xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision c1d45424)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_dinode.h"
29 #include "xfs_inode.h"
30 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 
34 
35 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
36 
37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
38 {
39 	return container_of(lip, struct xfs_inode_log_item, ili_item);
40 }
41 
42 
43 /*
44  * This returns the number of iovecs needed to log the given inode item.
45  *
46  * We need one iovec for the inode log format structure, one for the
47  * inode core, and possibly one for the inode data/extents/b-tree root
48  * and one for the inode attribute data/extents/b-tree root.
49  */
50 STATIC uint
51 xfs_inode_item_size(
52 	struct xfs_log_item	*lip)
53 {
54 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
55 	struct xfs_inode	*ip = iip->ili_inode;
56 	uint			nvecs = 2;
57 
58 	switch (ip->i_d.di_format) {
59 	case XFS_DINODE_FMT_EXTENTS:
60 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
61 		    ip->i_d.di_nextents > 0 &&
62 		    ip->i_df.if_bytes > 0)
63 			nvecs++;
64 		break;
65 
66 	case XFS_DINODE_FMT_BTREE:
67 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
68 		    ip->i_df.if_broot_bytes > 0)
69 			nvecs++;
70 		break;
71 
72 	case XFS_DINODE_FMT_LOCAL:
73 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
74 		    ip->i_df.if_bytes > 0)
75 			nvecs++;
76 		break;
77 
78 	case XFS_DINODE_FMT_DEV:
79 	case XFS_DINODE_FMT_UUID:
80 		break;
81 
82 	default:
83 		ASSERT(0);
84 		break;
85 	}
86 
87 	if (!XFS_IFORK_Q(ip))
88 		return nvecs;
89 
90 
91 	/*
92 	 * Log any necessary attribute data.
93 	 */
94 	switch (ip->i_d.di_aformat) {
95 	case XFS_DINODE_FMT_EXTENTS:
96 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97 		    ip->i_d.di_anextents > 0 &&
98 		    ip->i_afp->if_bytes > 0)
99 			nvecs++;
100 		break;
101 
102 	case XFS_DINODE_FMT_BTREE:
103 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
104 		    ip->i_afp->if_broot_bytes > 0)
105 			nvecs++;
106 		break;
107 
108 	case XFS_DINODE_FMT_LOCAL:
109 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110 		    ip->i_afp->if_bytes > 0)
111 			nvecs++;
112 		break;
113 
114 	default:
115 		ASSERT(0);
116 		break;
117 	}
118 
119 	return nvecs;
120 }
121 
122 /*
123  * xfs_inode_item_format_extents - convert in-core extents to on-disk form
124  *
125  * For either the data or attr fork in extent format, we need to endian convert
126  * the in-core extent as we place them into the on-disk inode. In this case, we
127  * need to do this conversion before we write the extents into the log. Because
128  * we don't have the disk inode to write into here, we allocate a buffer and
129  * format the extents into it via xfs_iextents_copy(). We free the buffer in
130  * the unlock routine after the copy for the log has been made.
131  *
132  * In the case of the data fork, the in-core and on-disk fork sizes can be
133  * different due to delayed allocation extents. We only log on-disk extents
134  * here, so always use the physical fork size to determine the size of the
135  * buffer we need to allocate.
136  */
137 STATIC void
138 xfs_inode_item_format_extents(
139 	struct xfs_inode	*ip,
140 	struct xfs_log_iovec	*vecp,
141 	int			whichfork,
142 	int			type)
143 {
144 	xfs_bmbt_rec_t		*ext_buffer;
145 
146 	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147 	if (whichfork == XFS_DATA_FORK)
148 		ip->i_itemp->ili_extents_buf = ext_buffer;
149 	else
150 		ip->i_itemp->ili_aextents_buf = ext_buffer;
151 
152 	vecp->i_addr = ext_buffer;
153 	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154 	vecp->i_type = type;
155 }
156 
157 /*
158  * This is called to fill in the vector of log iovecs for the
159  * given inode log item.  It fills the first item with an inode
160  * log format structure, the second with the on-disk inode structure,
161  * and a possible third and/or fourth with the inode data/extents/b-tree
162  * root and inode attributes data/extents/b-tree root.
