1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 21 #include <linux/iversion.h> 22 23 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 24 25 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 26 { 27 return container_of(lip, struct xfs_inode_log_item, ili_item); 28 } 29 30 STATIC void 31 xfs_inode_item_data_fork_size( 32 struct xfs_inode_log_item *iip, 33 int *nvecs, 34 int *nbytes) 35 { 36 struct xfs_inode *ip = iip->ili_inode; 37 38 switch (ip->i_d.di_format) { 39 case XFS_DINODE_FMT_EXTENTS: 40 if ((iip->ili_fields & XFS_ILOG_DEXT) && 41 ip->i_d.di_nextents > 0 && 42 ip->i_df.if_bytes > 0) { 43 /* worst case, doesn't subtract delalloc extents */ 44 *nbytes += XFS_IFORK_DSIZE(ip); 45 *nvecs += 1; 46 } 47 break; 48 case XFS_DINODE_FMT_BTREE: 49 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 50 ip->i_df.if_broot_bytes > 0) { 51 *nbytes += ip->i_df.if_broot_bytes; 52 *nvecs += 1; 53 } 54 break; 55 case XFS_DINODE_FMT_LOCAL: 56 if ((iip->ili_fields & XFS_ILOG_DDATA) && 57 ip->i_df.if_bytes > 0) { 58 *nbytes += roundup(ip->i_df.if_bytes, 4); 59 *nvecs += 1; 60 } 61 break; 62 63 case XFS_DINODE_FMT_DEV: 64 break; 65 default: 66 ASSERT(0); 67 break; 68 } 69 } 70 71 STATIC void 72 xfs_inode_item_attr_fork_size( 73 struct xfs_inode_log_item *iip, 74 int *nvecs, 75 int *nbytes) 76 { 77 struct xfs_inode *ip = iip->ili_inode; 78 79 switch (ip->i_d.di_aformat) { 80 case XFS_DINODE_FMT_EXTENTS: 81 if ((iip->ili_fields & XFS_ILOG_AEXT) && 82 ip->i_d.di_anextents > 0 && 83 ip->i_afp->if_bytes > 0) { 84 /* worst case, doesn't subtract unused space */ 85 *nbytes += XFS_IFORK_ASIZE(ip); 86 *nvecs += 1; 87 } 88 break; 89 case XFS_DINODE_FMT_BTREE: 90 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 91 ip->i_afp->if_broot_bytes > 0) { 92 *nbytes += ip->i_afp->if_broot_bytes; 93 *nvecs += 1; 94 } 95 break; 96 case XFS_DINODE_FMT_LOCAL: 97 if ((iip->ili_fields & XFS_ILOG_ADATA) && 98 ip->i_afp->if_bytes > 0) { 99 *nbytes += roundup(ip->i_afp->if_bytes, 4); 100 *nvecs += 1; 101 } 102 break; 103 default: 104 ASSERT(0); 105 break; 106 } 107 } 108 109 /* 110 * This returns the number of iovecs needed to log the given inode item. 111 * 112 * We need one iovec for the inode log format structure, one for the 113 * inode core, and possibly one for the inode data/extents/b-tree root 114 * and one for the inode attribute data/extents/b-tree root. 115 */ 116 STATIC void 117 xfs_inode_item_size( 118 struct xfs_log_item *lip, 119 int *nvecs, 120 int *nbytes) 121 { 122 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 123 struct xfs_inode *ip = iip->ili_inode; 124 125 *nvecs += 2; 126 *nbytes += sizeof(struct xfs_inode_log_format) + 127 xfs_log_dinode_size(ip->i_d.di_version); 128 129 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 130 if (XFS_IFORK_Q(ip)) 131 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 132 } 133 134 STATIC void 135 xfs_inode_item_format_data_fork( 136 struct xfs_inode_log_item *iip, 137 struct xfs_inode_log_format *ilf, 138 struct xfs_log_vec *lv, 139 struct xfs_log_iovec **vecp) 140 { 141 struct xfs_inode *ip = iip->ili_inode; 142 size_t data_bytes; 143 144 switch (ip->i_d.di_format) { 145 case XFS_DINODE_FMT_EXTENTS: 146 iip->ili_fields &= 147 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 148 149 if ((iip->ili_fields & XFS_ILOG_DEXT) && 150 ip->i_d.di_nextents > 0 && 151 ip->i_df.if_bytes > 0) { 152 struct xfs_bmbt_rec *p; 153 154 ASSERT(xfs_iext_count(&ip->i_df) > 0); 155 156 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 