xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision e8e0929d)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 #include "xfs_error.h"
44 
45 
46 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
47 
48 /*
49  * This returns the number of iovecs needed to log the given inode item.
50  *
51  * We need one iovec for the inode log format structure, one for the
52  * inode core, and possibly one for the inode data/extents/b-tree root
53  * and one for the inode attribute data/extents/b-tree root.
54  */
55 STATIC uint
56 xfs_inode_item_size(
57 	xfs_inode_log_item_t	*iip)
58 {
59 	uint		nvecs;
60 	xfs_inode_t	*ip;
61 
62 	ip = iip->ili_inode;
63 	nvecs = 2;
64 
65 	/*
66 	 * Only log the data/extents/b-tree root if there is something
67 	 * left to log.
68 	 */
69 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
70 
71 	switch (ip->i_d.di_format) {
72 	case XFS_DINODE_FMT_EXTENTS:
73 		iip->ili_format.ilf_fields &=
74 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
76 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 		    (ip->i_d.di_nextents > 0) &&
78 		    (ip->i_df.if_bytes > 0)) {
79 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 			nvecs++;
81 		} else {
82 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
83 		}
84 		break;
85 
86 	case XFS_DINODE_FMT_BTREE:
87 		ASSERT(ip->i_df.if_ext_max ==
88 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 		iip->ili_format.ilf_fields &=
90 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
92 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 		    (ip->i_df.if_broot_bytes > 0)) {
94 			ASSERT(ip->i_df.if_broot != NULL);
95 			nvecs++;
96 		} else {
97 			ASSERT(!(iip->ili_format.ilf_fields &
98 				 XFS_ILOG_DBROOT));
99 #ifdef XFS_TRANS_DEBUG
100 			if (iip->ili_root_size > 0) {
101 				ASSERT(iip->ili_root_size ==
102 				       ip->i_df.if_broot_bytes);
103 				ASSERT(memcmp(iip->ili_orig_root,
104 					    ip->i_df.if_broot,
105 					    iip->ili_root_size) == 0);
106 			} else {
107 				ASSERT(ip->i_df.if_broot_bytes == 0);
108 			}
109 #endif
110 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
111 		}
112 		break;
113 
114 	case XFS_DINODE_FMT_LOCAL:
115 		iip->ili_format.ilf_fields &=
116 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
118 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 		    (ip->i_df.if_bytes > 0)) {
120 			ASSERT(ip->i_df.if_u1.if_data != NULL);
121 			ASSERT(ip->i_d.di_size > 0);
122 			nvecs++;
123 		} else {
124 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
125 		}
126 		break;
127 
128 	case XFS_DINODE_FMT_DEV:
129 		iip->ili_format.ilf_fields &=
130 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 		break;
133 
134 	case XFS_DINODE_FMT_UUID:
135 		iip->ili_format.ilf_fields &=
136 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 		break;
139 
140 	default:
141 		ASSERT(0);
142 		break;
143 	}
144 
145 	/*
146 	 * If there are no attributes associated with this file,
147 	 * then there cannot be anything more to log.
148 	 * Clear all attribute-related log flags.
149 	 */
150 	if (!XFS_IFORK_Q(ip)) {
151 		iip->ili_format.ilf_fields &=
152 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 		return nvecs;
154 	}
155 
156 	/*
157 	 * Log any necessary attribute data.
158 	 */
159 	switch (ip->i_d.di_aformat) {
160 	case XFS_DINODE_FMT_EXTENTS:
161 		iip->ili_format.ilf_fields &=
162 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 		    (ip->i_d.di_anextents > 0) &&
165 		    (ip->i_afp->if_bytes > 0)) {
166 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 			nvecs++;
168 		} else {
169 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
170 		}
171 		break;
172 
173 	case XFS_DINODE_FMT_BTREE:
174 		iip->ili_format.ilf_fields &=
175 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 		    (ip->i_afp->if_broot_bytes > 0)) {
178 			ASSERT(ip->i_afp->if_broot != NULL);
179 			nvecs++;
180 		} else {
181 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
182 		}
183 		break;
184 
185 	case XFS_DINODE_FMT_LOCAL:
186 		iip->ili_format.ilf_fields &=
187 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 		    (ip->i_afp->if_bytes > 0)) {
190 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 			nvecs++;
192 		} else {
193 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
194 		}
195 		break;
196 
197 	default:
198 		ASSERT(0);
199 		break;
200 	}
201 
202 	return nvecs;
203 }
204 
205 /*
206  * This is called to fill in the vector of log iovecs for the
207  * given inode log item.  It fills the first item with an inode
208  * log format structure, the second with the on-disk inode structure,
209  * and a possible third and/or fourth with the inode data/extents/b-tree
210  * root and inode attributes data/extents/b-tree root.
