xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision a1dff44b354c0e2721aeae075a287d07daf1c76b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
21 
22 #include <linux/iversion.h>
23 
24 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
25 
26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27 {
28 	return container_of(lip, struct xfs_inode_log_item, ili_item);
29 }
30 
31 STATIC void
32 xfs_inode_item_data_fork_size(
33 	struct xfs_inode_log_item *iip,
34 	int			*nvecs,
35 	int			*nbytes)
36 {
37 	struct xfs_inode	*ip = iip->ili_inode;
38 
39 	switch (ip->i_df.if_format) {
40 	case XFS_DINODE_FMT_EXTENTS:
41 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
42 		    ip->i_df.if_nextents > 0 &&
43 		    ip->i_df.if_bytes > 0) {
44 			/* worst case, doesn't subtract delalloc extents */
45 			*nbytes += XFS_IFORK_DSIZE(ip);
46 			*nvecs += 1;
47 		}
48 		break;
49 	case XFS_DINODE_FMT_BTREE:
50 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
51 		    ip->i_df.if_broot_bytes > 0) {
52 			*nbytes += ip->i_df.if_broot_bytes;
53 			*nvecs += 1;
54 		}
55 		break;
56 	case XFS_DINODE_FMT_LOCAL:
57 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
58 		    ip->i_df.if_bytes > 0) {
59 			*nbytes += roundup(ip->i_df.if_bytes, 4);
60 			*nvecs += 1;
61 		}
62 		break;
63 
64 	case XFS_DINODE_FMT_DEV:
65 		break;
66 	default:
67 		ASSERT(0);
68 		break;
69 	}
70 }
71 
72 STATIC void
73 xfs_inode_item_attr_fork_size(
74 	struct xfs_inode_log_item *iip,
75 	int			*nvecs,
76 	int			*nbytes)
77 {
78 	struct xfs_inode	*ip = iip->ili_inode;
79 
80 	switch (ip->i_afp->if_format) {
81 	case XFS_DINODE_FMT_EXTENTS:
82 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
83 		    ip->i_afp->if_nextents > 0 &&
84 		    ip->i_afp->if_bytes > 0) {
85 			/* worst case, doesn't subtract unused space */
86 			*nbytes += XFS_IFORK_ASIZE(ip);
87 			*nvecs += 1;
88 		}
89 		break;
90 	case XFS_DINODE_FMT_BTREE:
91 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
92 		    ip->i_afp->if_broot_bytes > 0) {
93 			*nbytes += ip->i_afp->if_broot_bytes;
94 			*nvecs += 1;
95 		}
96 		break;
97 	case XFS_DINODE_FMT_LOCAL:
98 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
99 		    ip->i_afp->if_bytes > 0) {
100 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
101 			*nvecs += 1;
102 		}
103 		break;
104 	default:
105 		ASSERT(0);
106 		break;
107 	}
108 }
109 
110 /*
111  * This returns the number of iovecs needed to log the given inode item.
112  *
113  * We need one iovec for the inode log format structure, one for the
114  * inode core, and possibly one for the inode data/extents/b-tree root
115  * and one for the inode attribute data/extents/b-tree root.
