xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_inode.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode_item.h"
15 #include "xfs_error.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 
21 #include <linux/iversion.h>
22 
23 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
24 
25 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
26 {
27 	return container_of(lip, struct xfs_inode_log_item, ili_item);
28 }
29 
30 STATIC void
31 xfs_inode_item_data_fork_size(
32 	struct xfs_inode_log_item *iip,
33 	int			*nvecs,
34 	int			*nbytes)
35 {
36 	struct xfs_inode	*ip = iip->ili_inode;
37 
38 	switch (ip->i_d.di_format) {
39 	case XFS_DINODE_FMT_EXTENTS:
40 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
41 		    ip->i_d.di_nextents > 0 &&
42 		    ip->i_df.if_bytes > 0) {
43 			/* worst case, doesn't subtract delalloc extents */
44 			*nbytes += XFS_IFORK_DSIZE(ip);
45 			*nvecs += 1;
46 		}
47 		break;
48 	case XFS_DINODE_FMT_BTREE:
49 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
50 		    ip->i_df.if_broot_bytes > 0) {
51 			*nbytes += ip->i_df.if_broot_bytes;
52 			*nvecs += 1;
53 		}
54 		break;
55 	case XFS_DINODE_FMT_LOCAL:
56 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
57 		    ip->i_df.if_bytes > 0) {
58 			*nbytes += roundup(ip->i_df.if_bytes, 4);
59 			*nvecs += 1;
60 		}
61 		break;
62 
63 	case XFS_DINODE_FMT_DEV:
64 		break;
65 	default:
66 		ASSERT(0);
67 		break;
68 	}
69 }
70 
71 STATIC void
72 xfs_inode_item_attr_fork_size(
73 	struct xfs_inode_log_item *iip,
74 	int			*nvecs,
75 	int			*nbytes)
76 {
77 	struct xfs_inode	*ip = iip->ili_inode;
78 
79 	switch (ip->i_d.di_aformat) {
80 	case XFS_DINODE_FMT_EXTENTS:
81 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
82 		    ip->i_d.di_anextents > 0 &&
83 		    ip->i_afp->if_bytes > 0) {
84 			/* worst case, doesn't subtract unused space */
85 			*nbytes += XFS_IFORK_ASIZE(ip);
86 			*nvecs += 1;
87 		}
88 		break;
89 	case XFS_DINODE_FMT_BTREE:
90 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
91 		    ip->i_afp->if_broot_bytes > 0) {
92 			*nbytes += ip->i_afp->if_broot_bytes;
93 			*nvecs += 1;
94 		}
95 		break;
96 	case XFS_DINODE_FMT_LOCAL:
97 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
98 		    ip->i_afp->if_bytes > 0) {
99 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
100 			*nvecs += 1;
101 		}
102 		break;
103 	default:
104 		ASSERT(0);
105 		break;
106 	}
107 }
108 
109 /*
110  * This returns the number of iovecs needed to log the given inode item.
111  *
112  * We need one iovec for the inode log format structure, one for the
113  * inode core, and possibly one for the inode data/extents/b-tree root
114  * and one for the inode attribute data/extents/b-tree root.