163  */
164 STATIC void
165 xfs_inode_item_format(
166 	struct xfs_log_item	*lip,
167 	struct xfs_log_iovec	*vecp)
168 {
169 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170 	struct xfs_inode	*ip = iip->ili_inode;
171 	uint			nvecs;
172 	size_t			data_bytes;
173 	xfs_mount_t		*mp;
174 
175 	vecp->i_addr = &iip->ili_format;
176 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
177 	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
178 	vecp++;
179 	nvecs	     = 1;
180 
181 	vecp->i_addr = &ip->i_d;
182 	vecp->i_len  = xfs_icdinode_size(ip->i_d.di_version);
183 	vecp->i_type = XLOG_REG_TYPE_ICORE;
184 	vecp++;
185 	nvecs++;
186 
187 	/*
188 	 * If this is really an old format inode, then we need to
189 	 * log it as such.  This means that we have to copy the link
190 	 * count from the new field to the old.  We don't have to worry
191 	 * about the new fields, because nothing trusts them as long as
192 	 * the old inode version number is there.  If the superblock already
193 	 * has a new version number, then we don't bother converting back.
194 	 */
195 	mp = ip->i_mount;
196 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197 	if (ip->i_d.di_version == 1) {
198 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
199 			/*
200 			 * Convert it back.
201 			 */
202 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203 			ip->i_d.di_onlink = ip->i_d.di_nlink;
204 		} else {
205 			/*
206 			 * The superblock version has already been bumped,
207 			 * so just make the conversion to the new inode
208 			 * format permanent.
209 			 */
210 			ip->i_d.di_version = 2;
211 			ip->i_d.di_onlink = 0;
212 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
213 		}
214 	}
215 
216 	switch (ip->i_d.di_format) {
217 	case XFS_DINODE_FMT_EXTENTS:
218 		iip->ili_fields &=
219 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
220 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
221 
222 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
223 		    ip->i_d.di_nextents > 0 &&
224 		    ip->i_df.if_bytes > 0) {
225 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
226 			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
227 			ASSERT(iip->ili_extents_buf == NULL);
228 
229 #ifdef XFS_NATIVE_HOST
230                        if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231                                                (uint)sizeof(xfs_bmbt_rec_t)) {
232 				/*
233 				 * There are no delayed allocation
234 				 * extents, so just point to the
235 				 * real extents array.
236 				 */
237 				vecp->i_addr = ip->i_df.if_u1.if_extents;
238 				vecp->i_len = ip->i_df.if_bytes;
239 				vecp->i_type = XLOG_REG_TYPE_IEXT;
240 			} else
241 #endif
242 			{
243 				xfs_inode_item_format_extents(ip, vecp,
244 					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
245 			}
246 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247 			iip->ili_format.ilf_dsize = vecp->i_len;
248 			vecp++;
249 			nvecs++;
250 		} else {
251 			iip->ili_fields &= ~XFS_ILOG_DEXT;
252 		}
253 		break;
254 
255 	case XFS_DINODE_FMT_BTREE:
256 		iip->ili_fields &=
257 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
258 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
259 
260 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261 		    ip->i_df.if_broot_bytes > 0) {
262 			ASSERT(ip->i_df.if_broot != NULL);
263 			vecp->i_addr = ip->i_df.if_broot;
264 			vecp->i_len = ip->i_df.if_broot_bytes;
265 			vecp->i_type = XLOG_REG_TYPE_IBROOT;
266 			vecp++;
267 			nvecs++;
268 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
269 		} else {
270 			ASSERT(!(iip->ili_fields &
271 				 XFS_ILOG_DBROOT));
272 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
273 		}
274 		break;
275 
276 	case XFS_DINODE_FMT_LOCAL:
277 		iip->ili_fields &=
278 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
279 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
280 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
281 		    ip->i_df.if_bytes > 0) {
282 			ASSERT(ip->i_df.if_u1.if_data != NULL);
283 			ASSERT(ip->i_d.di_size > 0);
284 
285 			vecp->i_addr = ip->i_df.if_u1.if_data;
286 			/*
287 			 * Round i_bytes up to a word boundary.