116  */
117 STATIC void
118 xfs_inode_item_size(
119 	struct xfs_log_item	*lip,
120 	int			*nvecs,
121 	int			*nbytes)
122 {
123 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124 	struct xfs_inode	*ip = iip->ili_inode;
125 
126 	*nvecs += 2;
127 	*nbytes += sizeof(struct xfs_inode_log_format) +
128 		   xfs_log_dinode_size(ip->i_mount);
129 
130 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131 	if (XFS_IFORK_Q(ip))
132 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
133 }
134 
135 STATIC void
136 xfs_inode_item_format_data_fork(
137 	struct xfs_inode_log_item *iip,
138 	struct xfs_inode_log_format *ilf,
139 	struct xfs_log_vec	*lv,
140 	struct xfs_log_iovec	**vecp)
141 {
142 	struct xfs_inode	*ip = iip->ili_inode;
143 	size_t			data_bytes;
144 
145 	switch (ip->i_df.if_format) {
146 	case XFS_DINODE_FMT_EXTENTS:
147 		iip->ili_fields &=
148 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
149 
150 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151 		    ip->i_df.if_nextents > 0 &&
152 		    ip->i_df.if_bytes > 0) {
153 			struct xfs_bmbt_rec *p;
154 
155 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
156 
157 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159 			xlog_finish_iovec(lv, *vecp, data_bytes);
160 
161 			ASSERT(data_bytes <= ip->i_df.if_bytes);
162 
163 			ilf->ilf_dsize = data_bytes;
164 			ilf->ilf_size++;
165 		} else {
166 			iip->ili_fields &= ~XFS_ILOG_DEXT;
167 		}
168 		break;
169 	case XFS_DINODE_FMT_BTREE:
170 		iip->ili_fields &=
171 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
172 
173 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174 		    ip->i_df.if_broot_bytes > 0) {
175 			ASSERT(ip->i_df.if_broot != NULL);
176 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177 					ip->i_df.if_broot,
178 					ip->i_df.if_broot_bytes);
179 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180 			ilf->ilf_size++;
181 		} else {
182 			ASSERT(!(iip->ili_fields &
183 				 XFS_ILOG_DBROOT));
184 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
185 		}
186 		break;
187 	case XFS_DINODE_FMT_LOCAL:
188 		iip->ili_fields &=
189 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191 		    ip->i_df.if_bytes > 0) {
192 			/*
193 			 * Round i_bytes up to a word boundary.
194 			 * The underlying memory is guaranteed
195 			 * to be there by xfs_idata_realloc().
196 			 */
197 			data_bytes = roundup(ip->i_df.if_bytes, 4);
198 			ASSERT(ip->i_df.if_u1.if_data != NULL);
199 			ASSERT(ip->i_disk_size > 0);
200 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201 					ip->i_df.if_u1.if_data, data_bytes);
202 			ilf->ilf_dsize = (unsigned)data_bytes;
203 			ilf->ilf_size++;
204 		} else {
205 			iip->ili_fields &= ~XFS_ILOG_DDATA;
206 		}
207 		break;
208 	case XFS_DINODE_FMT_DEV:
209 		iip->ili_fields &=
210 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211 		if (iip->ili_fields & XFS_ILOG_DEV)
212 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
213 		break;
214 	default:
215 		ASSERT(0);
216 		break;
217 	}
218 }
219 
220 STATIC void
221 xfs_inode_item_format_attr_fork(
222 	struct xfs_inode_log_item *iip,
223 	struct xfs_inode_log_format *ilf,
224 	struct xfs_log_vec	*lv,
225 	struct xfs_log_iovec	**vecp)
226 {
227 	struct xfs_inode	*ip = iip->ili_inode;
228 	size_t			data_bytes;
229 
230 	switch (ip->i_afp->if_format) {
231 	case XFS_DINODE_FMT_EXTENTS:
232 		iip->ili_fields &=
233 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234 
235 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236 		    ip->i_afp->if_nextents > 0 &&
237 		    ip->i_afp->if_bytes > 0) {
238 			struct xfs_bmbt_rec *p;
239 
240 			ASSERT(xfs_iext_count(ip->i_afp) ==
241 				ip->i_afp->if_nextents);
242 
243 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245 			xlog_finish_iovec(lv, *vecp, data_bytes);
246 
247 			ilf->ilf_asize = data_bytes;
248 			ilf->ilf_size++;
249 		} else {
250 			iip->ili_fields &= ~XFS_ILOG_AEXT;
251 		}
252 		break;
253 	case XFS_DINODE_FMT_BTREE:
254 		iip->ili_fields &=
255 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256 
257 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258 		    ip->i_afp->if_broot_bytes > 0) {
259 			ASSERT(ip->i_afp->if_broot != NULL);
260 
261 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262 					ip->i_afp->if_broot,
263 					ip->i_afp->if_broot_bytes);
264 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265 			ilf->ilf_size++;
266 		} else {
267 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
268 		}
269 		break;
270 	case XFS_DINODE_FMT_LOCAL:
271 		iip->ili_fields &=
272 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
273 
274 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275 		    ip->i_afp->if_bytes > 0) {
276 			/*
277 			 * Round i_bytes up to a word boundary.