211  */
212 STATIC void
213 xfs_inode_item_format(
214 	xfs_inode_log_item_t	*iip,
215 	xfs_log_iovec_t		*log_vector)
216 {
217 	uint			nvecs;
218 	xfs_log_iovec_t		*vecp;
219 	xfs_inode_t		*ip;
220 	size_t			data_bytes;
221 	xfs_bmbt_rec_t		*ext_buffer;
222 	int			nrecs;
223 	xfs_mount_t		*mp;
224 
225 	ip = iip->ili_inode;
226 	vecp = log_vector;
227 
228 	vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
230 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
231 	vecp++;
232 	nvecs	     = 1;
233 
234 	/*
235 	 * Clear i_update_core if the timestamps (or any other
236 	 * non-transactional modification) need flushing/logging
237 	 * and we're about to log them with the rest of the core.
238 	 *
239 	 * This is the same logic as xfs_iflush() but this code can't
240 	 * run at the same time as xfs_iflush because we're in commit
241 	 * processing here and so we have the inode lock held in
242 	 * exclusive mode.  Although it doesn't really matter
243 	 * for the timestamps if both routines were to grab the
244 	 * timestamps or not.  That would be ok.
245 	 *
246 	 * We clear i_update_core before copying out the data.
247 	 * This is for coordination with our timestamp updates
248 	 * that don't hold the inode lock. They will always
249 	 * update the timestamps BEFORE setting i_update_core,
250 	 * so if we clear i_update_core after they set it we
251 	 * are guaranteed to see their updates to the timestamps
252 	 * either here.  Likewise, if they set it after we clear it
253 	 * here, we'll see it either on the next commit of this
254 	 * inode or the next time the inode gets flushed via
255 	 * xfs_iflush().  This depends on strongly ordered memory
256 	 * semantics, but we have that.  We use the SYNCHRONIZE
257 	 * macro to make sure that the compiler does not reorder
258 	 * the i_update_core access below the data copy below.
259 	 */
260 	if (ip->i_update_core)  {
261 		ip->i_update_core = 0;
262 		SYNCHRONIZE();
263 	}
264 
265 	/*
266 	 * Make sure to get the latest atime from the Linux inode.
267 	 */
268 	xfs_synchronize_atime(ip);
269 
270 	/*
271 	 * make sure the linux inode is dirty
272 	 */
273 	xfs_mark_inode_dirty_sync(ip);
274 
275 	vecp->i_addr = (xfs_caddr_t)&ip->i_d;
276 	vecp->i_len  = sizeof(struct xfs_icdinode);
277 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
278 	vecp++;
279 	nvecs++;
280 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
281 
282 	/*
283 	 * If this is really an old format inode, then we need to
284 	 * log it as such.  This means that we have to copy the link
285 	 * count from the new field to the old.  We don't have to worry
286 	 * about the new fields, because nothing trusts them as long as
287 	 * the old inode version number is there.  If the superblock already
288 	 * has a new version number, then we don't bother converting back.
289 	 */
290 	mp = ip->i_mount;
291 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
292 	if (ip->i_d.di_version == 1) {
293 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
294 			/*
295 			 * Convert it back.
296 			 */
297 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
298 			ip->i_d.di_onlink = ip->i_d.di_nlink;
299 		} else {
300 			/*
301 			 * The superblock version has already been bumped,
302 			 * so just make the conversion to the new inode
303 			 * format permanent.
304 			 */
305 			ip->i_d.di_version = 2;
306 			ip->i_d.di_onlink = 0;
307 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
308 		}
309 	}
310 
311 	switch (ip->i_d.di_format) {
312 	case XFS_DINODE_FMT_EXTENTS:
313 		ASSERT(!(iip->ili_format.ilf_fields &
314 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
315 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
316 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
317 			ASSERT(ip->i_df.if_bytes > 0);
318 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
319 			ASSERT(ip->i_d.di_nextents > 0);
320 			ASSERT(iip->ili_extents_buf == NULL);
321 			nrecs = ip->i_df.if_bytes /
322 				(uint)sizeof(xfs_bmbt_rec_t);
323 			ASSERT(nrecs > 0);
324 #ifdef XFS_NATIVE_HOST
325 			if (nrecs == ip->i_d.di_nextents) {
326 				/*
327 				 * There are no delayed allocation
328 				 * extents, so just point to the
329 				 * real extents array.
