xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision f42b3800)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 #include "xfs_error.h"
44 
45 
46 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
47 
48 /*
49  * This returns the number of iovecs needed to log the given inode item.
50  *
51  * We need one iovec for the inode log format structure, one for the
52  * inode core, and possibly one for the inode data/extents/b-tree root
53  * and one for the inode attribute data/extents/b-tree root.
54  */
55 STATIC uint
56 xfs_inode_item_size(
57 	xfs_inode_log_item_t	*iip)
58 {
59 	uint		nvecs;
60 	xfs_inode_t	*ip;
61 
62 	ip = iip->ili_inode;
63 	nvecs = 2;
64 
65 	/*
66 	 * Only log the data/extents/b-tree root if there is something
67 	 * left to log.
68 	 */
69 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
70 
71 	switch (ip->i_d.di_format) {
72 	case XFS_DINODE_FMT_EXTENTS:
73 		iip->ili_format.ilf_fields &=
74 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
76 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 		    (ip->i_d.di_nextents > 0) &&
78 		    (ip->i_df.if_bytes > 0)) {
79 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 			nvecs++;
81 		} else {
82 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
83 		}
84 		break;
85 
86 	case XFS_DINODE_FMT_BTREE:
87 		ASSERT(ip->i_df.if_ext_max ==
88 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 		iip->ili_format.ilf_fields &=
90 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
92 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 		    (ip->i_df.if_broot_bytes > 0)) {
94 			ASSERT(ip->i_df.if_broot != NULL);
95 			nvecs++;
96 		} else {
97 			ASSERT(!(iip->ili_format.ilf_fields &
98 				 XFS_ILOG_DBROOT));
99 #ifdef XFS_TRANS_DEBUG
100 			if (iip->ili_root_size > 0) {
101 				ASSERT(iip->ili_root_size ==
102 				       ip->i_df.if_broot_bytes);
103 				ASSERT(memcmp(iip->ili_orig_root,
104 					    ip->i_df.if_broot,
105 					    iip->ili_root_size) == 0);
106 			} else {
107 				ASSERT(ip->i_df.if_broot_bytes == 0);
108 			}
109 #endif
110 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
111 		}
112 		break;
113 
114 	case XFS_DINODE_FMT_LOCAL:
115 		iip->ili_format.ilf_fields &=
116 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
118 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 		    (ip->i_df.if_bytes > 0)) {
120 			ASSERT(ip->i_df.if_u1.if_data != NULL);
121 			ASSERT(ip->i_d.di_size > 0);
122 			nvecs++;
123 		} else {
124 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
125 		}
126 		break;
127 
128 	case XFS_DINODE_FMT_DEV:
129 		iip->ili_format.ilf_fields &=
130 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 		break;
133 
134 	case XFS_DINODE_FMT_UUID:
135 		iip->ili_format.ilf_fields &=
136 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 		break;
139 
140 	default:
141 		ASSERT(0);
142 		break;
143 	}
144 
145 	/*
146 	 * If there are no attributes associated with this file,
147 	 * then there cannot be anything more to log.
148 	 * Clear all attribute-related log flags.
149 	 */
150 	if (!XFS_IFORK_Q(ip)) {
151 		iip->ili_format.ilf_fields &=
152 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 		return nvecs;
154 	}
155 
156 	/*
157 	 * Log any necessary attribute data.
158 	 */
159 	switch (ip->i_d.di_aformat) {
160 	case XFS_DINODE_FMT_EXTENTS:
161 		iip->ili_format.ilf_fields &=
162 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 		    (ip->i_d.di_anextents > 0) &&
165 		    (ip->i_afp->if_bytes > 0)) {
166 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 			nvecs++;
168 		} else {
169 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
170 		}
171 		break;
172 
173 	case XFS_DINODE_FMT_BTREE:
174 		iip->ili_format.ilf_fields &=
175 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 		    (ip->i_afp->if_broot_bytes > 0)) {
178 			ASSERT(ip->i_afp->if_broot != NULL);
179 			nvecs++;
180 		} else {
181 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
182 		}
183 		break;
184 
185 	case XFS_DINODE_FMT_LOCAL:
186 		iip->ili_format.ilf_fields &=
187 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 		    (ip->i_afp->if_bytes > 0)) {
190 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 			nvecs++;
192 		} else {
193 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
194 		}
195 		break;
196 
197 	default:
198 		ASSERT(0);
199 		break;
200 	}
201 
202 	return nvecs;
203 }
204 
205 /*
206  * This is called to fill in the vector of log iovecs for the
207  * given inode log item.  It fills the first item with an inode
208  * log format structure, the second with the on-disk inode structure,
209  * and a possible third and/or fourth with the inode data/extents/b-tree
210  * root and inode attributes data/extents/b-tree root.