115  */
116 STATIC void
117 xfs_inode_item_size(
118 	struct xfs_log_item	*lip,
119 	int			*nvecs,
120 	int			*nbytes)
121 {
122 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
123 	struct xfs_inode	*ip = iip->ili_inode;
124 
125 	*nvecs += 2;
126 	*nbytes += sizeof(struct xfs_inode_log_format) +
127 		   xfs_log_dinode_size(ip->i_d.di_version);
128 
129 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
130 	if (XFS_IFORK_Q(ip))
131 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
132 }
133 
134 STATIC void
135 xfs_inode_item_format_data_fork(
136 	struct xfs_inode_log_item *iip,
137 	struct xfs_inode_log_format *ilf,
138 	struct xfs_log_vec	*lv,
139 	struct xfs_log_iovec	**vecp)
140 {
141 	struct xfs_inode	*ip = iip->ili_inode;
142 	size_t			data_bytes;
143 
144 	switch (ip->i_d.di_format) {
145 	case XFS_DINODE_FMT_EXTENTS:
146 		iip->ili_fields &=
147 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
148 
149 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
150 		    ip->i_d.di_nextents > 0 &&
151 		    ip->i_df.if_bytes > 0) {
152 			struct xfs_bmbt_rec *p;
153 
154 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
155 
156 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
157 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
158 			xlog_finish_iovec(lv, *vecp, data_bytes);
159 
160 			ASSERT(data_bytes <= ip->i_df.if_bytes);
161 
162 			ilf->ilf_dsize = data_bytes;
163 			ilf->ilf_size++;
164 		} else {
165 			iip->ili_fields &= ~XFS_ILOG_DEXT;
166 		}
167 		break;
168 	case XFS_DINODE_FMT_BTREE:
169 		iip->ili_fields &=
170 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
171 
172 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
173 		    ip->i_df.if_broot_bytes > 0) {
174 			ASSERT(ip->i_df.if_broot != NULL);
175 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
176 					ip->i_df.if_broot,
177 					ip->i_df.if_broot_bytes);
178 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
179 			ilf->ilf_size++;
180 		} else {
181 			ASSERT(!(iip->ili_fields &
182 				 XFS_ILOG_DBROOT));
183 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
184 		}
185 		break;
186 	case XFS_DINODE_FMT_LOCAL:
187 		iip->ili_fields &=
188 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
189 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
190 		    ip->i_df.if_bytes > 0) {
191 			/*
192 			 * Round i_bytes up to a word boundary.
193 			 * The underlying memory is guaranteed to
194 			 * to be there by xfs_idata_realloc().
195 			 */
196 			data_bytes = roundup(ip->i_df.if_bytes, 4);
197 			ASSERT(ip->i_df.if_real_bytes == 0 ||
198 			       ip->i_df.if_real_bytes >= data_bytes);
199 			ASSERT(ip->i_df.if_u1.if_data != NULL);
200 			ASSERT(ip->i_d.di_size > 0);
201 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
202 					ip->i_df.if_u1.if_data, data_bytes);
203 			ilf->ilf_dsize = (unsigned)data_bytes;
204 			ilf->ilf_size++;
205 		} else {
206 			iip->ili_fields &= ~XFS_ILOG_DDATA;
207 		}
208 		break;
209 	case XFS_DINODE_FMT_DEV:
210 		iip->ili_fields &=
211 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
212 		if (iip->ili_fields & XFS_ILOG_DEV)
213 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
214 		break;
215 	default:
216 		ASSERT(0);
217 		break;
218 	}
219 }
220 
221 STATIC void
222 xfs_inode_item_format_attr_fork(
223 	struct xfs_inode_log_item *iip,
224 	struct xfs_inode_log_format *ilf,
225 	struct xfs_log_vec	*lv,
226 	struct xfs_log_iovec	**vecp)
227 {
228 	struct xfs_inode	*ip = iip->ili_inode;
229 	size_t			data_bytes;
230 
231 	switch (ip->i_d.di_aformat) {
232 	case XFS_DINODE_FMT_EXTENTS:
233 		iip->ili_fields &=
234 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
235 
236 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
237 		    ip->i_d.di_anextents > 0 &&
238 		    ip->i_afp->if_bytes > 0) {
239 			struct xfs_bmbt_rec *p;
240 
241 			ASSERT(xfs_iext_count(ip->i_afp) ==
242 				ip->i_d.di_anextents);
243 
244 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
245 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
246 			xlog_finish_iovec(lv, *vecp, data_bytes);
247 
248 			ilf->ilf_asize = data_bytes;
249 			ilf->ilf_size++;
250 		} else {
251 			iip->ili_fields &= ~XFS_ILOG_AEXT;
252 		}
253 		break;
254 	case XFS_DINODE_FMT_BTREE:
255 		iip->ili_fields &=
256 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
257 
258 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
259 		    ip->i_afp->if_broot_bytes > 0) {
260 			ASSERT(ip->i_afp->if_broot != NULL);
261 
262 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
263 					ip->i_afp->if_broot,
264 					ip->i_afp->if_broot_bytes);
265 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
266 			ilf->ilf_size++;
267 		} else {
268 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
269 		}
270 		break;
271 	case XFS_DINODE_FMT_LOCAL:
272 		iip->ili_fields &=
273 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
274 
275 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
276 		    ip->i_afp->if_bytes > 0) {
277 			/*
278 			 * Round i_bytes up to a word boundary.
