1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_inode.h" 13 #include "xfs_trans.h" 14 #include "xfs_inode_item.h" 15 #include "xfs_error.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 21 #include <linux/iversion.h> 22 23 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 24 25 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 26 { 27 return container_of(lip, struct xfs_inode_log_item, ili_item); 28 } 29 30 STATIC void 31 xfs_inode_item_data_fork_size( 32 struct xfs_inode_log_item *iip, 33 int *nvecs, 34 int *nbytes) 35 { 36 struct xfs_inode *ip = iip->ili_inode; 37 38 switch (ip->i_d.di_format) { 39 case XFS_DINODE_FMT_EXTENTS: 40 if ((iip->ili_fields & XFS_ILOG_DEXT) && 41 ip->i_d.di_nextents > 0 && 42 ip->i_df.if_bytes > 0) { 43 /* worst case, doesn't subtract delalloc extents */ 44 *nbytes += XFS_IFORK_DSIZE(ip); 45 *nvecs += 1; 46 } 47 break; 48 case XFS_DINODE_FMT_BTREE: 49 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 50 ip->i_df.if_broot_bytes > 0) { 51 *nbytes += ip->i_df.if_broot_bytes; 52 *nvecs += 1; 53 } 54 break; 55 case XFS_DINODE_FMT_LOCAL: 56 if ((iip->ili_fields & XFS_ILOG_DDATA) && 57 ip->i_df.if_bytes > 0) { 58 *nbytes += roundup(ip->i_df.if_bytes, 4); 59 *nvecs += 1; 60 } 61 break; 62 63 case XFS_DINODE_FMT_DEV: 64 break; 65 default: 66 ASSERT(0); 67 break; 68 } 69 } 70 71 STATIC void 72 xfs_inode_item_attr_fork_size( 73 struct xfs_inode_log_item *iip, 74 int *nvecs, 75 int *nbytes) 76 { 77 struct xfs_inode *ip = iip->ili_inode; 78 79 switch (ip->i_d.di_aformat) { 80 case XFS_DINODE_FMT_EXTENTS: 81 if ((iip->ili_fields & XFS_ILOG_AEXT) && 82 ip->i_d.di_anextents > 0 && 83 ip->i_afp->if_bytes > 0) { 84 /* worst case, doesn't subtract unused space */ 85 *nbytes += XFS_IFORK_ASIZE(ip); 86 *nvecs += 1; 87 } 88 break; 89 case XFS_DINODE_FMT_BTREE: 90 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 91 ip->i_afp->if_broot_bytes > 0) { 92 *nbytes += ip->i_afp->if_broot_bytes; 93 *nvecs += 1; 94 } 95 break; 96 case XFS_DINODE_FMT_LOCAL: 97 if ((iip->ili_fields & XFS_ILOG_ADATA) && 98 ip->i_afp->if_bytes > 0) { 99 *nbytes += roundup(ip->i_afp->if_bytes, 4); 100 *nvecs += 1; 101 } 102 break; 103 default: 104 ASSERT(0); 105 break; 106 } 107 } 108 109 /* 110 * This returns the number of iovecs needed to log the given inode item. 111 * 112 * We need one iovec for the inode log format structure, one for the 113 * inode core, and possibly one for the inode data/extents/b-tree root 114 * and one for the inode attribute data/extents/b-tree root. 115 */ 116 STATIC void 117 xfs_inode_item_size( 118 struct xfs_log_item *lip, 119 int *nvecs, 120 int *nbytes) 121 { 122 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 123 struct xfs_inode *ip = iip->ili_inode; 124 125 *nvecs += 2; 126 *nbytes += sizeof(struct xfs_inode_log_format) + 127 xfs_log_dinode_size(ip->i_d.di_version); 128 129 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 130 if (XFS_IFORK_Q(ip)) 131 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 132 } 133 134 STATIC void 135 xfs_inode_item_format_data_fork( 136 struct xfs_inode_log_item *iip, 137 struct xfs_inode_log_format *ilf, 138 struct xfs_log_vec *lv, 139 struct xfs_log_iovec **vecp) 140 { 141 struct xfs_inode *ip = iip->ili_inode; 142 size_t data_bytes; 143 144 switch (ip->i_d.di_format) { 145 case XFS_DINODE_FMT_EXTENTS: 146 iip->ili_fields &= 147 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 148 149 if ((iip->ili_fields & XFS_ILOG_DEXT) && 150 ip->i_d.di_nextents > 0 && 151 ip->i_df.if_bytes > 0) { 152 struct xfs_bmbt_rec *p; 153 154 ASSERT(xfs_iext_count(&ip->i_df) > 0); 155 156 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 157 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 158 xlog_finish_iovec(lv, *vecp, data_bytes); 159 160 ASSERT(data_bytes <= ip->i_df.if_bytes); 161 162 ilf->ilf_dsize = data_bytes; 163 ilf->ilf_size++; 164 } else { 165 iip->ili_fields &= ~XFS_ILOG_DEXT; 166 } 167 break; 168 case XFS_DINODE_FMT_BTREE: 169 iip->ili_fields &= 170 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 171 172 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 173 ip->i_df.if_broot_bytes > 0) { 174 ASSERT(ip->i_df.if_broot != NULL); 175 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 176 ip->i_df.if_broot, 177 ip->i_df.if_broot_bytes); 178 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 179 ilf->ilf_size++; 180 } else { 181 ASSERT(!(iip->ili_fields & 182 XFS_ILOG_DBROOT)); 183 iip->ili_fields &= ~XFS_ILOG_DBROOT; 184 } 185 break; 186 case XFS_DINODE_FMT_LOCAL: 187 iip->ili_fields &= 188 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 189 if ((iip->ili_fields & XFS_ILOG_DDATA) && 190 ip->i_df.if_bytes > 0) { 191 /* 192 * Round i_bytes up to a word boundary. 193 * The underlying memory is guaranteed to 194 * to be there by xfs_idata_realloc(). 195 */ 196 data_bytes = roundup(ip->i_df.if_bytes, 4); 197 ASSERT(ip->i_df.if_real_bytes == 0 || 198 ip->i_df.if_real_bytes >= data_bytes); 199 ASSERT(ip->i_df.if_u1.if_data != NULL); 200 ASSERT(ip->i_d.di_size > 0); 201 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 202 ip->i_df.if_u1.if_data, data_bytes); 203 ilf->ilf_dsize = (unsigned)data_bytes; 204 ilf->ilf_size++; 205 } else { 206 iip->ili_fields &= ~XFS_ILOG_DDATA; 207 } 208 break; 209 case XFS_DINODE_FMT_DEV: 210 iip->ili_fields &= 211 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 212 if (iip->ili_fields & XFS_ILOG_DEV) 213 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 214 break; 215 default: 216 ASSERT(0); 217 break; 218 } 219 } 220 221 STATIC void 222 xfs_inode_item_format_attr_fork( 223 struct xfs_inode_log_item *iip, 224 struct xfs_inode_log_format *ilf, 225 struct xfs_log_vec *lv, 226 struct xfs_log_iovec **vecp) 227 { 228 struct xfs_inode *ip = iip->ili_inode; 229 size_t data_bytes; 230 231 switch (ip->i_d.di_aformat) { 232 case XFS_DINODE_FMT_EXTENTS: 233 iip->ili_fields &= 234 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 235 236 if ((iip->ili_fields & XFS_ILOG_AEXT) && 237 ip->i_d.di_anextents > 0 && 238 ip->i_afp->if_bytes > 0) { 239 struct xfs_bmbt_rec *p; 240 241 ASSERT(xfs_iext_count(ip->i_afp) == 242 ip->i_d.di_anextents); 243 244 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 245 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 246 xlog_finish_iovec(lv, *vecp, data_bytes); 247 248 ilf->ilf_asize = data_bytes; 249 ilf->ilf_size++; 250 } else { 251 iip->ili_fields &= ~XFS_ILOG_AEXT; 252 } 253 break; 254 case XFS_DINODE_FMT_BTREE: 255 iip->ili_fields &= 256 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 257 258 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 259 ip->i_afp->if_broot_bytes > 0) { 260 ASSERT(ip->i_afp->if_broot != NULL); 261 262 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 263 ip->i_afp->if_broot, 264 ip->i_afp->if_broot_bytes); 265 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 266 ilf->ilf_size++; 267 } else { 268 iip->ili_fields &= ~XFS_ILOG_ABROOT; 269 } 270 break; 271 case XFS_DINODE_FMT_LOCAL: 272 iip->ili_fields &= 273 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 274 275 if ((iip->ili_fields & XFS_ILOG_ADATA) && 276 ip->i_afp->if_bytes > 0) { 277 /* 278 * Round i_bytes up to a word boundary. 