211  */
212 STATIC void
213 xfs_inode_item_format(
214 	xfs_inode_log_item_t	*iip,
215 	xfs_log_iovec_t		*log_vector)
216 {
217 	uint			nvecs;
218 	xfs_log_iovec_t		*vecp;
219 	xfs_inode_t		*ip;
220 	size_t			data_bytes;
221 	xfs_bmbt_rec_t		*ext_buffer;
222 	int			nrecs;
223 	xfs_mount_t		*mp;
224 
225 	ip = iip->ili_inode;
226 	vecp = log_vector;
227 
228 	vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
230 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
231 	vecp++;
232 	nvecs	     = 1;
233 
234 	/*
235 	 * Clear i_update_core if the timestamps (or any other
236 	 * non-transactional modification) need flushing/logging
237 	 * and we're about to log them with the rest of the core.
238 	 *
239 	 * This is the same logic as xfs_iflush() but this code can't
240 	 * run at the same time as xfs_iflush because we're in commit
241 	 * processing here and so we have the inode lock held in
242 	 * exclusive mode.  Although it doesn't really matter
243 	 * for the timestamps if both routines were to grab the
244 	 * timestamps or not.  That would be ok.
245 	 *
246 	 * We clear i_update_core before copying out the data.
247 	 * This is for coordination with our timestamp updates
248 	 * that don't hold the inode lock. They will always
249 	 * update the timestamps BEFORE setting i_update_core,
250 	 * so if we clear i_update_core after they set it we
251 	 * are guaranteed to see their updates to the timestamps
252 	 * either here.  Likewise, if they set it after we clear it
253 	 * here, we'll see it either on the next commit of this
254 	 * inode or the next time the inode gets flushed via
255 	 * xfs_iflush().  This depends on strongly ordered memory
256 	 * semantics, but we have that.  We use the SYNCHRONIZE
257 	 * macro to make sure that the compiler does not reorder
258 	 * the i_update_core access below the data copy below.
259 	 */
260 	if (ip->i_update_core)  {
261 		ip->i_update_core = 0;
262 		SYNCHRONIZE();
263 	}
264 
265 	/*
266 	 * We don't have to worry about re-ordering here because
267 	 * the update_size field is protected by the inode lock
268 	 * and we have that held in exclusive mode.
269 	 */
270 	if (ip->i_update_size)
271 		ip->i_update_size = 0;
272 
273 	/*
274 	 * Make sure to get the latest atime from the Linux inode.
275 	 */
276 	xfs_synchronize_atime(ip);
277 
278 	/*
279 	 * make sure the linux inode is dirty
280 	 */
281 	xfs_mark_inode_dirty_sync(ip);
282 
283 	vecp->i_addr = (xfs_caddr_t)&ip->i_d;
284 	vecp->i_len  = sizeof(xfs_dinode_core_t);
285 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
286 	vecp++;
287 	nvecs++;
288 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
289 
290 	/*
291 	 * If this is really an old format inode, then we need to
292 	 * log it as such.  This means that we have to copy the link
293 	 * count from the new field to the old.  We don't have to worry
294 	 * about the new fields, because nothing trusts them as long as
295 	 * the old inode version number is there.  If the superblock already
296 	 * has a new version number, then we don't bother converting back.
297 	 */
298 	mp = ip->i_mount;
299 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
300 	       xfs_sb_version_hasnlink(&mp->m_sb));
301 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
302 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
303 			/*
304 			 * Convert it back.
305 			 */
306 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
307 			ip->i_d.di_onlink = ip->i_d.di_nlink;
308 		} else {
309 			/*
310 			 * The superblock version has already been bumped,
311 			 * so just make the conversion to the new inode
312 			 * format permanent.