157 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 158 xlog_finish_iovec(lv, *vecp, data_bytes); 159 160 ASSERT(data_bytes <= ip->i_df.if_bytes); 161 162 ilf->ilf_dsize = data_bytes; 163 ilf->ilf_size++; 164 } else { 165 iip->ili_fields &= ~XFS_ILOG_DEXT; 166 } 167 break; 168 case XFS_DINODE_FMT_BTREE: 169 iip->ili_fields &= 170 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 171 172 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 173 ip->i_df.if_broot_bytes > 0) { 174 ASSERT(ip->i_df.if_broot != NULL); 175 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 176 ip->i_df.if_broot, 177 ip->i_df.if_broot_bytes); 178 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 179 ilf->ilf_size++; 180 } else { 181 ASSERT(!(iip->ili_fields & 182 XFS_ILOG_DBROOT)); 183 iip->ili_fields &= ~XFS_ILOG_DBROOT; 184 } 185 break; 186 case XFS_DINODE_FMT_LOCAL: 187 iip->ili_fields &= 188 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 189 if ((iip->ili_fields & XFS_ILOG_DDATA) && 190 ip->i_df.if_bytes > 0) { 191 /* 192 * Round i_bytes up to a word boundary. 193 * The underlying memory is guaranteed to 194 * to be there by xfs_idata_realloc(). 195 */ 196 data_bytes = roundup(ip->i_df.if_bytes, 4); 197 ASSERT(ip->i_df.if_u1.if_data != NULL); 198 ASSERT(ip->i_d.di_size > 0); 199 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 200 ip->i_df.if_u1.if_data, data_bytes); 201 ilf->ilf_dsize = (unsigned)data_bytes; 202 ilf->ilf_size++; 203 } else { 204 iip->ili_fields &= ~XFS_ILOG_DDATA; 205 } 206 break; 207 case XFS_DINODE_FMT_DEV: 208 iip->ili_fields &= 209 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 210 if (iip->ili_fields & XFS_ILOG_DEV) 211 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 212 break; 213 default: 214 ASSERT(0); 215 break; 216 } 217 } 218 219 STATIC void 220 xfs_inode_item_format_attr_fork( 221 struct xfs_inode_log_item *iip, 222 struct xfs_inode_log_format *ilf, 223 struct xfs_log_vec *lv, 224 struct xfs_log_iovec **vecp) 225 { 226 struct xfs_inode *ip = iip->ili_inode; 227 size_t data_bytes; 228 229 switch (ip->i_d.di_aformat) { 230 case XFS_DINODE_FMT_EXTENTS: 231 iip->ili_fields &= 232 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 233 234 if ((iip->ili_fields & XFS_ILOG_AEXT) && 235 ip->i_d.di_anextents > 0 && 236 ip->i_afp->if_bytes > 0) { 237 struct xfs_bmbt_rec *p; 238 239 ASSERT(xfs_iext_count(ip->i_afp) == 240 ip->i_d.di_anextents); 241 242 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 243 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 244 xlog_finish_iovec(lv, *vecp, data_bytes); 245 246 ilf->ilf_asize = data_bytes; 247 ilf->ilf_size++; 248 } else { 249 iip->ili_fields &= ~XFS_ILOG_AEXT; 250 } 251 break; 252 case XFS_DINODE_FMT_BTREE: 253 iip->ili_fields &= 254 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 255 256 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 257 ip->i_afp->if_broot_bytes > 0) { 258 ASSERT(ip->i_afp->if_broot != NULL); 259 260 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 261 ip->i_afp->if_broot, 262 ip->i_afp->if_broot_bytes); 263 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 264 ilf->ilf_size++; 265 } else { 266 iip->ili_fields &= ~XFS_ILOG_ABROOT; 267 } 268 break; 269 case XFS_DINODE_FMT_LOCAL: 270 iip->ili_fields &= 271 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 272 273 if ((iip->ili_fields & XFS_ILOG_ADATA) && 274 ip->i_afp->if_bytes > 0) { 275 /* 276 * Round i_bytes up to a word boundary. 