; 884 885 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 886 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 887 iomap_flags | IOMAP_F_NEW, seq); 888 889 out_found_cow: 890 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); 891 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); 892 if (imap.br_startblock != HOLESTARTBLOCK) { 893 seq = xfs_iomap_inode_sequence(ip, 0); 894 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 895 if (error) 896 goto out_unlock; 897 } 898 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 899 xfs_iunlock(ip, lockmode); 900 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); 901 902 out_unlock: 903 if (lockmode) 904 xfs_iunlock(ip, lockmode); 905 return error; 906 } 907 908 const struct iomap_ops xfs_direct_write_iomap_ops = { 909 .iomap_begin = xfs_direct_write_iomap_begin, 910 }; 911 912 static int 913 xfs_dax_write_iomap_end( 914 struct inode *inode, 915 loff_t pos, 916 loff_t length, 917 ssize_t written, 918 unsigned flags, 919 struct iomap *iomap) 920 { 921 struct xfs_inode *ip = XFS_I(inode); 922 923 if (!xfs_is_cow_inode(ip)) 924 return 0; 925 926 if (!written) { 927 xfs_reflink_cancel_cow_range(ip, pos, length, true); 928 return 0; 929 } 930 931 return xfs_reflink_end_cow(ip, pos, written); 932 } 933 934 const struct iomap_ops xfs_dax_write_iomap_ops = { 935 .iomap_begin = xfs_direct_write_iomap_begin, 936 .iomap_end = xfs_dax_write_iomap_end, 937 }; 938 939 static int 940 xfs_buffered_write_iomap_begin( 941 struct inode *inode, 942 loff_t offset, 943 loff_t count, 944 unsigned flags, 945 struct iomap *iomap, 946 struct iomap *srcmap) 947 { 948 struct xfs_inode *ip = XFS_I(inode); 949 struct xfs_mount *mp = ip->i_mount; 950 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 951 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 952 struct xfs_bmbt_irec imap, cmap; 953 struct xfs_iext_cursor icur, ccur; 954 xfs_fsblock_t prealloc_blocks = 0; 955 bool eof = false, cow_eof = false, shared = false; 956 int allocfork = XFS_DATA_FORK; 957 int error = 0; 958 unsigned int lockmode = XFS_ILOCK_EXCL; 959 u64 seq; 960 961 if (xfs_is_shutdown(mp)) 962 return -EIO; 963 964 /* we can't use delayed allocations when using extent size hints */ 965 if (xfs_get_extsz_hint(ip)) 966 return xfs_direct_write_iomap_begin(inode, offset, count, 967 flags, iomap, srcmap); 968 969 ASSERT(!XFS_IS_REALTIME_INODE(ip)); 970 971 error = xfs_qm_dqattach(ip); 972 if (error) 973 return error; 974 975 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 976 if (error) 977 return error; 978 979 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 980 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { 981 error = -EFSCORRUPTED; 982 goto out_unlock; 983 } 984 985 XFS_STATS_INC(mp, xs_blk_mapw); 986 987 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 988 if (error) 989 goto out_unlock; 990 991 /* 992 * Search the data fork first to look up our source mapping. We 993 * always need the data fork map, as we have to return it to the 994 * iomap code so that the higher level write code can read data in to 995 * perform read-modify-write cycles for unaligned writes. 996 */ 997 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 998 if (eof) 999 imap.br_startoff = end_fsb; /* fake hole until the end */ 1000 1001 /* We never need to allocate blocks for zeroing or unsharing a hole. */ 1002 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && 1003 imap.br_startoff > offset_fsb) { 1004 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 1005 goto out_unlock; 1006 } 1007 1008 /* 1009 * For zeroing, trim a delalloc extent that extends beyond the EOF 1010 * block. If it starts beyond the EOF block, convert it to an 1011 * unwritten extent. 