313 			 */
314 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
315 			ip->i_d.di_onlink = 0;
316 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
317 		}
318 	}
319 
320 	switch (ip->i_d.di_format) {
321 	case XFS_DINODE_FMT_EXTENTS:
322 		ASSERT(!(iip->ili_format.ilf_fields &
323 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
324 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
325 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
326 			ASSERT(ip->i_df.if_bytes > 0);
327 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
328 			ASSERT(ip->i_d.di_nextents > 0);
329 			ASSERT(iip->ili_extents_buf == NULL);
330 			nrecs = ip->i_df.if_bytes /
331 				(uint)sizeof(xfs_bmbt_rec_t);
332 			ASSERT(nrecs > 0);
333 #ifdef XFS_NATIVE_HOST
334 			if (nrecs == ip->i_d.di_nextents) {
335 				/*
336 				 * There are no delayed allocation
337 				 * extents, so just point to the
338 				 * real extents array.
339 				 */
340 				vecp->i_addr =
341 					(char *)(ip->i_df.if_u1.if_extents);
342 				vecp->i_len = ip->i_df.if_bytes;
343 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
344 			} else
345 #endif
346 			{
347 				/*
348 				 * There are delayed allocation extents
349 				 * in the inode, or we need to convert
350 				 * the extents to on disk format.
351 				 * Use xfs_iextents_copy()
352 				 * to copy only the real extents into
353 				 * a separate buffer.  We'll free the
354 				 * buffer in the unlock routine.
355 				 */
356 				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
357 					KM_SLEEP);
358 				iip->ili_extents_buf = ext_buffer;
359 				vecp->i_addr = (xfs_caddr_t)ext_buffer;
360 				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
361 						XFS_DATA_FORK);
362 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
363 			}
364 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
365 			iip->ili_format.ilf_dsize = vecp->i_len;
366 			vecp++;
367 			nvecs++;
368 		}
369 		break;
370 
371 	case XFS_DINODE_FMT_BTREE:
372 		ASSERT(!(iip->ili_format.ilf_fields &
373 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
374 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
375 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
376 			ASSERT(ip->i_df.if_broot_bytes > 0);
377 			ASSERT(ip->i_df.if_broot != NULL);
378 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
379 			vecp->i_len = ip->i_df.if_broot_bytes;
380 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
381 			vecp++;
382 			nvecs++;
383 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
384 		}
385 		break;
386 
387 	case XFS_DINODE_FMT_LOCAL:
388 		ASSERT(!(iip->ili_format.ilf_fields &
389 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
390 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
391 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
392 			ASSERT(ip->i_df.if_bytes > 0);
393 			ASSERT(ip->i_df.if_u1.if_data != NULL);
394 			ASSERT(ip->i_d.di_size > 0);
395 
396 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
397 			/*
398 			 * Round i_bytes up to a word boundary.
399 			 * The underlying memory is guaranteed to
400 			 * to be there by xfs_idata_realloc().
401 			 */
402 			data_bytes = roundup(ip->i_df.if_bytes, 4);
403 			ASSERT((ip->i_df.if_real_bytes == 0) ||
404 			       (ip->i_df.if_real_bytes == data_bytes));
405 			vecp->i_len = (int)data_bytes;
406 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
407 			vecp++;
408 			nvecs++;
409 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
410 		}
411 		break;
412 
413 	case XFS_DINODE_FMT_DEV:
414 		ASSERT(!(iip->ili_format.ilf_fields &
415 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
416 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
417 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
418 			iip->ili_format.ilf_u.ilfu_rdev =
419 				ip->i_df.if_u2.if_rdev;
420 		}
421 		break;
422 
423 	case XFS_DINODE_FMT_UUID:
424 		ASSERT(!(iip->ili_format.ilf_fields &
425 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
426 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
427 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
428 			iip->ili_format.ilf_u.ilfu_uuid =
429 				ip->i_df.if_u2.if_uuid;
430 		}
431 		break;
432 
433 	default:
434 		ASSERT(0);
435 		break;
436 	}
437 
438 	/*
439 	 * If there are no attributes associated with the file,
440 	 * then we're done.
441 	 * Assert that no attribute-related log flags are set.
442 	 */
443 	if (!XFS_IFORK_Q(ip)) {
444 		ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
445 		iip->ili_format.ilf_size = nvecs;
446 		ASSERT(!(iip->ili_format.ilf_fields &
447 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
448 		return;
449 	}
450 
451 	switch (ip->i_d.di_aformat) {
452 	case XFS_DINODE_FMT_EXTENTS:
453 		ASSERT(!(iip->ili_format.ilf_fields &
454 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
455 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
456 			ASSERT(ip->i_afp->if_bytes > 0);
457 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
458 			ASSERT(ip->i_d.di_anextents > 0);
459 #ifdef DEBUG
460 			nrecs = ip->i_afp->if_bytes /
461 				(uint)sizeof(xfs_bmbt_rec_t);
462 #endif
463 			ASSERT(nrecs > 0);
464 			ASSERT(nrecs == ip->i_d.di_anextents);
465 #ifdef XFS_NATIVE_HOST
466 			/*
467 			 * There are not delayed allocation extents
468 			 * for attributes, so just point at the array.
