xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
21 
22 #include <linux/iversion.h>
23 
24 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
25 
26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27 {
28 	return container_of(lip, struct xfs_inode_log_item, ili_item);
29 }
30 
31 STATIC void
32 xfs_inode_item_data_fork_size(
33 	struct xfs_inode_log_item *iip,
34 	int			*nvecs,
35 	int			*nbytes)
36 {
37 	struct xfs_inode	*ip = iip->ili_inode;
38 
39 	switch (ip->i_df.if_format) {
40 	case XFS_DINODE_FMT_EXTENTS:
41 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
42 		    ip->i_df.if_nextents > 0 &&
43 		    ip->i_df.if_bytes > 0) {
44 			/* worst case, doesn't subtract delalloc extents */
45 			*nbytes += XFS_IFORK_DSIZE(ip);
46 			*nvecs += 1;
47 		}
48 		break;
49 	case XFS_DINODE_FMT_BTREE:
50 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
51 		    ip->i_df.if_broot_bytes > 0) {
52 			*nbytes += ip->i_df.if_broot_bytes;
53 			*nvecs += 1;
54 		}
55 		break;
56 	case XFS_DINODE_FMT_LOCAL:
57 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
58 		    ip->i_df.if_bytes > 0) {
59 			*nbytes += roundup(ip->i_df.if_bytes, 4);
60 			*nvecs += 1;
61 		}
62 		break;
63 
64 	case XFS_DINODE_FMT_DEV:
65 		break;
66 	default:
67 		ASSERT(0);
68 		break;
69 	}
70 }
71 
72 STATIC void
73 xfs_inode_item_attr_fork_size(
74 	struct xfs_inode_log_item *iip,
75 	int			*nvecs,
76 	int			*nbytes)
77 {
78 	struct xfs_inode	*ip = iip->ili_inode;
79 
80 	switch (ip->i_afp->if_format) {
81 	case XFS_DINODE_FMT_EXTENTS:
82 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
83 		    ip->i_afp->if_nextents > 0 &&
84 		    ip->i_afp->if_bytes > 0) {
85 			/* worst case, doesn't subtract unused space */
86 			*nbytes += XFS_IFORK_ASIZE(ip);
87 			*nvecs += 1;
88 		}
89 		break;
90 	case XFS_DINODE_FMT_BTREE:
91 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
92 		    ip->i_afp->if_broot_bytes > 0) {
93 			*nbytes += ip->i_afp->if_broot_bytes;
94 			*nvecs += 1;
95 		}
96 		break;
97 	case XFS_DINODE_FMT_LOCAL:
98 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
99 		    ip->i_afp->if_bytes > 0) {
100 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
101 			*nvecs += 1;
102 		}
103 		break;
104 	default:
105 		ASSERT(0);
106 		break;
107 	}
108 }
109 
110 /*
111  * This returns the number of iovecs needed to log the given inode item.
112  *
113  * We need one iovec for the inode log format structure, one for the
114  * inode core, and possibly one for the inode data/extents/b-tree root
115  * and one for the inode attribute data/extents/b-tree root.