277 * The underlying memory is guaranteed to 278 * to be there by xfs_idata_realloc(). 279 */ 280 data_bytes = roundup(ip->i_afp->if_bytes, 4); 281 ASSERT(ip->i_afp->if_u1.if_data != NULL); 282 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 283 ip->i_afp->if_u1.if_data, 284 data_bytes); 285 ilf->ilf_asize = (unsigned)data_bytes; 286 ilf->ilf_size++; 287 } else { 288 iip->ili_fields &= ~XFS_ILOG_ADATA; 289 } 290 break; 291 default: 292 ASSERT(0); 293 break; 294 } 295 } 296 297 static void 298 xfs_inode_to_log_dinode( 299 struct xfs_inode *ip, 300 struct xfs_log_dinode *to, 301 xfs_lsn_t lsn) 302 { 303 struct xfs_icdinode *from = &ip->i_d; 304 struct inode *inode = VFS_I(ip); 305 306 to->di_magic = XFS_DINODE_MAGIC; 307 308 to->di_version = from->di_version; 309 to->di_format = from->di_format; 310 to->di_uid = from->di_uid; 311 to->di_gid = from->di_gid; 312 to->di_projid_lo = from->di_projid_lo; 313 to->di_projid_hi = from->di_projid_hi; 314 315 memset(to->di_pad, 0, sizeof(to->di_pad)); 316 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 317 to->di_atime.t_sec = inode->i_atime.tv_sec; 318 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 319 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 320 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 321 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 322 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 323 to->di_nlink = inode->i_nlink; 324 to->di_gen = inode->i_generation; 325 to->di_mode = inode->i_mode; 326 327 to->di_size = from->di_size; 328 to->di_nblocks = from->di_nblocks; 329 to->di_extsize = from->di_extsize; 330 to->di_nextents = from->di_nextents; 331 to->di_anextents = from->di_anextents; 332 to->di_forkoff = from->di_forkoff; 333 to->di_aformat = from->di_aformat; 334 to->di_dmevmask = from->di_dmevmask; 335 to->di_dmstate = from->di_dmstate; 336 to->di_flags = from->di_flags; 337 338 /* log a dummy value to ensure log structure is fully initialised */ 339 to->di_next_unlinked = NULLAGINO; 340 341 if (from->di_version == 3) { 342 to->di_changecount = inode_peek_iversion(inode); 343 to->di_crtime.t_sec = from->di_crtime.t_sec; 344 to->di_crtime.t_nsec = from->di_crtime.t_nsec; 345 to->di_flags2 = from->di_flags2; 346 to->di_cowextsize = from->di_cowextsize; 347 to->di_ino = ip->i_ino; 348 to->di_lsn = lsn; 349 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 350 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 351 to->di_flushiter = 0; 352 } else { 353 to->di_flushiter = from->di_flushiter; 354 } 355 } 356 357 /* 358 * Format the inode core. Current timestamp data is only in the VFS inode 359 * fields, so we need to grab them from there. Hence rather than just copying 360 * the XFS inode core structure, format the fields directly into the iovec. 361 */ 362 static void 363 xfs_inode_item_format_core( 364 struct xfs_inode *ip, 365 struct xfs_log_vec *lv, 366 struct xfs_log_iovec **vecp) 367 { 368 struct xfs_log_dinode *dic; 369 370 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 371 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 372 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); 373 } 374 375 /* 376 * This is called to fill in the vector of log iovecs for the given inode 377 * log item. It fills the first item with an inode log format structure, 378 * the second with the on-disk inode structure, and a possible third and/or 379 * fourth with the inode data/extents/b-tree root and inode attributes 380 * data/extents/b-tree root. 381 * 382 * Note: Always use the 64 bit inode log format structure so we don't 383 * leave an uninitialised hole in the format item on 64 bit systems. Log 384 * recovery on 32 bit systems handles this just fine, so there's no reason 385 * for not using an initialising the properly padded structure all the time. 386 */ 387 STATIC void 388 xfs_inode_item_format( 389 struct xfs_log_item *lip, 390 struct xfs_log_vec *lv) 391 { 392 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 393 struct xfs_inode *ip = iip->ili_inode; 394 struct xfs_log_iovec *vecp = NULL; 395 struct xfs_inode_log_format *ilf; 396 397 ASSERT(ip->i_d.di_version > 1); 398 399 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 400 ilf->ilf_type = XFS_LI_INODE; 401 ilf->ilf_ino = ip->i_ino; 402 ilf->ilf_blkno = ip->i_imap.im_blkno; 403 ilf->ilf_len = ip->i_imap.im_len; 404 ilf->ilf_boffset = ip->i_imap.im_boffset; 405 ilf->ilf_fields = XFS_ILOG_CORE; 406 ilf->ilf_size = 2; /* format + core */ 407 408 /* 409 * make sure we don't leak uninitialised data into the log in the case 410 * when we don't log every field in the inode. 411 */ 412 ilf->ilf_dsize = 0; 413 ilf->ilf_asize = 0; 414 ilf->ilf_pad = 0; 415 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 416 417 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 418 419 xfs_inode_item_format_core(ip, lv, &vecp); 420 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 421 if (XFS_IFORK_Q(ip)) { 422 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 423 } else { 424 iip->ili_fields &= 425 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 426 } 427 428 /* update the format with the exact fields we actually logged */ 429 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 430 } 431 432 /* 433 * This is called to pin the inode associated with the inode log 434 * item in memory so it cannot be written out. 435 */ 436 STATIC void 437 xfs_inode_item_pin( 438 struct xfs_log_item *lip) 439 { 440 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 441 442 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 443 444 trace_xfs_inode_pin(ip, _RET_IP_); 445 atomic_inc(&ip->i_pincount); 446 } 447 448 449 /* 450 * This is called to unpin the inode associated with the inode log 451 * item which was previously pinned with a call to xfs_inode_item_pin(). 452 * 453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 454 */ 455 STATIC void 456 xfs_inode_item_unpin( 457 struct xfs_log_item *lip, 458 int remove) 459 { 460 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 461 462 trace_xfs_inode_unpin(ip, _RET_IP_); 463 ASSERT(atomic_read(&ip->i_pincount) > 0); 464 if (atomic_dec_and_test(&ip->i_pincount)) 465 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 466 } 467 468 /* 469 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer 470 * have been failed during writeback 471 * 472 * This informs the AIL that the inode is already flush locked on the next push, 473 * and acquires a hold on the buffer to ensure that it isn't reclaimed before 474 * dirty data makes it to disk. 475 */ 476 STATIC void 477 xfs_inode_item_error( 478 struct xfs_log_item *lip, 479 struct xfs_buf *bp) 480 { 481 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); 482 xfs_set_li_failed(lip, bp); 483 } 484 485 STATIC uint 486 xfs_inode_item_push( 487 struct xfs_log_item *lip, 488 struct list_head *buffer_list) 489 __releases(&lip->li_ailp->ail_lock) 490 __acquires(&lip->li_ailp->ail_lock) 491 { 492 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 