279 			 * The underlying memory is guaranteed to
280 			 * to be there by xfs_idata_realloc().
281 			 */
282 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
283 			ASSERT(ip->i_afp->if_real_bytes == 0 ||
284 			       ip->i_afp->if_real_bytes >= data_bytes);
285 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
286 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
287 					ip->i_afp->if_u1.if_data,
288 					data_bytes);
289 			ilf->ilf_asize = (unsigned)data_bytes;
290 			ilf->ilf_size++;
291 		} else {
292 			iip->ili_fields &= ~XFS_ILOG_ADATA;
293 		}
294 		break;
295 	default:
296 		ASSERT(0);
297 		break;
298 	}
299 }
300 
301 static void
302 xfs_inode_to_log_dinode(
303 	struct xfs_inode	*ip,
304 	struct xfs_log_dinode	*to,
305 	xfs_lsn_t		lsn)
306 {
307 	struct xfs_icdinode	*from = &ip->i_d;
308 	struct inode		*inode = VFS_I(ip);
309 
310 	to->di_magic = XFS_DINODE_MAGIC;
311 
312 	to->di_version = from->di_version;
313 	to->di_format = from->di_format;
314 	to->di_uid = from->di_uid;
315 	to->di_gid = from->di_gid;
316 	to->di_projid_lo = from->di_projid_lo;
317 	to->di_projid_hi = from->di_projid_hi;
318 
319 	memset(to->di_pad, 0, sizeof(to->di_pad));
320 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
321 	to->di_atime.t_sec = inode->i_atime.tv_sec;
322 	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
323 	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
324 	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
325 	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
326 	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
327 	to->di_nlink = inode->i_nlink;
328 	to->di_gen = inode->i_generation;
329 	to->di_mode = inode->i_mode;
330 
331 	to->di_size = from->di_size;
332 	to->di_nblocks = from->di_nblocks;
333 	to->di_extsize = from->di_extsize;
334 	to->di_nextents = from->di_nextents;
335 	to->di_anextents = from->di_anextents;
336 	to->di_forkoff = from->di_forkoff;
337 	to->di_aformat = from->di_aformat;
338 	to->di_dmevmask = from->di_dmevmask;
339 	to->di_dmstate = from->di_dmstate;
340 	to->di_flags = from->di_flags;
341 
342 	/* log a dummy value to ensure log structure is fully initialised */
343 	to->di_next_unlinked = NULLAGINO;
344 
345 	if (from->di_version == 3) {
346 		to->di_changecount = inode_peek_iversion(inode);
347 		to->di_crtime.t_sec = from->di_crtime.t_sec;
348 		to->di_crtime.t_nsec = from->di_crtime.t_nsec;
349 		to->di_flags2 = from->di_flags2;
350 		to->di_cowextsize = from->di_cowextsize;
351 		to->di_ino = ip->i_ino;
352 		to->di_lsn = lsn;
353 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
354 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
355 		to->di_flushiter = 0;
356 	} else {
357 		to->di_flushiter = from->di_flushiter;
358 	}
359 }
360 
361 /*
362  * Format the inode core. Current timestamp data is only in the VFS inode
363  * fields, so we need to grab them from there. Hence rather than just copying
364  * the XFS inode core structure, format the fields directly into the iovec.
