xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision ee21014b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
21 
22 #include <linux/iversion.h>
23 
24 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
25 
26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27 {
28 	return container_of(lip, struct xfs_inode_log_item, ili_item);
29 }
30 
31 STATIC void
32 xfs_inode_item_data_fork_size(
33 	struct xfs_inode_log_item *iip,
34 	int			*nvecs,
35 	int			*nbytes)
36 {
37 	struct xfs_inode	*ip = iip->ili_inode;
38 
39 	switch (ip->i_df.if_format) {
40 	case XFS_DINODE_FMT_EXTENTS:
41 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
42 		    ip->i_df.if_nextents > 0 &&
43 		    ip->i_df.if_bytes > 0) {
44 			/* worst case, doesn't subtract delalloc extents */
45 			*nbytes += XFS_IFORK_DSIZE(ip);
46 			*nvecs += 1;
47 		}
48 		break;
49 	case XFS_DINODE_FMT_BTREE:
50 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
51 		    ip->i_df.if_broot_bytes > 0) {
52 			*nbytes += ip->i_df.if_broot_bytes;
53 			*nvecs += 1;
54 		}
55 		break;
56 	case XFS_DINODE_FMT_LOCAL:
57 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
58 		    ip->i_df.if_bytes > 0) {
59 			*nbytes += roundup(ip->i_df.if_bytes, 4);
60 			*nvecs += 1;
61 		}
62 		break;
63 
64 	case XFS_DINODE_FMT_DEV:
65 		break;
66 	default:
67 		ASSERT(0);
68 		break;
69 	}
70 }
71 
72 STATIC void
73 xfs_inode_item_attr_fork_size(
74 	struct xfs_inode_log_item *iip,
75 	int			*nvecs,
76 	int			*nbytes)
77 {
78 	struct xfs_inode	*ip = iip->ili_inode;
79 
80 	switch (ip->i_afp->if_format) {
81 	case XFS_DINODE_FMT_EXTENTS:
82 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
83 		    ip->i_afp->if_nextents > 0 &&
84 		    ip->i_afp->if_bytes > 0) {
85 			/* worst case, doesn't subtract unused space */
86 			*nbytes += XFS_IFORK_ASIZE(ip);
87 			*nvecs += 1;
88 		}
89 		break;
90 	case XFS_DINODE_FMT_BTREE:
91 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
92 		    ip->i_afp->if_broot_bytes > 0) {
93 			*nbytes += ip->i_afp->if_broot_bytes;
94 			*nvecs += 1;
95 		}
96 		break;
97 	case XFS_DINODE_FMT_LOCAL:
98 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
99 		    ip->i_afp->if_bytes > 0) {
100 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
101 			*nvecs += 1;
102 		}
103 		break;
104 	default:
105 		ASSERT(0);
106 		break;
107 	}
108 }
109 
110 /*
111  * This returns the number of iovecs needed to log the given inode item.
112  *
113  * We need one iovec for the inode log format structure, one for the
114  * inode core, and possibly one for the inode data/extents/b-tree root
115  * and one for the inode attribute data/extents/b-tree root.
