1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_error.h" 28 #include "xfs_trace.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_log.h" 31 32 33 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 34 35 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_inode_log_item, ili_item); 38 } 39 40 STATIC void 41 xfs_inode_item_data_fork_size( 42 struct xfs_inode_log_item *iip, 43 int *nvecs, 44 int *nbytes) 45 { 46 struct xfs_inode *ip = iip->ili_inode; 47 48 switch (ip->i_d.di_format) { 49 case XFS_DINODE_FMT_EXTENTS: 50 if ((iip->ili_fields & XFS_ILOG_DEXT) && 51 ip->i_d.di_nextents > 0 && 52 ip->i_df.if_bytes > 0) { 53 /* worst case, doesn't subtract delalloc extents */ 54 *nbytes += XFS_IFORK_DSIZE(ip); 55 *nvecs += 1; 56 } 57 break; 58 case XFS_DINODE_FMT_BTREE: 59 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 60 ip->i_df.if_broot_bytes > 0) { 61 *nbytes += ip->i_df.if_broot_bytes; 62 *nvecs += 1; 63 } 64 break; 65 case XFS_DINODE_FMT_LOCAL: 66 if ((iip->ili_fields & XFS_ILOG_DDATA) && 67 ip->i_df.if_bytes > 0) { 68 *nbytes += roundup(ip->i_df.if_bytes, 4); 69 *nvecs += 1; 70 } 71 break; 72 73 case XFS_DINODE_FMT_DEV: 74 case XFS_DINODE_FMT_UUID: 75 break; 76 default: 77 ASSERT(0); 78 break; 79 } 80 } 81 82 STATIC void 83 xfs_inode_item_attr_fork_size( 84 struct xfs_inode_log_item *iip, 85 int *nvecs, 86 int *nbytes) 87 { 88 struct xfs_inode *ip = iip->ili_inode; 89 90 switch (ip->i_d.di_aformat) { 91 case XFS_DINODE_FMT_EXTENTS: 92 if ((iip->ili_fields & XFS_ILOG_AEXT) && 93 ip->i_d.di_anextents > 0 && 94 ip->i_afp->if_bytes > 0) { 95 /* worst case, doesn't subtract unused space */ 96 *nbytes += XFS_IFORK_ASIZE(ip); 97 *nvecs += 1; 98 } 99 break; 100 case XFS_DINODE_FMT_BTREE: 101 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 102 ip->i_afp->if_broot_bytes > 0) { 103 *nbytes += ip->i_afp->if_broot_bytes; 104 *nvecs += 1; 105 } 106 break; 107 case XFS_DINODE_FMT_LOCAL: 108 if ((iip->ili_fields & XFS_ILOG_ADATA) && 109 ip->i_afp->if_bytes > 0) { 110 *nbytes += roundup(ip->i_afp->if_bytes, 4); 111 *nvecs += 1; 112 } 113 break; 114 default: 115 ASSERT(0); 116 break; 117 } 118 } 119 120 /* 121 * This returns the number of iovecs needed to log the given inode item. 122 * 123 * We need one iovec for the inode log format structure, one for the 124 * inode core, and possibly one for the inode data/extents/b-tree root 125 * and one for the inode attribute data/extents/b-tree root. 126 */ 127 STATIC void 128 xfs_inode_item_size( 129 struct xfs_log_item *lip, 130 int *nvecs, 131 int *nbytes) 132 { 133 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 134 struct xfs_inode *ip = iip->ili_inode; 135 136 *nvecs += 2; 137 *nbytes += sizeof(struct xfs_inode_log_format) + 138 xfs_log_dinode_size(ip->i_d.di_version); 139 140 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 141 if (XFS_IFORK_Q(ip)) 142 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 143 } 144 145 STATIC void 146 xfs_inode_item_format_data_fork( 147 struct xfs_inode_log_item *iip, 148 struct xfs_inode_log_format *ilf, 149 struct xfs_log_vec *lv, 150 struct xfs_log_iovec **vecp) 151 { 152 struct xfs_inode *ip = iip->ili_inode; 153 size_t data_bytes; 154 155 switch (ip->i_d.di_format) { 156 case XFS_DINODE_FMT_EXTENTS: 157 iip->ili_fields &= 158 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 159 XFS_ILOG_DEV | XFS_ILOG_UUID); 160 161 if ((iip->ili_fields & XFS_ILOG_DEXT) && 162 ip->i_d.di_nextents > 0 && 163 ip->i_df.if_bytes > 0) { 164 struct xfs_bmbt_rec *p; 