1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_dquot_item.h" 28 #include "xfs_dquot.h" 29 #include "xfs_reflink.h" 30 31 #define XFS_ALLOC_ALIGN(mp, off) \ 32 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) 33 34 static int 35 xfs_alert_fsblock_zero( 36 xfs_inode_t *ip, 37 xfs_bmbt_irec_t *imap) 38 { 39 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 40 "Access to block zero in inode %llu " 41 "start_block: %llx start_off: %llx " 42 "blkcnt: %llx extent-state: %x", 43 (unsigned long long)ip->i_ino, 44 (unsigned long long)imap->br_startblock, 45 (unsigned long long)imap->br_startoff, 46 (unsigned long long)imap->br_blockcount, 47 imap->br_state); 48 return -EFSCORRUPTED; 49 } 50 51 int 52 xfs_bmbt_to_iomap( 53 struct xfs_inode *ip, 54 struct iomap *iomap, 55 struct xfs_bmbt_irec *imap, 56 unsigned int mapping_flags, 57 u16 iomap_flags) 58 { 59 struct xfs_mount *mp = ip->i_mount; 60 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 61 62 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) 63 return xfs_alert_fsblock_zero(ip, imap); 64 65 if (imap->br_startblock == HOLESTARTBLOCK) { 66 iomap->addr = IOMAP_NULL_ADDR; 67 iomap->type = IOMAP_HOLE; 68 } else if (imap->br_startblock == DELAYSTARTBLOCK || 69 isnullstartblock(imap->br_startblock)) { 70 iomap->addr = IOMAP_NULL_ADDR; 71 iomap->type = IOMAP_DELALLOC; 72 } else { 73 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock)); 74 if (mapping_flags & IOMAP_DAX) 75 iomap->addr += target->bt_dax_part_off; 76 77 if (imap->br_state == XFS_EXT_UNWRITTEN) 78 iomap->type = IOMAP_UNWRITTEN; 79 else 80 iomap->type = IOMAP_MAPPED; 81 82 } 83 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 84 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 85 if (mapping_flags & IOMAP_DAX) 86 iomap->dax_dev = target->bt_daxdev; 87 else 88 iomap->bdev = target->bt_bdev; 89 iomap->flags = iomap_flags; 90 91 if (xfs_ipincount(ip) && 92 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 93 iomap->flags |= IOMAP_F_DIRTY; 94 return 0; 95 } 96 97 static void 98 xfs_hole_to_iomap( 99 struct xfs_inode *ip, 100 struct iomap *iomap, 101 xfs_fileoff_t offset_fsb, 102 xfs_fileoff_t end_fsb) 103 { 104 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 105 106 iomap->addr = IOMAP_NULL_ADDR; 107 iomap->type = IOMAP_HOLE; 108 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 109 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 110 iomap->bdev = target->bt_bdev; 111 iomap->dax_dev = target->bt_daxdev; 112 } 113 114 static inline xfs_fileoff_t 115 xfs_iomap_end_fsb( 116 struct xfs_mount *mp, 117 loff_t offset, 118 loff_t count) 119 { 120 ASSERT(offset <= mp->m_super->s_maxbytes); 121 return min(XFS_B_TO_FSB(mp, offset + count), 122 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 123 } 124 125 static xfs_extlen_t 126 xfs_eof_alignment( 127 struct xfs_inode *ip) 128 { 129 struct xfs_mount *mp = ip->i_mount; 130 xfs_extlen_t align = 0; 131 132 if (!XFS_IS_REALTIME_INODE(ip)) { 133 /* 134 * Round up the allocation request to a stripe unit 135 * (m_dalign) boundary if the file size is >= stripe unit 136 * size, and we are allocating past the allocation eof. 137 * 138 * If mounted with the "-o swalloc" option the alignment is 139 * increased from the strip unit size to the stripe width. 140 */ 141 if (mp->m_swidth && xfs_has_swalloc(mp)) 142 align = mp->m_swidth; 143 else if (mp->m_dalign) 144 align = mp->m_dalign; 145 146 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 147 align = 0; 148 } 149 150 return align; 151 } 152 153 /* 154 * Check if last_fsb is outside the last extent, and if so grow it to the next 155 * stripe unit boundary. 156 */ 157 xfs_fileoff_t 158 xfs_iomap_eof_align_last_fsb( 159 struct xfs_inode *ip, 160 xfs_fileoff_t end_fsb) 161 { 162 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 163 xfs_extlen_t extsz = xfs_get_extsz_hint(ip); 164 xfs_extlen_t align = xfs_eof_alignment(ip); 165 struct xfs_bmbt_irec irec; 166 struct xfs_iext_cursor icur; 167 168 ASSERT(!xfs_need_iread_extents(ifp)); 169 170 /* 171 * Always round up the allocation request to the extent hint boundary. 172 */ 173 if (extsz) { 174 if (align) 175 align = roundup_64(align, extsz); 176 else 177 align = extsz; 178 } 179 180 if (align) { 181 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); 182 183 xfs_iext_last(ifp, &icur); 184 if (!xfs_iext_get_extent(ifp, &icur, &irec) || 185 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) 186 return aligned_end_fsb; 187 } 188 189 return end_fsb; 190 } 191 192 int 193 xfs_iomap_write_direct( 194 struct xfs_inode *ip, 195 xfs_fileoff_t offset_fsb, 196 xfs_fileoff_t count_fsb, 197 unsigned int flags, 198 struct xfs_bmbt_irec *imap) 199 { 200 struct xfs_mount *mp = ip->i_mount; 201 struct xfs_trans *tp; 202 xfs_filblks_t resaligned; 203 int nimaps; 204 unsigned int dblocks, rblocks; 205 bool force = false; 206 int error; 207 int bmapi_flags = XFS_BMAPI_PREALLOC; 