1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_inode.h" 27 #include "xfs_trans.h" 28 #include "xfs_inode_item.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 #include "xfs_trans_priv.h" 32 #include "xfs_dinode.h" 33 #include "xfs_log.h" 34 35 36 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 37 38 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 39 { 40 return container_of(lip, struct xfs_inode_log_item, ili_item); 41 } 42 43 STATIC void 44 xfs_inode_item_data_fork_size( 45 struct xfs_inode_log_item *iip, 46 int *nvecs, 47 int *nbytes) 48 { 49 struct xfs_inode *ip = iip->ili_inode; 50 51 switch (ip->i_d.di_format) { 52 case XFS_DINODE_FMT_EXTENTS: 53 if ((iip->ili_fields & XFS_ILOG_DEXT) && 54 ip->i_d.di_nextents > 0 && 55 ip->i_df.if_bytes > 0) { 56 /* worst case, doesn't subtract delalloc extents */ 57 *nbytes += XFS_IFORK_DSIZE(ip); 58 *nvecs += 1; 59 } 60 break; 61 case XFS_DINODE_FMT_BTREE: 62 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 63 ip->i_df.if_broot_bytes > 0) { 64 *nbytes += ip->i_df.if_broot_bytes; 65 *nvecs += 1; 66 } 67 break; 68 case XFS_DINODE_FMT_LOCAL: 69 if ((iip->ili_fields & XFS_ILOG_DDATA) && 70 ip->i_df.if_bytes > 0) { 71 *nbytes += roundup(ip->i_df.if_bytes, 4); 72 *nvecs += 1; 73 } 74 break; 75 76 case XFS_DINODE_FMT_DEV: 77 case XFS_DINODE_FMT_UUID: 78 break; 79 default: 80 ASSERT(0); 81 break; 82 } 83 } 84 85 STATIC void 86 xfs_inode_item_attr_fork_size( 87 struct xfs_inode_log_item *iip, 88 int *nvecs, 89 int *nbytes) 90 { 91 struct xfs_inode *ip = iip->ili_inode; 92 93 switch (ip->i_d.di_aformat) { 94 case XFS_DINODE_FMT_EXTENTS: 95 if ((iip->ili_fields & XFS_ILOG_AEXT) && 96 ip->i_d.di_anextents > 0 && 97 ip->i_afp->if_bytes > 0) { 98 /* worst case, doesn't subtract unused space */ 99 *nbytes += XFS_IFORK_ASIZE(ip); 100 *nvecs += 1; 101 } 102 break; 103 case XFS_DINODE_FMT_BTREE: 104 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 105 ip->i_afp->if_broot_bytes > 0) { 106 *nbytes += ip->i_afp->if_broot_bytes; 107 *nvecs += 1; 108 } 109 break; 110 case XFS_DINODE_FMT_LOCAL: 111 if ((iip->ili_fields & XFS_ILOG_ADATA) && 112 ip->i_afp->if_bytes > 0) { 113 *nbytes += roundup(ip->i_afp->if_bytes, 4); 114 *nvecs += 1; 115 } 116 break; 117 default: 118 ASSERT(0); 119 break; 120 } 121 } 122 123 /* 124 * This returns the number of iovecs needed to log the given inode item. 125 * 126 * We need one iovec for the inode log format structure, one for the 127 * inode core, and possibly one for the inode data/extents/b-tree root 128 * and one for the inode attribute data/extents/b-tree root. 129 */ 130 STATIC void 131 xfs_inode_item_size( 132 struct xfs_log_item *lip, 133 int *nvecs, 134 int *nbytes) 135 { 136 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 137 struct xfs_inode *ip = iip->ili_inode; 138 139 *nvecs += 2; 140 *nbytes += sizeof(struct xfs_inode_log_format) + 141 xfs_icdinode_size(ip->i_d.di_version); 142 143 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 144 if (XFS_IFORK_Q(ip)) 145 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 146 } 147 148 STATIC void 149 xfs_inode_item_format_data_fork( 150 struct xfs_inode_log_item *iip, 151 struct xfs_inode_log_format *ilf, 152 struct xfs_log_vec *lv, 153 struct xfs_log_iovec **vecp) 154 { 155 struct xfs_inode *ip = iip->ili_inode; 156 size_t data_bytes; 157 158 switch (ip->i_d.di_format) { 159 case XFS_DINODE_FMT_EXTENTS: 160 iip->ili_fields &= 161 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 162 XFS_ILOG_DEV | XFS_ILOG_UUID); 163 164 if ((iip->ili_fields & XFS_ILOG_DEXT) && 165 ip->i_d.di_nextents > 0 && 166 ip->i_df.if_bytes > 0) { 167 struct xfs_bmbt_rec *p; 168 169 ASSERT(ip->i_df.if_u1.if_extents != NULL); 170 