165 166 ASSERT(ip->i_df.if_u1.if_extents != NULL); 167 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); 168 169 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 170 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 171 xlog_finish_iovec(lv, *vecp, data_bytes); 172 173 ASSERT(data_bytes <= ip->i_df.if_bytes); 174 175 ilf->ilf_dsize = data_bytes; 176 ilf->ilf_size++; 177 } else { 178 iip->ili_fields &= ~XFS_ILOG_DEXT; 179 } 180 break; 181 case XFS_DINODE_FMT_BTREE: 182 iip->ili_fields &= 183 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 184 XFS_ILOG_DEV | XFS_ILOG_UUID); 185 186 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 187 ip->i_df.if_broot_bytes > 0) { 188 ASSERT(ip->i_df.if_broot != NULL); 189 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 190 ip->i_df.if_broot, 191 ip->i_df.if_broot_bytes); 192 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 193 ilf->ilf_size++; 194 } else { 195 ASSERT(!(iip->ili_fields & 196 XFS_ILOG_DBROOT)); 197 iip->ili_fields &= ~XFS_ILOG_DBROOT; 198 } 199 break; 200 case XFS_DINODE_FMT_LOCAL: 201 iip->ili_fields &= 202 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 203 XFS_ILOG_DEV | XFS_ILOG_UUID); 204 if ((iip->ili_fields & XFS_ILOG_DDATA) && 205 ip->i_df.if_bytes > 0) { 206 /* 207 * Round i_bytes up to a word boundary. 208 * The underlying memory is guaranteed to 209 * to be there by xfs_idata_realloc(). 210 */ 211 data_bytes = roundup(ip->i_df.if_bytes, 4); 212 ASSERT(ip->i_df.if_real_bytes == 0 || 213 ip->i_df.if_real_bytes >= data_bytes); 214 ASSERT(ip->i_df.if_u1.if_data != NULL); 215 ASSERT(ip->i_d.di_size > 0); 216 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 217 ip->i_df.if_u1.if_data, data_bytes); 218 ilf->ilf_dsize = (unsigned)data_bytes; 219 ilf->ilf_size++; 220 } else { 221 iip->ili_fields &= ~XFS_ILOG_DDATA; 222 } 223 break; 224 case XFS_DINODE_FMT_DEV: 225 iip->ili_fields &= 226 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 227 XFS_ILOG_DEXT | XFS_ILOG_UUID); 228 if (iip->ili_fields & XFS_ILOG_DEV) 229 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; 230 break; 231 case XFS_DINODE_FMT_UUID: 232 iip->ili_fields &= 233 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 234 XFS_ILOG_DEXT | XFS_ILOG_DEV); 235 if (iip->ili_fields & XFS_ILOG_UUID) 236 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; 237 break; 238 default: 239 ASSERT(0); 240 break; 241 } 242 } 243 244 STATIC void 245 xfs_inode_item_format_attr_fork( 246 struct xfs_inode_log_item *iip, 247 struct xfs_inode_log_format *ilf, 248 struct xfs_log_vec *lv, 249 struct xfs_log_iovec **vecp) 250 { 251 struct xfs_inode *ip = iip->ili_inode; 252 size_t data_bytes; 253 254 switch (ip->i_d.di_aformat) { 255 case XFS_DINODE_FMT_EXTENTS: 256 iip->ili_fields &= 257 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 258 259 if ((iip->ili_fields & XFS_ILOG_AEXT) && 260 ip->i_d.di_anextents > 0 && 261 ip->i_afp->if_bytes > 0) { 262 struct xfs_bmbt_rec *p; 263 264 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == 265 ip->i_d.di_anextents); 266 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 267 268 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 269 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 270 xlog_finish_iovec(lv, *vecp, data_bytes); 271 272 ilf->ilf_asize = data_bytes; 273 ilf->ilf_size++; 274 } else { 275 iip->ili_fields &= ~XFS_ILOG_AEXT; 276 } 277 break; 278 case XFS_DINODE_FMT_BTREE: 279 iip->ili_fields &= 280 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 