330 				 */
331 				vecp->i_addr =
332 					(char *)(ip->i_df.if_u1.if_extents);
333 				vecp->i_len = ip->i_df.if_bytes;
334 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
335 			} else
336 #endif
337 			{
338 				/*
339 				 * There are delayed allocation extents
340 				 * in the inode, or we need to convert
341 				 * the extents to on disk format.
342 				 * Use xfs_iextents_copy()
343 				 * to copy only the real extents into
344 				 * a separate buffer.  We'll free the
345 				 * buffer in the unlock routine.
346 				 */
347 				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
348 					KM_SLEEP);
349 				iip->ili_extents_buf = ext_buffer;
350 				vecp->i_addr = (xfs_caddr_t)ext_buffer;
351 				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
352 						XFS_DATA_FORK);
353 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
354 			}
355 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
356 			iip->ili_format.ilf_dsize = vecp->i_len;
357 			vecp++;
358 			nvecs++;
359 		}
360 		break;
361 
362 	case XFS_DINODE_FMT_BTREE:
363 		ASSERT(!(iip->ili_format.ilf_fields &
364 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
365 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
366 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
367 			ASSERT(ip->i_df.if_broot_bytes > 0);
368 			ASSERT(ip->i_df.if_broot != NULL);
369 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
370 			vecp->i_len = ip->i_df.if_broot_bytes;
371 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
372 			vecp++;
373 			nvecs++;
374 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
375 		}
376 		break;
377 
378 	case XFS_DINODE_FMT_LOCAL:
379 		ASSERT(!(iip->ili_format.ilf_fields &
380 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
381 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
382 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
383 			ASSERT(ip->i_df.if_bytes > 0);
384 			ASSERT(ip->i_df.if_u1.if_data != NULL);
385 			ASSERT(ip->i_d.di_size > 0);
386 
387 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
388 			/*
389 			 * Round i_bytes up to a word boundary.
390 			 * The underlying memory is guaranteed to
391 			 * to be there by xfs_idata_realloc().
392 			 */
393 			data_bytes = roundup(ip->i_df.if_bytes, 4);
394 			ASSERT((ip->i_df.if_real_bytes == 0) ||
395 			       (ip->i_df.if_real_bytes == data_bytes));
396 			vecp->i_len = (int)data_bytes;
397 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
398 			vecp++;
399 			nvecs++;
400 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
401 		}
402 		break;
403 
404 	case XFS_DINODE_FMT_DEV:
405 		ASSERT(!(iip->ili_format.ilf_fields &
406 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
407 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
408 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
409 			iip->ili_format.ilf_u.ilfu_rdev =
410 				ip->i_df.if_u2.if_rdev;
411 		}
412 		break;
413 
414 	case XFS_DINODE_FMT_UUID:
415 		ASSERT(!(iip->ili_format.ilf_fields &
416 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
417 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
418 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
419 			iip->ili_format.ilf_u.ilfu_uuid =
420 				ip->i_df.if_u2.if_uuid;
421 		}
422 		break;
423 
424 	default:
425 		ASSERT(0);
426 		break;
427 	}
428 
429 	/*
430 	 * If there are no attributes associated with the file,
431 	 * then we're done.
432 	 * Assert that no attribute-related log flags are set.
433 	 */
434 	if (!XFS_IFORK_Q(ip)) {
435 		ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
436 		iip->ili_format.ilf_size = nvecs;
437 		ASSERT(!(iip->ili_format.ilf_fields &
438 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
439 		return;
440 	}
441 
442 	switch (ip->i_d.di_aformat) {
443 	case XFS_DINODE_FMT_EXTENTS:
444 		ASSERT(!(iip->ili_format.ilf_fields &
445 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
446 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
447 			ASSERT(ip->i_afp->if_bytes > 0);
448 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
449 			ASSERT(ip->i_d.di_anextents > 0);
450 #ifdef DEBUG
451 			nrecs = ip->i_afp->if_bytes /
452 				(uint)sizeof(xfs_bmbt_rec_t);
453 #endif
454 			ASSERT(nrecs > 0);
455 			ASSERT(nrecs == ip->i_d.di_anextents);
456 #ifdef XFS_NATIVE_HOST
457 			/*
458 			 * There are not delayed allocation extents
459 			 * for attributes, so just point at the array.
