1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_error.h" 28 #include "xfs_trace.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_log.h" 32 33 34 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 35 36 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 37 { 38 return container_of(lip, struct xfs_inode_log_item, ili_item); 39 } 40 41 STATIC void 42 xfs_inode_item_data_fork_size( 43 struct xfs_inode_log_item *iip, 44 int *nvecs, 45 int *nbytes) 46 { 47 struct xfs_inode *ip = iip->ili_inode; 48 49 switch (ip->i_d.di_format) { 50 case XFS_DINODE_FMT_EXTENTS: 51 if ((iip->ili_fields & XFS_ILOG_DEXT) && 52 ip->i_d.di_nextents > 0 && 53 ip->i_df.if_bytes > 0) { 54 /* worst case, doesn't subtract delalloc extents */ 55 *nbytes += XFS_IFORK_DSIZE(ip); 56 *nvecs += 1; 57 } 58 break; 59 case XFS_DINODE_FMT_BTREE: 60 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 61 ip->i_df.if_broot_bytes > 0) { 62 *nbytes += ip->i_df.if_broot_bytes; 63 *nvecs += 1; 64 } 65 break; 66 case XFS_DINODE_FMT_LOCAL: 67 if ((iip->ili_fields & XFS_ILOG_DDATA) && 68 ip->i_df.if_bytes > 0) { 69 *nbytes += roundup(ip->i_df.if_bytes, 4); 70 *nvecs += 1; 71 } 72 break; 73 74 case XFS_DINODE_FMT_DEV: 75 case XFS_DINODE_FMT_UUID: 76 break; 77 default: 78 ASSERT(0); 79 break; 80 } 81 } 82 83 STATIC void 84 xfs_inode_item_attr_fork_size( 85 struct xfs_inode_log_item *iip, 86 int *nvecs, 87 int *nbytes) 88 { 89 struct xfs_inode *ip = iip->ili_inode; 90 91 switch (ip->i_d.di_aformat) { 92 case XFS_DINODE_FMT_EXTENTS: 93 if ((iip->ili_fields & XFS_ILOG_AEXT) && 94 ip->i_d.di_anextents > 0 && 95 ip->i_afp->if_bytes > 0) { 96 /* worst case, doesn't subtract unused space */ 97 *nbytes += XFS_IFORK_ASIZE(ip); 98 *nvecs += 1; 99 } 100 break; 101 case XFS_DINODE_FMT_BTREE: 102 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 103 ip->i_afp->if_broot_bytes > 0) { 104 *nbytes += ip->i_afp->if_broot_bytes; 105 *nvecs += 1; 106 } 107 break; 108 case XFS_DINODE_FMT_LOCAL: 109 if ((iip->ili_fields & XFS_ILOG_ADATA) && 110 ip->i_afp->if_bytes > 0) { 111 *nbytes += roundup(ip->i_afp->if_bytes, 4); 112 *nvecs += 1; 113 } 114 break; 115 default: 116 ASSERT(0); 117 break; 118 } 119 } 120 121 /* 122 * This returns the number of iovecs needed to log the given inode item. 123 * 124 * We need one iovec for the inode log format structure, one for the 125 * inode core, and possibly one for the inode data/extents/b-tree root 126 * and one for the inode attribute data/extents/b-tree root. 127 */ 128 STATIC void 129 xfs_inode_item_size( 130 struct xfs_log_item *lip, 131 int *nvecs, 132 int *nbytes) 133 { 134 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 135 struct xfs_inode *ip = iip->ili_inode; 136 137 *nvecs += 2; 138 *nbytes += sizeof(struct xfs_inode_log_format) + 139 xfs_log_dinode_size(ip->i_d.di_version); 140 141 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 142 if (XFS_IFORK_Q(ip)) 143 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 144 } 145 146 STATIC void 147 xfs_inode_item_format_data_fork( 148 struct xfs_inode_log_item *iip, 149 struct xfs_inode_log_format *ilf, 150 struct xfs_log_vec *lv, 151 struct xfs_log_iovec **vecp) 152 { 153 struct xfs_inode *ip = iip->ili_inode; 154 size_t data_bytes; 155 156 switch (ip->i_d.di_format) { 157 case XFS_DINODE_FMT_EXTENTS: 158 iip->ili_fields &= 159 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 160 XFS_ILOG_DEV | XFS_ILOG_UUID); 161 162 if ((iip->ili_fields & XFS_ILOG_DEXT) && 163 ip->i_d.di_nextents > 0 && 164 ip->i_df.if_bytes > 0) { 165 struct xfs_bmbt_rec *p; 166 167 ASSERT(ip->i_df.if_u1.if_extents != NULL); 168 ASSERT(xfs_iext_count(&ip->i_df) > 0); 169 170 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 