281 282 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 283 ip->i_afp->if_broot_bytes > 0) { 284 ASSERT(ip->i_afp->if_broot != NULL); 285 286 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 287 ip->i_afp->if_broot, 288 ip->i_afp->if_broot_bytes); 289 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 290 ilf->ilf_size++; 291 } else { 292 iip->ili_fields &= ~XFS_ILOG_ABROOT; 293 } 294 break; 295 case XFS_DINODE_FMT_LOCAL: 296 iip->ili_fields &= 297 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 298 299 if ((iip->ili_fields & XFS_ILOG_ADATA) && 300 ip->i_afp->if_bytes > 0) { 301 /* 302 * Round i_bytes up to a word boundary. 303 * The underlying memory is guaranteed to 304 * to be there by xfs_idata_realloc(). 305 */ 306 data_bytes = roundup(ip->i_afp->if_bytes, 4); 307 ASSERT(ip->i_afp->if_real_bytes == 0 || 308 ip->i_afp->if_real_bytes >= data_bytes); 309 ASSERT(ip->i_afp->if_u1.if_data != NULL); 310 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 311 ip->i_afp->if_u1.if_data, 312 data_bytes); 313 ilf->ilf_asize = (unsigned)data_bytes; 314 ilf->ilf_size++; 315 } else { 316 iip->ili_fields &= ~XFS_ILOG_ADATA; 317 } 318 break; 319 default: 320 ASSERT(0); 321 break; 322 } 323 } 324 325 static void 326 xfs_inode_to_log_dinode( 327 struct xfs_inode *ip, 328 struct xfs_log_dinode *to, 329 xfs_lsn_t lsn) 330 { 331 struct xfs_icdinode *from = &ip->i_d; 332 struct inode *inode = VFS_I(ip); 333 334 to->di_magic = XFS_DINODE_MAGIC; 335 336 to->di_version = from->di_version; 337 to->di_format = from->di_format; 338 to->di_uid = from->di_uid; 339 to->di_gid = from->di_gid; 340 to->di_projid_lo = from->di_projid_lo; 341 to->di_projid_hi = from->di_projid_hi; 342 343 memset(to->di_pad, 0, sizeof(to->di_pad)); 344 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 345 to->di_atime.t_sec = inode->i_atime.tv_sec; 346 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 347 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 348 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 349 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 350 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 351 to->di_nlink = inode->i_nlink; 352 to->di_gen = inode->i_generation; 353 to->di_mode = inode->i_mode; 354 355 to->di_size = from->di_size; 356 to->di_nblocks = from->di_nblocks; 357 to->di_extsize = from->di_extsize; 358 to->di_nextents = from->di_nextents; 359 to->di_anextents = from->di_anextents; 360 to->di_forkoff = from->di_forkoff; 361 to->di_aformat = from->di_aformat; 362 to->di_dmevmask = from->di_dmevmask; 363 to->di_dmstate = from->di_dmstate; 364 to->di_flags = from->di_flags; 365 366 if (from->di_version == 3) { 367 to->di_changecount = inode->i_version; 368 to->di_crtime.t_sec = from->di_crtime.t_sec; 369 to->di_crtime.t_nsec = from->di_crtime.t_nsec; 370 to->di_flags2 = from->di_flags2; 371 to->di_cowextsize = from->di_cowextsize; 372 to->di_ino = ip->i_ino; 373 to->di_lsn = lsn; 374 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 375 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 376 to->di_flushiter = 0; 377 } else { 378 to->di_flushiter = from->di_flushiter; 379 } 380 } 381 382 /* 383 * Format the inode core. Current timestamp data is only in the VFS inode 384 * fields, so we need to grab them from there. Hence rather than just copying 385 * the XFS inode core structure, format the fields directly into the iovec. 