279 * The underlying memory is guaranteed to 280 * to be there by xfs_idata_realloc(). 281 */ 282 data_bytes = roundup(ip->i_afp->if_bytes, 4); 283 ASSERT(ip->i_afp->if_real_bytes == 0 || 284 ip->i_afp->if_real_bytes >= data_bytes); 285 ASSERT(ip->i_afp->if_u1.if_data != NULL); 286 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 287 ip->i_afp->if_u1.if_data, 288 data_bytes); 289 ilf->ilf_asize = (unsigned)data_bytes; 290 ilf->ilf_size++; 291 } else { 292 iip->ili_fields &= ~XFS_ILOG_ADATA; 293 } 294 break; 295 default: 296 ASSERT(0); 297 break; 298 } 299 } 300 301 static void 302 xfs_inode_to_log_dinode( 303 struct xfs_inode *ip, 304 struct xfs_log_dinode *to, 305 xfs_lsn_t lsn) 306 { 307 struct xfs_icdinode *from = &ip->i_d; 308 struct inode *inode = VFS_I(ip); 309 310 to->di_magic = XFS_DINODE_MAGIC; 311 312 to->di_version = from->di_version; 313 to->di_format = from->di_format; 314 to->di_uid = from->di_uid; 315 to->di_gid = from->di_gid; 316 to->di_projid_lo = from->di_projid_lo; 317 to->di_projid_hi = from->di_projid_hi; 318 319 memset(to->di_pad, 0, sizeof(to->di_pad)); 320 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 321 to->di_atime.t_sec = inode->i_atime.tv_sec; 322 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 323 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 324 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 325 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 326 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 327 to->di_nlink = inode->i_nlink; 328 to->di_gen = inode->i_generation; 329 to->di_mode = inode->i_mode; 330 331 to->di_size = from->di_size; 332 to->di_nblocks = from->di_nblocks; 333 to->di_extsize = from->di_extsize; 334 to->di_nextents = from->di_nextents; 335 to->di_anextents = from->di_anextents; 336 to->di_forkoff = from->di_forkoff; 337 to->di_aformat = from->di_aformat; 338 to->di_dmevmask = from->di_dmevmask; 339 to->di_dmstate = from->di_dmstate; 340 to->di_flags = from->di_flags; 341 342 /* log a dummy value to ensure log structure is fully initialised */ 343 to->di_next_unlinked = NULLAGINO; 344 345 if (from->di_version == 3) { 346 to->di_changecount = inode_peek_iversion(inode); 347 to->di_crtime.t_sec = from->di_crtime.t_sec; 348 to->di_crtime.t_nsec = from->di_crtime.t_nsec; 349 to->di_flags2 = from->di_flags2; 350 to->di_cowextsize = from->di_cowextsize; 351 to->di_ino = ip->i_ino; 352 to->di_lsn = lsn; 353 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 354 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 355 to->di_flushiter = 0; 356 } else { 357 to->di_flushiter = from->di_flushiter; 358 } 359 } 360 361 /* 362 * Format the inode core. Current timestamp data is only in the VFS inode 363 * fields, so we need to grab them from there. Hence rather than just copying 364 * the XFS inode core structure, format the fields directly into the iovec. 365 */ 366 static void 367 xfs_inode_item_format_core( 368 struct xfs_inode *ip, 369 struct xfs_log_vec *lv, 370 struct xfs_log_iovec **vecp) 371 { 372 struct xfs_log_dinode *dic; 373 374 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 375 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 376 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); 377 } 378 379 /* 380 * This is called to fill in the vector of log iovecs for the given inode 381 * log item. It fills the first item with an inode log format structure, 382 * the second