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); 171 172 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 173 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 174 xlog_finish_iovec(lv, *vecp, data_bytes); 175 176 ASSERT(data_bytes <= ip->i_df.if_bytes); 177 178 ilf->ilf_dsize = data_bytes; 179 ilf->ilf_size++; 180 } else { 181 iip->ili_fields &= ~XFS_ILOG_DEXT; 182 } 183 break; 184 case XFS_DINODE_FMT_BTREE: 185 iip->ili_fields &= 186 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 187 XFS_ILOG_DEV | XFS_ILOG_UUID); 188 189 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 190 ip->i_df.if_broot_bytes > 0) { 191 ASSERT(ip->i_df.if_broot != NULL); 192 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 193 ip->i_df.if_broot, 194 ip->i_df.if_broot_bytes); 195 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 196 ilf->ilf_size++; 197 } else { 198 ASSERT(!(iip->ili_fields & 199 XFS_ILOG_DBROOT)); 200 iip->ili_fields &= ~XFS_ILOG_DBROOT; 201 } 202 break; 203 case XFS_DINODE_FMT_LOCAL: 204 iip->ili_fields &= 205 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 206 XFS_ILOG_DEV | XFS_ILOG_UUID); 207 if ((iip->ili_fields & XFS_ILOG_DDATA) && 208 ip->i_df.if_bytes > 0) { 209 /* 210 * Round i_bytes up to a word boundary. 211 * The underlying memory is guaranteed to 212 * to be there by xfs_idata_realloc(). 213 */ 214 data_bytes = roundup(ip->i_df.if_bytes, 4); 215 ASSERT(ip->i_df.if_real_bytes == 0 || 216 ip->i_df.if_real_bytes == data_bytes); 217 ASSERT(ip->i_df.if_u1.if_data != NULL); 218 ASSERT(ip->i_d.di_size > 0); 219 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 220 ip->i_df.if_u1.if_data, data_bytes); 221 ilf->ilf_dsize = (unsigned)data_bytes; 222 ilf->ilf_size++; 223 } else { 224 iip->ili_fields &= ~XFS_ILOG_DDATA; 225 } 226 break; 227 case XFS_DINODE_FMT_DEV: 228 iip->ili_fields &= 229 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 230 XFS_ILOG_DEXT | XFS_ILOG_UUID); 231 if (iip->ili_fields & XFS_ILOG_DEV) 232 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; 233 break; 234 case XFS_DINODE_FMT_UUID: 235 iip->ili_fields &= 236 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 237 XFS_ILOG_DEXT | XFS_ILOG_DEV); 238 if (iip->ili_fields & XFS_ILOG_UUID) 239 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; 240 break; 241 default: 242 ASSERT(0); 243 break; 244 } 245 } 246 247 STATIC void 248 xfs_inode_item_format_attr_fork( 249 struct xfs_inode_log_item *iip, 250 struct xfs_inode_log_format *ilf, 251 struct xfs_log_vec *lv, 252 struct xfs_log_iovec **vecp) 253 { 254 struct xfs_inode *ip = iip->ili_inode; 255 size_t data_bytes; 256 257 switch (ip->i_d.di_aformat) { 258 case XFS_DINODE_FMT_EXTENTS: 259 iip->ili_fields &= 260 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 261 262 if ((iip->ili_fields & XFS_ILOG_AEXT) && 263 ip->i_d.di_anextents > 0 && 264 ip->i_afp->if_bytes > 0) { 265 struct xfs_bmbt_rec *p; 266 267 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == 268 ip->i_d.di_anextents); 269 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 270 271 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 272 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 273 xlog_finish_iovec(lv, *vecp, data_bytes); 274 275 ilf->ilf_asize = data_bytes; 276 ilf->ilf_size++; 277 } else { 278 iip->ili_fields &= ~XFS_ILOG_AEXT; 279 } 280 break; 281 case XFS_DINODE_FMT_BTREE: 282 iip->ili_fields &= 283 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 284 285 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 286 ip->i_afp->if_broot_bytes > 0) { 287 ASSERT(ip->i_afp->if_broot != NULL); 288 289 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 290 ip->i_afp->if_broot, 291 ip->i_afp->if_broot_bytes); 292 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 293 ilf->ilf_size++; 294 } else { 295 iip->ili_fields &= ~XFS_ILOG_ABROOT; 296 } 297 break; 298 case XFS_DINODE_FMT_LOCAL: 299 iip->ili_fields &= 300 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 301 302 if ((iip->ili_fields & XFS_ILOG_ADATA) && 303 ip->i_afp->if_bytes > 0) { 304 /* 305 * Round i_bytes up to a word boundary. 