116  */
117 STATIC void
118 xfs_inode_item_size(
119 	struct xfs_log_item	*lip,
120 	int			*nvecs,
121 	int			*nbytes)
122 {
123 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124 	struct xfs_inode	*ip = iip->ili_inode;
125 
126 	*nvecs += 2;
127 	*nbytes += sizeof(struct xfs_inode_log_format) +
128 		   xfs_log_dinode_size(ip->i_mount);
129 
130 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131 	if (XFS_IFORK_Q(ip))
132 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
133 }
134 
135 STATIC void
136 xfs_inode_item_format_data_fork(
137 	struct xfs_inode_log_item *iip,
138 	struct xfs_inode_log_format *ilf,
139 	struct xfs_log_vec	*lv,
140 	struct xfs_log_iovec	**vecp)
141 {
142 	struct xfs_inode	*ip = iip->ili_inode;
143 	size_t			data_bytes;
144 
145 	switch (ip->i_df.if_format) {
146 	case XFS_DINODE_FMT_EXTENTS:
147 		iip->ili_fields &=
148 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
149 
150 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151 		    ip->i_df.if_nextents > 0 &&
152 		    ip->i_df.if_bytes > 0) {
153 			struct xfs_bmbt_rec *p;
154 
155 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
156 
157 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159 			xlog_finish_iovec(lv, *vecp, data_bytes);
160 
161 			ASSERT(data_bytes <= ip->i_df.if_bytes);
162 
163 			ilf->ilf_dsize = data_bytes;
164 			ilf->ilf_size++;
165 		} else {
166 			iip->ili_fields &= ~XFS_ILOG_DEXT;
167 		}
168 		break;
169 	case XFS_DINODE_FMT_BTREE:
170 		iip->ili_fields &=
171 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
172 
173 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174 		    ip->i_df.if_broot_bytes > 0) {
175 			ASSERT(ip->i_df.if_broot != NULL);
176 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177 					ip->i_df.if_broot,
178 					ip->i_df.if_broot_bytes);
179 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180 			ilf->ilf_size++;
181 		} else {
182 			ASSERT(!(iip->ili_fields &
183 				 XFS_ILOG_DBROOT));
184 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
185 		}
186 		break;
187 	case XFS_DINODE_FMT_LOCAL:
188 		iip->ili_fields &=
189 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191 		    ip->i_df.if_bytes > 0) {
192 			/*
193 			 * Round i_bytes up to a word boundary.
194 			 * The underlying memory is guaranteed to
195 			 * to be there by xfs_idata_realloc().
196 			 */
197 			data_bytes = roundup(ip->i_df.if_bytes, 4);
198 			ASSERT(ip->i_df.if_u1.if_data != NULL);
199 			ASSERT(ip->i_d.di_size > 0);
200 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201 					ip->i_df.if_u1.if_data, data_bytes);
202 			ilf->ilf_dsize = (unsigned)data_bytes;
203 			ilf->ilf_size++;
204 		} else {
205 			iip->ili_fields &= ~XFS_ILOG_DDATA;
206 		}
207 		break;
208 	case XFS_DINODE_FMT_DEV:
209 		iip->ili_fields &=
210 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211 		if (iip->ili_fields & XFS_ILOG_DEV)
212 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
213 		break;
214 	default:
215 		ASSERT(0);
216 		break;
217 	}
218 }
219 
220 STATIC void
221 xfs_inode_item_format_attr_fork(
222 	struct xfs_inode_log_item *iip,
223 	struct xfs_inode_log_format *ilf,
224 	struct xfs_log_vec	*lv,
225 	struct xfs_log_iovec	**vecp)
226 {
227 	struct xfs_inode	*ip = iip->ili_inode;
228 	size_t			data_bytes;
229 
230 	switch (ip->i_afp->if_format) {
231 	case XFS_DINODE_FMT_EXTENTS:
232 		iip->ili_fields &=
233 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234 
235 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236 		    ip->i_afp->if_nextents > 0 &&
237 		    ip->i_afp->if_bytes > 0) {
238 			struct xfs_bmbt_rec *p;
239 
240 			ASSERT(xfs_iext_count(ip->i_afp) ==
241 				ip->i_afp->if_nextents);
242 
243 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245 			xlog_finish_iovec(lv, *vecp, data_bytes);
246 
247 			ilf->ilf_asize = data_bytes;
248 			ilf->ilf_size++;
249 		} else {
250 			iip->ili_fields &= ~XFS_ILOG_AEXT;
251 		}
252 		break;
253 	case XFS_DINODE_FMT_BTREE:
254 		iip->ili_fields &=
255 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256 
257 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258 		    ip->i_afp->if_broot_bytes > 0) {
259 			ASSERT(ip->i_afp->if_broot != NULL);
260 
261 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262 					ip->i_afp->if_broot,
263 					ip->i_afp->if_broot_bytes);
264 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265 			ilf->ilf_size++;
266 		} else {
267 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
268 		}
269 		break;
270 	case XFS_DINODE_FMT_LOCAL:
271 		iip->ili_fields &=
272 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
273 
274 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275 		    ip->i_afp->if_bytes > 0) {
276 			/*
277 			 * Round i_bytes up to a word boundary.