116  */
117 STATIC void
118 xfs_inode_item_size(
119 	struct xfs_log_item	*lip,
120 	int			*nvecs,
121 	int			*nbytes)
122 {
123 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124 	struct xfs_inode	*ip = iip->ili_inode;
125 
126 	*nvecs += 2;
127 	*nbytes += sizeof(struct xfs_inode_log_format) +
128 		   xfs_log_dinode_size(ip->i_mount);
129 
130 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131 	if (XFS_IFORK_Q(ip))
132 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
133 }
134 
135 STATIC void
136 xfs_inode_item_format_data_fork(
137 	struct xfs_inode_log_item *iip,
138 	struct xfs_inode_log_format *ilf,
139 	struct xfs_log_vec	*lv,
140 	struct xfs_log_iovec	**vecp)
141 {
142 	struct xfs_inode	*ip = iip->ili_inode;
143 	size_t			data_bytes;
144 
145 	switch (ip->i_df.if_format) {
146 	case XFS_DINODE_FMT_EXTENTS:
147 		iip->ili_fields &=
148 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
149 
150 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151 		    ip->i_df.if_nextents > 0 &&
152 		    ip->i_df.if_bytes > 0) {
153 			struct xfs_bmbt_rec *p;
154 
155 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
156 
157 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159 			xlog_finish_iovec(lv, *vecp, data_bytes);
160 
161 			ASSERT(data_bytes <= ip->i_df.if_bytes);
162 
163 			ilf->ilf_dsize = data_bytes;
164 			ilf->ilf_size++;
165 		} else {
166 			iip->ili_fields &= ~XFS_ILOG_DEXT;
167 		}
168 		break;
169 	case XFS_DINODE_FMT_BTREE:
170 		iip->ili_fields &=
171 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
172 
173 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174 		    ip->i_df.if_broot_bytes > 0) {
175 			ASSERT(ip->i_df.if_broot != NULL);
176 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177 					ip->i_df.if_broot,
178 					ip->i_df.if_broot_bytes);
179 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180 			ilf->ilf_size++;
181 		} else {
182 			ASSERT(!(iip->ili_fields &
183 				 XFS_ILOG_DBROOT));
184 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
185 		}
186 		break;
187 	case XFS_DINODE_FMT_LOCAL:
188 		iip->ili_fields &=
189 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191 		    ip->i_df.if_bytes > 0) {
192 			/*
193 			 * Round i_bytes up to a word boundary.
194 			 * The underlying memory is guaranteed
195 			 * to be there by xfs_idata_realloc().
196 			 */
197 			data_bytes = roundup(ip->i_df.if_bytes, 4);
198 			ASSERT(ip->i_df.if_u1.if_data != NULL);
199 			ASSERT(ip->i_d.di_size > 0);
200 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201 					ip->i_df.if_u1.if_data, data_bytes);
202 			ilf->ilf_dsize = (unsigned)data_bytes;
203 			ilf->ilf_size++;
204 		} else {
205 			iip->ili_fields &= ~XFS_ILOG_DDATA;
206 		}
207 		break;
208 	case XFS_DINODE_FMT_DEV:
209 		iip->ili_fields &=
210 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211 		if (iip->ili_fields & XFS_ILOG_DEV)
212 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
213 		break;
214 	default:
215 		ASSERT(0);
216 		break;
217 	}
218 }
219 
220 STATIC void
221 xfs_inode_item_format_attr_fork(
222 	struct xfs_inode_log_item *iip,
223 	struct xfs_inode_log_format *ilf,
224 	struct xfs_log_vec	*lv,
225 	struct xfs_log_iovec	**vecp)
226 {
227 	struct xfs_inode	*ip = iip->ili_inode;
228 	size_t			data_bytes;
229 
230 	switch (ip->i_afp->if_format) {
231 	case XFS_DINODE_FMT_EXTENTS:
232 		iip->ili_fields &=
233 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234 
235 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236 		    ip->i_afp->if_nextents > 0 &&
237 		    ip->i_afp->if_bytes > 0) {
238 			struct xfs_bmbt_rec *p;
239 
240 			ASSERT(xfs_iext_count(ip->i_afp) ==
241 				ip->i_afp->if_nextents);
242 
243 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245 			xlog_finish_iovec(lv, *vecp, data_bytes);
246 
247 			ilf->ilf_asize = data_bytes;
248 			ilf->ilf_size++;
249 		} else {
250 			iip->ili_fields &= ~XFS_ILOG_AEXT;
251 		}
252 		break;
253 	case XFS_DINODE_FMT_BTREE:
254 		iip->ili_fields &=
255 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256 
257 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258 		    ip->i_afp->if_broot_bytes > 0) {
259 			ASSERT(ip->i_afp->if_broot != NULL);
260 
261 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262 					ip->i_afp->if_broot,
263 					ip->i_afp->if_broot_bytes);
264 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265 			ilf->ilf_size++;
266 		} else {
267 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
268 		}
269 		break;
270 	case XFS_DINODE_FMT_LOCAL:
271 		iip->ili_fields &=
272 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
273 
274 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275 		    ip->i_afp->if_bytes > 0) {
276 			/*
277 			 * Round i_bytes up to a word boundary.