460 			 */
461 			vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
462 			vecp->i_len = ip->i_afp->if_bytes;
463 #else
464 			ASSERT(iip->ili_aextents_buf == NULL);
465 			/*
466 			 * Need to endian flip before logging
467 			 */
468 			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
469 				KM_SLEEP);
470 			iip->ili_aextents_buf = ext_buffer;
471 			vecp->i_addr = (xfs_caddr_t)ext_buffer;
472 			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
473 					XFS_ATTR_FORK);
474 #endif
475 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
476 			iip->ili_format.ilf_asize = vecp->i_len;
477 			vecp++;
478 			nvecs++;
479 		}
480 		break;
481 
482 	case XFS_DINODE_FMT_BTREE:
483 		ASSERT(!(iip->ili_format.ilf_fields &
484 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
485 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
486 			ASSERT(ip->i_afp->if_broot_bytes > 0);
487 			ASSERT(ip->i_afp->if_broot != NULL);
488 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
489 			vecp->i_len = ip->i_afp->if_broot_bytes;
490 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
491 			vecp++;
492 			nvecs++;
493 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
494 		}
495 		break;
496 
497 	case XFS_DINODE_FMT_LOCAL:
498 		ASSERT(!(iip->ili_format.ilf_fields &
499 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
500 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
501 			ASSERT(ip->i_afp->if_bytes > 0);
502 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
503 
504 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
505 			/*
506 			 * Round i_bytes up to a word boundary.
507 			 * The underlying memory is guaranteed to
508 			 * to be there by xfs_idata_realloc().
509 			 */
510 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
511 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
512 			       (ip->i_afp->if_real_bytes == data_bytes));
513 			vecp->i_len = (int)data_bytes;
514 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
515 			vecp++;
516 			nvecs++;
517 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
518 		}
519 		break;
520 
521 	default:
522 		ASSERT(0);
523 		break;
524 	}
525 
526 	ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
527 	iip->ili_format.ilf_size = nvecs;
528 }
529 
530 
531 /*
532  * This is called to pin the inode associated with the inode log
533  * item in memory so it cannot be written out.  Do this by calling
534  * xfs_ipin() to bump the pin count in the inode while holding the
535  * inode pin lock.
536  */
537 STATIC void
538 xfs_inode_item_pin(
539 	xfs_inode_log_item_t	*iip)
540 {
541 	ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
542 	xfs_ipin(iip->ili_inode);
543 }
544 
545 
546 /*
547  * This is called to unpin the inode associated with the inode log
548  * item which was previously pinned with a call to xfs_inode_item_pin().
549  * Just call xfs_iunpin() on the inode to do this.
550  */
551 /* ARGSUSED */
552 STATIC void
553 xfs_inode_item_unpin(
554 	xfs_inode_log_item_t	*iip,
555 	int			stale)
556 {
557 	xfs_iunpin(iip->ili_inode);
558 }
559 
560 /* ARGSUSED */
561 STATIC void
562 xfs_inode_item_unpin_remove(
563 	xfs_inode_log_item_t	*iip,
564 	xfs_trans_t		*tp)
565 {
566 	xfs_iunpin(iip->ili_inode);
567 }
568 
569 /*
570  * This is called to attempt to lock the inode associated with this
571  * inode log item, in preparation for the push routine which does the actual
572  * iflush.  Don't sleep on the inode lock or the flush lock.
573  *
574  * If the flush lock is already held, indicating that the inode has
575  * been or is in the process of being flushed, then (ideally) we'd like to
576  * see if the inode's buffer is still incore, and if so give it a nudge.
577  * We delay doing so until the pushbuf routine, though, to avoid holding
578  * the AIL lock across a call to the blackhole which is the buffer cache.
579  * Also we don't want to sleep in any device strategy routines, which can happen
580  * if we do the subsequent bawrite in here.