171 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 172 xlog_finish_iovec(lv, *vecp, data_bytes); 173 174 ASSERT(data_bytes <= ip->i_df.if_bytes); 175 176 ilf->ilf_dsize = data_bytes; 177 ilf->ilf_size++; 178 } else { 179 iip->ili_fields &= ~XFS_ILOG_DEXT; 180 } 181 break; 182 case XFS_DINODE_FMT_BTREE: 183 iip->ili_fields &= 184 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 185 XFS_ILOG_DEV | XFS_ILOG_UUID); 186 187 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 188 ip->i_df.if_broot_bytes > 0) { 189 ASSERT(ip->i_df.if_broot != NULL); 190 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 191 ip->i_df.if_broot, 192 ip->i_df.if_broot_bytes); 193 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 194 ilf->ilf_size++; 195 } else { 196 ASSERT(!(iip->ili_fields & 197 XFS_ILOG_DBROOT)); 198 iip->ili_fields &= ~XFS_ILOG_DBROOT; 199 } 200 break; 201 case XFS_DINODE_FMT_LOCAL: 202 iip->ili_fields &= 203 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 204 XFS_ILOG_DEV | XFS_ILOG_UUID); 205 if ((iip->ili_fields & XFS_ILOG_DDATA) && 206 ip->i_df.if_bytes > 0) { 207 /* 208 * Round i_bytes up to a word boundary. 209 * The underlying memory is guaranteed to 210 * to be there by xfs_idata_realloc(). 211 */ 212 data_bytes = roundup(ip->i_df.if_bytes, 4); 213 ASSERT(ip->i_df.if_real_bytes == 0 || 214 ip->i_df.if_real_bytes >= data_bytes); 215 ASSERT(ip->i_df.if_u1.if_data != NULL); 216 ASSERT(ip->i_d.di_size > 0); 217 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 218 ip->i_df.if_u1.if_data, data_bytes); 219 ilf->ilf_dsize = (unsigned)data_bytes; 220 ilf->ilf_size++; 221 } else { 222 iip->ili_fields &= ~XFS_ILOG_DDATA; 223 } 224 break; 225 case XFS_DINODE_FMT_DEV: 226 iip->ili_fields &= 227 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 228 XFS_ILOG_DEXT | XFS_ILOG_UUID); 229 if (iip->ili_fields & XFS_ILOG_DEV) 230 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; 231 break; 232 case XFS_DINODE_FMT_UUID: 233 iip->ili_fields &= 234 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 235 XFS_ILOG_DEXT | XFS_ILOG_DEV); 236 if (iip->ili_fields & XFS_ILOG_UUID) 237 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; 238 break; 239 default: 240 ASSERT(0); 241 break; 242 } 243 } 244 245 STATIC void 246 xfs_inode_item_format_attr_fork( 247 struct xfs_inode_log_item *iip, 248 struct xfs_inode_log_format *ilf, 249 struct xfs_log_vec *lv, 250 struct xfs_log_iovec **vecp) 251 { 252 struct xfs_inode *ip = iip->ili_inode; 253 size_t data_bytes; 254 255 switch (ip->i_d.di_aformat) { 256 case XFS_DINODE_FMT_EXTENTS: 257 iip->ili_fields &= 258 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 259 260 if ((iip->ili_fields & XFS_ILOG_AEXT) && 261 ip->i_d.di_anextents > 0 && 262 ip->i_afp->if_bytes > 0) { 263 struct xfs_bmbt_rec *p; 264 265 ASSERT(xfs_iext_count(ip->i_afp) == 266 ip->i_d.di_anextents); 267 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 268 269 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 270 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 271 xlog_finish_iovec(lv, *vecp, data_bytes); 272 273 ilf->ilf_asize = data_bytes; 274 ilf->ilf_size++; 275 } else { 276 iip->ili_fields &= ~XFS_ILOG_AEXT; 277 } 278 break; 279 case XFS_DINODE_FMT_BTREE: 280 iip->ili_fields &= 281 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 282 283 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 284 ip->i_afp->if_broot_bytes > 0) { 285 ASSERT(ip->i_afp->if_broot != NULL); 286 287 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 288 ip->i_afp->if_broot, 289 ip->i_afp->if_broot_bytes); 290 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 291 ilf->ilf_size++; 292 } else { 293 iip->ili_fields &= ~XFS_ILOG_ABROOT; 294 } 295 break; 296 case XFS_DINODE_FMT_LOCAL: 297 iip->ili_fields &= 298 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 299 300 if ((iip->ili_fields & XFS_ILOG_ADATA) && 301 ip->i_afp->if_bytes > 0) { 302 /* 303 * Round i_bytes up to a word boundary. 