278 			 * The underlying memory is guaranteed
279 			 * to be there by xfs_idata_realloc().
280 			 */
281 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
282 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
283 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284 					ip->i_afp->if_u1.if_data,
285 					data_bytes);
286 			ilf->ilf_asize = (unsigned)data_bytes;
287 			ilf->ilf_size++;
288 		} else {
289 			iip->ili_fields &= ~XFS_ILOG_ADATA;
290 		}
291 		break;
292 	default:
293 		ASSERT(0);
294 		break;
295 	}
296 }
297 
298 static void
299 xfs_inode_to_log_dinode(
300 	struct xfs_inode	*ip,
301 	struct xfs_log_dinode	*to,
302 	xfs_lsn_t		lsn)
303 {
304 	struct xfs_icdinode	*from = &ip->i_d;
305 	struct inode		*inode = VFS_I(ip);
306 
307 	to->di_magic = XFS_DINODE_MAGIC;
308 	to->di_format = xfs_ifork_format(&ip->i_df);
309 	to->di_uid = i_uid_read(inode);
310 	to->di_gid = i_gid_read(inode);
311 	to->di_projid_lo = from->di_projid & 0xffff;
312 	to->di_projid_hi = from->di_projid >> 16;
313 
314 	memset(to->di_pad, 0, sizeof(to->di_pad));
315 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
316 	to->di_atime.t_sec = inode->i_atime.tv_sec;
317 	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
318 	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
319 	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
320 	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
321 	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
322 	to->di_nlink = inode->i_nlink;
323 	to->di_gen = inode->i_generation;
324 	to->di_mode = inode->i_mode;
325 
326 	to->di_size = from->di_size;
327 	to->di_nblocks = from->di_nblocks;
328 	to->di_extsize = from->di_extsize;
329 	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
330 	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
331 	to->di_forkoff = from->di_forkoff;
332 	to->di_aformat = xfs_ifork_format(ip->i_afp);
333 	to->di_dmevmask = from->di_dmevmask;
334 	to->di_dmstate = from->di_dmstate;
335 	to->di_flags = from->di_flags;
336 
337 	/* log a dummy value to ensure log structure is fully initialised */
338 	to->di_next_unlinked = NULLAGINO;
339 
340 	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
341 		to->di_version = 3;
342 		to->di_changecount = inode_peek_iversion(inode);
343 		to->di_crtime.t_sec = from->di_crtime.tv_sec;
344 		to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
345 		to->di_flags2 = from->di_flags2;
346 		to->di_cowextsize = from->di_cowextsize;
347 		to->di_ino = ip->i_ino;
348 		to->di_lsn = lsn;
349 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351 		to->di_flushiter = 0;
352 	} else {
353 		to->di_version = 2;
354 		to->di_flushiter = from->di_flushiter;
355 	}
356 }
357 
358 /*
359  * Format the inode core. Current timestamp data is only in the VFS inode
360  * fields, so we need to grab them from there. Hence rather than just copying
361  * the XFS inode core structure, format the fields directly into the iovec.
362  */
363 static void
364 xfs_inode_item_format_core(
365 	struct xfs_inode	*ip,
366 	struct xfs_log_vec	*lv,
367 	struct xfs_log_iovec	**vecp)
368 {
369 	struct xfs_log_dinode	*dic;
370 
371 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
374 }
375 
376 /*
377  * This is called to fill in the vector of log iovecs for the given inode
378  * log item.  It fills the first item with an inode log format structure,
379  * the second with the on-disk inode structure, and a possible third and/or
380  * fourth with the inode data/extents/b-tree root and inode attributes
381  * data/extents/b-tree root.