288 			 * The underlying memory is guaranteed to
289 			 * to be there by xfs_idata_realloc().
290 			 */
291 			data_bytes = roundup(ip->i_df.if_bytes, 4);
292 			ASSERT((ip->i_df.if_real_bytes == 0) ||
293 			       (ip->i_df.if_real_bytes == data_bytes));
294 			vecp->i_len = (int)data_bytes;
295 			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
296 			vecp++;
297 			nvecs++;
298 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
299 		} else {
300 			iip->ili_fields &= ~XFS_ILOG_DDATA;
301 		}
302 		break;
303 
304 	case XFS_DINODE_FMT_DEV:
305 		iip->ili_fields &=
306 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
307 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
308 		if (iip->ili_fields & XFS_ILOG_DEV) {
309 			iip->ili_format.ilf_u.ilfu_rdev =
310 				ip->i_df.if_u2.if_rdev;
311 		}
312 		break;
313 
314 	case XFS_DINODE_FMT_UUID:
315 		iip->ili_fields &=
316 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
317 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
318 		if (iip->ili_fields & XFS_ILOG_UUID) {
319 			iip->ili_format.ilf_u.ilfu_uuid =
320 				ip->i_df.if_u2.if_uuid;
321 		}
322 		break;
323 
324 	default:
325 		ASSERT(0);
326 		break;
327 	}
328 
329 	/*
330 	 * If there are no attributes associated with the file, then we're done.
331 	 */
332 	if (!XFS_IFORK_Q(ip)) {
333 		iip->ili_fields &=
334 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
335 		goto out;
336 	}
337 
338 	switch (ip->i_d.di_aformat) {
339 	case XFS_DINODE_FMT_EXTENTS:
340 		iip->ili_fields &=
341 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
342 
343 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
344 		    ip->i_d.di_anextents > 0 &&
345 		    ip->i_afp->if_bytes > 0) {
346 			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
347 				ip->i_d.di_anextents);
348 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
349 #ifdef XFS_NATIVE_HOST
350 			/*
351 			 * There are not delayed allocation extents
352 			 * for attributes, so just point at the array.
353 			 */
354 			vecp->i_addr = ip->i_afp->if_u1.if_extents;
355 			vecp->i_len = ip->i_afp->if_bytes;
356 			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
357 #else
358 			ASSERT(iip->ili_aextents_buf == NULL);
359 			xfs_inode_item_format_extents(ip, vecp,
360 					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
361 #endif
362 			iip->ili_format.ilf_asize = vecp->i_len;
363 			vecp++;
364 			nvecs++;
365 		} else {
366 			iip->ili_fields &= ~XFS_ILOG_AEXT;
367 		}
368 		break;
369 
370 	case XFS_DINODE_FMT_BTREE:
371 		iip->ili_fields &=
372 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
373 
374 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
375 		    ip->i_afp->if_broot_bytes > 0) {
376 			ASSERT(ip->i_afp->if_broot != NULL);
377 
378 			vecp->i_addr = ip->i_afp->if_broot;
379 			vecp->i_len = ip->i_afp->if_broot_bytes;
380 			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
381 			vecp++;
382 			nvecs++;
383 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
384 		} else {
385 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
386 		}
387 		break;
388 
389 	case XFS_DINODE_FMT_LOCAL:
390 		iip->ili_fields &=
391 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
392 
393 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
394 		    ip->i_afp->if_bytes > 0) {
395 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
396 
397 			vecp->i_addr = ip->i_afp->if_u1.if_data;
398 			/*
399 			 * Round i_bytes up to a word boundary.
400 			 * The underlying memory is guaranteed to
401 			 * to be there by xfs_idata_realloc().