469 			 */
470 			vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
471 			vecp->i_len = ip->i_afp->if_bytes;
472 #else
473 			ASSERT(iip->ili_aextents_buf == NULL);
474 			/*
475 			 * Need to endian flip before logging
476 			 */
477 			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
478 				KM_SLEEP);
479 			iip->ili_aextents_buf = ext_buffer;
480 			vecp->i_addr = (xfs_caddr_t)ext_buffer;
481 			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
482 					XFS_ATTR_FORK);
483 #endif
484 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
485 			iip->ili_format.ilf_asize = vecp->i_len;
486 			vecp++;
487 			nvecs++;
488 		}
489 		break;
490 
491 	case XFS_DINODE_FMT_BTREE:
492 		ASSERT(!(iip->ili_format.ilf_fields &
493 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
494 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
495 			ASSERT(ip->i_afp->if_broot_bytes > 0);
496 			ASSERT(ip->i_afp->if_broot != NULL);
497 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
498 			vecp->i_len = ip->i_afp->if_broot_bytes;
499 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
500 			vecp++;
501 			nvecs++;
502 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
503 		}
504 		break;
505 
506 	case XFS_DINODE_FMT_LOCAL:
507 		ASSERT(!(iip->ili_format.ilf_fields &
508 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
509 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
510 			ASSERT(ip->i_afp->if_bytes > 0);
511 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
512 
513 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
514 			/*
515 			 * Round i_bytes up to a word boundary.
516 			 * The underlying memory is guaranteed to
517 			 * to be there by xfs_idata_realloc().
518 			 */
519 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
520 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
521 			       (ip->i_afp->if_real_bytes == data_bytes));
522 			vecp->i_len = (int)data_bytes;
523 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
524 			vecp++;
525 			nvecs++;
526 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
527 		}
528 		break;
529 
530 	default:
531 		ASSERT(0);
532 		break;
533 	}
534 
535 	ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
536 	iip->ili_format.ilf_size = nvecs;
537 }
538 
539 
540 /*
541  * This is called to pin the inode associated with the inode log
542  * item in memory so it cannot be written out.  Do this by calling
543  * xfs_ipin() to bump the pin count in the inode while holding the
544  * inode pin lock.
545  */
546 STATIC void
547 xfs_inode_item_pin(
548 	xfs_inode_log_item_t	*iip)
549 {
550 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
551 	xfs_ipin(iip->ili_inode);
552 }
553 
554 
555 /*
556  * This is called to unpin the inode associated with the inode log
557  * item which was previously pinned with a call to xfs_inode_item_pin().
558  * Just call xfs_iunpin() on the inode to do this.
559  */
560 /* ARGSUSED */
561 STATIC void
562 xfs_inode_item_unpin(
563 	xfs_inode_log_item_t	*iip,
564 	int			stale)
565 {
566 	xfs_iunpin(iip->ili_inode);
567 }
568 
569 /* ARGSUSED */
570 STATIC void
571 xfs_inode_item_unpin_remove(
572 	xfs_inode_log_item_t	*iip,
573 	xfs_trans_t		*tp)
574 {
575 	xfs_iunpin(iip->ili_inode);
576 }
577 
578 /*
579  * This is called to attempt to lock the inode associated with this
580  * inode log item, in preparation for the push routine which does the actual
581  * iflush.  Don't sleep on the inode lock or the flush lock.
582  *
583  * If the flush lock is already held, indicating that the inode has
584  * been or is in the process of being flushed, then (ideally) we'd like to
585  * see if the inode's buffer is still incore, and if so give it a nudge.
586  * We delay doing so until the pushbuf routine, though, to avoid holding
587  * the AIL lock across a call to the blackhole which is the buffer cache.
588  * Also we don't want to sleep in any device strategy routines, which can happen
589  * if we do the subsequent bawrite in here.