382  *
383  * Note: Always use the 64 bit inode log format structure so we don't
384  * leave an uninitialised hole in the format item on 64 bit systems. Log
385  * recovery on 32 bit systems handles this just fine, so there's no reason
386  * for not using an initialising the properly padded structure all the time.
387  */
388 STATIC void
389 xfs_inode_item_format(
390 	struct xfs_log_item	*lip,
391 	struct xfs_log_vec	*lv)
392 {
393 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394 	struct xfs_inode	*ip = iip->ili_inode;
395 	struct xfs_log_iovec	*vecp = NULL;
396 	struct xfs_inode_log_format *ilf;
397 
398 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
399 	ilf->ilf_type = XFS_LI_INODE;
400 	ilf->ilf_ino = ip->i_ino;
401 	ilf->ilf_blkno = ip->i_imap.im_blkno;
402 	ilf->ilf_len = ip->i_imap.im_len;
403 	ilf->ilf_boffset = ip->i_imap.im_boffset;
404 	ilf->ilf_fields = XFS_ILOG_CORE;
405 	ilf->ilf_size = 2; /* format + core */
406 
407 	/*
408 	 * make sure we don't leak uninitialised data into the log in the case
409 	 * when we don't log every field in the inode.
410 	 */
411 	ilf->ilf_dsize = 0;
412 	ilf->ilf_asize = 0;
413 	ilf->ilf_pad = 0;
414 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
415 
416 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
417 
418 	xfs_inode_item_format_core(ip, lv, &vecp);
419 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
420 	if (XFS_IFORK_Q(ip)) {
421 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
422 	} else {
423 		iip->ili_fields &=
424 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
425 	}
426 
427 	/* update the format with the exact fields we actually logged */
428 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
429 }
430 
431 /*
432  * This is called to pin the inode associated with the inode log
433  * item in memory so it cannot be written out.
434  */
435 STATIC void
436 xfs_inode_item_pin(
437 	struct xfs_log_item	*lip)
438 {
439 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
440 
441 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
442 	ASSERT(lip->li_buf);
443 
444 	trace_xfs_inode_pin(ip, _RET_IP_);
445 	atomic_inc(&ip->i_pincount);
446 }
447 
448 
449 /*
450  * This is called to unpin the inode associated with the inode log
451  * item which was previously pinned with a call to xfs_inode_item_pin().
452  *
453  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454  *
455  * Note that unpin can race with inode cluster buffer freeing marking the buffer
456  * stale. In that case, flush completions are run from the buffer unpin call,
457  * which may happen before the inode is unpinned. If we lose the race, there
458  * will be no buffer attached to the log item, but the inode will be marked
459  * XFS_ISTALE.
460  */
461 STATIC void
462 xfs_inode_item_unpin(
463 	struct xfs_log_item	*lip,
464 	int			remove)
465 {
466 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
467 
468 	trace_xfs_inode_unpin(ip, _RET_IP_);
469 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
470 	ASSERT(atomic_read(&ip->i_pincount) > 0);
471 	if (atomic_dec_and_test(&ip->i_pincount))
472 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
473 }
474 
475 STATIC uint
476 xfs_inode_item_push(
477 	struct xfs_log_item	*lip,
478 	struct list_head	*buffer_list)
479 		__releases(&lip->li_ailp->ail_lock)
480 		__acquires(&lip->li_ailp->ail_lock)
481 {
482 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
483 	struct xfs_inode	*ip = iip->ili_inode;
484 	struct xfs_buf		*bp = lip->li_buf;
485 	uint			rval = XFS_ITEM_SUCCESS;
486 	int			error;
487 
488 	ASSERT(iip->ili_item.li_buf);
489 
490 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
491 	    (ip->i_flags & XFS_ISTALE))
492 		return XFS_ITEM_PINNED;
493 
494 	/* If the inode is already flush locked, we're already flushing. */
495 	if (xfs_isiflocked(ip))
496 		return XFS_ITEM_FLUSHING;
497 
498 	if (!xfs_buf_trylock(bp))
499 		return XFS_ITEM_LOCKED;
500 
501 	spin_unlock(&lip->li_ailp->ail_lock);
502 
503 	/*
504 	 * We need to hold a reference for flushing the cluster buffer as it may
505 	 * fail the buffer without IO submission. In which case, we better get a
506 	 * reference for that completion because otherwise we don't get a
507 	 * reference for IO until we queue the buffer for delwri submission.