402 			 */
403 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
404 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
405 			       (ip->i_afp->if_real_bytes == data_bytes));
406 			vecp->i_len = (int)data_bytes;
407 			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
408 			vecp++;
409 			nvecs++;
410 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
411 		} else {
412 			iip->ili_fields &= ~XFS_ILOG_ADATA;
413 		}
414 		break;
415 
416 	default:
417 		ASSERT(0);
418 		break;
419 	}
420 
421 out:
422 	/*
423 	 * Now update the log format that goes out to disk from the in-core
424 	 * values.  We always write the inode core to make the arithmetic
425 	 * games in recovery easier, which isn't a big deal as just about any
426 	 * transaction would dirty it anyway.
427 	 */
428 	iip->ili_format.ilf_fields = XFS_ILOG_CORE |
429 		(iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
430 	iip->ili_format.ilf_size = nvecs;
431 }
432 
433 
434 /*
435  * This is called to pin the inode associated with the inode log
436  * item in memory so it cannot be written out.
437  */
438 STATIC void
439 xfs_inode_item_pin(
440 	struct xfs_log_item	*lip)
441 {
442 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
443 
444 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
445 
446 	trace_xfs_inode_pin(ip, _RET_IP_);
447 	atomic_inc(&ip->i_pincount);
448 }
449 
450 
451 /*
452  * This is called to unpin the inode associated with the inode log
453  * item which was previously pinned with a call to xfs_inode_item_pin().
454  *
455  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
456  */
457 STATIC void
458 xfs_inode_item_unpin(
459 	struct xfs_log_item	*lip,
460 	int			remove)
461 {
462 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
463 
464 	trace_xfs_inode_unpin(ip, _RET_IP_);
465 	ASSERT(atomic_read(&ip->i_pincount) > 0);
466 	if (atomic_dec_and_test(&ip->i_pincount))
467 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
468 }
469 
470 STATIC uint
471 xfs_inode_item_push(
472 	struct xfs_log_item	*lip,
473 	struct list_head	*buffer_list)
474 {
475 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
476 	struct xfs_inode	*ip = iip->ili_inode;
477 	struct xfs_buf		*bp = NULL;
478 	uint			rval = XFS_ITEM_SUCCESS;
479 	int			error;
480 
481 	if (xfs_ipincount(ip) > 0)
482 		return XFS_ITEM_PINNED;
483 
484 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
485 		return XFS_ITEM_LOCKED;
486 
487 	/*
488 	 * Re-check the pincount now that we stabilized the value by
489 	 * taking the ilock.
490 	 */
491 	if (xfs_ipincount(ip) > 0) {
492 		rval = XFS_ITEM_PINNED;
493 		goto out_unlock;
494 	}
495 
496 	/*
497 	 * Stale inode items should force out the iclog.
498 	 */
499 	if (ip->i_flags & XFS_ISTALE) {
500 		rval = XFS_ITEM_PINNED;
501 		goto out_unlock;
502 	}
503 
504 	/*
505 	 * Someone else is already flushing the inode.  Nothing we can do
506 	 * here but wait for the flush to finish and remove the item from
507 	 * the AIL.
508 	 */
509 	if (!xfs_iflock_nowait(ip)) {
510 		rval = XFS_ITEM_FLUSHING;
511 		goto out_unlock;
512 	}
513 
514 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
515 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
516 
517 	spin_unlock(&lip->li_ailp->xa_lock);
518 
519 	error = xfs_iflush(ip, &bp);
520 	if (!error) {
521 		if (!xfs_buf_delwri_queue(bp, buffer_list))
522 			rval = XFS_ITEM_FLUSHING;
523 		xfs_buf_relse(bp);
524 	}
525 
526 	spin_lock(&lip->li_ailp->xa_lock);
527 out_unlock:
528 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
529 	return rval;
530 }
531 
532 /*
533  * Unlock the inode associated with the inode log item.
534  * Clear the fields of the inode and inode log item that
535  * are specific to the current transaction.  If the
536  * hold flags is set, do not unlock the inode.