590  */
591 STATIC uint
592 xfs_inode_item_trylock(
593 	xfs_inode_log_item_t	*iip)
594 {
595 	register xfs_inode_t	*ip;
596 
597 	ip = iip->ili_inode;
598 
599 	if (xfs_ipincount(ip) > 0) {
600 		return XFS_ITEM_PINNED;
601 	}
602 
603 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
604 		return XFS_ITEM_LOCKED;
605 	}
606 
607 	if (!xfs_iflock_nowait(ip)) {
608 		/*
609 		 * If someone else isn't already trying to push the inode
610 		 * buffer, we get to do it.
611 		 */
612 		if (iip->ili_pushbuf_flag == 0) {
613 			iip->ili_pushbuf_flag = 1;
614 #ifdef DEBUG
615 			iip->ili_push_owner = current_pid();
616 #endif
617 			/*
618 			 * Inode is left locked in shared mode.
619 			 * Pushbuf routine gets to unlock it.
620 			 */
621 			return XFS_ITEM_PUSHBUF;
622 		} else {
623 			/*
624 			 * We hold the AIL lock, so we must specify the
625 			 * NONOTIFY flag so that we won't double trip.
626 			 */
627 			xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
628 			return XFS_ITEM_FLUSHING;
629 		}
630 		/* NOTREACHED */
631 	}
632 
633 	/* Stale items should force out the iclog */
634 	if (ip->i_flags & XFS_ISTALE) {
635 		xfs_ifunlock(ip);
636 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
637 		return XFS_ITEM_PINNED;
638 	}
639 
640 #ifdef DEBUG
641 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
642 		ASSERT(iip->ili_format.ilf_fields != 0);
643 		ASSERT(iip->ili_logged == 0);
644 		ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
645 	}
646 #endif
647 	return XFS_ITEM_SUCCESS;
648 }
649 
650 /*
651  * Unlock the inode associated with the inode log item.
652  * Clear the fields of the inode and inode log item that
653  * are specific to the current transaction.  If the
654  * hold flags is set, do not unlock the inode.
655  */
656 STATIC void
657 xfs_inode_item_unlock(
658 	xfs_inode_log_item_t	*iip)
659 {
660 	uint		hold;
661 	uint		iolocked;
662 	uint		lock_flags;
663 	xfs_inode_t	*ip;
664 
665 	ASSERT(iip != NULL);
666 	ASSERT(iip->ili_inode->i_itemp != NULL);
667 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
668 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
669 		  XFS_ILI_IOLOCKED_EXCL)) ||
670 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
671 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
672 		  XFS_ILI_IOLOCKED_SHARED)) ||
673 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
674 	/*
675 	 * Clear the transaction pointer in the inode.
676 	 */
677 	ip = iip->ili_inode;
678 	ip->i_transp = NULL;
679 
680 	/*
681 	 * If the inode needed a separate buffer with which to log
682 	 * its extents, then free it now.
683 	 */
684 	if (iip->ili_extents_buf != NULL) {
685 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
686 		ASSERT(ip->i_d.di_nextents > 0);
687 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
688 		ASSERT(ip->i_df.if_bytes > 0);
689 		kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
690 		iip->ili_extents_buf = NULL;
691 	}
692 	if (iip->ili_aextents_buf != NULL) {
693 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
694 		ASSERT(ip->i_d.di_anextents > 0);
695 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
696 		ASSERT(ip->i_afp->if_bytes > 0);
697 		kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
698 		iip->ili_aextents_buf = NULL;
699 	}
700 
701 	/*
702 	 * Figure out if we should unlock the inode or not.
703 	 */
704 	hold = iip->ili_flags & XFS_ILI_HOLD;
705 
706 	/*
707 	 * Before clearing out the flags, remember whether we
708 	 * are holding the inode's IO lock.
709 	 */
710 	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
711 
712 	/*
713 	 * Clear out the fields of the inode log item particular
714 	 * to the current transaction.
715 	 */
716 	iip->ili_ilock_recur = 0;
717 	iip->ili_iolock_recur = 0;
718 	iip->ili_flags = 0;
719 
720 	/*
721 	 * Unlock the inode if XFS_ILI_HOLD was not set.
722 	 */
723 	if (!hold) {
724 		lock_flags = XFS_ILOCK_EXCL;
725 		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
726 			lock_flags |= XFS_IOLOCK_EXCL;
727 		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
728 			lock_flags |= XFS_IOLOCK_SHARED;
729 		}
730 		xfs_iput(iip->ili_inode, lock_flags);
731 	}
732 }
733 
734 /*
735  * This is called to find out where the oldest active copy of the
736  * inode log item in the on disk log resides now that the last log
737  * write of it completed at the given lsn.  Since we always re-log
738  * all dirty data in an inode, the latest copy in the on disk log
739  * is the only one that matters.  Therefore, simply return the
740  * given lsn.