208 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; 209 210 ASSERT(count_fsb > 0); 211 212 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, 213 xfs_get_extsz_hint(ip)); 214 if (unlikely(XFS_IS_REALTIME_INODE(ip))) { 215 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 216 rblocks = resaligned; 217 } else { 218 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 219 rblocks = 0; 220 } 221 222 error = xfs_qm_dqattach(ip); 223 if (error) 224 return error; 225 226 /* 227 * For DAX, we do not allocate unwritten extents, but instead we zero 228 * the block before we commit the transaction. Ideally we'd like to do 229 * this outside the transaction context, but if we commit and then crash 230 * we may not have zeroed the blocks and this will be exposed on 231 * recovery of the allocation. Hence we must zero before commit. 232 * 233 * Further, if we are mapping unwritten extents here, we need to zero 234 * and convert them to written so that we don't need an unwritten extent 235 * callback for DAX. This also means that we need to be able to dip into 236 * the reserve block pool for bmbt block allocation if there is no space 237 * left but we need to do unwritten extent conversion. 238 */ 239 if (flags & IOMAP_DAX) { 240 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 241 if (imap->br_state == XFS_EXT_UNWRITTEN) { 242 force = true; 243 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; 244 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 245 } 246 } 247 248 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 249 rblocks, force, &tp); 250 if (error) 251 return error; 252 253 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts); 254 if (error) 255 goto out_trans_cancel; 256 257 /* 258 * From this point onwards we overwrite the imap pointer that the 259 * caller gave to us. 260 */ 261 nimaps = 1; 262 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, 263 imap, &nimaps); 264 if (error) 265 goto out_trans_cancel; 266 267 /* 268 * Complete the transaction 269 */ 270 error = xfs_trans_commit(tp); 271 if (error) 272 goto out_unlock; 273 274 /* 275 * Copy any maps to caller's array and return any error. 276 */ 277 if (nimaps == 0) { 278 error = -ENOSPC; 279 goto out_unlock; 280 } 281 282 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) 283 error = xfs_alert_fsblock_zero(ip, imap); 284 285 out_unlock: 286 xfs_iunlock(ip, XFS_ILOCK_EXCL); 287 return error; 288 289 out_trans_cancel: 290 xfs_trans_cancel(tp); 291 goto out_unlock; 292 } 293 294 STATIC bool 295 xfs_quota_need_throttle( 296 struct xfs_inode *ip, 297 xfs_dqtype_t type, 298 xfs_fsblock_t alloc_blocks) 299 { 300 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 301 302 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 303 return false; 304 305 /* no hi watermark, no throttle */ 306 if (!dq->q_prealloc_hi_wmark) 307 return false; 308 309 /* under the lo watermark, no throttle */ 310 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark) 311 return false; 312 313 return true; 314 } 315 316 STATIC void 317 xfs_quota_calc_throttle( 318 struct xfs_inode *ip, 319 xfs_dqtype_t type, 320 xfs_fsblock_t *qblocks, 321 int *qshift, 322 int64_t *qfreesp) 323 { 324 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 325 int64_t freesp; 326 int shift = 0; 327 328 /* no dq, or over hi wmark, squash the prealloc completely */ 329 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) { 330 *qblocks = 0; 331 *qfreesp = 0; 332 return; 333 } 334 335 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved; 336 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) { 337 shift = 2; 338 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT]) 339 shift += 2; 340 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT]) 341 shift += 2; 342 } 343 344 if (freesp < *qfreesp) 345 *qfreesp = freesp; 346 347 /* only overwrite the throttle values if we are more aggressive */ 348 if ((freesp >> shift) < (*qblocks >> *qshift)) { 349 *qblocks = freesp; 350 *qshift = shift; 351 } 352 } 353 354 /* 355 * If we don't have a user specified preallocation size, dynamically increase 356 * the preallocation size as the size of the file grows. Cap the maximum size 357 * at a single extent or less if the filesystem is near full. The closer the 358 * filesystem is to being full, the smaller the maximum preallocation. 