537  */
538 STATIC void
539 xfs_inode_item_unlock(
540 	struct xfs_log_item	*lip)
541 {
542 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
543 	struct xfs_inode	*ip = iip->ili_inode;
544 	unsigned short		lock_flags;
545 
546 	ASSERT(ip->i_itemp != NULL);
547 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
548 
549 	/*
550 	 * If the inode needed a separate buffer with which to log
551 	 * its extents, then free it now.
552 	 */
553 	if (iip->ili_extents_buf != NULL) {
554 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
555 		ASSERT(ip->i_d.di_nextents > 0);
556 		ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
557 		ASSERT(ip->i_df.if_bytes > 0);
558 		kmem_free(iip->ili_extents_buf);
559 		iip->ili_extents_buf = NULL;
560 	}
561 	if (iip->ili_aextents_buf != NULL) {
562 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
563 		ASSERT(ip->i_d.di_anextents > 0);
564 		ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
565 		ASSERT(ip->i_afp->if_bytes > 0);
566 		kmem_free(iip->ili_aextents_buf);
567 		iip->ili_aextents_buf = NULL;
568 	}
569 
570 	lock_flags = iip->ili_lock_flags;
571 	iip->ili_lock_flags = 0;
572 	if (lock_flags)
573 		xfs_iunlock(ip, lock_flags);
574 }
575 
576 /*
577  * This is called to find out where the oldest active copy of the inode log
578  * item in the on disk log resides now that the last log write of it completed
579  * at the given lsn.  Since we always re-log all dirty data in an inode, the
580  * latest copy in the on disk log is the only one that matters.  Therefore,
581  * simply return the given lsn.
582  *
583  * If the inode has been marked stale because the cluster is being freed, we
584  * don't want to (re-)insert this inode into the AIL. There is a race condition
585  * where the cluster buffer may be unpinned before the inode is inserted into
586  * the AIL during transaction committed processing. If the buffer is unpinned
587  * before the inode item has been committed and inserted, then it is possible
588  * for the buffer to be written and IO completes before the inode is inserted
589  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
590  * AIL which will never get removed. It will, however, get reclaimed which
591  * triggers an assert in xfs_inode_free() complaining about freein an inode
592  * still in the AIL.
593  *
594  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
595  * transaction committed code knows that it does not need to do any further
596  * processing on the item.
597  */
598 STATIC xfs_lsn_t
599 xfs_inode_item_committed(
600 	struct xfs_log_item	*lip,
601 	xfs_lsn_t		lsn)
602 {
603 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
604 	struct xfs_inode	*ip = iip->ili_inode;
605 
606 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
607 		xfs_inode_item_unpin(lip, 0);
608 		return -1;
609 	}
610 	return lsn;
611 }
612 
613 /*
614  * XXX rcc - this one really has to do something.  Probably needs
615  * to stamp in a new field in the incore inode.
616  */
617 STATIC void
618 xfs_inode_item_committing(
619 	struct xfs_log_item	*lip,
620 	xfs_lsn_t		lsn)
621 {
622 	INODE_ITEM(lip)->ili_last_lsn = lsn;
623 }
624 
625 /*
626  * This is the ops vector shared by all buf log items.
627  */
628 static const struct xfs_item_ops xfs_inode_item_ops = {
629 	.iop_size	= xfs_inode_item_size,
630 	.iop_format	= xfs_inode_item_format,
631 	.iop_pin	= xfs_inode_item_pin,
632 	.iop_unpin	= xfs_inode_item_unpin,
633 	.iop_unlock	= xfs_inode_item_unlock,
634 	.iop_committed	= xfs_inode_item_committed,
635 	.iop_push	= xfs_inode_item_push,
636 	.iop_committing = xfs_inode_item_committing
637 };
638 
639 
640 /*
641  * Initialize the inode log item for a newly allocated (in-core) inode.