278 			 * The underlying memory is guaranteed
279 			 * to be there by xfs_idata_realloc().
280 			 */
281 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
282 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
283 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284 					ip->i_afp->if_u1.if_data,
285 					data_bytes);
286 			ilf->ilf_asize = (unsigned)data_bytes;
287 			ilf->ilf_size++;
288 		} else {
289 			iip->ili_fields &= ~XFS_ILOG_ADATA;
290 		}
291 		break;
292 	default:
293 		ASSERT(0);
294 		break;
295 	}
296 }
297 
298 /*
299  * Convert an incore timestamp to a log timestamp.  Note that the log format
300  * specifies host endian format!
301  */
302 static inline xfs_log_timestamp_t
303 xfs_inode_to_log_dinode_ts(
304 	struct xfs_inode		*ip,
305 	const struct timespec64		tv)
306 {
307 	struct xfs_log_legacy_timestamp	*lits;
308 	xfs_log_timestamp_t		its;
309 
310 	if (xfs_inode_has_bigtime(ip))
311 		return xfs_inode_encode_bigtime(tv);
312 
313 	lits = (struct xfs_log_legacy_timestamp *)&its;
314 	lits->t_sec = tv.tv_sec;
315 	lits->t_nsec = tv.tv_nsec;
316 
317 	return its;
318 }
319 
320 /*
321  * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
322  * but not in the in-memory one.  But we are guaranteed to have an inode buffer
323  * in memory when logging an inode, so we can just copy it from the on-disk
324  * inode to the in-log inode here so that recovery of file system with these
325  * fields set to non-zero values doesn't lose them.  For all other cases we zero
326  * the fields.
327  */
328 static void
329 xfs_copy_dm_fields_to_log_dinode(
330 	struct xfs_inode	*ip,
331 	struct xfs_log_dinode	*to)
332 {
333 	struct xfs_dinode	*dip;
334 
335 	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
336 			     ip->i_imap.im_boffset);
337 
338 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
339 		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
340 		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
341 	} else {
342 		to->di_dmevmask = 0;
343 		to->di_dmstate = 0;
344 	}
345 }
346 
347 static void
348 xfs_inode_to_log_dinode(
349 	struct xfs_inode	*ip,
350 	struct xfs_log_dinode	*to,
351 	xfs_lsn_t		lsn)
352 {
353 	struct inode		*inode = VFS_I(ip);
354 
355 	to->di_magic = XFS_DINODE_MAGIC;
356 	to->di_format = xfs_ifork_format(&ip->i_df);
357 	to->di_uid = i_uid_read(inode);
358 	to->di_gid = i_gid_read(inode);
359 	to->di_projid_lo = ip->i_projid & 0xffff;
360 	to->di_projid_hi = ip->i_projid >> 16;
361 
362 	memset(to->di_pad, 0, sizeof(to->di_pad));
363 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
364 	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
365 	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
366 	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
367 	to->di_nlink = inode->i_nlink;
368 	to->di_gen = inode->i_generation;
369 	to->di_mode = inode->i_mode;
370 
371 	to->di_size = ip->i_disk_size;
372 	to->di_nblocks = ip->i_nblocks;
373 	to->di_extsize = ip->i_extsize;
374 	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
375 	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
376 	to->di_forkoff = ip->i_forkoff;
377 	to->di_aformat = xfs_ifork_format(ip->i_afp);
378 	to->di_flags = ip->i_diflags;
379 
380 	xfs_copy_dm_fields_to_log_dinode(ip, to);
381 
382 	/* log a dummy value to ensure log structure is fully initialised */
383 	to->di_next_unlinked = NULLAGINO;
384 
385 	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
386 		to->di_version = 3;
387 		to->di_changecount = inode_peek_iversion(inode);
388 		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
389 		to->di_flags2 = ip->i_diflags2;
390 		to->di_cowextsize = ip->i_cowextsize;
391 		to->di_ino = ip->i_ino;
392 		to->di_lsn = lsn;
393 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
394 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
395 		to->di_flushiter = 0;
396 	} else {
397 		to->di_version = 2;
398 		to->di_flushiter = ip->i_flushiter;
399 	}
400 }
401 
402 /*
403  * Format the inode core. Current timestamp data is only in the VFS inode
404  * fields, so we need to grab them from there. Hence rather than just copying
405  * the XFS inode core structure, format the fields directly into the iovec.