359 */ 360 STATIC xfs_fsblock_t 361 xfs_iomap_prealloc_size( 362 struct xfs_inode *ip, 363 int whichfork, 364 loff_t offset, 365 loff_t count, 366 struct xfs_iext_cursor *icur) 367 { 368 struct xfs_iext_cursor ncur = *icur; 369 struct xfs_bmbt_irec prev, got; 370 struct xfs_mount *mp = ip->i_mount; 371 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 372 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 373 int64_t freesp; 374 xfs_fsblock_t qblocks; 375 xfs_fsblock_t alloc_blocks = 0; 376 xfs_extlen_t plen; 377 int shift = 0; 378 int qshift = 0; 379 380 /* 381 * As an exception we don't do any preallocation at all if the file is 382 * smaller than the minimum preallocation and we are using the default 383 * dynamic preallocation scheme, as it is likely this is the only write 384 * to the file that is going to be done. 385 */ 386 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) 387 return 0; 388 389 /* 390 * Use the minimum preallocation size for small files or if we are 391 * writing right after a hole. 392 */ 393 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 394 !xfs_iext_prev_extent(ifp, &ncur, &prev) || 395 prev.br_startoff + prev.br_blockcount < offset_fsb) 396 return mp->m_allocsize_blocks; 397 398 /* 399 * Take the size of the preceding data extents as the basis for the 400 * preallocation size. Note that we don't care if the previous extents 401 * are written or not. 402 */ 403 plen = prev.br_blockcount; 404 while (xfs_iext_prev_extent(ifp, &ncur, &got)) { 405 if (plen > MAXEXTLEN / 2 || 406 isnullstartblock(got.br_startblock) || 407 got.br_startoff + got.br_blockcount != prev.br_startoff || 408 got.br_startblock + got.br_blockcount != prev.br_startblock) 409 break; 410 plen += got.br_blockcount; 411 prev = got; 412 } 413 414 /* 415 * If the size of the extents is greater than half the maximum extent 416 * length, then use the current offset as the basis. This ensures that 417 * for large files the preallocation size always extends to MAXEXTLEN 418 * rather than falling short due to things like stripe unit/width 419 * alignment of real extents. 420 */ 421 alloc_blocks = plen * 2; 422 if (alloc_blocks > MAXEXTLEN) 423 alloc_blocks = XFS_B_TO_FSB(mp, offset); 424 qblocks = alloc_blocks; 425 426 /* 427 * MAXEXTLEN is not a power of two value but we round the prealloc down 428 * to the nearest power of two value after throttling. To prevent the 429 * round down from unconditionally reducing the maximum supported 430 * prealloc size, we round up first, apply appropriate throttling, 431 * round down and cap the value to MAXEXTLEN. 432 */ 433 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN), 434 alloc_blocks); 435 436 freesp = percpu_counter_read_positive(&mp->m_fdblocks); 437 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) { 438 shift = 2; 439 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT]) 440 shift++; 441 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT]) 442 shift++; 443 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT]) 444 shift++; 445 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT]) 446 shift++; 447 } 448 449 /* 450 * Check each quota to cap the prealloc size, provide a shift value to 451 * throttle with and adjust amount of available space. 452 */ 453 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) 454 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, 455 &freesp); 456 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) 457 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, 458 &freesp); 459 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) 460 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, 461 &freesp); 462 463 /* 464 * The final prealloc size is set to the minimum of free space available 465 * in each of the quotas and the overall filesystem. 466 * 467 * The shift throttle value is set to the maximum value as determined by 468 * the global low free space values and per-quota low free space values. 469 */ 470 alloc_blocks = min(alloc_blocks, qblocks); 471 shift = max(shift, qshift); 472 473 if (shift) 474 alloc_blocks >>= shift; 475 /* 476 * rounddown_pow_of_two() returns an undefined result if we pass in 477 * alloc_blocks = 0. 478 */ 479 if (alloc_blocks) 480 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 481 if (alloc_blocks > MAXEXTLEN) 482 alloc_blocks = MAXEXTLEN; 483 484 /* 485 * If we are still trying to allocate more space than is 486 * available, squash the prealloc hard. This can happen if we 487 * have a large file on a small filesystem and the above 488 * lowspace thresholds are smaller than MAXEXTLEN. 489 */ 490 while (alloc_blocks && alloc_blocks >= freesp) 491 alloc_blocks >>= 4; 492 if (alloc_blocks < mp->m_allocsize_blocks) 493 alloc_blocks = mp->m_allocsize_blocks; 494 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 495 mp->m_allocsize_blocks); 496 return alloc_blocks; 497 } 498 499 int 500 xfs_iomap_write_unwritten( 501 xfs_inode_t *ip, 502 xfs_off_t offset, 503 xfs_off_t count, 504 bool update_isize) 505 { 506 xfs_mount_t *mp = ip->i_mount; 507 xfs_fileoff_t offset_fsb; 508 xfs_filblks_t count_fsb; 509 xfs_filblks_t numblks_fsb; 510 int nimaps; 511 xfs_trans_t *tp; 512 xfs_bmbt_irec_t imap; 513 struct inode *inode = VFS_I(ip); 514 xfs_fsize_t i_size; 515 uint resblks; 516 int error; 517 518 trace_xfs_unwritten_convert(ip, offset, count); 519 520 offset_fsb = XFS_B_TO_FSBT(mp, offset); 521 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 522 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 523 524 /* 525 * Reserve enough blocks in this transaction for two complete extent 526 * btree splits. We may be converting the middle part of an unwritten 527 * extent and in this case we will insert two new extents in the btree 528 * each of which could cause a full split. 