1012 */ 1013 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && 1014 isnullstartblock(imap.br_startblock)) { 1015 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 1016 1017 if (offset_fsb >= eof_fsb) 1018 goto convert_delay; 1019 if (end_fsb > eof_fsb) { 1020 end_fsb = eof_fsb; 1021 xfs_trim_extent(&imap, offset_fsb, 1022 end_fsb - offset_fsb); 1023 } 1024 } 1025 1026 /* 1027 * Search the COW fork extent list even if we did not find a data fork 1028 * extent. This serves two purposes: first this implements the 1029 * speculative preallocation using cowextsize, so that we also unshare 1030 * block adjacent to shared blocks instead of just the shared blocks 1031 * themselves. Second the lookup in the extent list is generally faster 1032 * than going out to the shared extent tree. 1033 */ 1034 if (xfs_is_cow_inode(ip)) { 1035 if (!ip->i_cowfp) { 1036 ASSERT(!xfs_is_reflink_inode(ip)); 1037 xfs_ifork_init_cow(ip); 1038 } 1039 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 1040 &ccur, &cmap); 1041 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 1042 trace_xfs_reflink_cow_found(ip, &cmap); 1043 goto found_cow; 1044 } 1045 } 1046 1047 if (imap.br_startoff <= offset_fsb) { 1048 /* 1049 * For reflink files we may need a delalloc reservation when 1050 * overwriting shared extents. This includes zeroing of 1051 * existing extents that contain data. 1052 */ 1053 if (!xfs_is_cow_inode(ip) || 1054 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 1055 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1056 &imap); 1057 goto found_imap; 1058 } 1059 1060 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1061 1062 /* Trim the mapping to the nearest shared extent boundary. */ 1063 error = xfs_bmap_trim_cow(ip, &imap, &shared); 1064 if (error) 1065 goto out_unlock; 1066 1067 /* Not shared? Just report the (potentially capped) extent. */ 1068 if (!shared) { 1069 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1070 &imap); 1071 goto found_imap; 1072 } 1073 1074 /* 1075 * Fork all the shared blocks from our write offset until the 1076 * end of the extent. 1077 */ 1078 allocfork = XFS_COW_FORK; 1079 end_fsb = imap.br_startoff + imap.br_blockcount; 1080 } else { 1081 /* 1082 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 1083 * pages to keep the chunks of work done where somewhat 1084 * symmetric with the work writeback does. This is a completely 1085 * arbitrary number pulled out of thin air. 1086 * 1087 * Note that the values needs to be less than 32-bits wide until 1088 * the lower level functions are updated. 1089 */ 1090 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 1091 end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1092 1093 if (xfs_is_always_cow_inode(ip)) 1094 allocfork = XFS_COW_FORK; 1095 } 1096 1097 if (eof && offset + count > XFS_ISIZE(ip)) { 1098 /* 1099 * Determine the initial size of the preallocation. 1100 * We clean up any extra preallocation when the file is closed. 1101 */ 1102 if (xfs_has_allocsize(mp)) 1103 prealloc_blocks = mp->m_allocsize_blocks; 1104 else if (allocfork == XFS_DATA_FORK) 1105 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1106 offset, count, &icur); 1107 else 1108 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1109 offset, count, &ccur); 1110 if (prealloc_blocks) { 1111 xfs_extlen_t align; 1112 xfs_off_t end_offset; 1113 xfs_fileoff_t p_end_fsb; 1114 1115 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); 1116 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 1117 prealloc_blocks; 1118 1119 align = xfs_eof_alignment(ip); 1120 if (align) 1121 p_end_fsb = roundup_64(p_end_fsb, align); 1122 1123 p_end_fsb = min(p_end_fsb, 1124 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1125 ASSERT(p_end_fsb > offset_fsb); 1126 prealloc_blocks = p_end_fsb - end_fsb; 1127 } 1128 } 1129 1130 if (allocfork == XFS_COW_FORK) { 1131 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1132 end_fsb - offset_fsb, prealloc_blocks, &cmap, 1133 &ccur, cow_eof); 1134 if (error) 1135 goto out_unlock; 1136 1137 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); 1138 goto found_cow; 1139 } 1140 1141 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1142 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, 1143 eof); 1144 if (error) 1145 goto out_unlock; 1146 1147 /* 1148 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 1149 * them out if the write happens to fail. 1150 */ 1151 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_NEW); 1152 xfs_iunlock(ip, lockmode); 1153 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); 1154 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW, seq); 1155 1156 found_imap: 1157 seq = xfs_iomap_inode_sequence(ip, 0); 1158 xfs_iunlock(ip, lockmode); 1159 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 1160 1161 convert_delay: 1162 xfs_iunlock(ip, lockmode); 1163 truncate_pagecache(inode, offset); 1164 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, 1165 iomap, NULL); 1166 if (error) 1167 return error; 1168 1169 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); 1170 return 0; 1171 1172 found_cow: 1173 seq = xfs_iomap_inode_sequence(ip, 0); 1174 if (imap.br_startoff <= offset_fsb) { 1175 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 1176 if (error) 1177 goto out_unlock; 1178 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1179 xfs_iunlock(ip, lockmode); 1180 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1181 IOMAP_F_SHARED, seq); 1182 } 1183 1184 xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb); 1185 xfs_iunlock(ip, lockmode); 1186 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0, seq); 1187 1188 out_unlock: 1189 xfs_iunlock(ip, lockmode); 1190 return error; 1191 } 1192 1193 static int 1194 xfs_buffered_write_delalloc_punch( 1195 struct inode *inode, 1196 loff_t offset, 1197 loff_t length) 1198 { 1199 return xfs_bmap_punch_delalloc_range(XFS_I(inode), offset, 1200 offset + length); 1201 } 1202 1203 static int 1204 xfs_buffered_write_iomap_end( 1205 struct inode *inode, 1206 loff_t offset, 1207 loff_t length, 1208 ssize_t written, 1209 unsigned flags, 1210 struct iomap *iomap) 1211 { 1212 1213 struct xfs_mount *mp = XFS_M(inode->i_sb); 1214 int error; 1215 1216 error = iomap_file_buffered_write_punch_delalloc(inode, iomap, offset, 1217 length, written, &xfs_buffered_write_delalloc_punch); 1218 if (error && !xfs_is_shutdown(mp)) { 1219 xfs_alert(mp, "%s: unable to clean up ino 0x%llx", 1220 __func__, XFS_I(inode)->i_ino); 1221 return error; 1222 } 1223 return 0; 1224 } 1225 1226 const struct iomap_ops xfs_buffered_write_iomap_ops = { 1227 .iomap_begin = xfs_buffered_write_iomap_begin, 1228 .iomap_end = xfs_buffered_write_iomap_end, 1229 }; 1230 1231 /* 1232 * iomap_page_mkwrite() will never fail in a way that requires delalloc extents 1233 * that it allocated to be revoked. Hence we do not need an .iomap_end method 1234 * for this operation. 1235 */ 1236 const struct iomap_ops xfs_page_mkwrite_iomap_ops = { 1237 .iomap_begin = xfs_buffered_write_iomap_begin, 1238 }; 1239 1240 static int 1241 xfs_read_iomap_begin( 1242 struct inode *inode, 1243 loff_t offset, 1244 loff_t length, 1245 unsigned flags, 1246 struct iomap *iomap, 1247 struct iomap *srcmap) 1248 { 1249 struct xfs_inode *ip = XFS_I(inode); 1250 struct xfs_mount *mp = ip->i_mount; 1251 struct xfs_bmbt_irec imap; 1252 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1253 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 1254 int nimaps = 1, error = 0; 1255 bool shared = false; 1256 unsigned int lockmode = XFS_ILOCK_SHARED; 1257 u64 seq; 1258 1259 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); 1260 1261 if (xfs_is_shutdown(mp)) 1262 return -EIO; 1263 1264 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1265 if (error) 1266 return error; 1267 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1268 &nimaps, 0); 1269 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) 1270 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 1271 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); 1272 xfs_iunlock(ip, lockmode); 1273 1274 if (error) 1275 return error; 1276 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1277 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 1278 shared ? IOMAP_F_SHARED : 0, seq); 1279 } 1280 1281 const struct iomap_ops xfs_read_iomap_ops = { 1282 .iomap_begin = xfs_read_iomap_begin, 1283 }; 1284 1285 static int 1286 xfs_seek_iomap_begin( 1287 struct inode *inode, 1288 loff_t offset, 1289 loff_t length, 1290 unsigned flags, 1291 struct iomap *iomap, 1292 struct iomap *srcmap) 1293 { 1294 struct xfs_inode *ip = XFS_I(inode); 1295 struct xfs_mount *mp = ip->i_mount; 1296 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1297 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1298 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1299 struct xfs_iext_cursor icur; 1300 struct