581  */
582 STATIC uint
583 xfs_inode_item_trylock(
584 	xfs_inode_log_item_t	*iip)
585 {
586 	register xfs_inode_t	*ip;
587 
588 	ip = iip->ili_inode;
589 
590 	if (xfs_ipincount(ip) > 0) {
591 		return XFS_ITEM_PINNED;
592 	}
593 
594 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
595 		return XFS_ITEM_LOCKED;
596 	}
597 
598 	if (!xfs_iflock_nowait(ip)) {
599 		/*
600 		 * If someone else isn't already trying to push the inode
601 		 * buffer, we get to do it.
602 		 */
603 		if (iip->ili_pushbuf_flag == 0) {
604 			iip->ili_pushbuf_flag = 1;
605 #ifdef DEBUG
606 			iip->ili_push_owner = current_pid();
607 #endif
608 			/*
609 			 * Inode is left locked in shared mode.
610 			 * Pushbuf routine gets to unlock it.
611 			 */
612 			return XFS_ITEM_PUSHBUF;
613 		} else {
614 			/*
615 			 * We hold the AIL lock, so we must specify the
616 			 * NONOTIFY flag so that we won't double trip.
617 			 */
618 			xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
619 			return XFS_ITEM_FLUSHING;
620 		}
621 		/* NOTREACHED */
622 	}
623 
624 	/* Stale items should force out the iclog */
625 	if (ip->i_flags & XFS_ISTALE) {
626 		xfs_ifunlock(ip);
627 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
628 		return XFS_ITEM_PINNED;
629 	}
630 
631 #ifdef DEBUG
632 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
633 		ASSERT(iip->ili_format.ilf_fields != 0);
634 		ASSERT(iip->ili_logged == 0);
635 		ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
636 	}
637 #endif
638 	return XFS_ITEM_SUCCESS;
639 }
640 
641 /*
642  * Unlock the inode associated with the inode log item.
643  * Clear the fields of the inode and inode log item that
644  * are specific to the current transaction.  If the
645  * hold flags is set, do not unlock the inode.
646  */
647 STATIC void
648 xfs_inode_item_unlock(
649 	xfs_inode_log_item_t	*iip)
650 {
651 	uint		hold;
652 	uint		iolocked;
653 	uint		lock_flags;
654 	xfs_inode_t	*ip;
655 
656 	ASSERT(iip != NULL);
657 	ASSERT(iip->ili_inode->i_itemp != NULL);
658 	ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
659 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
660 		  XFS_ILI_IOLOCKED_EXCL)) ||
661 	       xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
662 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
663 		  XFS_ILI_IOLOCKED_SHARED)) ||
664 	       xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
665 	/*
666 	 * Clear the transaction pointer in the inode.
667 	 */
668 	ip = iip->ili_inode;
669 	ip->i_transp = NULL;
670 
671 	/*
672 	 * If the inode needed a separate buffer with which to log
673 	 * its extents, then free it now.
674 	 */
675 	if (iip->ili_extents_buf != NULL) {
676 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
677 		ASSERT(ip->i_d.di_nextents > 0);
678 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
679 		ASSERT(ip->i_df.if_bytes > 0);
680 		kmem_free(iip->ili_extents_buf);
681 		iip->ili_extents_buf = NULL;
682 	}
683 	if (iip->ili_aextents_buf != NULL) {
684 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
685 		ASSERT(ip->i_d.di_anextents > 0);
686 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
687 		ASSERT(ip->i_afp->if_bytes > 0);
688 		kmem_free(iip->ili_aextents_buf);
689 		iip->ili_aextents_buf = NULL;
690 	}
691 
692 	/*
693 	 * Figure out if we should unlock the inode or not.
694 	 */
695 	hold = iip->ili_flags & XFS_ILI_HOLD;
696 
697 	/*
698 	 * Before clearing out the flags, remember whether we
699 	 * are holding the inode's IO lock.
700 	 */
701 	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
702 
703 	/*
704 	 * Clear out the fields of the inode log item particular
705 	 * to the current transaction.
706 	 */
707 	iip->ili_flags = 0;
708 
709 	/*
710 	 * Unlock the inode if XFS_ILI_HOLD was not set.
711 	 */
712 	if (!hold) {
713 		lock_flags = XFS_ILOCK_EXCL;
714 		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
715 			lock_flags |= XFS_IOLOCK_EXCL;
716 		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
717 			lock_flags |= XFS_IOLOCK_SHARED;
718 		}
719 		xfs_iput(iip->ili_inode, lock_flags);
720 	}
721 }
722 
723 /*
724  * This is called to find out where the oldest active copy of the
725  * inode log item in the on disk log resides now that the last log
726  * write of it completed at the given lsn.  Since we always re-log
727  * all dirty data in an inode, the latest copy in the on disk log
728  * is the only one that matters.  Therefore, simply return the
729  * given lsn.