529 * 530 * This reservation amount will be used in the first call to 531 * xfs_bmbt_split() to select an AG with enough space to satisfy the 532 * rest of the operation. 533 */ 534 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 535 536 /* Attach dquots so that bmbt splits are accounted correctly. */ 537 error = xfs_qm_dqattach(ip); 538 if (error) 539 return error; 540 541 do { 542 /* 543 * Set up a transaction to convert the range of extents 544 * from unwritten to real. Do allocations in a loop until 545 * we have covered the range passed in. 546 * 547 * Note that we can't risk to recursing back into the filesystem 548 * here as we might be asked to write out the same inode that we 549 * complete here and might deadlock on the iolock. 550 */ 551 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 552 0, true, &tp); 553 if (error) 554 return error; 555 556 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, 557 XFS_IEXT_WRITE_UNWRITTEN_CNT); 558 if (error) 559 goto error_on_bmapi_transaction; 560 561 /* 562 * Modify the unwritten extent state of the buffer. 563 */ 564 nimaps = 1; 565 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 566 XFS_BMAPI_CONVERT, resblks, &imap, 567 &nimaps); 568 if (error) 569 goto error_on_bmapi_transaction; 570 571 /* 572 * Log the updated inode size as we go. We have to be careful 573 * to only log it up to the actual write offset if it is 574 * halfway into a block. 575 */ 576 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 577 if (i_size > offset + count) 578 i_size = offset + count; 579 if (update_isize && i_size > i_size_read(inode)) 580 i_size_write(inode, i_size); 581 i_size = xfs_new_eof(ip, i_size); 582 if (i_size) { 583 ip->i_disk_size = i_size; 584 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 585 } 586 587 error = xfs_trans_commit(tp); 588 xfs_iunlock(ip, XFS_ILOCK_EXCL); 589 if (error) 590 return error; 591 592 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) 593 return xfs_alert_fsblock_zero(ip, &imap); 594 595 if ((numblks_fsb = imap.br_blockcount) == 0) { 596 /* 597 * The numblks_fsb value should always get 598 * smaller, otherwise the loop is stuck. 599 */ 600 ASSERT(imap.br_blockcount); 601 break; 602 } 603 offset_fsb += numblks_fsb; 604 count_fsb -= numblks_fsb; 605 } while (count_fsb > 0); 606 607 return 0; 608 609 error_on_bmapi_transaction: 610 xfs_trans_cancel(tp); 611 xfs_iunlock(ip, XFS_ILOCK_EXCL); 612 return error; 613 } 614 615 static inline bool 616 imap_needs_alloc( 617 struct inode *inode, 618 unsigned flags, 619 struct xfs_bmbt_irec *imap, 620 int nimaps) 621 { 622 /* don't allocate blocks when just zeroing */ 623 if (flags & IOMAP_ZERO) 624 return false; 625 if (!nimaps || 626 imap->br_startblock == HOLESTARTBLOCK || 627 imap->br_startblock == DELAYSTARTBLOCK) 628 return true; 629 /* we convert unwritten extents before copying the data for DAX */ 630 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) 631 return true; 632 return false; 633 } 634 635 static inline bool 636 imap_needs_cow( 637 struct xfs_inode *ip, 638 unsigned int flags, 639 struct xfs_bmbt_irec *imap, 640 int nimaps) 641 { 642 if (!xfs_is_cow_inode(ip)) 643 return false; 644 645 /* when zeroing we don't have to COW holes or unwritten extents */ 646 if (flags & IOMAP_ZERO) { 647 if (!nimaps || 648 imap->br_startblock == HOLESTARTBLOCK || 649 imap->br_state == XFS_EXT_UNWRITTEN) 650 return false; 651 } 652 653 return true; 654 } 655 656 static int 657 xfs_ilock_for_iomap( 658 struct xfs_inode *ip, 659 unsigned flags, 660 unsigned *lockmode) 661 { 662 unsigned mode = XFS_ILOCK_SHARED; 663 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO); 664 665 /* 666 * COW writes may allocate delalloc space or convert unwritten COW 667 * extents, so we need to make sure to take the lock exclusively here. 668 */ 669 if (xfs_is_cow_inode(ip) && is_write) 670 mode = XFS_ILOCK_EXCL; 671 672 /* 673 * Extents not yet cached requires exclusive access, don't block. This 674 * is an opencoded xfs_ilock_data_map_shared() call but with 675 * non-blocking behaviour. 676 */ 677 if (xfs_need_iread_extents(&ip->i_df)) { 678 if (flags & IOMAP_NOWAIT) 679 return -EAGAIN; 680 mode = XFS_ILOCK_EXCL; 681 } 682 683 relock: 684 if (flags & IOMAP_NOWAIT) { 685 if (!xfs_ilock_nowait(ip, mode)) 686 return -EAGAIN; 687 } else { 688 xfs_ilock(ip, mode); 689 } 690 691 /* 692 * The reflink iflag could have changed since the earlier unlocked 693 * check, so if we got ILOCK_SHARED for a write and but we're now a 694 * reflink inode we have to switch to ILOCK_EXCL and relock. 