642  */
643 void
644 xfs_inode_item_init(
645 	struct xfs_inode	*ip,
646 	struct xfs_mount	*mp)
647 {
648 	struct xfs_inode_log_item *iip;
649 
650 	ASSERT(ip->i_itemp == NULL);
651 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
652 
653 	iip->ili_inode = ip;
654 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
655 						&xfs_inode_item_ops);
656 	iip->ili_format.ilf_type = XFS_LI_INODE;
657 	iip->ili_format.ilf_ino = ip->i_ino;
658 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
659 	iip->ili_format.ilf_len = ip->i_imap.im_len;
660 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
661 }
662 
663 /*
664  * Free the inode log item and any memory hanging off of it.
665  */
666 void
667 xfs_inode_item_destroy(
668 	xfs_inode_t	*ip)
669 {
670 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
671 }
672 
673 
674 /*
675  * This is the inode flushing I/O completion routine.  It is called
676  * from interrupt level when the buffer containing the inode is
677  * flushed to disk.  It is responsible for removing the inode item
678  * from the AIL if it has not been re-logged, and unlocking the inode's
679  * flush lock.
680  *
681  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
682  * list for other inodes that will run this function. We remove them from the
683  * buffer list so we can process all the inode IO completions in one AIL lock
684  * traversal.
685  */
686 void
687 xfs_iflush_done(
688 	struct xfs_buf		*bp,
689 	struct xfs_log_item	*lip)
690 {
691 	struct xfs_inode_log_item *iip;
692 	struct xfs_log_item	*blip;
693 	struct xfs_log_item	*next;
694 	struct xfs_log_item	*prev;
695 	struct xfs_ail		*ailp = lip->li_ailp;
696 	int			need_ail = 0;
697 
698 	/*
699 	 * Scan the buffer IO completions for other inodes being completed and
700 	 * attach them to the current inode log item.
701 	 */
702 	blip = bp->b_fspriv;
703 	prev = NULL;
704 	while (blip != NULL) {
705 		if (lip->li_cb != xfs_iflush_done) {
706 			prev = blip;
707 			blip = blip->li_bio_list;
708 			continue;
709 		}
710 
711 		/* remove from list */
712 		next = blip->li_bio_list;
713 		if (!prev) {
714 			bp->b_fspriv = next;
715 		} else {
716 			prev->li_bio_list = next;
717 		}
718 
719 		/* add to current list */
720 		blip->li_bio_list = lip->li_bio_list;
721 		lip->li_bio_list = blip;
722 
723 		/*
724 		 * while we have the item, do the unlocked check for needing
725 		 * the AIL lock.
726 		 */
727 		iip = INODE_ITEM(blip);
728 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
729 			need_ail++;
730 
731 		blip = next;
732 	}
733 
734 	/* make sure we capture the state of the initial inode. */
735 	iip = INODE_ITEM(lip);
736 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
737 		need_ail++;
738 
739 	/*
740 	 * We only want to pull the item from the AIL if it is
741 	 * actually there and its location in the log has not
742 	 * changed since we started the flush.  Thus, we only bother
743 	 * if the ili_logged flag is set and the inode's lsn has not
744 	 * changed.  First we check the lsn outside
745 	 * the lock since it's cheaper, and then we recheck while
746 	 * holding the lock before removing the inode from the AIL.
747 	 */
748 	if (need_ail) {
749 		struct xfs_log_item *log_items[need_ail];
750 		int i = 0;
751 		spin_lock(&ailp->xa_lock);
752 		for (blip = lip; blip; blip = blip->li_bio_list) {
753 			iip = INODE_ITEM(blip);
754 			if (iip->ili_logged &&
755 			    blip->li_lsn == iip->ili_flush_lsn) {
756 				log_items[i++] = blip;
757 			}
758 			ASSERT(i <= need_ail);
759 		}
760 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
761 		xfs_trans_ail_delete_bulk(ailp, log_items, i,
762 					  SHUTDOWN_CORRUPT_INCORE);
763 	}
764 
765 
766 	/*
767 	 * clean up and unlock the flush lock now we are done. We can clear the
768 	 * ili_last_fields bits now that we know that the data corresponding to
769 	 * them is safely on disk.