306 * The underlying memory is guaranteed to 307 * to be there by xfs_idata_realloc(). 308 */ 309 data_bytes = roundup(ip->i_afp->if_bytes, 4); 310 ASSERT(ip->i_afp->if_real_bytes == 0 || 311 ip->i_afp->if_real_bytes == data_bytes); 312 ASSERT(ip->i_afp->if_u1.if_data != NULL); 313 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 314 ip->i_afp->if_u1.if_data, 315 data_bytes); 316 ilf->ilf_asize = (unsigned)data_bytes; 317 ilf->ilf_size++; 318 } else { 319 iip->ili_fields &= ~XFS_ILOG_ADATA; 320 } 321 break; 322 default: 323 ASSERT(0); 324 break; 325 } 326 } 327 328 /* 329 * This is called to fill in the vector of log iovecs for the given inode 330 * log item. It fills the first item with an inode log format structure, 331 * the second with the on-disk inode structure, and a possible third and/or 332 * fourth with the inode data/extents/b-tree root and inode attributes 333 * data/extents/b-tree root. 334 */ 335 STATIC void 336 xfs_inode_item_format( 337 struct xfs_log_item *lip, 338 struct xfs_log_vec *lv) 339 { 340 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 341 struct xfs_inode *ip = iip->ili_inode; 342 struct xfs_inode_log_format *ilf; 343 struct xfs_log_iovec *vecp = NULL; 344 345 ASSERT(ip->i_d.di_version > 1); 346 347 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 348 ilf->ilf_type = XFS_LI_INODE; 349 ilf->ilf_ino = ip->i_ino; 350 ilf->ilf_blkno = ip->i_imap.im_blkno; 351 ilf->ilf_len = ip->i_imap.im_len; 352 ilf->ilf_boffset = ip->i_imap.im_boffset; 353 ilf->ilf_fields = XFS_ILOG_CORE; 354 ilf->ilf_size = 2; /* format + core */ 355 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format)); 356 357 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE, 358 &ip->i_d, 359 xfs_icdinode_size(ip->i_d.di_version)); 360 361 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 362 if (XFS_IFORK_Q(ip)) { 363 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 364 } else { 365 iip->ili_fields &= 366 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 367 } 368 369 /* update the format with the exact fields we actually logged */ 370 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 371 } 372 373 /* 374 * This is called to pin the inode associated with the inode log 375 * item in memory so it cannot be written out. 376 */ 377 STATIC void 378 xfs_inode_item_pin( 379 struct xfs_log_item *lip) 380 { 381 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 382 383 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 384 385 trace_xfs_inode_pin(ip, _RET_IP_); 386 atomic_inc(&ip->i_pincount); 387 } 388 389 390 /* 391 * This is called to unpin the inode associated with the inode log 392 * item which was previously pinned with a call to xfs_inode_item_pin(). 393 * 394 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 395 */ 396 STATIC void 397 xfs_inode_item_unpin( 398 struct xfs_log_item *lip, 399 int remove) 400 { 401 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 402 403 trace_xfs_inode_unpin(ip, _RET_IP_); 404 ASSERT(atomic_read(&ip->i_pincount) > 0); 405 if (atomic_dec_and_test(&ip->i_pincount)) 406 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 407 } 408 409 STATIC uint 410 xfs_inode_item_push( 411 struct xfs_log_item *lip, 412 struct list_head *buffer_list) 413 { 414 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 415 struct xfs_inode *ip = iip->ili_inode; 416 struct xfs_buf *bp = NULL; 417 uint rval = XFS_ITEM_SUCCESS; 418 int error; 419 420 if (xfs_ipincount(ip) > 0) 421 return XFS_ITEM_PINNED; 422 423 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 424 return XFS_ITEM_LOCKED; 425 426 /* 427 * Re-check the pincount now that we stabilized the value by 428 * taking the ilock. 