695 */ 696 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) { 697 xfs_iunlock(ip, mode); 698 mode = XFS_ILOCK_EXCL; 699 goto relock; 700 } 701 702 *lockmode = mode; 703 return 0; 704 } 705 706 /* 707 * Check that the imap we are going to return to the caller spans the entire 708 * range that the caller requested for the IO. 709 */ 710 static bool 711 imap_spans_range( 712 struct xfs_bmbt_irec *imap, 713 xfs_fileoff_t offset_fsb, 714 xfs_fileoff_t end_fsb) 715 { 716 if (imap->br_startoff > offset_fsb) 717 return false; 718 if (imap->br_startoff + imap->br_blockcount < end_fsb) 719 return false; 720 return true; 721 } 722 723 static int 724 xfs_direct_write_iomap_begin( 725 struct inode *inode, 726 loff_t offset, 727 loff_t length, 728 unsigned flags, 729 struct iomap *iomap, 730 struct iomap *srcmap) 731 { 732 struct xfs_inode *ip = XFS_I(inode); 733 struct xfs_mount *mp = ip->i_mount; 734 struct xfs_bmbt_irec imap, cmap; 735 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 736 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 737 int nimaps = 1, error = 0; 738 bool shared = false; 739 u16 iomap_flags = 0; 740 unsigned lockmode; 741 742 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); 743 744 if (xfs_is_shutdown(mp)) 745 return -EIO; 746 747 /* 748 * Writes that span EOF might trigger an IO size update on completion, 749 * so consider them to be dirty for the purposes of O_DSYNC even if 750 * there is no other metadata changes pending or have been made here. 751 */ 752 if (offset + length > i_size_read(inode)) 753 iomap_flags |= IOMAP_F_DIRTY; 754 755 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 756 if (error) 757 return error; 758 759 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 760 &nimaps, 0); 761 if (error) 762 goto out_unlock; 763 764 if (imap_needs_cow(ip, flags, &imap, nimaps)) { 765 error = -EAGAIN; 766 if (flags & IOMAP_NOWAIT) 767 goto out_unlock; 768 769 /* may drop and re-acquire the ilock */ 770 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, 771 &lockmode, flags & IOMAP_DIRECT); 772 if (error) 773 goto out_unlock; 774 if (shared) 775 goto out_found_cow; 776 end_fsb = imap.br_startoff + imap.br_blockcount; 777 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 778 } 779 780 if (imap_needs_alloc(inode, flags, &imap, nimaps)) 781 goto allocate_blocks; 782 783 /* 784 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with 785 * a single map so that we avoid partial IO failures due to the rest of 786 * the I/O range not covered by this map triggering an EAGAIN condition 787 * when it is subsequently mapped and aborting the I/O. 788 */ 789 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { 790 error = -EAGAIN; 791 if (!imap_spans_range(&imap, offset_fsb, end_fsb)) 792 goto out_unlock; 793 } 794 795 /* 796 * For overwrite only I/O, we cannot convert unwritten extents without 797 * requiring sub-block zeroing. This can only be done under an 798 * exclusive IOLOCK, hence return -EAGAIN if this is not a written 799 * extent to tell the caller to try again. 800 */ 801 if (flags & IOMAP_OVERWRITE_ONLY) { 802 error = -EAGAIN; 803 if (imap.br_state != XFS_EXT_NORM && 804 ((offset | length) & mp->m_blockmask)) 805 goto out_unlock; 806 } 807 808 xfs_iunlock(ip, lockmode); 809 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 810 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags); 811 812 allocate_blocks: 813 error = -EAGAIN; 814 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) 815 goto out_unlock; 816 817 /* 818 * We cap the maximum length we map to a sane size to keep the chunks 819 * of work done where somewhat symmetric with the work writeback does. 820 * This is a completely arbitrary number pulled out of thin air as a 821 * best guess for initial testing. 822 * 823 * Note that the values needs to be less than 32-bits wide until the 824 * lower level functions are updated. 825 */ 826 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 827 end_fsb = xfs_iomap_end_fsb(mp, offset, length); 828 829 if (offset + length > XFS_ISIZE(ip)) 830 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); 831 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 832 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 833 xfs_iunlock(ip, lockmode); 834 835 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, 836 flags, &imap); 837 if (error) 838 return error; 839 840 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 841 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 842 iomap_flags | IOMAP_F_NEW); 843 844 out_found_cow: 845 xfs_iunlock(ip, lockmode); 846 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); 847 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); 848 if (imap.br_startblock != HOLESTARTBLOCK) { 849 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0); 850 if (error) 851 return error; 852 } 853 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED); 854 855 out_unlock: 856 if (lockmode) 857 xfs_iunlock(ip, lockmode); 