365  */
366 static void
367 xfs_inode_item_format_core(
368 	struct xfs_inode	*ip,
369 	struct xfs_log_vec	*lv,
370 	struct xfs_log_iovec	**vecp)
371 {
372 	struct xfs_log_dinode	*dic;
373 
374 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
375 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
376 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
377 }
378 
379 /*
380  * This is called to fill in the vector of log iovecs for the given inode
381  * log item.  It fills the first item with an inode log format structure,
382  * the second with the on-disk inode structure, and a possible third and/or
383  * fourth with the inode data/extents/b-tree root and inode attributes
384  * data/extents/b-tree root.
385  *
386  * Note: Always use the 64 bit inode log format structure so we don't
387  * leave an uninitialised hole in the format item on 64 bit systems. Log
388  * recovery on 32 bit systems handles this just fine, so there's no reason
389  * for not using an initialising the properly padded structure all the time.
390  */
391 STATIC void
392 xfs_inode_item_format(
393 	struct xfs_log_item	*lip,
394 	struct xfs_log_vec	*lv)
395 {
396 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
397 	struct xfs_inode	*ip = iip->ili_inode;
398 	struct xfs_log_iovec	*vecp = NULL;
399 	struct xfs_inode_log_format *ilf;
400 
401 	ASSERT(ip->i_d.di_version > 1);
402 
403 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
404 	ilf->ilf_type = XFS_LI_INODE;
405 	ilf->ilf_ino = ip->i_ino;
406 	ilf->ilf_blkno = ip->i_imap.im_blkno;
407 	ilf->ilf_len = ip->i_imap.im_len;
408 	ilf->ilf_boffset = ip->i_imap.im_boffset;
409 	ilf->ilf_fields = XFS_ILOG_CORE;
410 	ilf->ilf_size = 2; /* format + core */
411 
412 	/*
413 	 * make sure we don't leak uninitialised data into the log in the case
414 	 * when we don't log every field in the inode.
415 	 */
416 	ilf->ilf_dsize = 0;
417 	ilf->ilf_asize = 0;
418 	ilf->ilf_pad = 0;
419 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
420 
421 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
422 
423 	xfs_inode_item_format_core(ip, lv, &vecp);
424 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
425 	if (XFS_IFORK_Q(ip)) {
426 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
427 	} else {
428 		iip->ili_fields &=
429 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
430 	}
431 
432 	/* update the format with the exact fields we actually logged */
433 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
434 }
435 
436 /*
437  * This is called to pin the inode associated with the inode log
438  * item in memory so it cannot be written out.
439  */
440 STATIC void
441 xfs_inode_item_pin(
442 	struct xfs_log_item	*lip)
443 {
444 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
445 
446 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
447 
448 	trace_xfs_inode_pin(ip, _RET_IP_);
449 	atomic_inc(&ip->i_pincount);
450 }
451 
452 
453 /*
454  * This is called to unpin the inode associated with the inode log
455  * item which was previously pinned with a call to xfs_inode_item_pin().
456  *
457  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
458  */
459 STATIC void
460 xfs_inode_item_unpin(
461 	struct xfs_log_item	*lip,
462 	int			remove)
463 {
464 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
465 
466 	trace_xfs_inode_unpin(ip, _RET_IP_);
467 	ASSERT(atomic_read(&ip->i_pincount) > 0);
468 	if (atomic_dec_and_test(&ip->i_pincount))
469 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
470 }
471 
472 /*
473  * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
474  * have been failed during writeback
475  *
476  * This informs the AIL that the inode is already flush locked on the next push,
477  * and acquires a hold on the buffer to ensure that it isn't reclaimed before
478  * dirty data makes it to disk.
479  */
480 STATIC void
481 xfs_inode_item_error(
482 	struct xfs_log_item	*lip,
483 	struct xfs_buf		*bp)
484 {
485 	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
486 	xfs_set_li_failed(lip, bp);
487 }
488 
489 STATIC uint
490 xfs_inode_item_push(
491 	struct xfs_log_item	*lip,
492 	struct list_head	*buffer_list)
493 		__releases(&lip->li_ailp->ail_lock)
494 		__acquires(&lip->li_ailp->ail_lock)
495 {
496 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
497 	struct xfs_inode	*ip = iip->ili_inode;
498 	struct xfs_buf		*bp = lip->li_buf;
499 	uint			rval = XFS_ITEM_SUCCESS;
500 	int			error;
501 
502 	if (xfs_ipincount(ip) > 0)
503 		return XFS_ITEM_PINNED;
504 
505 	/*
506 	 * The buffer containing this item failed to be written back
507 	 * previously. Resubmit the buffer for IO.