493 struct xfs_inode *ip = iip->ili_inode; 494 struct xfs_buf *bp = lip->li_buf; 495 uint rval = XFS_ITEM_SUCCESS; 496 int error; 497 498 if (xfs_ipincount(ip) > 0) 499 return XFS_ITEM_PINNED; 500 501 /* 502 * The buffer containing this item failed to be written back 503 * previously. Resubmit the buffer for IO. 504 */ 505 if (test_bit(XFS_LI_FAILED, &lip->li_flags)) { 506 if (!xfs_buf_trylock(bp)) 507 return XFS_ITEM_LOCKED; 508 509 if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list)) 510 rval = XFS_ITEM_FLUSHING; 511 512 xfs_buf_unlock(bp); 513 return rval; 514 } 515 516 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 517 return XFS_ITEM_LOCKED; 518 519 /* 520 * Re-check the pincount now that we stabilized the value by 521 * taking the ilock. 522 */ 523 if (xfs_ipincount(ip) > 0) { 524 rval = XFS_ITEM_PINNED; 525 goto out_unlock; 526 } 527 528 /* 529 * Stale inode items should force out the iclog. 530 */ 531 if (ip->i_flags & XFS_ISTALE) { 532 rval = XFS_ITEM_PINNED; 533 goto out_unlock; 534 } 535 536 /* 537 * Someone else is already flushing the inode. Nothing we can do 538 * here but wait for the flush to finish and remove the item from 539 * the AIL. 540 */ 541 if (!xfs_iflock_nowait(ip)) { 542 rval = XFS_ITEM_FLUSHING; 543 goto out_unlock; 544 } 545 546 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 547 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 548 549 spin_unlock(&lip->li_ailp->ail_lock); 550 551 error = xfs_iflush(ip, &bp); 552 if (!error) { 553 if (!xfs_buf_delwri_queue(bp, buffer_list)) 554 rval = XFS_ITEM_FLUSHING; 555 xfs_buf_relse(bp); 556 } 557 558 spin_lock(&lip->li_ailp->ail_lock); 559 out_unlock: 560 xfs_iunlock(ip, XFS_ILOCK_SHARED); 561 return rval; 562 } 563 564 /* 565 * Unlock the inode associated with the inode log item. 566 */ 567 STATIC void 568 xfs_inode_item_release( 569 struct xfs_log_item *lip) 570 { 571 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 572 struct xfs_inode *ip = iip->ili_inode; 573 unsigned short lock_flags; 574 575 ASSERT(ip->i_itemp != NULL); 576 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 577 578 lock_flags = iip->ili_lock_flags; 579 iip->ili_lock_flags = 0; 580 if (lock_flags) 581 xfs_iunlock(ip, lock_flags); 582 } 583 584 /* 585 * This is called to find out where the oldest active copy of the inode log 586 * item in the on disk log resides now that the last log write of it completed 587 * at the given lsn. Since we always re-log all dirty data in an inode, the 588 * latest copy in the on disk log is the only one that matters. Therefore, 589 * simply return the given lsn. 590 * 591 * If the inode has been marked stale because the cluster is being freed, we 592 * don't want to (re-)insert this inode into the AIL. There is a race condition 593 * where the cluster buffer may be unpinned before the inode is inserted into 594 * the AIL during transaction committed processing. If the buffer is unpinned 595 * before the inode item has been committed and inserted, then it is possible 596 * for the buffer to be written and IO completes before the inode is inserted 597 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 598 * AIL which will never get removed. It will, however, get reclaimed which 599 * triggers an assert in xfs_inode_free() complaining about freein an inode 600 * still in the AIL. 601 * 602 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 603 * transaction committed code knows that it does not need to do any further 604 * processing on the