858 return error; 859 } 860 861 const struct iomap_ops xfs_direct_write_iomap_ops = { 862 .iomap_begin = xfs_direct_write_iomap_begin, 863 }; 864 865 static int 866 xfs_buffered_write_iomap_begin( 867 struct inode *inode, 868 loff_t offset, 869 loff_t count, 870 unsigned flags, 871 struct iomap *iomap, 872 struct iomap *srcmap) 873 { 874 struct xfs_inode *ip = XFS_I(inode); 875 struct xfs_mount *mp = ip->i_mount; 876 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 877 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 878 struct xfs_bmbt_irec imap, cmap; 879 struct xfs_iext_cursor icur, ccur; 880 xfs_fsblock_t prealloc_blocks = 0; 881 bool eof = false, cow_eof = false, shared = false; 882 int allocfork = XFS_DATA_FORK; 883 int error = 0; 884 885 if (xfs_is_shutdown(mp)) 886 return -EIO; 887 888 /* we can't use delayed allocations when using extent size hints */ 889 if (xfs_get_extsz_hint(ip)) 890 return xfs_direct_write_iomap_begin(inode, offset, count, 891 flags, iomap, srcmap); 892 893 ASSERT(!XFS_IS_REALTIME_INODE(ip)); 894 895 xfs_ilock(ip, XFS_ILOCK_EXCL); 896 897 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 898 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { 899 error = -EFSCORRUPTED; 900 goto out_unlock; 901 } 902 903 XFS_STATS_INC(mp, xs_blk_mapw); 904 905 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 906 if (error) 907 goto out_unlock; 908 909 /* 910 * Search the data fork first to look up our source mapping. We 911 * always need the data fork map, as we have to return it to the 912 * iomap code so that the higher level write code can read data in to 913 * perform read-modify-write cycles for unaligned writes. 914 */ 915 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 916 if (eof) 917 imap.br_startoff = end_fsb; /* fake hole until the end */ 918 919 /* We never need to allocate blocks for zeroing a hole. */ 920 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) { 921 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 922 goto out_unlock; 923 } 924 925 /* 926 * Search the COW fork extent list even if we did not find a data fork 927 * extent. This serves two purposes: first this implements the 928 * speculative preallocation using cowextsize, so that we also unshare 929 * block adjacent to shared blocks instead of just the shared blocks 930 * themselves. Second the lookup in the extent list is generally faster 931 * than going out to the shared extent tree. 932 */ 933 if (xfs_is_cow_inode(ip)) { 934 if (!ip->i_cowfp) { 935 ASSERT(!xfs_is_reflink_inode(ip)); 936 xfs_ifork_init_cow(ip); 937 } 938 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 939 &ccur, &cmap); 940 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 941 trace_xfs_reflink_cow_found(ip, &cmap); 942 goto found_cow; 943 } 944 } 945 946 if (imap.br_startoff <= offset_fsb) { 947 /* 948 * For reflink files we may need a delalloc reservation when 949 * overwriting shared extents. This includes zeroing of 950 * existing extents that contain data. 951 */ 952 if (!xfs_is_cow_inode(ip) || 953 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 954 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 955 &imap); 956 goto found_imap; 957 } 958 959 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 960 961 /* Trim the mapping to the nearest shared extent boundary. */ 962 error = xfs_bmap_trim_cow(ip, &imap, &shared); 963 if (error) 964 goto out_unlock; 965 966 /* Not shared? Just report the (potentially capped) extent. */ 967 if (!shared) { 968 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 969 &imap); 970 goto found_imap; 971 } 972 973 /* 974 * Fork all the shared blocks from our write offset until the 975 * end of the extent. 976 */ 977 allocfork = XFS_COW_FORK; 978 end_fsb = imap.br_startoff + imap.br_blockcount; 979 } else { 980 /* 981 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 982 * pages to keep the chunks of work done where somewhat 983 * symmetric with the work writeback does. This is a completely 984 * arbitrary number pulled out of thin air. 985 * 986 * Note that the values needs to be less than 32-bits wide until 987 * the lower level functions are updated. 988 */ 989 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 990 end_fsb = xfs_iomap_end_fsb(mp, offset, count); 991 992 if (xfs_is_always_cow_inode(ip)) 993 allocfork = XFS_COW_FORK; 994 } 995 996 error = xfs_qm_dqattach_locked(ip, false); 997 if (error) 998 goto out_unlock; 999 1000 if (eof && offset + count > XFS_ISIZE(ip)) { 1001 /* 1002 * Determine the initial size of the preallocation. 1003 * We clean up any extra preallocation when the file is closed. 