730  */
731 /*ARGSUSED*/
732 STATIC xfs_lsn_t
733 xfs_inode_item_committed(
734 	xfs_inode_log_item_t	*iip,
735 	xfs_lsn_t		lsn)
736 {
737 	return (lsn);
738 }
739 
740 /*
741  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
742  * failed to get the inode flush lock but did get the inode locked SHARED.
743  * Here we're trying to see if the inode buffer is incore, and if so whether it's
744  * marked delayed write. If that's the case, we'll initiate a bawrite on that
745  * buffer to expedite the process.
746  *
747  * We aren't holding the AIL lock (or the flush lock) when this gets called,
748  * so it is inherently race-y.
749  */
750 STATIC void
751 xfs_inode_item_pushbuf(
752 	xfs_inode_log_item_t	*iip)
753 {
754 	xfs_inode_t	*ip;
755 	xfs_mount_t	*mp;
756 	xfs_buf_t	*bp;
757 	uint		dopush;
758 
759 	ip = iip->ili_inode;
760 
761 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
762 
763 	/*
764 	 * The ili_pushbuf_flag keeps others from
765 	 * trying to duplicate our effort.
766 	 */
767 	ASSERT(iip->ili_pushbuf_flag != 0);
768 	ASSERT(iip->ili_push_owner == current_pid());
769 
770 	/*
771 	 * If a flush is not in progress anymore, chances are that the
772 	 * inode was taken off the AIL. So, just get out.
773 	 */
774 	if (completion_done(&ip->i_flush) ||
775 	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
776 		iip->ili_pushbuf_flag = 0;
777 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
778 		return;
779 	}
780 
781 	mp = ip->i_mount;
782 	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
783 		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
784 
785 	if (bp != NULL) {
786 		if (XFS_BUF_ISDELAYWRITE(bp)) {
787 			/*
788 			 * We were racing with iflush because we don't hold
789 			 * the AIL lock or the flush lock. However, at this point,
790 			 * we have the buffer, and we know that it's dirty.
791 			 * So, it's possible that iflush raced with us, and
792 			 * this item is already taken off the AIL.
793 			 * If not, we can flush it async.
794 			 */
795 			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
796 				  !completion_done(&ip->i_flush));
797 			iip->ili_pushbuf_flag = 0;
798 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
799 			xfs_buftrace("INODE ITEM PUSH", bp);
800 			if (XFS_BUF_ISPINNED(bp)) {
801 				xfs_log_force(mp, (xfs_lsn_t)0,
802 					      XFS_LOG_FORCE);
803 			}
804 			if (dopush) {
805 				int	error;
806 				error = xfs_bawrite(mp, bp);
807 				if (error)
808 					xfs_fs_cmn_err(CE_WARN, mp,
809 		"xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
810 							error, iip, bp);
811 			} else {
812 				xfs_buf_relse(bp);
813 			}
814 		} else {
815 			iip->ili_pushbuf_flag = 0;
816 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
817 			xfs_buf_relse(bp);
818 		}
819 		return;
820 	}
821 	/*
822 	 * We have to be careful about resetting pushbuf flag too early (above).
823 	 * Even though in theory we can do it as soon as we have the buflock,
824 	 * we don't want others to be doing work needlessly. They'll come to
825 	 * this function thinking that pushing the buffer is their
826 	 * responsibility only to find that the buffer is still locked by
827 	 * another doing the same thing
828 	 */
829 	iip->ili_pushbuf_flag = 0;
830 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
831 	return;
832 }
833 
834 
835 /*
836  * This is called to asynchronously write the inode associated with this
837  * inode log item out to disk. The inode will already have been locked by
838  * a successful call to xfs_inode_item_trylock().
839  */
840 STATIC void
841 xfs_inode_item_push(
842 	xfs_inode_log_item_t	*iip)
843 {
844 	xfs_inode_t	*ip;
845 
846 	ip = iip->ili_inode;
847 
848 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
849 	ASSERT(!completion_done(&ip->i_flush));
850 	/*
851 	 * Since we were able to lock the inode's flush lock and
852 	 * we found it on the AIL, the inode must be dirty.  This
853 	 * is because the inode is removed from the AIL while still
854 	 * holding the flush lock in xfs_iflush_done().  Thus, if
855 	 * we found it in the AIL and were able to obtain the flush
856 	 * lock without sleeping, then there must not have been
857 	 * anyone in the process of flushing the inode.