278 			 * The underlying memory is guaranteed to
279 			 * to be there by xfs_idata_realloc().
280 			 */
281 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
282 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
283 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284 					ip->i_afp->if_u1.if_data,
285 					data_bytes);
286 			ilf->ilf_asize = (unsigned)data_bytes;
287 			ilf->ilf_size++;
288 		} else {
289 			iip->ili_fields &= ~XFS_ILOG_ADATA;
290 		}
291 		break;
292 	default:
293 		ASSERT(0);
294 		break;
295 	}
296 }
297 
298 static void
299 xfs_inode_to_log_dinode(
300 	struct xfs_inode	*ip,
301 	struct xfs_log_dinode	*to,
302 	xfs_lsn_t		lsn)
303 {
304 	struct xfs_icdinode	*from = &ip->i_d;
305 	struct inode		*inode = VFS_I(ip);
306 
307 	to->di_magic = XFS_DINODE_MAGIC;
308 	to->di_format = xfs_ifork_format(&ip->i_df);
309 	to->di_uid = i_uid_read(inode);
310 	to->di_gid = i_gid_read(inode);
311 	to->di_projid_lo = from->di_projid & 0xffff;
312 	to->di_projid_hi = from->di_projid >> 16;
313 
314 	memset(to->di_pad, 0, sizeof(to->di_pad));
315 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
316 	to->di_atime.t_sec = inode->i_atime.tv_sec;
317 	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
318 	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
319 	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
320 	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
321 	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
322 	to->di_nlink = inode->i_nlink;
323 	to->di_gen = inode->i_generation;
324 	to->di_mode = inode->i_mode;
325 
326 	to->di_size = from->di_size;
327 	to->di_nblocks = from->di_nblocks;
328 	to->di_extsize = from->di_extsize;
329 	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
330 	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
331 	to->di_forkoff = from->di_forkoff;
332 	to->di_aformat = xfs_ifork_format(ip->i_afp);
333 	to->di_dmevmask = from->di_dmevmask;
334 	to->di_dmstate = from->di_dmstate;
335 	to->di_flags = from->di_flags;
336 
337 	/* log a dummy value to ensure log structure is fully initialised */
338 	to->di_next_unlinked = NULLAGINO;
339 
340 	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
341 		to->di_version = 3;
342 		to->di_changecount = inode_peek_iversion(inode);
343 		to->di_crtime.t_sec = from->di_crtime.tv_sec;
344 		to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
345 		to->di_flags2 = from->di_flags2;
346 		to->di_cowextsize = from->di_cowextsize;
347 		to->di_ino = ip->i_ino;
348 		to->di_lsn = lsn;
349 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351 		to->di_flushiter = 0;
352 	} else {
353 		to->di_version = 2;
354 		to->di_flushiter = from->di_flushiter;
355 	}
356 }
357 
358 /*
359  * Format the inode core. Current timestamp data is only in the VFS inode
360  * fields, so we need to grab them from there. Hence rather than just copying
361  * the XFS inode core structure, format the fields directly into the iovec.
362  */
363 static void
364 xfs_inode_item_format_core(
365 	struct xfs_inode	*ip,
366 	struct xfs_log_vec	*lv,
367 	struct xfs_log_iovec	**vecp)
368 {
369 	struct xfs_log_dinode	*dic;
370 
371 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
374 }
375 
376 /*
377  * This is called to fill in the vector of log iovecs for the given inode
378  * log item.  It fills the first item with an inode log format structure,
379  * the second with the on-disk inode structure, and a possible third and/or
380  * fourth with the inode data/extents/b-tree root and inode attributes
381  * data/extents/b-tree root.
382  *
383  * Note: Always use the 64 bit inode log format structure so we don't
384  * leave an uninitialised hole in the format item on 64 bit systems. Log
385  * recovery on 32 bit systems handles this just fine, so there's no reason
386  * for not using an initialising the properly padded structure all the time.