304 * The underlying memory is guaranteed to 305 * to be there by xfs_idata_realloc(). 306 */ 307 data_bytes = roundup(ip->i_afp->if_bytes, 4); 308 ASSERT(ip->i_afp->if_real_bytes == 0 || 309 ip->i_afp->if_real_bytes >= data_bytes); 310 ASSERT(ip->i_afp->if_u1.if_data != NULL); 311 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 312 ip->i_afp->if_u1.if_data, 313 data_bytes); 314 ilf->ilf_asize = (unsigned)data_bytes; 315 ilf->ilf_size++; 316 } else { 317 iip->ili_fields &= ~XFS_ILOG_ADATA; 318 } 319 break; 320 default: 321 ASSERT(0); 322 break; 323 } 324 } 325 326 static void 327 xfs_inode_to_log_dinode( 328 struct xfs_inode *ip, 329 struct xfs_log_dinode *to, 330 xfs_lsn_t lsn) 331 { 332 struct xfs_icdinode *from = &ip->i_d; 333 struct inode *inode = VFS_I(ip); 334 335 to->di_magic = XFS_DINODE_MAGIC; 336 337 to->di_version = from->di_version; 338 to->di_format = from->di_format; 339 to->di_uid = from->di_uid; 340 to->di_gid = from->di_gid; 341 to->di_projid_lo = from->di_projid_lo; 342 to->di_projid_hi = from->di_projid_hi; 343 344 memset(to->di_pad, 0, sizeof(to->di_pad)); 345 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 346 to->di_atime.t_sec = inode->i_atime.tv_sec; 347 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 348 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 349 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 350 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 351 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 352 to->di_nlink = inode->i_nlink; 353 to->di_gen = inode->i_generation; 354 to->di_mode = inode->i_mode; 355 356 to->di_size = from->di_size; 357 to->di_nblocks = from->di_nblocks; 358 to->di_extsize = from->di_extsize; 359 to->di_nextents = from->di_nextents; 360 to->di_anextents = from->di_anextents; 361 to->di_forkoff = from->di_forkoff; 362 to->di_aformat = from->di_aformat; 363 to->di_dmevmask = from->di_dmevmask; 364 to->di_dmstate = from->di_dmstate; 365 to->di_flags = from->di_flags; 366 367 /* log a dummy value to ensure log structure is fully initialised */ 368 to->di_next_unlinked = NULLAGINO; 369 370 if (from->di_version == 3) { 371 to->di_changecount = inode->i_version; 372 to->di_crtime.t_sec = from->di_crtime.t_sec; 373 to->di_crtime.t_nsec = from->di_crtime.t_nsec; 374 to->di_flags2 = from->di_flags2; 375 to->di_cowextsize = from->di_cowextsize; 376 to->di_ino = ip->i_ino; 377 to->di_lsn = lsn; 378 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 379 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 380 to->di_flushiter = 0; 381 } else { 382 to->di_flushiter = from->di_flushiter; 383 } 384 } 385 386 /* 387 * Format the inode core. Current timestamp data is only in the VFS inode 388 * fields, so we need to grab them from there. Hence rather than just copying 389 * the XFS inode core structure, format the fields directly into the iovec. 