406  */
407 static void
408 xfs_inode_item_format_core(
409 	struct xfs_inode	*ip,
410 	struct xfs_log_vec	*lv,
411 	struct xfs_log_iovec	**vecp)
412 {
413 	struct xfs_log_dinode	*dic;
414 
415 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
416 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
417 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
418 }
419 
420 /*
421  * This is called to fill in the vector of log iovecs for the given inode
422  * log item.  It fills the first item with an inode log format structure,
423  * the second with the on-disk inode structure, and a possible third and/or
424  * fourth with the inode data/extents/b-tree root and inode attributes
425  * data/extents/b-tree root.
426  *
427  * Note: Always use the 64 bit inode log format structure so we don't
428  * leave an uninitialised hole in the format item on 64 bit systems. Log
429  * recovery on 32 bit systems handles this just fine, so there's no reason
430  * for not using an initialising the properly padded structure all the time.
431  */
432 STATIC void
433 xfs_inode_item_format(
434 	struct xfs_log_item	*lip,
435 	struct xfs_log_vec	*lv)
436 {
437 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
438 	struct xfs_inode	*ip = iip->ili_inode;
439 	struct xfs_log_iovec	*vecp = NULL;
440 	struct xfs_inode_log_format *ilf;
441 
442 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
443 	ilf->ilf_type = XFS_LI_INODE;
444 	ilf->ilf_ino = ip->i_ino;
445 	ilf->ilf_blkno = ip->i_imap.im_blkno;
446 	ilf->ilf_len = ip->i_imap.im_len;
447 	ilf->ilf_boffset = ip->i_imap.im_boffset;
448 	ilf->ilf_fields = XFS_ILOG_CORE;
449 	ilf->ilf_size = 2; /* format + core */
450 
451 	/*
452 	 * make sure we don't leak uninitialised data into the log in the case
453 	 * when we don't log every field in the inode.
454 	 */
455 	ilf->ilf_dsize = 0;
456 	ilf->ilf_asize = 0;
457 	ilf->ilf_pad = 0;
458 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
459 
460 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
461 
462 	xfs_inode_item_format_core(ip, lv, &vecp);
463 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
464 	if (XFS_IFORK_Q(ip)) {
465 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
466 	} else {
467 		iip->ili_fields &=
468 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
469 	}
470 
471 	/* update the format with the exact fields we actually logged */
472 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
473 }
474 
475 /*
476  * This is called to pin the inode associated with the inode log
477  * item in memory so it cannot be written out.
478  */
479 STATIC void
480 xfs_inode_item_pin(
481 	struct xfs_log_item	*lip)
482 {
483 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
484 
485 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
486 	ASSERT(lip->li_buf);
487 
488 	trace_xfs_inode_pin(ip, _RET_IP_);
489 	atomic_inc(&ip->i_pincount);
490 }
491 
492 
493 /*
494  * This is called to unpin the inode associated with the inode log
495  * item which was previously pinned with a call to xfs_inode_item_pin().
496  *
497  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
498  *
499  * Note that unpin can race with inode cluster buffer freeing marking the buffer
500  * stale. In that case, flush completions are run from the buffer unpin call,
501  * which may happen before the inode is unpinned. If we lose the race, there
502  * will be no buffer attached to the log item, but the inode will be marked
503  * XFS_ISTALE.