741  */
742 /*ARGSUSED*/
743 STATIC xfs_lsn_t
744 xfs_inode_item_committed(
745 	xfs_inode_log_item_t	*iip,
746 	xfs_lsn_t		lsn)
747 {
748 	return (lsn);
749 }
750 
751 /*
752  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
753  * failed to get the inode flush lock but did get the inode locked SHARED.
754  * Here we're trying to see if the inode buffer is incore, and if so whether it's
755  * marked delayed write. If that's the case, we'll initiate a bawrite on that
756  * buffer to expedite the process.
757  *
758  * We aren't holding the AIL lock (or the flush lock) when this gets called,
759  * so it is inherently race-y.
760  */
761 STATIC void
762 xfs_inode_item_pushbuf(
763 	xfs_inode_log_item_t	*iip)
764 {
765 	xfs_inode_t	*ip;
766 	xfs_mount_t	*mp;
767 	xfs_buf_t	*bp;
768 	uint		dopush;
769 
770 	ip = iip->ili_inode;
771 
772 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
773 
774 	/*
775 	 * The ili_pushbuf_flag keeps others from
776 	 * trying to duplicate our effort.
777 	 */
778 	ASSERT(iip->ili_pushbuf_flag != 0);
779 	ASSERT(iip->ili_push_owner == current_pid());
780 
781 	/*
782 	 * If flushlock isn't locked anymore, chances are that the
783 	 * inode flush completed and the inode was taken off the AIL.
784 	 * So, just get out.
785 	 */
786 	if (!issemalocked(&(ip->i_flock)) ||
787 	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
788 		iip->ili_pushbuf_flag = 0;
789 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
790 		return;
791 	}
792 
793 	mp = ip->i_mount;
794 	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
795 		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
796 
797 	if (bp != NULL) {
798 		if (XFS_BUF_ISDELAYWRITE(bp)) {
799 			/*
800 			 * We were racing with iflush because we don't hold
801 			 * the AIL lock or the flush lock. However, at this point,
802 			 * we have the buffer, and we know that it's dirty.
803 			 * So, it's possible that iflush raced with us, and
804 			 * this item is already taken off the AIL.
805 			 * If not, we can flush it async.
806 			 */
807 			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
808 				  issemalocked(&(ip->i_flock)));
809 			iip->ili_pushbuf_flag = 0;
810 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
811 			xfs_buftrace("INODE ITEM PUSH", bp);
812 			if (XFS_BUF_ISPINNED(bp)) {
813 				xfs_log_force(mp, (xfs_lsn_t)0,
814 					      XFS_LOG_FORCE);
815 			}
816 			if (dopush) {
817 				int	error;
818 				error = xfs_bawrite(mp, bp);
819 				if (error)
820 					xfs_fs_cmn_err(CE_WARN, mp,
821 		"xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
822 							error, iip, bp);
823 			} else {
824 				xfs_buf_relse(bp);
825 			}
826 		} else {
827 			iip->ili_pushbuf_flag = 0;
828 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
829 			xfs_buf_relse(bp);
830 		}
831 		return;
832 	}
833 	/*
834 	 * We have to be careful about resetting pushbuf flag too early (above).
835 	 * Even though in theory we can do it as soon as we have the buflock,
836 	 * we don't want others to be doing work needlessly. They'll come to
837 	 * this function thinking that pushing the buffer is their
838 	 * responsibility only to find that the buffer is still locked by
839 	 * another doing the same thing
840 	 */
841 	iip->ili_pushbuf_flag = 0;
842 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
843 	return;
844 }
845 
846 
847 /*
848  * This is called to asynchronously write the inode associated with this
849  * inode log item out to disk. The inode will already have been locked by
850  * a successful call to xfs_inode_item_trylock().
851  */
852 STATIC void
853 xfs_inode_item_push(
854 	xfs_inode_log_item_t	*iip)
855 {
856 	xfs_inode_t	*ip;
857 
858 	ip = iip->ili_inode;
859 
860 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
861 	ASSERT(issemalocked(&(ip->i_flock)));
862 	/*
863 	 * Since we were able to lock the inode's flush lock and
864 	 * we found it on the AIL, the inode must be dirty.  This
865 	 * is because the inode is removed from the AIL while still
866 	 * holding the flush lock in xfs_iflush_done().  Thus, if
867 	 * we found it in the AIL and were able to obtain the flush
868 	 * lock without sleeping, then there must not have been
869 	 * anyone in the process of flushing the inode.