with the on-disk inode structure, and a possible third and/or 383 * fourth with the inode data/extents/b-tree root and inode attributes 384 * data/extents/b-tree root. 385 * 386 * Note: Always use the 64 bit inode log format structure so we don't 387 * leave an uninitialised hole in the format item on 64 bit systems. Log 388 * recovery on 32 bit systems handles this just fine, so there's no reason 389 * for not using an initialising the properly padded structure all the time. 390 */ 391 STATIC void 392 xfs_inode_item_format( 393 struct xfs_log_item *lip, 394 struct xfs_log_vec *lv) 395 { 396 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 397 struct xfs_inode *ip = iip->ili_inode; 398 struct xfs_log_iovec *vecp = NULL; 399 struct xfs_inode_log_format *ilf; 400 401 ASSERT(ip->i_d.di_version > 1); 402 403 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 404 ilf->ilf_type = XFS_LI_INODE; 405 ilf->ilf_ino = ip->i_ino; 406 ilf->ilf_blkno = ip->i_imap.im_blkno; 407 ilf->ilf_len = ip->i_imap.im_len; 408 ilf->ilf_boffset = ip->i_imap.im_boffset; 409 ilf->ilf_fields = XFS_ILOG_CORE; 410 ilf->ilf_size = 2; /* format + core */ 411 412 /* 413 * make sure we don't leak uninitialised data into the log in the case 414 * when we don't log every field in the inode. 415 */ 416 ilf->ilf_dsize = 0; 417 ilf->ilf_asize = 0; 418 ilf->ilf_pad = 0; 419 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 420 421 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 422 423 xfs_inode_item_format_core(ip, lv, &vecp); 424 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 425 if (XFS_IFORK_Q(ip)) { 426 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 427 } else { 428 iip->ili_fields &= 429 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 430 } 431 432 /* update the format with the exact fields we actually logged */ 433 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 434 } 435 436 /* 437 * This is called to pin the inode associated with the inode log 438 * item in memory so it cannot be written out. 439 */ 440 STATIC void 441 xfs_inode_item_pin( 442 struct xfs_log_item *lip) 443 { 444 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 445 446 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 447 448 trace_xfs_inode_pin(ip, _RET_IP_); 449 atomic_inc(&ip->i_pincount); 450 } 451 452 453 /* 454 * This is called to unpin the inode associated with the inode log 455 * item which was previously pinned with a call to xfs_inode_item_pin(). 456 * 457 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 458 */ 459 STATIC void 460 xfs_inode_item_unpin( 461 struct xfs_log_item *lip, 462 int remove) 463 { 464 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 465 466 trace_xfs_inode_unpin(ip, _RET_IP_); 467 ASSERT(atomic_read(&ip->i_pincount) > 0); 468 if (atomic_dec_and_test(&ip->i_pincount)) 469 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 470 } 471 472 /* 473 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer 474 * have been failed during writeback 475 * 476 * This informs the AIL that the inode is already flush locked on the next push, 477 * and acquires a hold on the buffer to ensure that it isn't reclaimed before 478 * dirty data makes it to disk. 479 */ 480 STATIC void 481 xfs_inode_item_error( 482 struct xfs_log_item *lip, 483 struct xfs_buf *bp) 484 { 485 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); 486 xfs_set_li_failed(lip, bp); 487 } 488 489 STATIC uint 490 xfs_inode_item_push( 491 struct xfs_log_item *lip, 492 struct list_head *buffer_list) 493 __releases(&lip->li_ailp->ail_lock) 494 __acquires(&lip->li_ailp->ail_lock) 495 { 496 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 497 struct xfs_inode *ip = iip->ili_inode; 498 struct xfs_buf *bp = lip->li_buf; 499 uint rval = XFS_ITEM_SUCCESS; 500 int error; 501 502 if (xfs_ipincount(ip) > 0) 503 return XFS_ITEM_PINNED; 504 505 /* 506 * The buffer containing this item failed to be written back 507 * previously. Resubmit the buffer for IO. 508 */ 509 if (test_bit(XFS_LI_FAILED, &lip->li_flags)) { 510 if (!xfs_buf_trylock(bp)) 511 return XFS_ITEM_LOCKED; 512 513 if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list)) 514 rval = XFS_ITEM_FLUSHING; 515 516 xfs_buf_unlock(bp); 517 return rval; 518 } 519 520 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 521 return XFS_ITEM_LOCKED; 522 523 /* 524 * Re-check the pincount now that we stabilized the value by 525 * taking the ilock. 526 */ 527 if (xfs_ipincount(ip) > 0) { 528 rval = XFS_ITEM_PINNED; 529 goto out_unlock; 530 } 531 532 /* 533 * Stale inode items should force out the iclog. 534 */ 535 if (ip->i_flags & XFS_ISTALE) { 536 rval = XFS_ITEM_PINNED; 537 goto out_unlock; 538 } 539 540 /* 541 * Someone else is already flushing the inode. Nothing we can do 542 * here but wait for the flush to finish and remove the item from 543 * the AIL. 544 */ 545 if (!xfs_iflock_nowait(ip)) { 546 rval = XFS_ITEM_FLUSHING; 547 goto out_unlock; 548 } 549 550 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 551 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 552 553 spin_unlock(&lip->li_ailp->ail_lock); 554 555 error = xfs_iflush(ip, &bp); 556 if (!error) { 557 if (!xfs_buf_delwri_queue(bp, buffer_list)) 558 rval = XFS_ITEM_FLUSHING; 559 xfs_buf_relse(bp); 560 } 561 562 spin_lock(&lip->li_ailp->ail_lock); 563 out_unlock: 564 xfs_iunlock(ip, XFS_ILOCK_SHARED); 565 return rval; 566 } 567 568 /* 569 * Unlock the inode associated with the inode log item. 570 */ 571 STATIC void 572 xfs_inode_item_unlock( 573 struct xfs_log_item *lip) 574 { 575 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 576 struct xfs_inode *ip = iip->ili_inode; 577 unsigned short lock_flags; 578 579 ASSERT(ip->i_itemp != NULL); 580 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 581 582 lock_flags = iip->ili_lock_flags; 583 iip->ili_lock_flags = 0; 584 if (lock_flags) 585 xfs_iunlock(ip, lock_flags); 586 } 587 588 /* 589 * This is called to find out where the oldest active copy of the inode log 590 * item in the on disk log resides now that the last log write of it completed 591 * at the given lsn. Since we always re-log all dirty data in an inode, the 592 * latest copy in the on disk log is the only one that matters. Therefore, 593 * simply return the given lsn. 594 * 595 * If the inode has been marked stale because the cluster is being freed, we 596 * don't want to (re-)insert this inode into the AIL. There is a race condition 597 * where the cluster buffer may be unpinned before the inode is inserted into 598 * the AIL during transaction committed processing. If the buffer is unpinned 599 * before the inode item has been committed and inserted, then it is possible 600 * for the buffer to be written and IO completes before the inode is inserted 601 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 602 * AIL which will never get removed. It will, however, get reclaimed which 603 * triggers an assert in xfs_inode_free() complaining about freein an inode 604 * still in the AIL. 605 * 606 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 607 * transaction