508 	 */
509 	xfs_buf_hold(bp);
510 	error = xfs_iflush_cluster(bp);
511 	if (!error) {
512 		if (!xfs_buf_delwri_queue(bp, buffer_list))
513 			rval = XFS_ITEM_FLUSHING;
514 		xfs_buf_relse(bp);
515 	} else {
516 		/*
517 		 * Release the buffer if we were unable to flush anything. On
518 		 * any other error, the buffer has already been released.
519 		 */
520 		if (error == -EAGAIN)
521 			xfs_buf_relse(bp);
522 		rval = XFS_ITEM_LOCKED;
523 	}
524 
525 	spin_lock(&lip->li_ailp->ail_lock);
526 	return rval;
527 }
528 
529 /*
530  * Unlock the inode associated with the inode log item.
531  */
532 STATIC void
533 xfs_inode_item_release(
534 	struct xfs_log_item	*lip)
535 {
536 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
537 	struct xfs_inode	*ip = iip->ili_inode;
538 	unsigned short		lock_flags;
539 
540 	ASSERT(ip->i_itemp != NULL);
541 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
542 
543 	lock_flags = iip->ili_lock_flags;
544 	iip->ili_lock_flags = 0;
545 	if (lock_flags)
546 		xfs_iunlock(ip, lock_flags);
547 }
548 
549 /*
550  * This is called to find out where the oldest active copy of the inode log
551  * item in the on disk log resides now that the last log write of it completed
552  * at the given lsn.  Since we always re-log all dirty data in an inode, the
553  * latest copy in the on disk log is the only one that matters.  Therefore,
554  * simply return the given lsn.
555  *
556  * If the inode has been marked stale because the cluster is being freed, we
557  * don't want to (re-)insert this inode into the AIL. There is a race condition
558  * where the cluster buffer may be unpinned before the inode is inserted into
559  * the AIL during transaction committed processing. If the buffer is unpinned
560  * before the inode item has been committed and inserted, then it is possible
561  * for the buffer to be written and IO completes before the inode is inserted
562  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
563  * AIL which will never get removed. It will, however, get reclaimed which
564  * triggers an assert in xfs_inode_free() complaining about freein an inode
565  * still in the AIL.
566  *
567  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
568  * transaction committed code knows that it does not need to do any further
569  * processing on the item.
570  */
571 STATIC xfs_lsn_t
572 xfs_inode_item_committed(
573 	struct xfs_log_item	*lip,
574 	xfs_lsn_t		lsn)
575 {
576 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
577 	struct xfs_inode	*ip = iip->ili_inode;
578 
579 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
580 		xfs_inode_item_unpin(lip, 0);
581 		return -1;
582 	}
583 	return lsn;
584 }
585 
586 STATIC void
587 xfs_inode_item_committing(
588 	struct xfs_log_item	*lip,
589 	xfs_lsn_t		commit_lsn)
590 {
591 	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
592 	return xfs_inode_item_release(lip);
593 }
594 
595 static const struct xfs_item_ops xfs_inode_item_ops = {
596 	.iop_size	= xfs_inode_item_size,
597 	.iop_format	= xfs_inode_item_format,
598 	.iop_pin	= xfs_inode_item_pin,
599 	.iop_unpin	= xfs_inode_item_unpin,
600 	.iop_release	= xfs_inode_item_release,
601 	.iop_committed	= xfs_inode_item_committed,
602 	.iop_push	= xfs_inode_item_push,
603 	.iop_committing	= xfs_inode_item_committing,
604 };
605 
606 
607 /*
608  * Initialize the inode log item for a newly allocated (in-core) inode.