386 */ 387 static void 388 xfs_inode_item_format_core( 389 struct xfs_inode *ip, 390 struct xfs_log_vec *lv, 391 struct xfs_log_iovec **vecp) 392 { 393 struct xfs_log_dinode *dic; 394 395 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 396 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 397 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); 398 } 399 400 /* 401 * This is called to fill in the vector of log iovecs for the given inode 402 * log item. It fills the first item with an inode log format structure, 403 * the second with the on-disk inode structure, and a possible third and/or 404 * fourth with the inode data/extents/b-tree root and inode attributes 405 * data/extents/b-tree root. 406 */ 407 STATIC void 408 xfs_inode_item_format( 409 struct xfs_log_item *lip, 410 struct xfs_log_vec *lv) 411 { 412 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 413 struct xfs_inode *ip = iip->ili_inode; 414 struct xfs_inode_log_format *ilf; 415 struct xfs_log_iovec *vecp = NULL; 416 417 ASSERT(ip->i_d.di_version > 1); 418 419 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 420 ilf->ilf_type = XFS_LI_INODE; 421 ilf->ilf_ino = ip->i_ino; 422 ilf->ilf_blkno = ip->i_imap.im_blkno; 423 ilf->ilf_len = ip->i_imap.im_len; 424 ilf->ilf_boffset = ip->i_imap.im_boffset; 425 ilf->ilf_fields = XFS_ILOG_CORE; 426 ilf->ilf_size = 2; /* format + core */ 427 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format)); 428 429 xfs_inode_item_format_core(ip, lv, &vecp); 430 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 431 if (XFS_IFORK_Q(ip)) { 432 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 433 } else { 434 iip->ili_fields &= 435 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 436 } 437 438 /* update the format with the exact fields we actually logged */ 439 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 440 } 441 442 /* 443 * This is called to pin the inode associated with the inode log 444 * item in memory so it cannot be written out. 445 */ 446 STATIC void 447 xfs_inode_item_pin( 448 struct xfs_log_item *lip) 449 { 450 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 451 452 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 453 454 trace_xfs_inode_pin(ip, _RET_IP_); 455 atomic_inc(&ip->i_pincount); 456 } 457 458 459 /* 460 * This is called to unpin the inode associated with the inode log 461 * item which was previously pinned with a call to xfs_inode_item_pin(). 462 * 463 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 464 */ 465 STATIC void 466 xfs_inode_item_unpin( 467 struct xfs_log_item *lip, 468 int remove) 469 { 470 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 471 472 trace_xfs_inode_unpin(ip, _RET_IP_); 473 ASSERT(atomic_read(&ip->i_pincount) > 0); 474 if (atomic_dec_and_test(&ip->i_pincount)) 475 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 476 } 477 478 STATIC uint 479 xfs_inode_item_push( 480 struct xfs_log_item *lip, 481 struct list_head *buffer_list) 482 __releases(&lip->li_ailp->xa_lock) 483 __acquires(&lip->li_ailp->xa_lock) 484 { 485 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 486 struct xfs_inode *ip = iip->ili_inode; 487 struct xfs_buf *bp = NULL; 488 uint rval = XFS_ITEM_SUCCESS; 489 int error; 490 491 if (xfs_ipincount(ip) > 0) 492 return XFS_ITEM_PINNED; 493 494 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 495 return XFS_ITEM_LOCKED; 496 497 /* 498 * Re-check the pincount now that we stabilized the value by 499 * taking the ilock. 500 */ 501 if (xfs_ipincount(ip) > 0) { 502 rval = XFS_ITEM_PINNED; 503 goto out_unlock; 504 } 505 506 /* 507 * Stale inode items should force out the iclog. 