429 */ 430 if (xfs_ipincount(ip) > 0) { 431 rval = XFS_ITEM_PINNED; 432 goto out_unlock; 433 } 434 435 /* 436 * Stale inode items should force out the iclog. 437 */ 438 if (ip->i_flags & XFS_ISTALE) { 439 rval = XFS_ITEM_PINNED; 440 goto out_unlock; 441 } 442 443 /* 444 * Someone else is already flushing the inode. Nothing we can do 445 * here but wait for the flush to finish and remove the item from 446 * the AIL. 447 */ 448 if (!xfs_iflock_nowait(ip)) { 449 rval = XFS_ITEM_FLUSHING; 450 goto out_unlock; 451 } 452 453 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 454 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 455 456 spin_unlock(&lip->li_ailp->xa_lock); 457 458 error = xfs_iflush(ip, &bp); 459 if (!error) { 460 if (!xfs_buf_delwri_queue(bp, buffer_list)) 461 rval = XFS_ITEM_FLUSHING; 462 xfs_buf_relse(bp); 463 } 464 465 spin_lock(&lip->li_ailp->xa_lock); 466 out_unlock: 467 xfs_iunlock(ip, XFS_ILOCK_SHARED); 468 return rval; 469 } 470 471 /* 472 * Unlock the inode associated with the inode log item. 473 * Clear the fields of the inode and inode log item that 474 * are specific to the current transaction. If the 475 * hold flags is set, do not unlock the inode. 476 */ 477 STATIC void 478 xfs_inode_item_unlock( 479 struct xfs_log_item *lip) 480 { 481 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 482 struct xfs_inode *ip = iip->ili_inode; 483 unsigned short lock_flags; 484 485 ASSERT(ip->i_itemp != NULL); 486 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 487 488 lock_flags = iip->ili_lock_flags; 489 iip->ili_lock_flags = 0; 490 if (lock_flags) 491 xfs_iunlock(ip, lock_flags); 492 } 493 494 /* 495 * This is called to find out where the oldest active copy of the inode log 496 * item in the on disk log resides now that the last log write of it completed 497 * at the given lsn. Since we always re-log all dirty data in an inode, the 498 * latest copy in the on disk log is the only one that matters. Therefore, 499 * simply return the given lsn. 500 * 501 * If the inode has been marked stale because the cluster is being freed, we 502 * don't want to (re-)insert this inode into the AIL. There is a race condition 503 * where the cluster buffer may be unpinned before the inode is inserted into 504 * the AIL during transaction committed processing. If the buffer is unpinned 505 * before the inode item has been committed and inserted, then it is possible 506 * for the buffer to be written and IO completes before the inode is inserted 507 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 508 * AIL which will never get removed. It will, however, get reclaimed which 509 * triggers an assert in xfs_inode_free() complaining about freein an inode 510 * still in the AIL. 511 * 512 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 513 * transaction committed code knows that it does not need to do any further 514 * processing on the item. 515 */ 516 STATIC xfs_lsn_t 517 xfs_inode_item_committed( 518 struct xfs_log_item *lip, 519 xfs_lsn_t lsn) 520 { 521 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 522 struct xfs_inode *ip = iip->ili_inode; 523 524 if (xfs_iflags_test(ip, XFS_ISTALE)) { 525 xfs_inode_item_unpin(lip, 0); 526 return -1; 527 } 528 return lsn; 529 } 530 531 /* 532 * XXX rcc - this one really has to do something. Probably needs 533 * to stamp in a new field in the incore inode. 