committed code knows that it does not need to do any further 608 * processing on the item. 609 */ 610 STATIC xfs_lsn_t 611 xfs_inode_item_committed( 612 struct xfs_log_item *lip, 613 xfs_lsn_t lsn) 614 { 615 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 616 struct xfs_inode *ip = iip->ili_inode; 617 618 if (xfs_iflags_test(ip, XFS_ISTALE)) { 619 xfs_inode_item_unpin(lip, 0); 620 return -1; 621 } 622 return lsn; 623 } 624 625 STATIC void 626 xfs_inode_item_committing( 627 struct xfs_log_item *lip, 628 xfs_lsn_t lsn) 629 { 630 INODE_ITEM(lip)->ili_last_lsn = lsn; 631 } 632 633 /* 634 * This is the ops vector shared by all buf log items. 635 */ 636 static const struct xfs_item_ops xfs_inode_item_ops = { 637 .iop_size = xfs_inode_item_size, 638 .iop_format = xfs_inode_item_format, 639 .iop_pin = xfs_inode_item_pin, 640 .iop_unpin = xfs_inode_item_unpin, 641 .iop_unlock = xfs_inode_item_unlock, 642 .iop_committed = xfs_inode_item_committed, 643 .iop_push = xfs_inode_item_push, 644 .iop_committing = xfs_inode_item_committing, 645 .iop_error = xfs_inode_item_error 646 }; 647 648 649 /* 650 * Initialize the inode log item for a newly allocated (in-core) inode. 651 */ 652 void 653 xfs_inode_item_init( 654 struct xfs_inode *ip, 655 struct xfs_mount *mp) 656 { 657 struct xfs_inode_log_item *iip; 658 659 ASSERT(ip->i_itemp == NULL); 660 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 661 662 iip->ili_inode = ip; 663 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 664 &xfs_inode_item_ops); 665 } 666 667 /* 668 * Free the inode log item and any memory hanging off of it. 669 */ 670 void 671 xfs_inode_item_destroy( 672 xfs_inode_t *ip) 673 { 674 kmem_free(ip->i_itemp->ili_item.li_lv_shadow); 675 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 676 } 677 678 679 /* 680 * This is the inode flushing I/O completion routine. It is called 681 * from interrupt level when the buffer containing the inode is 682 * flushed to disk. It is responsible for removing the inode item 683 * from the AIL if it has not been re-logged, and unlocking the inode's 684 * flush lock. 685 * 686 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 687 * list for other inodes that will run this function. We remove them from the 688 * buffer list so we can process all the inode IO completions in one AIL lock 689 * traversal. 690 */ 691 void 692 xfs_iflush_done( 693 struct xfs_buf *bp, 694 struct xfs_log_item *lip) 695 { 696 struct xfs_inode_log_item *iip; 697 struct xfs_log_item *blip, *n; 698 struct xfs_ail *ailp = lip->li_ailp; 699 int need_ail = 0; 700 LIST_HEAD(tmp); 701 702 /* 703 * Scan the buffer IO completions for other inodes being completed and 704 * attach them to the current inode log item. 705 */ 706 707 list_add_tail(&lip->li_bio_list, &tmp); 708 709 list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) { 710 if (lip->li_cb != xfs_iflush_done) 711 continue; 712 713 list_move_tail(&blip->li_bio_list, &tmp); 714 /* 715 * while we have the item, do the unlocked check for needing 716 * the AIL lock. 717 */ 718 iip = INODE_ITEM(blip); 719 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || 720 test_bit(XFS_LI_FAILED, &blip->li_flags)) 721 need_ail++; 722 } 723 724 /* make sure we capture the state of the initial inode. */ 725 iip = INODE_ITEM(lip); 726 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || 727 test_bit(XFS_LI_FAILED, &lip->li_flags)) 728 need_ail++; 729 730 /* 731 * We only want to pull the item from the AIL if it is 732 * actually there and its location in the log has not 733 * changed