508 */ 509 if (ip->i_flags & XFS_ISTALE) { 510 rval = XFS_ITEM_PINNED; 511 goto out_unlock; 512 } 513 514 /* 515 * Someone else is already flushing the inode. Nothing we can do 516 * here but wait for the flush to finish and remove the item from 517 * the AIL. 518 */ 519 if (!xfs_iflock_nowait(ip)) { 520 rval = XFS_ITEM_FLUSHING; 521 goto out_unlock; 522 } 523 524 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 525 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 526 527 spin_unlock(&lip->li_ailp->xa_lock); 528 529 error = xfs_iflush(ip, &bp); 530 if (!error) { 531 if (!xfs_buf_delwri_queue(bp, buffer_list)) 532 rval = XFS_ITEM_FLUSHING; 533 xfs_buf_relse(bp); 534 } 535 536 spin_lock(&lip->li_ailp->xa_lock); 537 out_unlock: 538 xfs_iunlock(ip, XFS_ILOCK_SHARED); 539 return rval; 540 } 541 542 /* 543 * Unlock the inode associated with the inode log item. 544 * Clear the fields of the inode and inode log item that 545 * are specific to the current transaction. If the 546 * hold flags is set, do not unlock the inode. 547 */ 548 STATIC void 549 xfs_inode_item_unlock( 550 struct xfs_log_item *lip) 551 { 552 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 553 struct xfs_inode *ip = iip->ili_inode; 554 unsigned short lock_flags; 555 556 ASSERT(ip->i_itemp != NULL); 557 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 558 559 lock_flags = iip->ili_lock_flags; 560 iip->ili_lock_flags = 0; 561 if (lock_flags) 562 xfs_iunlock(ip, lock_flags); 563 } 564 565 /* 566 * This is called to find out where the oldest active copy of the inode log 567 * item in the on disk log resides now that the last log write of it completed 568 * at the given lsn. Since we always re-log all dirty data in an inode, the 569 * latest copy in the on disk log is the only one that matters. Therefore, 570 * simply return the given lsn. 571 * 572 * If the inode has been marked stale because the cluster is being freed, we 573 * don't want to (re-)insert this inode into the AIL. There is a race condition 574 * where the cluster buffer may be unpinned before the inode is inserted into 575 * the AIL during transaction committed processing. If the buffer is unpinned 576 * before the inode item has been committed and inserted, then it is possible 577 * for the buffer to be written and IO completes before the inode is inserted 578 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 579 * AIL which will never get removed. It will, however, get reclaimed which 580 * triggers an assert in xfs_inode_free() complaining about freein an inode 581 * still in the AIL. 582 * 583 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 584 * transaction committed code knows that it does not need to do any further 585 * processing on the item. 586 */ 587 STATIC xfs_lsn_t 588 xfs_inode_item_committed( 589 struct xfs_log_item *lip, 590 xfs_lsn_t lsn) 591 { 592 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 593 struct xfs_inode *ip = iip->ili_inode; 594 595 if (xfs_iflags_test(ip, XFS_ISTALE)) { 596 xfs_inode_item_unpin(lip, 0); 597 return -1; 598 } 599 return lsn; 600 } 601 602 /* 603 * XXX rcc - this one really has to do something. Probably needs 604 * to stamp in a new field in the incore inode. 605 */ 606 STATIC void 607 xfs_inode_item_committing( 608 struct xfs_log_item *lip, 609 xfs_lsn_t lsn) 610 { 611 INODE_ITEM(lip)->ili_last_lsn = lsn; 612 } 613 614 /* 615 * This is the ops vector shared by all buf log items. 