390 */ 391 static void 392 xfs_inode_item_format_core( 393 struct xfs_inode *ip, 394 struct xfs_log_vec *lv, 395 struct xfs_log_iovec **vecp) 396 { 397 struct xfs_log_dinode *dic; 398 399 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 400 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 401 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); 402 } 403 404 /* 405 * This is called to fill in the vector of log iovecs for the given inode 406 * log item. It fills the first item with an inode log format structure, 407 * the second with the on-disk inode structure, and a possible third and/or 408 * fourth with the inode data/extents/b-tree root and inode attributes 409 * data/extents/b-tree root. 410 * 411 * Note: Always use the 64 bit inode log format structure so we don't 412 * leave an uninitialised hole in the format item on 64 bit systems. Log 413 * recovery on 32 bit systems handles this just fine, so there's no reason 414 * for not using an initialising the properly padded structure all the time. 415 */ 416 STATIC void 417 xfs_inode_item_format( 418 struct xfs_log_item *lip, 419 struct xfs_log_vec *lv) 420 { 421 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 422 struct xfs_inode *ip = iip->ili_inode; 423 struct xfs_log_iovec *vecp = NULL; 424 struct xfs_inode_log_format *ilf; 425 426 ASSERT(ip->i_d.di_version > 1); 427 428 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 429 ilf->ilf_type = XFS_LI_INODE; 430 ilf->ilf_ino = ip->i_ino; 431 ilf->ilf_blkno = ip->i_imap.im_blkno; 432 ilf->ilf_len = ip->i_imap.im_len; 433 ilf->ilf_boffset = ip->i_imap.im_boffset; 434 ilf->ilf_fields = XFS_ILOG_CORE; 435 ilf->ilf_size = 2; /* format + core */ 436 437 /* 438 * make sure we don't leak uninitialised data into the log in the case 439 * when we don't log every field in the inode. 440 */ 441 ilf->ilf_dsize = 0; 442 ilf->ilf_asize = 0; 443 ilf->ilf_pad = 0; 444 uuid_copy(&ilf->ilf_u.ilfu_uuid, &uuid_null); 445 446 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 447 448 xfs_inode_item_format_core(ip, lv, &vecp); 449 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 450 if (XFS_IFORK_Q(ip)) { 451 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 452 } else { 453 iip->ili_fields &= 454 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 455 } 456 457 /* update the format with the exact fields we actually logged */ 458 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 459 } 460 461 /* 462 * This is called to pin the inode associated with the inode log 463 * item in memory so it cannot be written out. 464 */ 465 STATIC void 466 xfs_inode_item_pin( 467 struct xfs_log_item *lip) 468 { 469 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 470 471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 472 473 trace_xfs_inode_pin(ip, _RET_IP_); 474 atomic_inc(&ip->i_pincount); 475 } 476 477 478 /* 479 * This is called to unpin the inode associated with the inode log 480 * item which was previously pinned with a call to xfs_inode_item_pin(). 481 * 482 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 483 */ 484 STATIC void 485 xfs_inode_item_unpin( 486 struct xfs_log_item *lip, 487 int remove) 488 { 489 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 490 491 trace_xfs_inode_unpin(ip, _RET_IP_); 492 ASSERT(atomic_read(&ip->i_pincount) > 0); 493 if (atomic_dec_and_test(&ip->i_pincount)) 494 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 495 } 496 497 /* 498 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer 499 * have been failed during writeback 500 * 501 * This informs the AIL that the inode is already flush locked on the next push, 502 * and acquires a hold on the buffer to ensure that it isn't reclaimed before 503 * dirty data makes it to disk. 504 */ 505 STATIC void 506 xfs_inode_item_error( 507 struct xfs_log_item *lip, 508 struct xfs_buf *bp) 509 { 510 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); 511 xfs_set_li_failed(lip, bp); 512 } 513 514 STATIC uint 515 xfs_inode_item_push( 516 struct xfs_log_item *lip, 517 struct list_head *buffer_list) 518 __releases(&lip->li_ailp->xa_lock) 519 __acquires(&lip->li_ailp->xa_lock) 520 { 521 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 522 