858 	 */
859 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
860 	       iip->ili_format.ilf_fields != 0);
861 
862 	/*
863 	 * Write out the inode.  The completion routine ('iflush_done') will
864 	 * pull it from the AIL, mark it clean, unlock the flush lock.
865 	 */
866 	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
867 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
868 
869 	return;
870 }
871 
872 /*
873  * XXX rcc - this one really has to do something.  Probably needs
874  * to stamp in a new field in the incore inode.
875  */
876 /* ARGSUSED */
877 STATIC void
878 xfs_inode_item_committing(
879 	xfs_inode_log_item_t	*iip,
880 	xfs_lsn_t		lsn)
881 {
882 	iip->ili_last_lsn = lsn;
883 	return;
884 }
885 
886 /*
887  * This is the ops vector shared by all buf log items.
888  */
889 static struct xfs_item_ops xfs_inode_item_ops = {
890 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
891 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
892 					xfs_inode_item_format,
893 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
894 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
895 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
896 					xfs_inode_item_unpin_remove,
897 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
898 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
899 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
900 					xfs_inode_item_committed,
901 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push,
902 	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
903 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
904 					xfs_inode_item_committing
905 };
906 
907 
908 /*
909  * Initialize the inode log item for a newly allocated (in-core) inode.
910  */
911 void
912 xfs_inode_item_init(
913 	xfs_inode_t	*ip,
914 	xfs_mount_t	*mp)
915 {
916 	xfs_inode_log_item_t	*iip;
917 
918 	ASSERT(ip->i_itemp == NULL);
919 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
920 
921 	iip->ili_item.li_type = XFS_LI_INODE;
922 	iip->ili_item.li_ops = &xfs_inode_item_ops;
923 	iip->ili_item.li_mountp = mp;
924 	iip->ili_item.li_ailp = mp->m_ail;
925 	iip->ili_inode = ip;
926 
927 	/*
928 	   We have zeroed memory. No need ...
929 	   iip->ili_extents_buf = NULL;
930 	   iip->ili_pushbuf_flag = 0;
931 	 */
932 
933 	iip->ili_format.ilf_type = XFS_LI_INODE;
934 	iip->ili_format.ilf_ino = ip->i_ino;
935 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
936 	iip->ili_format.ilf_len = ip->i_imap.im_len;
937 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
938 }
939 
940 /*
941  * Free the inode log item and any memory hanging off of it.
942  */
943 void
944 xfs_inode_item_destroy(
945 	xfs_inode_t	*ip)
946 {
947 #ifdef XFS_TRANS_DEBUG
948 	if (ip->i_itemp->ili_root_size != 0) {
949 		kmem_free(ip->i_itemp->ili_orig_root);
950 	}
951 #endif
952 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
953 }
954 
955 
956 /*
957  * This is the inode flushing I/O completion routine.  It is called
958  * from interrupt level when the buffer containing the inode is
959  * flushed to disk.  It is responsible for removing the inode item
960  * from the AIL if it has not been re-logged, and unlocking the inode's
961  * flush lock.
962  */
963 /*ARGSUSED*/
964 void
965 xfs_iflush_done(
966 	xfs_buf_t		*bp,
967 	xfs_inode_log_item_t	*iip)
968 {
969 	xfs_inode_t		*ip = iip->ili_inode;
970 	struct xfs_ail		*ailp = iip->ili_item.li_ailp;
971 
972 	/*
973 	 * We only want to pull the item from the AIL if it is
974 	 * actually there and its location in the log has not
975 	 * changed since we started the flush.  Thus, we only bother
976 	 * if the ili_logged flag is set and the inode's lsn has not
977 	 * changed.  First we check the lsn outside
978 	 * the lock since it's cheaper, and then we recheck while
979 	 * holding the lock before removing the inode from the AIL.
980 	 */
981 	if (iip->ili_logged &&
982 	    (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
983 		spin_lock(&ailp->xa_lock);
984 		if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
985 			/* xfs_trans_ail_delete() drops the AIL lock. */
986 			xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip);
987 		} else {
988 			spin_unlock(&ailp->xa_lock);
989 		}
990 	}
991 
992 	iip->ili_logged = 0;
993 
994 	/*
995 	 * Clear the ili_last_fields bits now that we know that the
996 	 * data corresponding to them is safely on disk.