387  */
388 STATIC void
389 xfs_inode_item_format(
390 	struct xfs_log_item	*lip,
391 	struct xfs_log_vec	*lv)
392 {
393 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394 	struct xfs_inode	*ip = iip->ili_inode;
395 	struct xfs_log_iovec	*vecp = NULL;
396 	struct xfs_inode_log_format *ilf;
397 
398 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
399 	ilf->ilf_type = XFS_LI_INODE;
400 	ilf->ilf_ino = ip->i_ino;
401 	ilf->ilf_blkno = ip->i_imap.im_blkno;
402 	ilf->ilf_len = ip->i_imap.im_len;
403 	ilf->ilf_boffset = ip->i_imap.im_boffset;
404 	ilf->ilf_fields = XFS_ILOG_CORE;
405 	ilf->ilf_size = 2; /* format + core */
406 
407 	/*
408 	 * make sure we don't leak uninitialised data into the log in the case
409 	 * when we don't log every field in the inode.
410 	 */
411 	ilf->ilf_dsize = 0;
412 	ilf->ilf_asize = 0;
413 	ilf->ilf_pad = 0;
414 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
415 
416 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
417 
418 	xfs_inode_item_format_core(ip, lv, &vecp);
419 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
420 	if (XFS_IFORK_Q(ip)) {
421 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
422 	} else {
423 		iip->ili_fields &=
424 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
425 	}
426 
427 	/* update the format with the exact fields we actually logged */
428 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
429 }
430 
431 /*
432  * This is called to pin the inode associated with the inode log
433  * item in memory so it cannot be written out.
434  */
435 STATIC void
436 xfs_inode_item_pin(
437 	struct xfs_log_item	*lip)
438 {
439 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
440 
441 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
442 
443 	trace_xfs_inode_pin(ip, _RET_IP_);
444 	atomic_inc(&ip->i_pincount);
445 }
446 
447 
448 /*
449  * This is called to unpin the inode associated with the inode log
450  * item which was previously pinned with a call to xfs_inode_item_pin().
451  *
452  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
453  */
454 STATIC void
455 xfs_inode_item_unpin(
456 	struct xfs_log_item	*lip,
457 	int			remove)
458 {
459 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
460 
461 	trace_xfs_inode_unpin(ip, _RET_IP_);
462 	ASSERT(atomic_read(&ip->i_pincount) > 0);
463 	if (atomic_dec_and_test(&ip->i_pincount))
464 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
465 }
466 
467 /*
468  * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
469  * have been failed during writeback
470  *
471  * This informs the AIL that the inode is already flush locked on the next push,
472  * and acquires a hold on the buffer to ensure that it isn't reclaimed before
473  * dirty data makes it to disk.
474  */
475 STATIC void
476 xfs_inode_item_error(
477 	struct xfs_log_item	*lip,
478 	struct xfs_buf		*bp)
479 {
480 	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
481 	xfs_set_li_failed(lip, bp);
482 }
483 
484 STATIC uint
485 xfs_inode_item_push(
486 	struct xfs_log_item	*lip,
487 	struct list_head	*buffer_list)
488 		__releases(&lip->li_ailp->ail_lock)
489 		__acquires(&lip->li_ailp->ail_lock)
490 {
491 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
492 	struct xfs_inode	*ip = iip->ili_inode;
493 	struct xfs_buf		*bp = lip->li_buf;
494 	uint			rval = XFS_ITEM_SUCCESS;
495 	int			error;
496 
497 	if (xfs_ipincount(ip) > 0)
498 		return XFS_ITEM_PINNED;
499 
500 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
501 		return XFS_ITEM_LOCKED;
502 
503 	/*
504 	 * Re-check the pincount now that we stabilized the value by
505 	 * taking the ilock.
506 	 */
507 	if (xfs_ipincount(ip) > 0) {
508 		rval = XFS_ITEM_PINNED;
509 		goto out_unlock;
510 	}
511 
512 	/*
513 	 * Stale inode items should force out the iclog.
514 	 */
515 	if (ip->i_flags & XFS_ISTALE) {
516 		rval = XFS_ITEM_PINNED;
517 		goto out_unlock;
518 	}
519 
520 	/*
521 	 * Someone else is already flushing the inode.  Nothing we can do
522 	 * here but wait for the flush to finish and remove the item from
523 	 * the AIL.