508 	 */
509 	if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
510 		if (!xfs_buf_trylock(bp))
511 			return XFS_ITEM_LOCKED;
512 
513 		if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
514 			rval = XFS_ITEM_FLUSHING;
515 
516 		xfs_buf_unlock(bp);
517 		return rval;
518 	}
519 
520 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
521 		return XFS_ITEM_LOCKED;
522 
523 	/*
524 	 * Re-check the pincount now that we stabilized the value by
525 	 * taking the ilock.
526 	 */
527 	if (xfs_ipincount(ip) > 0) {
528 		rval = XFS_ITEM_PINNED;
529 		goto out_unlock;
530 	}
531 
532 	/*
533 	 * Stale inode items should force out the iclog.
534 	 */
535 	if (ip->i_flags & XFS_ISTALE) {
536 		rval = XFS_ITEM_PINNED;
537 		goto out_unlock;
538 	}
539 
540 	/*
541 	 * Someone else is already flushing the inode.  Nothing we can do
542 	 * here but wait for the flush to finish and remove the item from
543 	 * the AIL.
544 	 */
545 	if (!xfs_iflock_nowait(ip)) {
546 		rval = XFS_ITEM_FLUSHING;
547 		goto out_unlock;
548 	}
549 
550 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
551 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
552 
553 	spin_unlock(&lip->li_ailp->ail_lock);
554 
555 	error = xfs_iflush(ip, &bp);
556 	if (!error) {
557 		if (!xfs_buf_delwri_queue(bp, buffer_list))
558 			rval = XFS_ITEM_FLUSHING;
559 		xfs_buf_relse(bp);
560 	}
561 
562 	spin_lock(&lip->li_ailp->ail_lock);
563 out_unlock:
564 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
565 	return rval;
566 }
567 
568 /*
569  * Unlock the inode associated with the inode log item.
570  */
571 STATIC void
572 xfs_inode_item_unlock(
573 	struct xfs_log_item	*lip)
574 {
575 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
576 	struct xfs_inode	*ip = iip->ili_inode;
577 	unsigned short		lock_flags;
578 
579 	ASSERT(ip->i_itemp != NULL);
580 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
581 
582 	lock_flags = iip->ili_lock_flags;
583 	iip->ili_lock_flags = 0;
584 	if (lock_flags)
585 		xfs_iunlock(ip, lock_flags);
586 }
587 
588 /*
589  * This is called to find out where the oldest active copy of the inode log
590  * item in the on disk log resides now that the last log write of it completed
591  * at the given lsn.  Since we always re-log all dirty data in an inode, the
592  * latest copy in the on disk log is the only one that matters.  Therefore,
593  * simply return the given lsn.
594  *
595  * If the inode has been marked stale because the cluster is being freed, we
596  * don't want to (re-)insert this inode into the AIL. There is a race condition
597  * where the cluster buffer may be unpinned before the inode is inserted into
598  * the AIL during transaction committed processing. If the buffer is unpinned
599  * before the inode item has been committed and inserted, then it is possible
600  * for the buffer to be written and IO completes before the inode is inserted
601  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
602  * AIL which will never get removed. It will, however, get reclaimed which
603  * triggers an assert in xfs_inode_free() complaining about freein an inode
604  * still in the AIL.
605  *
606  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
607  * transaction committed code knows that it does not need to do any further
608  * processing on the item.