997 	 */
998 	iip->ili_last_fields = 0;
999 
1000 	/*
1001 	 * Release the inode's flush lock since we're done with it.
1002 	 */
1003 	xfs_ifunlock(ip);
1004 
1005 	return;
1006 }
1007 
1008 /*
1009  * This is the inode flushing abort routine.  It is called
1010  * from xfs_iflush when the filesystem is shutting down to clean
1011  * up the inode state.
1012  * It is responsible for removing the inode item
1013  * from the AIL if it has not been re-logged, and unlocking the inode's
1014  * flush lock.
1015  */
1016 void
1017 xfs_iflush_abort(
1018 	xfs_inode_t		*ip)
1019 {
1020 	xfs_inode_log_item_t	*iip = ip->i_itemp;
1021 	xfs_mount_t		*mp;
1022 
1023 	iip = ip->i_itemp;
1024 	mp = ip->i_mount;
1025 	if (iip) {
1026 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
1027 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1028 			spin_lock(&ailp->xa_lock);
1029 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1030 				/* xfs_trans_ail_delete() drops the AIL lock. */
1031 				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1032 			} else
1033 				spin_unlock(&ailp->xa_lock);
1034 		}
1035 		iip->ili_logged = 0;
1036 		/*
1037 		 * Clear the ili_last_fields bits now that we know that the
1038 		 * data corresponding to them is safely on disk.
1039 		 */
1040 		iip->ili_last_fields = 0;
1041 		/*
1042 		 * Clear the inode logging fields so no more flushes are
1043 		 * attempted.
1044 		 */
1045 		iip->ili_format.ilf_fields = 0;
1046 	}
1047 	/*
1048 	 * Release the inode's flush lock since we're done with it.
1049 	 */
1050 	xfs_ifunlock(ip);
1051 }
1052 
1053 void
1054 xfs_istale_done(
1055 	xfs_buf_t		*bp,
1056 	xfs_inode_log_item_t	*iip)
1057 {
1058 	xfs_iflush_abort(iip->ili_inode);
1059 }
1060 
1061 /*
1062  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1063  * (which can have different field alignments) to the native version
1064  */
1065 int
1066 xfs_inode_item_format_convert(
1067 	xfs_log_iovec_t		*buf,
1068 	xfs_inode_log_format_t	*in_f)
1069 {
1070 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1071 		xfs_inode_log_format_32_t *in_f32;
1072 
1073 		in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1074 		in_f->ilf_type = in_f32->ilf_type;
1075 		in_f->ilf_size = in_f32->ilf_size;
1076 		in_f->ilf_fields = in_f32->ilf_fields;
1077 		in_f->ilf_asize = in_f32->ilf_asize;
1078 		in_f->ilf_dsize = in_f32->ilf_dsize;
1079 		in_f->ilf_ino = in_f32->ilf_ino;
1080 		/* copy biggest field of ilf_u */
1081 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1082 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1083 		       sizeof(uuid_t));
1084 		in_f->ilf_blkno = in_f32->ilf_blkno;
1085 		in_f->ilf_len = in_f32->ilf_len;
1086 		in_f->ilf_boffset = in_f32->ilf_boffset;
1087 		return 0;
1088 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1089 		xfs_inode_log_format_64_t *in_f64;
1090 
1091 		in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1092 		in_f->ilf_type = in_f64->ilf_type;
1093 		in_f->ilf_size = in_f64->ilf_size;
1094 		in_f->ilf_fields = in_f64->ilf_fields;
1095 		in_f->ilf_asize = in_f64->ilf_asize;
1096 		in_f->ilf_dsize = in_f64->ilf_dsize;
1097 		in_f->ilf_ino = in_f64->ilf_ino;
1098 		/* copy biggest field of ilf_u */
1099 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1100 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1101 		       sizeof(uuid_t));
1102 		in_f->ilf_blkno = in_f64->ilf_blkno;
1103 		in_f->ilf_len = in_f64->ilf_len;
1104 		in_f->ilf_boffset = in_f64->ilf_boffset;
1105 		return 0;
1106 	}
1107 	return EFSCORRUPTED;
1108 }
1109