524 	 */
525 	if (!xfs_iflock_nowait(ip)) {
526 		rval = XFS_ITEM_FLUSHING;
527 		goto out_unlock;
528 	}
529 
530 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
531 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
532 
533 	spin_unlock(&lip->li_ailp->ail_lock);
534 
535 	error = xfs_iflush(ip, &bp);
536 	if (!error) {
537 		if (!xfs_buf_delwri_queue(bp, buffer_list))
538 			rval = XFS_ITEM_FLUSHING;
539 		xfs_buf_relse(bp);
540 	} else if (error == -EAGAIN)
541 		rval = XFS_ITEM_LOCKED;
542 
543 	spin_lock(&lip->li_ailp->ail_lock);
544 out_unlock:
545 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
546 	return rval;
547 }
548 
549 /*
550  * Unlock the inode associated with the inode log item.
551  */
552 STATIC void
553 xfs_inode_item_release(
554 	struct xfs_log_item	*lip)
555 {
556 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
557 	struct xfs_inode	*ip = iip->ili_inode;
558 	unsigned short		lock_flags;
559 
560 	ASSERT(ip->i_itemp != NULL);
561 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
562 
563 	lock_flags = iip->ili_lock_flags;
564 	iip->ili_lock_flags = 0;
565 	if (lock_flags)
566 		xfs_iunlock(ip, lock_flags);
567 }
568 
569 /*
570  * This is called to find out where the oldest active copy of the inode log
571  * item in the on disk log resides now that the last log write of it completed
572  * at the given lsn.  Since we always re-log all dirty data in an inode, the
573  * latest copy in the on disk log is the only one that matters.  Therefore,
574  * simply return the given lsn.
575  *
576  * If the inode has been marked stale because the cluster is being freed, we
577  * don't want to (re-)insert this inode into the AIL. There is a race condition
578  * where the cluster buffer may be unpinned before the inode is inserted into
579  * the AIL during transaction committed processing. If the buffer is unpinned
580  * before the inode item has been committed and inserted, then it is possible
581  * for the buffer to be written and IO completes before the inode is inserted
582  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
583  * AIL which will never get removed. It will, however, get reclaimed which
584  * triggers an assert in xfs_inode_free() complaining about freein an inode
585  * still in the AIL.
586  *
587  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
588  * transaction committed code knows that it does not need to do any further
589  * processing on the item.
590  */
591 STATIC xfs_lsn_t
592 xfs_inode_item_committed(
593 	struct xfs_log_item	*lip,
594 	xfs_lsn_t		lsn)
595 {
596 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
597 	struct xfs_inode	*ip = iip->ili_inode;
598 
599 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
600 		xfs_inode_item_unpin(lip, 0);
601 		return -1;
602 	}
603 	return lsn;
604 }
605 
606 STATIC void
607 xfs_inode_item_committing(
608 	struct xfs_log_item	*lip,
609 	xfs_lsn_t		commit_lsn)
610 {
611 	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
612 	return xfs_inode_item_release(lip);
613 }
614 
615 static const struct xfs_item_ops xfs_inode_item_ops = {
616 	.iop_size	= xfs_inode_item_size,
617 	.iop_format	= xfs_inode_item_format,
618 	.iop_pin	= xfs_inode_item_pin,
619 	.iop_unpin	= xfs_inode_item_unpin,
620 	.iop_release	= xfs_inode_item_release,
621 	.iop_committed	= xfs_inode_item_committed,
622 	.iop_push	= xfs_inode_item_push,
623 	.iop_committing	= xfs_inode_item_committing,
624 	.iop_error	= xfs_inode_item_error
625 };
626 
627 
628 /*
629  * Initialize the inode log item for a newly allocated (in-core) inode.
630  */
631 void
632 xfs_inode_item_init(
633 	struct xfs_inode	*ip,
634 	struct xfs_mount	*mp)
635 {
636 	struct xfs_inode_log_item *iip;
637 
638 	ASSERT(ip->i_itemp == NULL);
639 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
640 
641 	iip->ili_inode = ip;
642 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
643 						&xfs_inode_item_ops);
644 }
645 
646 /*
647  * Free the inode log item and any memory hanging off of it.