609  */
610 void
611 xfs_inode_item_init(
612 	struct xfs_inode	*ip,
613 	struct xfs_mount	*mp)
614 {
615 	struct xfs_inode_log_item *iip;
616 
617 	ASSERT(ip->i_itemp == NULL);
618 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
619 					      GFP_KERNEL | __GFP_NOFAIL);
620 
621 	iip->ili_inode = ip;
622 	spin_lock_init(&iip->ili_lock);
623 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
624 						&xfs_inode_item_ops);
625 }
626 
627 /*
628  * Free the inode log item and any memory hanging off of it.
629  */
630 void
631 xfs_inode_item_destroy(
632 	struct xfs_inode	*ip)
633 {
634 	struct xfs_inode_log_item *iip = ip->i_itemp;
635 
636 	ASSERT(iip->ili_item.li_buf == NULL);
637 
638 	ip->i_itemp = NULL;
639 	kmem_free(iip->ili_item.li_lv_shadow);
640 	kmem_cache_free(xfs_ili_zone, iip);
641 }
642 
643 
644 /*
645  * We only want to pull the item from the AIL if it is actually there
646  * and its location in the log has not changed since we started the
647  * flush.  Thus, we only bother if the inode's lsn has not changed.
648  */
649 static void
650 xfs_iflush_ail_updates(
651 	struct xfs_ail		*ailp,
652 	struct list_head	*list)
653 {
654 	struct xfs_log_item	*lip;
655 	xfs_lsn_t		tail_lsn = 0;
656 
657 	/* this is an opencoded batch version of xfs_trans_ail_delete */
658 	spin_lock(&ailp->ail_lock);
659 	list_for_each_entry(lip, list, li_bio_list) {
660 		xfs_lsn_t	lsn;
661 
662 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
663 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
664 			continue;
665 
666 		lsn = xfs_ail_delete_one(ailp, lip);
667 		if (!tail_lsn && lsn)
668 			tail_lsn = lsn;
669 	}
670 	xfs_ail_update_finish(ailp, tail_lsn);
671 }
672 
673 /*
674  * Walk the list of inodes that have completed their IOs. If they are clean
675  * remove them from the list and dissociate them from the buffer. Buffers that
676  * are still dirty remain linked to the buffer and on the list. Caller must
677  * handle them appropriately.
678  */
679 static void
680 xfs_iflush_finish(
681 	struct xfs_buf		*bp,
682 	struct list_head	*list)
683 {
684 	struct xfs_log_item	*lip, *n;
685 
686 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
687 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
688 		bool	drop_buffer = false;
689 
690 		spin_lock(&iip->ili_lock);
691 
692 		/*
693 		 * Remove the reference to the cluster buffer if the inode is
694 		 * clean in memory and drop the buffer reference once we've
695 		 * dropped the locks we hold.
696 		 */
697 		ASSERT(iip->ili_item.li_buf == bp);
698 		if (!iip->ili_fields) {
699 			iip->ili_item.li_buf = NULL;
700 			list_del_init(&lip->li_bio_list);
701 			drop_buffer = true;
702 		}
703 		iip->ili_last_fields = 0;
704 		iip->ili_flush_lsn = 0;
705 		spin_unlock(&iip->ili_lock);
706 		xfs_ifunlock(iip->ili_inode);
707 		if (drop_buffer)
708 			xfs_buf_rele(bp);
709 	}
710 }
711 
712 /*
713  * Inode buffer IO completion routine.  It is responsible for removing inodes
714  * attached to the buffer from the AIL if they have not been re-logged, as well
715  * as completing the flush and unlocking the inode.