xfs_bmbt_irec imap, cmap; 1301 int error = 0; 1302 unsigned lockmode; 1303 u64 seq; 1304 1305 if (xfs_is_shutdown(mp)) 1306 return -EIO; 1307 1308 lockmode = xfs_ilock_data_map_shared(ip); 1309 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1310 if (error) 1311 goto out_unlock; 1312 1313 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1314 /* 1315 * If we found a data extent we are done. 1316 */ 1317 if (imap.br_startoff <= offset_fsb) 1318 goto done; 1319 data_fsb = imap.br_startoff; 1320 } else { 1321 /* 1322 * Fake a hole until the end of the file. 1323 */ 1324 data_fsb = xfs_iomap_end_fsb(mp, offset, length); 1325 } 1326 1327 /* 1328 * If a COW fork extent covers the hole, report it - capped to the next 1329 * data fork extent: 1330 */ 1331 if (xfs_inode_has_cow_data(ip) && 1332 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1333 cow_fsb = cmap.br_startoff; 1334 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1335 if (data_fsb < cow_fsb + cmap.br_blockcount) 1336 end_fsb = min(end_fsb, data_fsb); 1337 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); 1338 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1339 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1340 IOMAP_F_SHARED, seq); 1341 /* 1342 * This is a COW extent, so we must probe the page cache 1343 * because there could be dirty page cache being backed 1344 * by this extent. 1345 */ 1346 iomap->type = IOMAP_UNWRITTEN; 1347 goto out_unlock; 1348 } 1349 1350 /* 1351 * Else report a hole, capped to the next found data or COW extent. 1352 */ 1353 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1354 imap.br_blockcount = cow_fsb - offset_fsb; 1355 else 1356 imap.br_blockcount = data_fsb - offset_fsb; 1357 imap.br_startoff = offset_fsb; 1358 imap.br_startblock = HOLESTARTBLOCK; 1359 imap.br_state = XFS_EXT_NORM; 1360 done: 1361 seq = xfs_iomap_inode_sequence(ip, 0); 1362 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1363 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 1364 out_unlock: 1365 xfs_iunlock(ip, lockmode); 1366 return error; 1367 } 1368 1369 const struct iomap_ops xfs_seek_iomap_ops = { 1370 .iomap_begin = xfs_seek_iomap_begin, 1371 }; 1372 1373 static int 1374 xfs_xattr_iomap_begin( 1375 struct inode *inode, 1376 loff_t offset, 1377 loff_t length, 1378 unsigned flags, 1379 struct iomap *iomap, 1380 struct iomap *srcmap) 1381 { 1382 struct xfs_inode *ip = XFS_I(inode); 1383 struct xfs_mount *mp = ip->i_mount; 1384 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1385 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1386 struct xfs_bmbt_irec imap; 1387 int nimaps = 1, error = 0; 1388 unsigned lockmode; 1389 int seq; 1390 1391 if (xfs_is_shutdown(mp)) 1392 return -EIO; 1393 1394 lockmode = xfs_ilock_attr_map_shared(ip); 1395 1396 /* if there are no attribute fork or extents, return ENOENT */ 1397 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { 1398 error = -ENOENT; 1399 goto out_unlock; 1400 } 1401 1402 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); 1403 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1404 &nimaps, XFS_BMAPI_ATTRFORK); 1405 out_unlock: 1406 1407 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); 1408 xfs_iunlock(ip, lockmode); 1409 1410 if (error) 1411 return error; 1412 ASSERT(nimaps); 1413 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); 1414 } 1415 1416 const struct iomap_ops xfs_xattr_iomap_ops = { 1417 .iomap_begin = xfs_xattr_iomap_begin, 1418 }; 1419 1420 int 1421 xfs_zero_range( 1422 struct xfs_inode *ip, 1423 loff_t pos, 1424 loff_t len, 1425 bool *did_zero) 1426 { 1427 struct inode *inode = VFS_I(ip); 1428 1429 if (IS_DAX(inode)) 1430 return dax_zero_range(inode, pos, len, did_zero, 1431 &xfs_dax_write_iomap_ops); 1432 return iomap_zero_range(inode, pos, len, did_zero, 1433 &xfs_buffered_write_iomap_ops); 1434 } 1435 1436 int 1437 xfs_truncate_page( 1438 struct xfs_inode *ip, 1439 loff_t pos, 1440 bool *did_zero) 1441 { 1442 struct inode *inode = VFS_I(ip); 1443 1444 if (IS_DAX(inode)) 1445 return dax_truncate_page(inode, pos, did_zero, 1446 &xfs_dax_write_iomap_ops); 1447 return iomap_truncate_page(inode, pos, did_zero, 1448 &xfs_buffered_write_iomap_ops); 1449 } 1450