item. 605 */ 606 STATIC xfs_lsn_t 607 xfs_inode_item_committed( 608 struct xfs_log_item *lip, 609 xfs_lsn_t lsn) 610 { 611 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 612 struct xfs_inode *ip = iip->ili_inode; 613 614 if (xfs_iflags_test(ip, XFS_ISTALE)) { 615 xfs_inode_item_unpin(lip, 0); 616 return -1; 617 } 618 return lsn; 619 } 620 621 STATIC void 622 xfs_inode_item_committing( 623 struct xfs_log_item *lip, 624 xfs_lsn_t commit_lsn) 625 { 626 INODE_ITEM(lip)->ili_last_lsn = commit_lsn; 627 return xfs_inode_item_release(lip); 628 } 629 630 static const struct xfs_item_ops xfs_inode_item_ops = { 631 .iop_size = xfs_inode_item_size, 632 .iop_format = xfs_inode_item_format, 633 .iop_pin = xfs_inode_item_pin, 634 .iop_unpin = xfs_inode_item_unpin, 635 .iop_release = xfs_inode_item_release, 636 .iop_committed = xfs_inode_item_committed, 637 .iop_push = xfs_inode_item_push, 638 .iop_committing = xfs_inode_item_committing, 639 .iop_error = xfs_inode_item_error 640 }; 641 642 643 /* 644 * Initialize the inode log item for a newly allocated (in-core) inode. 645 */ 646 void 647 xfs_inode_item_init( 648 struct xfs_inode *ip, 649 struct xfs_mount *mp) 650 { 651 struct xfs_inode_log_item *iip; 652 653 ASSERT(ip->i_itemp == NULL); 654 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 655 656 iip->ili_inode = ip; 657 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 658 &xfs_inode_item_ops); 659 } 660 661 /* 662 * Free the inode log item and any memory hanging off of it. 663 */ 664 void 665 xfs_inode_item_destroy( 666 xfs_inode_t *ip) 667 { 668 kmem_free(ip->i_itemp->ili_item.li_lv_shadow); 669 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 670 } 671 672 673 /* 674 * This is the inode flushing I/O completion routine. It is called 675 * from interrupt level when the buffer containing the inode is 676 * flushed to disk. It is responsible for removing the inode item 677 * from the AIL if it has not been re-logged, and unlocking the inode's 678 * flush lock. 679 * 680 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 681 * list for other inodes that will run this function. We remove them from the 682 * buffer list so we can process all the inode IO completions in one AIL lock 683 * traversal. 684 */ 685 void 686 xfs_iflush_done( 687 struct xfs_buf *bp, 688 struct xfs_log_item *lip) 689 { 690 struct xfs_inode_log_item *iip; 691 struct xfs_log_item *blip, *n; 692 struct xfs_ail *ailp = lip->li_ailp; 693 int need_ail = 0; 694 LIST_HEAD(tmp); 695 696 /* 697 * Scan the buffer IO completions for other inodes being completed and 698 * attach them to the current inode log item. 699 */ 700 701 list_add_tail(&lip->li_bio_list, &tmp); 702 703 list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) { 704 if (lip->li_cb != xfs_iflush_done) 705 continue; 706 707 list_move_tail(&blip->li_bio_list, &tmp); 708 /* 709 * while we have the item, do the unlocked check for needing 710 * the AIL lock. 711 */ 712 iip = INODE_ITEM(blip); 713 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || 714 test_bit(XFS_LI_FAILED, &blip->li_flags)) 715 need_ail++; 716 } 717 718 /* make sure we capture the state of the initial inode. */ 719 iip = INODE_ITEM(lip); 720 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || 721 test_bit(XFS_LI_FAILED, &lip->li_flags)) 722 need_ail++; 723 724 /* 725 * We only want to pull the item from the AIL if it is 726 * actually there and its location in the log has not 727 * changed since we started the flush. Thus, we only bother 