770 	 */
771 	for (blip = lip; blip; blip = next) {
772 		next = blip->li_bio_list;
773 		blip->li_bio_list = NULL;
774 
775 		iip = INODE_ITEM(blip);
776 		iip->ili_logged = 0;
777 		iip->ili_last_fields = 0;
778 		xfs_ifunlock(iip->ili_inode);
779 	}
780 }
781 
782 /*
783  * This is the inode flushing abort routine.  It is called from xfs_iflush when
784  * the filesystem is shutting down to clean up the inode state.  It is
785  * responsible for removing the inode item from the AIL if it has not been
786  * re-logged, and unlocking the inode's flush lock.
787  */
788 void
789 xfs_iflush_abort(
790 	xfs_inode_t		*ip,
791 	bool			stale)
792 {
793 	xfs_inode_log_item_t	*iip = ip->i_itemp;
794 
795 	if (iip) {
796 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
797 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
798 			spin_lock(&ailp->xa_lock);
799 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
800 				/* xfs_trans_ail_delete() drops the AIL lock. */
801 				xfs_trans_ail_delete(ailp, &iip->ili_item,
802 						stale ?
803 						     SHUTDOWN_LOG_IO_ERROR :
804 						     SHUTDOWN_CORRUPT_INCORE);
805 			} else
806 				spin_unlock(&ailp->xa_lock);
807 		}
808 		iip->ili_logged = 0;
809 		/*
810 		 * Clear the ili_last_fields bits now that we know that the
811 		 * data corresponding to them is safely on disk.
812 		 */
813 		iip->ili_last_fields = 0;
814 		/*
815 		 * Clear the inode logging fields so no more flushes are
816 		 * attempted.
817 		 */
818 		iip->ili_fields = 0;
819 	}
820 	/*
821 	 * Release the inode's flush lock since we're done with it.
822 	 */
823 	xfs_ifunlock(ip);
824 }
825 
826 void
827 xfs_istale_done(
828 	struct xfs_buf		*bp,
829 	struct xfs_log_item	*lip)
830 {
831 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
832 }
833 
834 /*
835  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
836  * (which can have different field alignments) to the native version
837  */
838 int
839 xfs_inode_item_format_convert(
840 	xfs_log_iovec_t		*buf,
841 	xfs_inode_log_format_t	*in_f)
842 {
843 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
844 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
845 
846 		in_f->ilf_type = in_f32->ilf_type;
847 		in_f->ilf_size = in_f32->ilf_size;
848 		in_f->ilf_fields = in_f32->ilf_fields;
849 		in_f->ilf_asize = in_f32->ilf_asize;
850 		in_f->ilf_dsize = in_f32->ilf_dsize;
851 		in_f->ilf_ino = in_f32->ilf_ino;
852 		/* copy biggest field of ilf_u */
853 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
854 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
855 		       sizeof(uuid_t));
856 		in_f->ilf_blkno = in_f32->ilf_blkno;
857 		in_f->ilf_len = in_f32->ilf_len;
858 		in_f->ilf_boffset = in_f32->ilf_boffset;
859 		return 0;
860 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
861 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
862 
863 		in_f->ilf_type = in_f64->ilf_type;
864 		in_f->ilf_size = in_f64->ilf_size;
865 		in_f->ilf_fields = in_f64->ilf_fields;
866 		in_f->ilf_asize = in_f64->ilf_asize;
867 		in_f->ilf_dsize = in_f64->ilf_dsize;
868 		in_f->ilf_ino = in_f64->ilf_ino;
869 		/* copy biggest field of ilf_u */
870 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
871 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
872 		       sizeof(uuid_t));
873 		in_f->ilf_blkno = in_f64->ilf_blkno;
874 		in_f->ilf_len = in_f64->ilf_len;
875 		in_f->ilf_boffset = in_f64->ilf_boffset;
876 		return 0;
877 	}
878 	return EFSCORRUPTED;
879 }
880