504  */
505 STATIC void
506 xfs_inode_item_unpin(
507 	struct xfs_log_item	*lip,
508 	int			remove)
509 {
510 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
511 
512 	trace_xfs_inode_unpin(ip, _RET_IP_);
513 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
514 	ASSERT(atomic_read(&ip->i_pincount) > 0);
515 	if (atomic_dec_and_test(&ip->i_pincount))
516 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
517 }
518 
519 STATIC uint
520 xfs_inode_item_push(
521 	struct xfs_log_item	*lip,
522 	struct list_head	*buffer_list)
523 		__releases(&lip->li_ailp->ail_lock)
524 		__acquires(&lip->li_ailp->ail_lock)
525 {
526 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
527 	struct xfs_inode	*ip = iip->ili_inode;
528 	struct xfs_buf		*bp = lip->li_buf;
529 	uint			rval = XFS_ITEM_SUCCESS;
530 	int			error;
531 
532 	ASSERT(iip->ili_item.li_buf);
533 
534 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
535 	    (ip->i_flags & XFS_ISTALE))
536 		return XFS_ITEM_PINNED;
537 
538 	if (xfs_iflags_test(ip, XFS_IFLUSHING))
539 		return XFS_ITEM_FLUSHING;
540 
541 	if (!xfs_buf_trylock(bp))
542 		return XFS_ITEM_LOCKED;
543 
544 	spin_unlock(&lip->li_ailp->ail_lock);
545 
546 	/*
547 	 * We need to hold a reference for flushing the cluster buffer as it may
548 	 * fail the buffer without IO submission. In which case, we better get a
549 	 * reference for that completion because otherwise we don't get a
550 	 * reference for IO until we queue the buffer for delwri submission.
551 	 */
552 	xfs_buf_hold(bp);
553 	error = xfs_iflush_cluster(bp);
554 	if (!error) {
555 		if (!xfs_buf_delwri_queue(bp, buffer_list))
556 			rval = XFS_ITEM_FLUSHING;
557 		xfs_buf_relse(bp);
558 	} else {
559 		/*
560 		 * Release the buffer if we were unable to flush anything. On
561 		 * any other error, the buffer has already been released.
562 		 */
563 		if (error == -EAGAIN)
564 			xfs_buf_relse(bp);
565 		rval = XFS_ITEM_LOCKED;
566 	}
567 
568 	spin_lock(&lip->li_ailp->ail_lock);
569 	return rval;
570 }
571 
572 /*
573  * Unlock the inode associated with the inode log item.
574  */
575 STATIC void
576 xfs_inode_item_release(
577 	struct xfs_log_item	*lip)
578 {
579 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
580 	struct xfs_inode	*ip = iip->ili_inode;
581 	unsigned short		lock_flags;
582 
583 	ASSERT(ip->i_itemp != NULL);
584 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
585 
586 	lock_flags = iip->ili_lock_flags;
587 	iip->ili_lock_flags = 0;
588 	if (lock_flags)
589 		xfs_iunlock(ip, lock_flags);
590 }
591 
592 /*
593  * This is called to find out where the oldest active copy of the inode log
594  * item in the on disk log resides now that the last log write of it completed
595  * at the given lsn.  Since we always re-log all dirty data in an inode, the
596  * latest copy in the on disk log is the only one that matters.  Therefore,
597  * simply return the given lsn.
598  *
599  * If the inode has been marked stale because the cluster is being freed, we
600  * don't want to (re-)insert this inode into the AIL. There is a race condition
601  * where the cluster buffer may be unpinned before the inode is inserted into
602  * the AIL during transaction committed processing. If the buffer is unpinned
603  * before the inode item has been committed and inserted, then it is possible
604  * for the buffer to be written and IO completes before the inode is inserted
605  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
606  * AIL which will never get removed. It will, however, get reclaimed which
607  * triggers an assert in xfs_inode_free() complaining about freein an inode
608  * still in the AIL.
609  *
610  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
611  * transaction committed code knows that it does not need to do any further
612  * processing on the item.
613  */
614 STATIC xfs_lsn_t
615 xfs_inode_item_committed(
616 	struct xfs_log_item	*lip,
617 	xfs_lsn_t		lsn)
618 {
619 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
620 	struct xfs_inode	*ip = iip->ili_inode;
621 
622 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
623 		xfs_inode_item_unpin(lip, 0);
624 		return -1;
625 	}
626 	return lsn;
627 }
628 
629 STATIC void
630 xfs_inode_item_committing(
631 	struct xfs_log_item	*lip,
632 	xfs_lsn_t		commit_lsn)
633 {
634 	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
635 	return xfs_inode_item_release(lip);
636 }
637 
638 static const struct xfs_item_ops xfs_inode_item_ops = {
639 	.iop_size	= xfs_inode_item_size,
640 	.iop_format	= xfs_inode_item_format,
641 	.iop_pin	= xfs_inode_item_pin,
642 	.iop_unpin	= xfs_inode_item_unpin,
643 	.iop_release	= xfs_inode_item_release,
644 	.iop_committed	= xfs_inode_item_committed,
645 	.iop_push	= xfs_inode_item_push,
646 	.iop_committing	= xfs_inode_item_committing,
647 };
648 
649 
650 /*
651  * Initialize the inode log item for a newly allocated (in-core) inode.