since we started the flush. Thus, we only bother 734 * if the ili_logged flag is set and the inode's lsn has not 735 * changed. First we check the lsn outside 736 * the lock since it's cheaper, and then we recheck while 737 * holding the lock before removing the inode from the AIL. 738 */ 739 if (need_ail) { 740 bool mlip_changed = false; 741 742 /* this is an opencoded batch version of xfs_trans_ail_delete */ 743 spin_lock(&ailp->ail_lock); 744 list_for_each_entry(blip, &tmp, li_bio_list) { 745 if (INODE_ITEM(blip)->ili_logged && 746 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) 747 mlip_changed |= xfs_ail_delete_one(ailp, blip); 748 else { 749 xfs_clear_li_failed(blip); 750 } 751 } 752 753 if (mlip_changed) { 754 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount)) 755 xlog_assign_tail_lsn_locked(ailp->ail_mount); 756 if (list_empty(&ailp->ail_head)) 757 wake_up_all(&ailp->ail_empty); 758 } 759 spin_unlock(&ailp->ail_lock); 760 761 if (mlip_changed) 762 xfs_log_space_wake(ailp->ail_mount); 763 } 764 765 /* 766 * clean up and unlock the flush lock now we are done. We can clear the 767 * ili_last_fields bits now that we know that the data corresponding to 768 * them is safely on disk. 769 */ 770 list_for_each_entry_safe(blip, n, &tmp, li_bio_list) { 771 list_del_init(&blip->li_bio_list); 772 iip = INODE_ITEM(blip); 773 iip->ili_logged = 0; 774 iip->ili_last_fields = 0; 775 xfs_ifunlock(iip->ili_inode); 776 } 777 list_del(&tmp); 778 } 779 780 /* 781 * This is the inode flushing abort routine. It is called from xfs_iflush when 782 * the filesystem is shutting down to clean up the inode state. It is 783 * responsible for removing the inode item from the AIL if it has not been 784 * re-logged, and unlocking the inode's flush lock. 785 */ 786 void 787 xfs_iflush_abort( 788 xfs_inode_t *ip, 789 bool stale) 790 { 791 xfs_inode_log_item_t *iip = ip->i_itemp; 792 793 if (iip) { 794 if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) { 795 xfs_trans_ail_remove(&iip->ili_item, 796 stale ? SHUTDOWN_LOG_IO_ERROR : 797 SHUTDOWN_CORRUPT_INCORE); 798 } 799 iip->ili_logged = 0; 800 /* 801 * Clear the ili_last_fields bits now that we know that the 802 * data corresponding to them is safely on disk. 803 */ 804 iip->ili_last_fields = 0; 805 /* 806 * Clear the inode logging fields so no more flushes are 807 * attempted. 808 */ 809 iip->ili_fields = 0; 810 iip->ili_fsync_fields = 0; 811 } 812 /* 813 * Release the inode's flush lock since we're done with it. 814 */ 815 xfs_ifunlock(ip); 816 } 817 818 void 819 xfs_istale_done( 820 struct xfs_buf *bp, 821 struct xfs_log_item *lip) 822 { 823 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 824 } 825 826 /* 827 * convert an xfs_inode_log_format struct from the old 32 bit version 828 * (which can have different field alignments) to the native 64 bit version 829 */ 830 int 831 xfs_inode_item_format_convert( 832 struct xfs_log_iovec *buf, 833 struct xfs_inode_log_format *in_f) 834 { 835 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 836 837 if (buf->i_len != sizeof(*in_f32)) 838 return -EFSCORRUPTED; 839 840 in_f->ilf_type = in_f32->ilf_type; 841 in_f->ilf_size = in_f32->ilf_size; 842 in_f->ilf_fields = in_f32->ilf_fields; 843 in_f->ilf_asize = in_f32->ilf_asize; 844 in_f->ilf_dsize = in_f32->ilf_dsize; 845 in_f->ilf_ino = in_f32->ilf_ino; 846 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 847 in_f->ilf_blkno = in_f32->ilf_blkno; 848 in_f->ilf_len = in_f32->ilf_len; 849 in_f->ilf_boffset = in_f32->ilf_boffset; 850 return 0; 851 } 852