728 * if the ili_logged flag is set and the inode's lsn has not 729 * changed. First we check the lsn outside 730 * the lock since it's cheaper, and then we recheck while 731 * holding the lock before removing the inode from the AIL. 732 */ 733 if (need_ail) { 734 bool mlip_changed = false; 735 736 /* this is an opencoded batch version of xfs_trans_ail_delete */ 737 spin_lock(&ailp->ail_lock); 738 list_for_each_entry(blip, &tmp, li_bio_list) { 739 if (INODE_ITEM(blip)->ili_logged && 740 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) 741 mlip_changed |= xfs_ail_delete_one(ailp, blip); 742 else { 743 xfs_clear_li_failed(blip); 744 } 745 } 746 747 if (mlip_changed) { 748 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount)) 749 xlog_assign_tail_lsn_locked(ailp->ail_mount); 750 if (list_empty(&ailp->ail_head)) 751 wake_up_all(&ailp->ail_empty); 752 } 753 spin_unlock(&ailp->ail_lock); 754 755 if (mlip_changed) 756 xfs_log_space_wake(ailp->ail_mount); 757 } 758 759 /* 760 * clean up and unlock the flush lock now we are done. We can clear the 761 * ili_last_fields bits now that we know that the data corresponding to 762 * them is safely on disk. 763 */ 764 list_for_each_entry_safe(blip, n, &tmp, li_bio_list) { 765 list_del_init(&blip->li_bio_list); 766 iip = INODE_ITEM(blip); 767 iip->ili_logged = 0; 768 iip->ili_last_fields = 0; 769 xfs_ifunlock(iip->ili_inode); 770 } 771 list_del(&tmp); 772 } 773 774 /* 775 * This is the inode flushing abort routine. It is called from xfs_iflush when 776 * the filesystem is shutting down to clean up the inode state. It is 777 * responsible for removing the inode item from the AIL if it has not been 778 * re-logged, and unlocking the inode's flush lock. 779 */ 780 void 781 xfs_iflush_abort( 782 xfs_inode_t *ip, 783 bool stale) 784 { 785 xfs_inode_log_item_t *iip = ip->i_itemp; 786 787 if (iip) { 788 if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) { 789 xfs_trans_ail_remove(&iip->ili_item, 790 stale ? SHUTDOWN_LOG_IO_ERROR : 791 SHUTDOWN_CORRUPT_INCORE); 792 } 793 iip->ili_logged = 0; 794 /* 795 * Clear the ili_last_fields bits now that we know that the 796 * data corresponding to them is safely on disk. 797 */ 798 iip->ili_last_fields = 0; 799 /* 800 * Clear the inode logging fields so no more flushes are 801 * attempted. 802 */ 803 iip->ili_fields = 0; 804 iip->ili_fsync_fields = 0; 805 } 806 /* 807 * Release the inode's flush lock since we're done with it. 808 */ 809 xfs_ifunlock(ip); 810 } 811 812 void 813 xfs_istale_done( 814 struct xfs_buf *bp, 815 struct xfs_log_item *lip) 816 { 817 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 818 } 819 820 /* 821 * convert an xfs_inode_log_format struct from the old 32 bit version 822 * (which can have different field alignments) to the native 64 bit version 823 */ 824 int 825 xfs_inode_item_format_convert( 826 struct xfs_log_iovec *buf, 827 struct xfs_inode_log_format *in_f) 828 { 829 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 830 831 if (buf->i_len != sizeof(*in_f32)) 832 return -EFSCORRUPTED; 833 834 in_f->ilf_type = in_f32->ilf_type; 835 in_f->ilf_size = in_f32->ilf_size; 836 in_f->ilf_fields = in_f32->ilf_fields; 837 in_f->ilf_asize = in_f32->ilf_asize; 838 in_f->ilf_dsize = in_f32->ilf_dsize; 839 in_f->ilf_ino = in_f32->ilf_ino; 840 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 841 in_f->ilf_blkno = in_f32->ilf_blkno; 842 in_f->ilf_len = in_f32->ilf_len; 843 in_f->ilf_boffset = in_f32->ilf_boffset; 844 return 0; 845 } 846