652  */
653 void
654 xfs_inode_item_init(
655 	struct xfs_inode	*ip,
656 	struct xfs_mount	*mp)
657 {
658 	struct xfs_inode_log_item *iip;
659 
660 	ASSERT(ip->i_itemp == NULL);
661 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
662 					      GFP_KERNEL | __GFP_NOFAIL);
663 
664 	iip->ili_inode = ip;
665 	spin_lock_init(&iip->ili_lock);
666 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
667 						&xfs_inode_item_ops);
668 }
669 
670 /*
671  * Free the inode log item and any memory hanging off of it.
672  */
673 void
674 xfs_inode_item_destroy(
675 	struct xfs_inode	*ip)
676 {
677 	struct xfs_inode_log_item *iip = ip->i_itemp;
678 
679 	ASSERT(iip->ili_item.li_buf == NULL);
680 
681 	ip->i_itemp = NULL;
682 	kmem_free(iip->ili_item.li_lv_shadow);
683 	kmem_cache_free(xfs_ili_zone, iip);
684 }
685 
686 
687 /*
688  * We only want to pull the item from the AIL if it is actually there
689  * and its location in the log has not changed since we started the
690  * flush.  Thus, we only bother if the inode's lsn has not changed.
691  */
692 static void
693 xfs_iflush_ail_updates(
694 	struct xfs_ail		*ailp,
695 	struct list_head	*list)
696 {
697 	struct xfs_log_item	*lip;
698 	xfs_lsn_t		tail_lsn = 0;
699 
700 	/* this is an opencoded batch version of xfs_trans_ail_delete */
701 	spin_lock(&ailp->ail_lock);
702 	list_for_each_entry(lip, list, li_bio_list) {
703 		xfs_lsn_t	lsn;
704 
705 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
706 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
707 			continue;
708 
709 		lsn = xfs_ail_delete_one(ailp, lip);
710 		if (!tail_lsn && lsn)
711 			tail_lsn = lsn;
712 	}
713 	xfs_ail_update_finish(ailp, tail_lsn);
714 }
715 
716 /*
717  * Walk the list of inodes that have completed their IOs. If they are clean
718  * remove them from the list and dissociate them from the buffer. Buffers that
719  * are still dirty remain linked to the buffer and on the list. Caller must
720  * handle them appropriately.
721  */
722 static void
723 xfs_iflush_finish(
724 	struct xfs_buf		*bp,
725 	struct list_head	*list)
726 {
727 	struct xfs_log_item	*lip, *n;
728 
729 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
730 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
731 		bool	drop_buffer = false;
732 
733 		spin_lock(&iip->ili_lock);
734 
735 		/*
736 		 * Remove the reference to the cluster buffer if the inode is
737 		 * clean in memory and drop the buffer reference once we've
738 		 * dropped the locks we hold.
739 		 */
740 		ASSERT(iip->ili_item.li_buf == bp);
741 		if (!iip->ili_fields) {
742 			iip->ili_item.li_buf = NULL;
743 			list_del_init(&lip->li_bio_list);
744 			drop_buffer = true;
745 		}
746 		iip->ili_last_fields = 0;
747 		iip->ili_flush_lsn = 0;
748 		spin_unlock(&iip->ili_lock);
749 		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
750 		if (drop_buffer)
751 			xfs_buf_rele(bp);
752 	}
753 }
754 
755 /*
756  * Inode buffer IO completion routine.  It is responsible for removing inodes
757  * attached to the buffer from the AIL if they have not been re-logged and
758  * completing the inode flush.