609  */
610 STATIC xfs_lsn_t
611 xfs_inode_item_committed(
612 	struct xfs_log_item	*lip,
613 	xfs_lsn_t		lsn)
614 {
615 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
616 	struct xfs_inode	*ip = iip->ili_inode;
617 
618 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
619 		xfs_inode_item_unpin(lip, 0);
620 		return -1;
621 	}
622 	return lsn;
623 }
624 
625 STATIC void
626 xfs_inode_item_committing(
627 	struct xfs_log_item	*lip,
628 	xfs_lsn_t		lsn)
629 {
630 	INODE_ITEM(lip)->ili_last_lsn = lsn;
631 }
632 
633 /*
634  * This is the ops vector shared by all buf log items.
635  */
636 static const struct xfs_item_ops xfs_inode_item_ops = {
637 	.iop_size	= xfs_inode_item_size,
638 	.iop_format	= xfs_inode_item_format,
639 	.iop_pin	= xfs_inode_item_pin,
640 	.iop_unpin	= xfs_inode_item_unpin,
641 	.iop_unlock	= xfs_inode_item_unlock,
642 	.iop_committed	= xfs_inode_item_committed,
643 	.iop_push	= xfs_inode_item_push,
644 	.iop_committing = xfs_inode_item_committing,
645 	.iop_error	= xfs_inode_item_error
646 };
647 
648 
649 /*
650  * Initialize the inode log item for a newly allocated (in-core) inode.
651  */
652 void
653 xfs_inode_item_init(
654 	struct xfs_inode	*ip,
655 	struct xfs_mount	*mp)
656 {
657 	struct xfs_inode_log_item *iip;
658 
659 	ASSERT(ip->i_itemp == NULL);
660 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
661 
662 	iip->ili_inode = ip;
663 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
664 						&xfs_inode_item_ops);
665 }
666 
667 /*
668  * Free the inode log item and any memory hanging off of it.
669  */
670 void
671 xfs_inode_item_destroy(
672 	xfs_inode_t	*ip)
673 {
674 	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
675 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
676 }
677 
678 
679 /*
680  * This is the inode flushing I/O completion routine.  It is called
681  * from interrupt level when the buffer containing the inode is
682  * flushed to disk.  It is responsible for removing the inode item
683  * from the AIL if it has not been re-logged, and unlocking the inode's
684  * flush lock.
685  *
686  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
687  * list for other inodes that will run this function. We remove them from the
688  * buffer list so we can process all the inode IO completions in one AIL lock
689  * traversal.
690  */
691 void
692 xfs_iflush_done(
693 	struct xfs_buf		*bp,
694 	struct xfs_log_item	*lip)
695 {
696 	struct xfs_inode_log_item *iip;
697 	struct xfs_log_item	*blip, *n;
698 	struct xfs_ail		*ailp = lip->li_ailp;
699 	int			need_ail = 0;
700 	LIST_HEAD(tmp);
701 
702 	/*
703 	 * Scan the buffer IO completions for other inodes being completed and
704 	 * attach them to the current inode log item.
705 	 */
706 
707 	list_add_tail(&lip->li_bio_list, &tmp);
708 
709 	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
710 		if (lip->li_cb != xfs_iflush_done)
711 			continue;
712 
713 		list_move_tail(&blip->li_bio_list, &tmp);
714 		/*
715 		 * while we have the item, do the unlocked check for needing
716 		 * the AIL lock.
717 		 */
718 		iip = INODE_ITEM(blip);
719 		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
720 		    test_bit(XFS_LI_FAILED, &blip->li_flags))
721 			need_ail++;
722 	}
723 
724 	/* make sure we capture the state of the initial inode. */
725 	iip = INODE_ITEM(lip);
726 	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
727 	    test_bit(XFS_LI_FAILED, &lip->li_flags))
728 		need_ail++;
729 
730 	/*
731 	 * We only want to pull the item from the AIL if it is
732 	 * actually there and its location in the log has not
733 	 * changed since we started the flush.  Thus, we only bother
734 	 * if the ili_logged flag is set and the inode's lsn has not
735 	 * changed.  First we check the lsn outside
736 	 * the lock since it's cheaper, and then we recheck while
737 	 * holding the lock before removing the inode from the AIL.