struct xfs_inode *ip = iip->ili_inode; 523 struct xfs_buf *bp = lip->li_buf; 524 uint rval = XFS_ITEM_SUCCESS; 525 int error; 526 527 if (xfs_ipincount(ip) > 0) 528 return XFS_ITEM_PINNED; 529 530 /* 531 * The buffer containing this item failed to be written back 532 * previously. Resubmit the buffer for IO. 533 */ 534 if (lip->li_flags & XFS_LI_FAILED) { 535 if (!xfs_buf_trylock(bp)) 536 return XFS_ITEM_LOCKED; 537 538 if (!xfs_buf_resubmit_failed_buffers(bp, lip, buffer_list)) 539 rval = XFS_ITEM_FLUSHING; 540 541 xfs_buf_unlock(bp); 542 return rval; 543 } 544 545 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 546 return XFS_ITEM_LOCKED; 547 548 /* 549 * Re-check the pincount now that we stabilized the value by 550 * taking the ilock. 551 */ 552 if (xfs_ipincount(ip) > 0) { 553 rval = XFS_ITEM_PINNED; 554 goto out_unlock; 555 } 556 557 /* 558 * Stale inode items should force out the iclog. 559 */ 560 if (ip->i_flags & XFS_ISTALE) { 561 rval = XFS_ITEM_PINNED; 562 goto out_unlock; 563 } 564 565 /* 566 * Someone else is already flushing the inode. Nothing we can do 567 * here but wait for the flush to finish and remove the item from 568 * the AIL. 569 */ 570 if (!xfs_iflock_nowait(ip)) { 571 rval = XFS_ITEM_FLUSHING; 572 goto out_unlock; 573 } 574 575 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 576 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 577 578 spin_unlock(&lip->li_ailp->xa_lock); 579 580 error = xfs_iflush(ip, &bp); 581 if (!error) { 582 if (!xfs_buf_delwri_queue(bp, buffer_list)) 583 rval = XFS_ITEM_FLUSHING; 584 xfs_buf_relse(bp); 585 } 586 587 spin_lock(&lip->li_ailp->xa_lock); 588 out_unlock: 589 xfs_iunlock(ip, XFS_ILOCK_SHARED); 590 return rval; 591 } 592 593 /* 594 * Unlock the inode associated with the inode log item. 595 * Clear the fields of the inode and inode log item that 596 * are specific to the current transaction. If the 597 * hold flags is set, do not unlock the inode. 598 */ 599 STATIC void 600 xfs_inode_item_unlock( 601 struct xfs_log_item *lip) 602 { 603 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 604 struct xfs_inode *ip = iip->ili_inode; 605 unsigned short lock_flags; 606 607 ASSERT(ip->i_itemp != NULL); 608 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 609 610 lock_flags = iip->ili_lock_flags; 611 iip->ili_lock_flags = 0; 612 if (lock_flags) 613 xfs_iunlock(ip, lock_flags); 614 } 615 616 /* 617 * This is called to find out where the oldest active copy of the inode log 618 * item in the on disk log resides now that the last log write of it completed 619 * at the given lsn. Since we always re-log all dirty data in an inode, the 620 * latest copy in the on disk log is the only one that matters. Therefore, 621 * simply return the given lsn. 622 * 623 * If the inode has been marked stale because the cluster is being freed, we 624 * don't want to (re-)insert this inode into the AIL. There is a race condition 625 * where the cluster buffer may be unpinned before the inode is inserted into 626 * the AIL during transaction committed processing. If the buffer is unpinned 627 * before the inode item has been committed and inserted, then it is possible 628 * for the buffer to be written and IO completes before the inode is inserted 629 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 630 * AIL which will never get removed. It will, however, get reclaimed which 631 * triggers an assert in xfs_inode_free() complaining about freein an inode 632 * still in the AIL. 633 * 634 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 635 * transaction committed code knows that it does not need to do any further 636 * processing on the item. 637 */ 638 STATIC xfs_lsn_t 639 xfs_inode_item_committed( 640 struct xfs_log_item *lip, 641 xfs_lsn_t lsn) 642 { 643 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 644 struct xfs_inode *ip = iip->ili_inode; 645 646 if (xfs_iflags_test(ip, XFS_ISTALE)) { 647 xfs_inode_item_unpin(lip, 0); 648 return -1; 649 } 650 return lsn; 651 } 652 653 /* 654 * XXX rcc - this one really has to do something. Probably needs 655 * to stamp in a new field in the incore inode. 