616 */ 617 static const struct xfs_item_ops xfs_inode_item_ops = { 618 .iop_size = xfs_inode_item_size, 619 .iop_format = xfs_inode_item_format, 620 .iop_pin = xfs_inode_item_pin, 621 .iop_unpin = xfs_inode_item_unpin, 622 .iop_unlock = xfs_inode_item_unlock, 623 .iop_committed = xfs_inode_item_committed, 624 .iop_push = xfs_inode_item_push, 625 .iop_committing = xfs_inode_item_committing 626 }; 627 628 629 /* 630 * Initialize the inode log item for a newly allocated (in-core) inode. 631 */ 632 void 633 xfs_inode_item_init( 634 struct xfs_inode *ip, 635 struct xfs_mount *mp) 636 { 637 struct xfs_inode_log_item *iip; 638 639 ASSERT(ip->i_itemp == NULL); 640 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 641 642 iip->ili_inode = ip; 643 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 644 &xfs_inode_item_ops); 645 } 646 647 /* 648 * Free the inode log item and any memory hanging off of it. 649 */ 650 void 651 xfs_inode_item_destroy( 652 xfs_inode_t *ip) 653 { 654 kmem_free(ip->i_itemp->ili_item.li_lv_shadow); 655 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 656 } 657 658 659 /* 660 * This is the inode flushing I/O completion routine. It is called 661 * from interrupt level when the buffer containing the inode is 662 * flushed to disk. It is responsible for removing the inode item 663 * from the AIL if it has not been re-logged, and unlocking the inode's 664 * flush lock. 665 * 666 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 667 * list for other inodes that will run this function. We remove them from the 668 * buffer list so we can process all the inode IO completions in one AIL lock 669 * traversal. 670 */ 671 void 672 xfs_iflush_done( 673 struct xfs_buf *bp, 674 struct xfs_log_item *lip) 675 { 676 struct xfs_inode_log_item *iip; 677 struct xfs_log_item *blip; 678 struct xfs_log_item *next; 679 struct xfs_log_item *prev; 680 struct xfs_ail *ailp = lip->li_ailp; 681 int need_ail = 0; 682 683 /* 684 * Scan the buffer IO completions for other inodes being completed and 685 * attach them to the current inode log item. 686 */ 687 blip = bp->b_fspriv; 688 prev = NULL; 689 while (blip != NULL) { 690 if (blip->li_cb != xfs_iflush_done) { 691 prev = blip; 692 blip = blip->li_bio_list; 693 continue; 694 } 695 696 /* remove from list */ 697 next = blip->li_bio_list; 698 if (!prev) { 699 bp->b_fspriv = next; 700 } else { 701 prev->li_bio_list = next; 702 } 703 704 /* add to current list */ 705 blip->li_bio_list = lip->li_bio_list; 706 lip->li_bio_list = blip; 707 708 /* 709 * while we have the item, do the unlocked check for needing 710 * the AIL lock. 711 */ 712 iip = INODE_ITEM(blip); 713 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 714 need_ail++; 715 716 blip = next; 717 } 718 719 /* make sure we capture the state of the initial inode. */ 720 iip = INODE_ITEM(lip); 721 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 722 need_ail++; 723 724 /* 725 * We only want to pull the item from the AIL if it is 726 * actually there and its location in the log has not 727 * changed since we started the flush. Thus, we only bother 728 * if the ili_logged flag is set and the inode's lsn has not 729 * changed. First we check the lsn outside 730 * the lock since it's cheaper, and then we recheck while 731 * holding the lock before removing the inode from the AIL. 732 */ 733 if (need_ail) { 734 struct xfs_log_item *log_items[need_ail]; 735 int i = 0; 736 spin_lock(&ailp->xa_lock); 737 for (blip = lip; blip; blip = blip->li_bio_list) { 738 iip = INODE_ITEM(blip); 739 if (iip->ili_logged && 740 blip->li_lsn == iip->ili_flush_lsn) { 741 log_items[i++] = blip; 742 } 743 ASSERT(i <= need_ail); 744 } 745 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 746 xfs_trans_ail_delete_bulk(ailp, log_items, i, 747 SHUTDOWN_CORRUPT_INCORE); 748 } 749 750 751 /* 752 * clean up and unlock the flush lock now we are done. We can clear the 753 * ili_last_fields bits now that we know that the data corresponding to 754 * them is safely on disk. 755 */ 756 for (blip = lip; blip; blip = next) { 757 next = blip->li_bio_list; 758 blip->li_bio_list = NULL; 759 760 iip = INODE_ITEM(blip); 761 iip->ili_logged = 0; 762 iip->ili_last_fields = 0; 763 xfs_ifunlock(iip->ili_inode); 764 } 765 } 766 767 /* 768 * This is the inode flushing abort routine. It is called from xfs_iflush when 769 * the filesystem is shutting down to clean up the inode state. It is 770 * responsible for removing the inode item from the AIL if it has not been 771 * re-logged, and unlocking the inode's flush lock. 772 */ 773 void 774 xfs_iflush_abort( 775 xfs_inode_t *ip, 776 bool stale) 777 { 778 xfs_inode_log_item_t *iip = ip->i_itemp; 779 780 if (iip) { 781 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 782 xfs_trans_ail_remove(&iip->ili_item, 783 stale ? SHUTDOWN_LOG_IO_ERROR : 784 SHUTDOWN_CORRUPT_INCORE); 785 } 786 iip->ili_logged = 0; 787 /* 788 * Clear the ili_last_fields bits now that we know that the 789 * data corresponding to them is safely on disk. 790 */ 791 iip->ili_last_fields = 0; 792 /* 793 * Clear the inode logging fields so no more flushes are 794 * attempted. 795 */ 796 iip->ili_fields = 0; 797 iip->ili_fsync_fields = 0; 798 } 799 /* 800 * Release the inode's flush lock since we're done with it. 801 */ 802 xfs_ifunlock(ip); 803 } 804 805 void 806 xfs_istale_done( 807 struct xfs_buf *bp, 808 struct xfs_log_item *lip) 809 { 810 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 811 } 812 813 /* 814 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 815 * (which can have different field alignments) to the native version 816 */ 817 int 818 xfs_inode_item_format_convert( 819 xfs_log_iovec_t *buf, 820 xfs_inode_log_format_t *in_f) 821 { 822 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 823 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 824 825 in_f->ilf_type = in_f32->ilf_type; 826 in_f->ilf_size = in_f32->ilf_size; 827 in_f->ilf_fields = in_f32->ilf_fields; 828 in_f->ilf_asize = in_f32->ilf_asize; 829 in_f->ilf_dsize = in_f32->ilf_dsize; 830 in_f->ilf_ino = in_f32->ilf_ino; 831 /* copy biggest field of ilf_u */ 832 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 833 in_f32->ilf_u.ilfu_uuid.__u_bits, 834 sizeof(uuid_t)); 835 in_f->ilf_blkno = in_f32->ilf_blkno; 836 in_f->ilf_len = in_f32->ilf_len; 837 in_f->ilf_boffset = in_f32->ilf_boffset; 838 return 0; 839 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 840 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 841 842 in_f->ilf_type = in_f64->ilf_type; 843 in_f->ilf_size = in_f64->ilf_size; 844 in_f->ilf_fields = in_f64->ilf_fields; 845 in_f->ilf_asize = in_f64->ilf_asize; 846 in_f->ilf_dsize = in_f64->ilf_dsize; 847 in_f->ilf_ino = in_f64->ilf_ino; 848 /* copy biggest field of ilf_u */ 849 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 850 in_f64->ilf_u.ilfu_uuid.__u_bits, 851 sizeof(uuid_t)); 852 in_f->ilf_blkno = in_f64->ilf_blkno; 853 in_f->ilf_len = in_f64->ilf_len; 854 in_f->ilf_boffset = in_f64->ilf_boffset; 855 return 0; 856 } 857 return -EFSCORRUPTED; 858 } 859