870 	 */
871 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
872 	       iip->ili_format.ilf_fields != 0);
873 
874 	/*
875 	 * Write out the inode.  The completion routine ('iflush_done') will
876 	 * pull it from the AIL, mark it clean, unlock the flush lock.
877 	 */
878 	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
879 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
880 
881 	return;
882 }
883 
884 /*
885  * XXX rcc - this one really has to do something.  Probably needs
886  * to stamp in a new field in the incore inode.
887  */
888 /* ARGSUSED */
889 STATIC void
890 xfs_inode_item_committing(
891 	xfs_inode_log_item_t	*iip,
892 	xfs_lsn_t		lsn)
893 {
894 	iip->ili_last_lsn = lsn;
895 	return;
896 }
897 
898 /*
899  * This is the ops vector shared by all buf log items.
900  */
901 static struct xfs_item_ops xfs_inode_item_ops = {
902 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
903 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
904 					xfs_inode_item_format,
905 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
906 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
907 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
908 					xfs_inode_item_unpin_remove,
909 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
910 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
911 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
912 					xfs_inode_item_committed,
913 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push,
914 	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
915 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
916 					xfs_inode_item_committing
917 };
918 
919 
920 /*
921  * Initialize the inode log item for a newly allocated (in-core) inode.
922  */
923 void
924 xfs_inode_item_init(
925 	xfs_inode_t	*ip,
926 	xfs_mount_t	*mp)
927 {
928 	xfs_inode_log_item_t	*iip;
929 
930 	ASSERT(ip->i_itemp == NULL);
931 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
932 
933 	iip->ili_item.li_type = XFS_LI_INODE;
934 	iip->ili_item.li_ops = &xfs_inode_item_ops;
935 	iip->ili_item.li_mountp = mp;
936 	iip->ili_inode = ip;
937 
938 	/*
939 	   We have zeroed memory. No need ...
940 	   iip->ili_extents_buf = NULL;
941 	   iip->ili_pushbuf_flag = 0;
942 	 */
943 
944 	iip->ili_format.ilf_type = XFS_LI_INODE;
945 	iip->ili_format.ilf_ino = ip->i_ino;
946 	iip->ili_format.ilf_blkno = ip->i_blkno;
947 	iip->ili_format.ilf_len = ip->i_len;
948 	iip->ili_format.ilf_boffset = ip->i_boffset;
949 }
950 
951 /*
952  * Free the inode log item and any memory hanging off of it.
953  */
954 void
955 xfs_inode_item_destroy(
956 	xfs_inode_t	*ip)
957 {
958 #ifdef XFS_TRANS_DEBUG
959 	if (ip->i_itemp->ili_root_size != 0) {
960 		kmem_free(ip->i_itemp->ili_orig_root,
961 			  ip->i_itemp->ili_root_size);
962 	}
963 #endif
964 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
965 }
966 
967 
968 /*
969  * This is the inode flushing I/O completion routine.  It is called
970  * from interrupt level when the buffer containing the inode is
971  * flushed to disk.  It is responsible for removing the inode item
972  * from the AIL if it has not been re-logged, and unlocking the inode's
973  * flush lock.
974  */
975 /*ARGSUSED*/
976 void
977 xfs_iflush_done(
978 	xfs_buf_t		*bp,
979 	xfs_inode_log_item_t	*iip)
980 {
981 	xfs_inode_t	*ip;
982 
983 	ip = iip->ili_inode;
984 
985 	/*
986 	 * We only want to pull the item from the AIL if it is
987 	 * actually there and its location in the log has not
988 	 * changed since we started the flush.  Thus, we only bother
989 	 * if the ili_logged flag is set and the inode's lsn has not
990 	 * changed.  First we check the lsn outside
991 	 * the lock since it's cheaper, and then we recheck while
992 	 * holding the lock before removing the inode from the AIL.
993 	 */
994 	if (iip->ili_logged &&
995 	    (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
996 		spin_lock(&ip->i_mount->m_ail_lock);
997 		if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
998 			/*
999 			 * xfs_trans_delete_ail() drops the AIL lock.