534 */ 535 STATIC void 536 xfs_inode_item_committing( 537 struct xfs_log_item *lip, 538 xfs_lsn_t lsn) 539 { 540 INODE_ITEM(lip)->ili_last_lsn = lsn; 541 } 542 543 /* 544 * This is the ops vector shared by all buf log items. 545 */ 546 static const struct xfs_item_ops xfs_inode_item_ops = { 547 .iop_size = xfs_inode_item_size, 548 .iop_format = xfs_inode_item_format, 549 .iop_pin = xfs_inode_item_pin, 550 .iop_unpin = xfs_inode_item_unpin, 551 .iop_unlock = xfs_inode_item_unlock, 552 .iop_committed = xfs_inode_item_committed, 553 .iop_push = xfs_inode_item_push, 554 .iop_committing = xfs_inode_item_committing 555 }; 556 557 558 /* 559 * Initialize the inode log item for a newly allocated (in-core) inode. 560 */ 561 void 562 xfs_inode_item_init( 563 struct xfs_inode *ip, 564 struct xfs_mount *mp) 565 { 566 struct xfs_inode_log_item *iip; 567 568 ASSERT(ip->i_itemp == NULL); 569 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 570 571 iip->ili_inode = ip; 572 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 573 &xfs_inode_item_ops); 574 } 575 576 /* 577 * Free the inode log item and any memory hanging off of it. 578 */ 579 void 580 xfs_inode_item_destroy( 581 xfs_inode_t *ip) 582 { 583 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 584 } 585 586 587 /* 588 * This is the inode flushing I/O completion routine. It is called 589 * from interrupt level when the buffer containing the inode is 590 * flushed to disk. It is responsible for removing the inode item 591 * from the AIL if it has not been re-logged, and unlocking the inode's 592 * flush lock. 593 * 594 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 595 * list for other inodes that will run this function. We remove them from the 596 * buffer list so we can process all the inode IO completions in one AIL lock 597 * traversal. 598 */ 599 void 600 xfs_iflush_done( 601 struct xfs_buf *bp, 602 struct xfs_log_item *lip) 603 { 604 struct xfs_inode_log_item *iip; 605 struct xfs_log_item *blip; 606 struct xfs_log_item *next; 607 struct xfs_log_item *prev; 608 struct xfs_ail *ailp = lip->li_ailp; 609 int need_ail = 0; 610 611 /* 612 * Scan the buffer IO completions for other inodes being completed and 613 * attach them to the current inode log item. 614 */ 615 blip = bp->b_fspriv; 616 prev = NULL; 617 while (blip != NULL) { 618 if (lip->li_cb != xfs_iflush_done) { 619 prev = blip; 620 blip = blip->li_bio_list; 621 continue; 622 } 623 624 /* remove from list */ 625 next = blip->li_bio_list; 626 if (!prev) { 627 bp->b_fspriv = next; 628 } else { 629 prev->li_bio_list = next; 630 } 631 632 /* add to current list */ 633 blip->li_bio_list = lip->li_bio_list; 634 lip->li_bio_list = blip; 635 636 /* 637 * while we have the item, do the unlocked check for needing 638 * the AIL lock. 639 */ 640 iip = INODE_ITEM(blip); 641 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 642 need_ail++; 643 644 blip = next; 645 } 646 647 /* make sure we capture the state of the initial inode. */ 648 iip = INODE_ITEM(lip); 649 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 650 need_ail++; 651 652 /* 653 * We only want to pull the item from the AIL if it is 654 * actually there and its location in the log has not 655 * changed since we started the flush. Thus, we only bother 656 * if the ili_logged flag is set and the inode's lsn has not 657 * changed. First we check the lsn outside 658 * the lock since it's cheaper, and then we recheck while 659 * holding the lock before removing the inode from the AIL. 660 */ 661 if (need_ail) { 662 struct xfs_log_item *log_items[need_ail]; 663 int i = 0; 664 spin_lock(&ailp->xa_lock); 665 for (blip = lip; blip; blip = blip->li_bio_list) { 666 iip = INODE_ITEM(blip); 667 if (iip->ili_logged && 668 blip->li_lsn == iip->ili_flush_lsn) { 669 log_items[i++] = blip; 670 } 671 ASSERT(i <= need_ail); 672 } 673 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 674 xfs_trans_ail_delete_bulk(ailp, log_items, i, 675 SHUTDOWN_CORRUPT_INCORE); 676 } 677 678 679 /* 680 * clean up and unlock the flush lock now we are done. We can clear the 681 * ili_last_fields bits now that we know that the data corresponding to 682 * them is safely on disk. 683 */ 684 for (blip = lip; blip; blip = next) { 685 next = blip->li_bio_list; 686 blip->li_bio_list = NULL; 687 688 iip = INODE_ITEM(blip); 689 iip->ili_logged = 0; 690 iip->ili_last_fields = 0; 691 xfs_ifunlock(iip->ili_inode); 692 } 693 } 694 695 /* 696 * This is the inode flushing abort routine. It is called from xfs_iflush when 697 * the filesystem is shutting down to clean up the inode state. It is 698 * responsible for removing the inode item from the AIL if it has not been 699 * re-logged, and unlocking the inode's flush lock. 700 */ 701 void 702 xfs_iflush_abort( 703 xfs_inode_t *ip, 704 bool stale) 705 { 706 xfs_inode_log_item_t *iip = ip->i_itemp; 707 708 if (iip) { 709 struct xfs_ail *ailp = iip->ili_item.li_ailp; 710 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 711 spin_lock(&ailp->xa_lock); 712 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 713 /* xfs_trans_ail_delete() drops the AIL lock. */ 714 xfs_trans_ail_delete(ailp, &iip->ili_item, 715 stale ? 716 SHUTDOWN_LOG_IO_ERROR : 717 SHUTDOWN_CORRUPT_INCORE); 718 } else 719 spin_unlock(&ailp->xa_lock); 720 } 721 iip->ili_logged = 0; 722 /* 723 * Clear the ili_last_fields bits now that we know that the 724 * data corresponding to them is safely on disk. 725 */ 726 iip->ili_last_fields = 0; 727 /* 728 * Clear the inode logging fields so no more flushes are 729 * attempted. 730 */ 731 iip->ili_fields = 0; 732 } 733 /* 734 * Release the inode's flush lock since we're done with it. 735 */ 736 xfs_ifunlock(ip); 737 } 738 739 void 740 xfs_istale_done( 741 struct xfs_buf *bp, 742 struct xfs_log_item *lip) 743 { 744 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 745 } 746 747 /* 748 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 749 * (which can have different field alignments) to the native version 750 */ 751 int 752 xfs_inode_item_format_convert( 753 xfs_log_iovec_t *buf, 754 xfs_inode_log_format_t *in_f) 755 { 756 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 757 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 758 759 in_f->ilf_type = in_f32->ilf_type; 760 in_f->ilf_size = in_f32->ilf_size; 761 in_f->ilf_fields = in_f32->ilf_fields; 762 in_f->ilf_asize = in_f32->ilf_asize; 763 in_f->ilf_dsize = in_f32->ilf_dsize; 764 in_f->ilf_ino = in_f32->ilf_ino; 765 /* copy biggest field of ilf_u */ 766 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 767 in_f32->ilf_u.ilfu_uuid.__u_bits, 768 sizeof(uuid_t)); 769 in_f->ilf_blkno = in_f32->ilf_blkno; 770 in_f->ilf_len = in_f32->ilf_len; 771 in_f->ilf_boffset = in_f32->ilf_boffset; 772 return 0; 773 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 774 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 775 776 in_f->ilf_type = in_f64->ilf_type; 777 in_f->ilf_size = in_f64->ilf_size; 778 in_f->ilf_fields = in_f64->ilf_fields; 779 in_f->ilf_asize = in_f64->ilf_asize; 780 in_f->ilf_dsize = in_f64->ilf_dsize; 781 in_f->ilf_ino = in_f64->ilf_ino; 782 /* copy biggest field of ilf_u */ 783 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 784 in_f64->ilf_u.ilfu_uuid.__u_bits, 785 sizeof(uuid_t)); 786 in_f->ilf_blkno = in_f64->ilf_blkno; 787 in_f->ilf_len = in_f64->ilf_len; 788 in_f->ilf_boffset = in_f64->ilf_boffset; 789 return 0; 790 } 791 return -EFSCORRUPTED; 792 } 793