1004 */ 1005 if (xfs_has_allocsize(mp)) 1006 prealloc_blocks = mp->m_allocsize_blocks; 1007 else 1008 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1009 offset, count, &icur); 1010 if (prealloc_blocks) { 1011 xfs_extlen_t align; 1012 xfs_off_t end_offset; 1013 xfs_fileoff_t p_end_fsb; 1014 1015 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); 1016 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 1017 prealloc_blocks; 1018 1019 align = xfs_eof_alignment(ip); 1020 if (align) 1021 p_end_fsb = roundup_64(p_end_fsb, align); 1022 1023 p_end_fsb = min(p_end_fsb, 1024 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1025 ASSERT(p_end_fsb > offset_fsb); 1026 prealloc_blocks = p_end_fsb - end_fsb; 1027 } 1028 } 1029 1030 retry: 1031 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1032 end_fsb - offset_fsb, prealloc_blocks, 1033 allocfork == XFS_DATA_FORK ? &imap : &cmap, 1034 allocfork == XFS_DATA_FORK ? &icur : &ccur, 1035 allocfork == XFS_DATA_FORK ? eof : cow_eof); 1036 switch (error) { 1037 case 0: 1038 break; 1039 case -ENOSPC: 1040 case -EDQUOT: 1041 /* retry without any preallocation */ 1042 trace_xfs_delalloc_enospc(ip, offset, count); 1043 if (prealloc_blocks) { 1044 prealloc_blocks = 0; 1045 goto retry; 1046 } 1047 fallthrough; 1048 default: 1049 goto out_unlock; 1050 } 1051 1052 if (allocfork == XFS_COW_FORK) { 1053 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); 1054 goto found_cow; 1055 } 1056 1057 /* 1058 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 1059 * them out if the write happens to fail. 1060 */ 1061 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1062 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); 1063 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW); 1064 1065 found_imap: 1066 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1067 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0); 1068 1069 found_cow: 1070 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1071 if (imap.br_startoff <= offset_fsb) { 1072 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0); 1073 if (error) 1074 return error; 1075 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1076 IOMAP_F_SHARED); 1077 } 1078 1079 xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb); 1080 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0); 1081 1082 out_unlock: 1083 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1084 return error; 1085 } 1086 1087 static int 1088 xfs_buffered_write_iomap_end( 1089 struct inode *inode, 1090 loff_t offset, 1091 loff_t length, 1092 ssize_t written, 1093 unsigned flags, 1094 struct iomap *iomap) 1095 { 1096 struct xfs_inode *ip = XFS_I(inode); 1097 struct xfs_mount *mp = ip->i_mount; 1098 xfs_fileoff_t start_fsb; 1099 xfs_fileoff_t end_fsb; 1100 int error = 0; 1101 1102 if (iomap->type != IOMAP_DELALLOC) 1103 return 0; 1104 1105 /* 1106 * Behave as if the write failed if drop writes is enabled. Set the NEW 1107 * flag to force delalloc cleanup. 1108 */ 1109 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) { 1110 iomap->flags |= IOMAP_F_NEW; 1111 written = 0; 1112 } 1113 1114 /* 1115 * start_fsb refers to the first unused block after a short write. If 1116 * nothing was written, round offset down to point at the first block in 1117 * the range. 1118 */ 1119 if (unlikely(!written)) 1120 start_fsb = XFS_B_TO_FSBT(mp, offset); 1121 else 1122 start_fsb = XFS_B_TO_FSB(mp, offset + written); 1123 end_fsb = XFS_B_TO_FSB(mp, offset + length); 1124 1125 /* 1126 * Trim delalloc blocks if they were allocated by this write and we 1127 * didn't manage to write the whole range. 1128 * 1129 * We don't need to care about racing delalloc as we hold i_mutex 1130 * across the reserve/allocate/unreserve calls. If there are delalloc 1131 * blocks in the range, they are ours. 1132 */ 1133 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) { 1134 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb), 1135 XFS_FSB_TO_B(mp, end_fsb) - 1); 1136 1137 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1138 end_fsb - start_fsb); 1139 if (error && !xfs_is_shutdown(mp)) { 1140 xfs_alert(mp, "%s: unable to clean up ino %lld", 1141 __func__, ip->i_ino); 1142 return error; 1143 } 1144 } 1145 1146 return 0; 1147 } 1148 1149 const struct iomap_ops xfs_buffered_write_iomap_ops = { 1150 .iomap_begin = xfs_buffered_write_iomap_begin, 1151 .iomap_end = xfs_buffered_write_iomap_end, 1152 }; 1153 1154 static int 1155 xfs_read_iomap_begin( 1156 struct inode *inode, 1157 loff_t offset, 1158 loff_t length, 1159 unsigned flags, 1160 struct iomap *iomap, 1161 struct iomap *srcmap) 1162 { 1163 struct xfs_inode *ip = XFS_I(inode); 1164 struct xfs_mount *mp = ip->i_mount; 1165 struct xfs_bmbt_irec imap; 1166 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1167 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 1168 int nimaps = 1, error = 0; 1169 bool shared = false; 1170 unsigned lockmode; 1171 1172 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); 1173 1174 if (xfs_is_shutdown(mp)) 1175 return -EIO; 1176 1177 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1178 if (error) 1179 return error; 1180 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1181 &nimaps, 0); 1182 