1000 			 */
1001 			xfs_trans_delete_ail(ip->i_mount,
1002 					     (xfs_log_item_t*)iip);
1003 		} else {
1004 			spin_unlock(&ip->i_mount->m_ail_lock);
1005 		}
1006 	}
1007 
1008 	iip->ili_logged = 0;
1009 
1010 	/*
1011 	 * Clear the ili_last_fields bits now that we know that the
1012 	 * data corresponding to them is safely on disk.
1013 	 */
1014 	iip->ili_last_fields = 0;
1015 
1016 	/*
1017 	 * Release the inode's flush lock since we're done with it.
1018 	 */
1019 	xfs_ifunlock(ip);
1020 
1021 	return;
1022 }
1023 
1024 /*
1025  * This is the inode flushing abort routine.  It is called
1026  * from xfs_iflush when the filesystem is shutting down to clean
1027  * up the inode state.
1028  * It is responsible for removing the inode item
1029  * from the AIL if it has not been re-logged, and unlocking the inode's
1030  * flush lock.
1031  */
1032 void
1033 xfs_iflush_abort(
1034 	xfs_inode_t		*ip)
1035 {
1036 	xfs_inode_log_item_t	*iip;
1037 	xfs_mount_t		*mp;
1038 
1039 	iip = ip->i_itemp;
1040 	mp = ip->i_mount;
1041 	if (iip) {
1042 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1043 			spin_lock(&mp->m_ail_lock);
1044 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1045 				/*
1046 				 * xfs_trans_delete_ail() drops the AIL lock.
1047 				 */
1048 				xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip);
1049 			} else
1050 				spin_unlock(&mp->m_ail_lock);
1051 		}
1052 		iip->ili_logged = 0;
1053 		/*
1054 		 * Clear the ili_last_fields bits now that we know that the
1055 		 * data corresponding to them is safely on disk.
1056 		 */
1057 		iip->ili_last_fields = 0;
1058 		/*
1059 		 * Clear the inode logging fields so no more flushes are
1060 		 * attempted.
1061 		 */
1062 		iip->ili_format.ilf_fields = 0;
1063 	}
1064 	/*
1065 	 * Release the inode's flush lock since we're done with it.
1066 	 */
1067 	xfs_ifunlock(ip);
1068 }
1069 
1070 void
1071 xfs_istale_done(
1072 	xfs_buf_t		*bp,
1073 	xfs_inode_log_item_t	*iip)
1074 {
1075 	xfs_iflush_abort(iip->ili_inode);
1076 }
1077 
1078 /*
1079  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1080  * (which can have different field alignments) to the native version
1081  */
1082 int
1083 xfs_inode_item_format_convert(
1084 	xfs_log_iovec_t		*buf,
1085 	xfs_inode_log_format_t	*in_f)
1086 {
1087 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1088 		xfs_inode_log_format_32_t *in_f32;
1089 
1090 		in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1091 		in_f->ilf_type = in_f32->ilf_type;
1092 		in_f->ilf_size = in_f32->ilf_size;
1093 		in_f->ilf_fields = in_f32->ilf_fields;
1094 		in_f->ilf_asize = in_f32->ilf_asize;
1095 		in_f->ilf_dsize = in_f32->ilf_dsize;
1096 		in_f->ilf_ino = in_f32->ilf_ino;
1097 		/* copy biggest field of ilf_u */
1098 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1099 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1100 		       sizeof(uuid_t));
1101 		in_f->ilf_blkno = in_f32->ilf_blkno;
1102 		in_f->ilf_len = in_f32->ilf_len;
1103 		in_f->ilf_boffset = in_f32->ilf_boffset;
1104 		return 0;
1105 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1106 		xfs_inode_log_format_64_t *in_f64;
1107 
1108 		in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1109 		in_f->ilf_type = in_f64->ilf_type;
1110 		in_f->ilf_size = in_f64->ilf_size;
1111 		in_f->ilf_fields = in_f64->ilf_fields;
1112 		in_f->ilf_asize = in_f64->ilf_asize;
1113 		in_f->ilf_dsize = in_f64->ilf_dsize;
1114 		in_f->ilf_ino = in_f64->ilf_ino;
1115 		/* copy biggest field of ilf_u */
1116 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1117 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1118 		       sizeof(uuid_t));
1119 		in_f->ilf_blkno = in_f64->ilf_blkno;
1120 		in_f->ilf_len = in_f64->ilf_len;
1121 		in_f->ilf_boffset = in_f64->ilf_boffset;
1122 		return 0;
1123 	}
1124 	return EFSCORRUPTED;
1125 }
1126