759  */
760 void
761 xfs_buf_inode_iodone(
762 	struct xfs_buf		*bp)
763 {
764 	struct xfs_log_item	*lip, *n;
765 	LIST_HEAD(flushed_inodes);
766 	LIST_HEAD(ail_updates);
767 
768 	/*
769 	 * Pull the attached inodes from the buffer one at a time and take the
770 	 * appropriate action on them.
771 	 */
772 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
773 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
774 
775 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
776 			xfs_iflush_abort(iip->ili_inode);
777 			continue;
778 		}
779 		if (!iip->ili_last_fields)
780 			continue;
781 
782 		/* Do an unlocked check for needing the AIL lock. */
783 		if (iip->ili_flush_lsn == lip->li_lsn ||
784 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
785 			list_move_tail(&lip->li_bio_list, &ail_updates);
786 		else
787 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
788 	}
789 
790 	if (!list_empty(&ail_updates)) {
791 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
792 		list_splice_tail(&ail_updates, &flushed_inodes);
793 	}
794 
795 	xfs_iflush_finish(bp, &flushed_inodes);
796 	if (!list_empty(&flushed_inodes))
797 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
798 }
799 
800 void
801 xfs_buf_inode_io_fail(
802 	struct xfs_buf		*bp)
803 {
804 	struct xfs_log_item	*lip;
805 
806 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
807 		set_bit(XFS_LI_FAILED, &lip->li_flags);
808 }
809 
810 /*
811  * This is the inode flushing abort routine.  It is called when
812  * the filesystem is shutting down to clean up the inode state.  It is
813  * responsible for removing the inode item from the AIL if it has not been
814  * re-logged and clearing the inode's flush state.
815  */
816 void
817 xfs_iflush_abort(
818 	struct xfs_inode	*ip)
819 {
820 	struct xfs_inode_log_item *iip = ip->i_itemp;
821 	struct xfs_buf		*bp = NULL;
822 
823 	if (iip) {
824 		/*
825 		 * Clear the failed bit before removing the item from the AIL so
826 		 * xfs_trans_ail_delete() doesn't try to clear and release the
827 		 * buffer attached to the log item before we are done with it.
828 		 */
829 		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
830 		xfs_trans_ail_delete(&iip->ili_item, 0);
831 
832 		/*
833 		 * Clear the inode logging fields so no more flushes are
834 		 * attempted.
835 		 */
836 		spin_lock(&iip->ili_lock);
837 		iip->ili_last_fields = 0;
838 		iip->ili_fields = 0;
839 		iip->ili_fsync_fields = 0;
840 		iip->ili_flush_lsn = 0;
841 		bp = iip->ili_item.li_buf;
842 		iip->ili_item.li_buf = NULL;
843 		list_del_init(&iip->ili_item.li_bio_list);
844 		spin_unlock(&iip->ili_lock);
845 	}
846 	xfs_iflags_clear(ip, XFS_IFLUSHING);
847 	if (bp)
848 		xfs_buf_rele(bp);
849 }
850 
851 /*
852  * convert an xfs_inode_log_format struct from the old 32 bit version
853  * (which can have different field alignments) to the native 64 bit version
854  */
855 int
856 xfs_inode_item_format_convert(
857 	struct xfs_log_iovec		*buf,
858 	struct xfs_inode_log_format	*in_f)
859 {
860 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
861 
862 	if (buf->i_len != sizeof(*in_f32)) {
863 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
864 		return -EFSCORRUPTED;
865 	}
866 
867 	in_f->ilf_type = in_f32->ilf_type;
868 	in_f->ilf_size = in_f32->ilf_size;
869 	in_f->ilf_fields = in_f32->ilf_fields;
870 	in_f->ilf_asize = in_f32->ilf_asize;
871 	in_f->ilf_dsize = in_f32->ilf_dsize;
872 	in_f->ilf_ino = in_f32->ilf_ino;
873 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
874 	in_f->ilf_blkno = in_f32->ilf_blkno;
875 	in_f->ilf_len = in_f32->ilf_len;
876 	in_f->ilf_boffset = in_f32->ilf_boffset;
877 	return 0;
878 }
879