if (!error && (flags & IOMAP_REPORT)) 1183 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 1184 xfs_iunlock(ip, lockmode); 1185 1186 if (error) 1187 return error; 1188 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1189 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 1190 shared ? IOMAP_F_SHARED : 0); 1191 } 1192 1193 const struct iomap_ops xfs_read_iomap_ops = { 1194 .iomap_begin = xfs_read_iomap_begin, 1195 }; 1196 1197 static int 1198 xfs_seek_iomap_begin( 1199 struct inode *inode, 1200 loff_t offset, 1201 loff_t length, 1202 unsigned flags, 1203 struct iomap *iomap, 1204 struct iomap *srcmap) 1205 { 1206 struct xfs_inode *ip = XFS_I(inode); 1207 struct xfs_mount *mp = ip->i_mount; 1208 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1209 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1210 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1211 struct xfs_iext_cursor icur; 1212 struct xfs_bmbt_irec imap, cmap; 1213 int error = 0; 1214 unsigned lockmode; 1215 1216 if (xfs_is_shutdown(mp)) 1217 return -EIO; 1218 1219 lockmode = xfs_ilock_data_map_shared(ip); 1220 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1221 if (error) 1222 goto out_unlock; 1223 1224 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1225 /* 1226 * If we found a data extent we are done. 1227 */ 1228 if (imap.br_startoff <= offset_fsb) 1229 goto done; 1230 data_fsb = imap.br_startoff; 1231 } else { 1232 /* 1233 * Fake a hole until the end of the file. 1234 */ 1235 data_fsb = xfs_iomap_end_fsb(mp, offset, length); 1236 } 1237 1238 /* 1239 * If a COW fork extent covers the hole, report it - capped to the next 1240 * data fork extent: 1241 */ 1242 if (xfs_inode_has_cow_data(ip) && 1243 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1244 cow_fsb = cmap.br_startoff; 1245 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1246 if (data_fsb < cow_fsb + cmap.br_blockcount) 1247 end_fsb = min(end_fsb, data_fsb); 1248 xfs_trim_extent(&cmap, offset_fsb, end_fsb); 1249 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1250 IOMAP_F_SHARED); 1251 /* 1252 * This is a COW extent, so we must probe the page cache 1253 * because there could be dirty page cache being backed 1254 * by this extent. 1255 */ 1256 iomap->type = IOMAP_UNWRITTEN; 1257 goto out_unlock; 1258 } 1259 1260 /* 1261 * Else report a hole, capped to the next found data or COW extent. 1262 */ 1263 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1264 imap.br_blockcount = cow_fsb - offset_fsb; 1265 else 1266 imap.br_blockcount = data_fsb - offset_fsb; 1267 imap.br_startoff = offset_fsb; 1268 imap.br_startblock = HOLESTARTBLOCK; 1269 imap.br_state = XFS_EXT_NORM; 1270 done: 1271 xfs_trim_extent(&imap, offset_fsb, end_fsb); 1272 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0); 1273 out_unlock: 1274 xfs_iunlock(ip, lockmode); 1275 return error; 1276 } 1277 1278 const struct iomap_ops xfs_seek_iomap_ops = { 1279 .iomap_begin = xfs_seek_iomap_begin, 1280 }; 1281 1282 static int 1283 xfs_xattr_iomap_begin( 1284 struct inode *inode, 1285 loff_t offset, 1286 loff_t length, 1287 unsigned flags, 1288 struct iomap *iomap, 1289 struct iomap *srcmap) 1290 { 1291 struct xfs_inode *ip = XFS_I(inode); 1292 struct xfs_mount *mp = ip->i_mount; 1293 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1294 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1295 struct xfs_bmbt_irec imap; 1296 int nimaps = 1, error = 0; 1297 unsigned lockmode; 1298 1299 if (xfs_is_shutdown(mp)) 1300 return -EIO; 1301 1302 lockmode = xfs_ilock_attr_map_shared(ip); 1303 1304 /* if there are no attribute fork or extents, return ENOENT */ 1305 if (!XFS_IFORK_Q(ip) || !ip->i_afp->if_nextents) { 1306 error = -ENOENT; 1307 goto out_unlock; 1308 } 1309 1310 ASSERT(ip->i_afp->if_format != XFS_DINODE_FMT_LOCAL); 1311 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1312 &nimaps, XFS_BMAPI_ATTRFORK); 1313 out_unlock: 1314 xfs_iunlock(ip, lockmode); 1315 1316 if (error) 1317 return error; 1318 ASSERT(nimaps); 1319 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0); 1320 } 1321 1322 const struct iomap_ops xfs_xattr_iomap_ops = { 1323 .iomap_begin = xfs_xattr_iomap_begin, 1324 }; 1325 1326 int 1327 xfs_zero_range( 1328 struct xfs_inode *ip, 1329 loff_t pos, 1330 loff_t len, 1331 bool *did_zero) 1332 { 1333 struct inode *inode = VFS_I(ip); 1334 1335 if (IS_DAX(inode)) 1336 return dax_zero_range(inode, pos, len, did_zero, 1337 &xfs_direct_write_iomap_ops); 1338 return iomap_zero_range(inode, pos, len, did_zero, 1339 &xfs_buffered_write_iomap_ops); 1340 } 1341 1342 int 1343 xfs_truncate_page( 1344 struct xfs_inode *ip, 1345 loff_t pos, 1346 bool *did_zero) 1347 { 1348 struct inode *inode = VFS_I(ip); 1349 1350 if (IS_DAX(inode)) 1351 return dax_truncate_page(inode, pos, did_zero, 1352 &xfs_direct_write_iomap_ops); 1353 return iomap_truncate_page(inode, pos, did_zero, 1354 &xfs_buffered_write_iomap_ops); 1355 } 1356