656 */ 657 STATIC void 658 xfs_inode_item_committing( 659 struct xfs_log_item *lip, 660 xfs_lsn_t lsn) 661 { 662 INODE_ITEM(lip)->ili_last_lsn = lsn; 663 } 664 665 /* 666 * This is the ops vector shared by all buf log items. 667 */ 668 static const struct xfs_item_ops xfs_inode_item_ops = { 669 .iop_size = xfs_inode_item_size, 670 .iop_format = xfs_inode_item_format, 671 .iop_pin = xfs_inode_item_pin, 672 .iop_unpin = xfs_inode_item_unpin, 673 .iop_unlock = xfs_inode_item_unlock, 674 .iop_committed = xfs_inode_item_committed, 675 .iop_push = xfs_inode_item_push, 676 .iop_committing = xfs_inode_item_committing, 677 .iop_error = xfs_inode_item_error 678 }; 679 680 681 /* 682 * Initialize the inode log item for a newly allocated (in-core) inode. 683 */ 684 void 685 xfs_inode_item_init( 686 struct xfs_inode *ip, 687 struct xfs_mount *mp) 688 { 689 struct xfs_inode_log_item *iip; 690 691 ASSERT(ip->i_itemp == NULL); 692 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 693 694 iip->ili_inode = ip; 695 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 696 &xfs_inode_item_ops); 697 } 698 699 /* 700 * Free the inode log item and any memory hanging off of it. 701 */ 702 void 703 xfs_inode_item_destroy( 704 xfs_inode_t *ip) 705 { 706 kmem_free(ip->i_itemp->ili_item.li_lv_shadow); 707 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 708 } 709 710 711 /* 712 * This is the inode flushing I/O completion routine. It is called 713 * from interrupt level when the buffer containing the inode is 714 * flushed to disk. It is responsible for removing the inode item 715 * from the AIL if it has not been re-logged, and unlocking the inode's 716 * flush lock. 717 * 718 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 719 * list for other inodes that will run this function. We remove them from the 720 * buffer list so we can process all the inode IO completions in one AIL lock 721 * traversal. 722 */ 723 void 724 xfs_iflush_done( 725 struct xfs_buf *bp, 726 struct xfs_log_item *lip) 727 { 728 struct xfs_inode_log_item *iip; 729 struct xfs_log_item *blip; 730 struct xfs_log_item *next; 731 struct xfs_log_item *prev; 732 struct xfs_ail *ailp = lip->li_ailp; 733 int need_ail = 0; 734 735 /* 736 * Scan the buffer IO completions for other inodes being completed and 737 * attach them to the current inode log item. 738 */ 739 blip = bp->b_fspriv; 740 prev = NULL; 741 while (blip != NULL) { 742 if (blip->li_cb != xfs_iflush_done) { 743 prev = blip; 744 blip = blip->li_bio_list; 745 continue; 746 } 747 748 /* remove from list */ 749 next = blip->li_bio_list; 750 if (!prev) { 751 bp->b_fspriv = next; 752 } else { 753 prev->li_bio_list = next; 754 } 755 756 /* add to current list */ 757 blip->li_bio_list = lip->li_bio_list; 758 lip->li_bio_list = blip; 759 760 /* 761 * while we have the item, do the unlocked check for needing 762 * the AIL lock. 763 */ 764 iip = INODE_ITEM(blip); 765 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || 766 (blip->li_flags & XFS_LI_FAILED)) 767 need_ail++; 768 769 blip = next; 770 } 771 772 /* make sure we capture the state of the initial inode. */ 773 iip = INODE_ITEM(lip); 774 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || 775 lip->li_flags & XFS_LI_FAILED) 776 need_ail++; 777 778 /* 779 * We only want to pull the item from the AIL if it is 780 * actually there and its location in the log has not 781 * changed since we started the flush. Thus, we only bother 782 * if the ili_logged flag is set and the inode's lsn has not 783 * changed. First we check the lsn outside 784 * the lock since it's cheaper, and then we recheck while 785 * holding the lock before removing the inode from the AIL. 786 */ 787 if (need_ail) { 788 bool mlip_changed = false; 789 790 /* this is an opencoded batch version of xfs_trans_ail_delete */ 791 spin_lock(&ailp->xa_lock); 792 for (blip = lip; blip; blip = blip->li_bio_list) { 793 if (INODE_ITEM(blip)->ili_logged && 794 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) 795 mlip_changed |= xfs_ail_delete_one(ailp, blip); 796 else { 797 xfs_clear_li_failed(blip); 798 } 799 } 800 801 if (mlip_changed) { 802 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) 803 xlog_assign_tail_lsn_locked(ailp->xa_mount); 804 if (list_empty(&ailp->xa_ail)) 805 wake_up_all(&ailp->xa_empty); 806 } 807 spin_unlock(&ailp->xa_lock); 808 809 if (mlip_changed) 810 xfs_log_space_wake(ailp->xa_mount); 811 } 812 813 /* 814 * clean up and unlock the flush lock now we are done. We can clear the 815 * ili_last_fields bits now that we know that the data corresponding to 816 * them is safely on disk. 817 */ 818 for (blip = lip; blip; blip = next) { 819 next = blip->li_bio_list; 820 blip->li_bio_list = NULL; 821 822 iip = INODE_ITEM(blip); 823 iip->ili_logged = 0; 824 iip->ili_last_fields = 0; 825 xfs_ifunlock(iip->ili_inode); 826 } 827 } 828 829 /* 830 * This is the inode flushing abort routine. It is called from xfs_iflush when 831 * the filesystem is shutting down to clean up the inode state. It is 832 * responsible for removing the inode item from the AIL if it has not been 833 * re-logged, and unlocking the inode's flush lock. 834 */ 835 void 836 xfs_iflush_abort( 837 xfs_inode_t *ip, 838 bool stale) 839 { 840 xfs_inode_log_item_t *iip = ip->i_itemp; 841 842 if (iip) { 843 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 844 xfs_trans_ail_remove(&iip->ili_item, 845 stale ? SHUTDOWN_LOG_IO_ERROR : 846 SHUTDOWN_CORRUPT_INCORE); 847 } 848 iip->ili_logged = 0; 849 /* 850 * Clear the ili_last_fields bits now that we know that the 851 * data corresponding to them is safely on disk. 852 */ 853 iip->ili_last_fields = 0; 854 /* 855 * Clear the inode logging fields so no more flushes are 856 * attempted. 857 */ 858 iip->ili_fields = 0; 859 iip->ili_fsync_fields = 0; 860 } 861 /* 862 * Release the inode's flush lock since we're done with it. 863 */ 864 xfs_ifunlock(ip); 865 } 866 867 void 868 xfs_istale_done( 869 struct xfs_buf *bp, 870 struct xfs_log_item *lip) 871 { 872 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 873 } 874 875 /* 876 * convert an xfs_inode_log_format struct from the old 32 bit version 877 * (which can have different field alignments) to the native 64 bit version 878 */ 879 int 880 xfs_inode_item_format_convert( 881 struct xfs_log_iovec *buf, 882 struct xfs_inode_log_format *in_f) 883 { 884 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 885 886 if (buf->i_len != sizeof(*in_f32)) 887 return -EFSCORRUPTED; 888 889 in_f->ilf_type = in_f32->ilf_type; 890 in_f->ilf_size = in_f32->ilf_size; 891 in_f->ilf_fields = in_f32->ilf_fields; 892 in_f->ilf_asize = in_f32->ilf_asize; 893 in_f->ilf_dsize = in_f32->ilf_dsize; 894 in_f->ilf_ino = in_f32->ilf_ino; 895 /* copy biggest field of ilf_u */ 896 uuid_copy(&in_f->ilf_u.ilfu_uuid, &in_f32->ilf_u.ilfu_uuid); 897 in_f->ilf_blkno = in_f32->ilf_blkno; 898 in_f->ilf_len = in_f32->ilf_len; 899 in_f->ilf_boffset = in_f32->ilf_boffset; 900 return 0; 901 } 902