716  */
717 void
718 xfs_iflush_done(
719 	struct xfs_buf		*bp)
720 {
721 	struct xfs_log_item	*lip, *n;
722 	LIST_HEAD(flushed_inodes);
723 	LIST_HEAD(ail_updates);
724 
725 	/*
726 	 * Pull the attached inodes from the buffer one at a time and take the
727 	 * appropriate action on them.
728 	 */
729 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
730 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
731 
732 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
733 			xfs_iflush_abort(iip->ili_inode);
734 			continue;
735 		}
736 		if (!iip->ili_last_fields)
737 			continue;
738 
739 		/* Do an unlocked check for needing the AIL lock. */
740 		if (iip->ili_flush_lsn == lip->li_lsn ||
741 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
742 			list_move_tail(&lip->li_bio_list, &ail_updates);
743 		else
744 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
745 	}
746 
747 	if (!list_empty(&ail_updates)) {
748 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
749 		list_splice_tail(&ail_updates, &flushed_inodes);
750 	}
751 
752 	xfs_iflush_finish(bp, &flushed_inodes);
753 	if (!list_empty(&flushed_inodes))
754 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
755 }
756 
757 /*
758  * This is the inode flushing abort routine.  It is called from xfs_iflush when
759  * the filesystem is shutting down to clean up the inode state.  It is
760  * responsible for removing the inode item from the AIL if it has not been
761  * re-logged, and unlocking the inode's flush lock.
762  */
763 void
764 xfs_iflush_abort(
765 	struct xfs_inode	*ip)
766 {
767 	struct xfs_inode_log_item *iip = ip->i_itemp;
768 	struct xfs_buf		*bp = NULL;
769 
770 	if (iip) {
771 		/*
772 		 * Clear the failed bit before removing the item from the AIL so
773 		 * xfs_trans_ail_delete() doesn't try to clear and release the
774 		 * buffer attached to the log item before we are done with it.
775 		 */
776 		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
777 		xfs_trans_ail_delete(&iip->ili_item, 0);
778 
779 		/*
780 		 * Clear the inode logging fields so no more flushes are
781 		 * attempted.
782 		 */
783 		spin_lock(&iip->ili_lock);
784 		iip->ili_last_fields = 0;
785 		iip->ili_fields = 0;
786 		iip->ili_fsync_fields = 0;
787 		iip->ili_flush_lsn = 0;
788 		bp = iip->ili_item.li_buf;
789 		iip->ili_item.li_buf = NULL;
790 		list_del_init(&iip->ili_item.li_bio_list);
791 		spin_unlock(&iip->ili_lock);
792 	}
793 	xfs_ifunlock(ip);
794 	if (bp)
795 		xfs_buf_rele(bp);
796 }
797 
798 /*
799  * convert an xfs_inode_log_format struct from the old 32 bit version
800  * (which can have different field alignments) to the native 64 bit version
801  */
802 int
803 xfs_inode_item_format_convert(
804 	struct xfs_log_iovec		*buf,
805 	struct xfs_inode_log_format	*in_f)
806 {
807 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
808 
809 	if (buf->i_len != sizeof(*in_f32)) {
810 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
811 		return -EFSCORRUPTED;
812 	}
813 
814 	in_f->ilf_type = in_f32->ilf_type;
815 	in_f->ilf_size = in_f32->ilf_size;
816 	in_f->ilf_fields = in_f32->ilf_fields;
817 	in_f->ilf_asize = in_f32->ilf_asize;
818 	in_f->ilf_dsize = in_f32->ilf_dsize;
819 	in_f->ilf_ino = in_f32->ilf_ino;
820 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
821 	in_f->ilf_blkno = in_f32->ilf_blkno;
822 	in_f->ilf_len = in_f32->ilf_len;
823 	in_f->ilf_boffset = in_f32->ilf_boffset;
824 	return 0;
825 }
826