738 	 */
739 	if (need_ail) {
740 		bool			mlip_changed = false;
741 
742 		/* this is an opencoded batch version of xfs_trans_ail_delete */
743 		spin_lock(&ailp->ail_lock);
744 		list_for_each_entry(blip, &tmp, li_bio_list) {
745 			if (INODE_ITEM(blip)->ili_logged &&
746 			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
747 				mlip_changed |= xfs_ail_delete_one(ailp, blip);
748 			else {
749 				xfs_clear_li_failed(blip);
750 			}
751 		}
752 
753 		if (mlip_changed) {
754 			if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
755 				xlog_assign_tail_lsn_locked(ailp->ail_mount);
756 			if (list_empty(&ailp->ail_head))
757 				wake_up_all(&ailp->ail_empty);
758 		}
759 		spin_unlock(&ailp->ail_lock);
760 
761 		if (mlip_changed)
762 			xfs_log_space_wake(ailp->ail_mount);
763 	}
764 
765 	/*
766 	 * clean up and unlock the flush lock now we are done. We can clear the
767 	 * ili_last_fields bits now that we know that the data corresponding to
768 	 * them is safely on disk.
769 	 */
770 	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
771 		list_del_init(&blip->li_bio_list);
772 		iip = INODE_ITEM(blip);
773 		iip->ili_logged = 0;
774 		iip->ili_last_fields = 0;
775 		xfs_ifunlock(iip->ili_inode);
776 	}
777 	list_del(&tmp);
778 }
779 
780 /*
781  * This is the inode flushing abort routine.  It is called from xfs_iflush when
782  * the filesystem is shutting down to clean up the inode state.  It is
783  * responsible for removing the inode item from the AIL if it has not been
784  * re-logged, and unlocking the inode's flush lock.
785  */
786 void
787 xfs_iflush_abort(
788 	xfs_inode_t		*ip,
789 	bool			stale)
790 {
791 	xfs_inode_log_item_t	*iip = ip->i_itemp;
792 
793 	if (iip) {
794 		if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
795 			xfs_trans_ail_remove(&iip->ili_item,
796 					     stale ? SHUTDOWN_LOG_IO_ERROR :
797 						     SHUTDOWN_CORRUPT_INCORE);
798 		}
799 		iip->ili_logged = 0;
800 		/*
801 		 * Clear the ili_last_fields bits now that we know that the
802 		 * data corresponding to them is safely on disk.
803 		 */
804 		iip->ili_last_fields = 0;
805 		/*
806 		 * Clear the inode logging fields so no more flushes are
807 		 * attempted.
808 		 */
809 		iip->ili_fields = 0;
810 		iip->ili_fsync_fields = 0;
811 	}
812 	/*
813 	 * Release the inode's flush lock since we're done with it.
814 	 */
815 	xfs_ifunlock(ip);
816 }
817 
818 void
819 xfs_istale_done(
820 	struct xfs_buf		*bp,
821 	struct xfs_log_item	*lip)
822 {
823 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
824 }
825 
826 /*
827  * convert an xfs_inode_log_format struct from the old 32 bit version
828  * (which can have different field alignments) to the native 64 bit version
829  */
830 int
831 xfs_inode_item_format_convert(
832 	struct xfs_log_iovec		*buf,
833 	struct xfs_inode_log_format	*in_f)
834 {
835 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
836 
837 	if (buf->i_len != sizeof(*in_f32))
838 		return -EFSCORRUPTED;
839 
840 	in_f->ilf_type = in_f32->ilf_type;
841 	in_f->ilf_size = in_f32->ilf_size;
842 	in_f->ilf_fields = in_f32->ilf_fields;
843 	in_f->ilf_asize = in_f32->ilf_asize;
844 	in_f->ilf_dsize = in_f32->ilf_dsize;
845 	in_f->ilf_ino = in_f32->ilf_ino;
846 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
847 	in_f->ilf_blkno = in_f32->ilf_blkno;
848 	in_f->ilf_len = in_f32->ilf_len;
849 	in_f->ilf_boffset = in_f32->ilf_boffset;
850 	return 0;
851 }
852