648  */
649 void
650 xfs_inode_item_destroy(
651 	xfs_inode_t	*ip)
652 {
653 	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
654 	kmem_cache_free(xfs_ili_zone, ip->i_itemp);
655 }
656 
657 
658 /*
659  * This is the inode flushing I/O completion routine.  It is called
660  * from interrupt level when the buffer containing the inode is
661  * flushed to disk.  It is responsible for removing the inode item
662  * from the AIL if it has not been re-logged, and unlocking the inode's
663  * flush lock.
664  *
665  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
666  * list for other inodes that will run this function. We remove them from the
667  * buffer list so we can process all the inode IO completions in one AIL lock
668  * traversal.
669  */
670 void
671 xfs_iflush_done(
672 	struct xfs_buf		*bp,
673 	struct xfs_log_item	*lip)
674 {
675 	struct xfs_inode_log_item *iip;
676 	struct xfs_log_item	*blip, *n;
677 	struct xfs_ail		*ailp = lip->li_ailp;
678 	int			need_ail = 0;
679 	LIST_HEAD(tmp);
680 
681 	/*
682 	 * Scan the buffer IO completions for other inodes being completed and
683 	 * attach them to the current inode log item.
684 	 */
685 
686 	list_add_tail(&lip->li_bio_list, &tmp);
687 
688 	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
689 		if (lip->li_cb != xfs_iflush_done)
690 			continue;
691 
692 		list_move_tail(&blip->li_bio_list, &tmp);
693 		/*
694 		 * while we have the item, do the unlocked check for needing
695 		 * the AIL lock.
696 		 */
697 		iip = INODE_ITEM(blip);
698 		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
699 		    test_bit(XFS_LI_FAILED, &blip->li_flags))
700 			need_ail++;
701 	}
702 
703 	/* make sure we capture the state of the initial inode. */
704 	iip = INODE_ITEM(lip);
705 	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
706 	    test_bit(XFS_LI_FAILED, &lip->li_flags))
707 		need_ail++;
708 
709 	/*
710 	 * We only want to pull the item from the AIL if it is
711 	 * actually there and its location in the log has not
712 	 * changed since we started the flush.  Thus, we only bother
713 	 * if the ili_logged flag is set and the inode's lsn has not
714 	 * changed.  First we check the lsn outside
715 	 * the lock since it's cheaper, and then we recheck while
716 	 * holding the lock before removing the inode from the AIL.
717 	 */
718 	if (need_ail) {
719 		xfs_lsn_t	tail_lsn = 0;
720 
721 		/* this is an opencoded batch version of xfs_trans_ail_delete */
722 		spin_lock(&ailp->ail_lock);
723 		list_for_each_entry(blip, &tmp, li_bio_list) {
724 			if (INODE_ITEM(blip)->ili_logged &&
725 			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) {
726 				/*
727 				 * xfs_ail_update_finish() only cares about the
728 				 * lsn of the first tail item removed, any
729 				 * others will be at the same or higher lsn so
730 				 * we just ignore them.
731 				 */
732 				xfs_lsn_t lsn = xfs_ail_delete_one(ailp, blip);
733 				if (!tail_lsn && lsn)
734 					tail_lsn = lsn;
735 			} else {
736 				xfs_clear_li_failed(blip);
737 			}
738 		}
739 		xfs_ail_update_finish(ailp, tail_lsn);
740 	}
741 
742 	/*
743 	 * clean up and unlock the flush lock now we are done. We can clear the
744 	 * ili_last_fields bits now that we know that the data corresponding to
745 	 * them is safely on disk.
746 	 */
747 	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
748 		list_del_init(&blip->li_bio_list);
749 		iip = INODE_ITEM(blip);
750 		iip->ili_logged = 0;
751 		iip->ili_last_fields = 0;
752 		xfs_ifunlock(iip->ili_inode);
753 	}
754 	list_del(&tmp);
755 }
756 
757 /*
758  * This is the inode flushing abort routine.  It is called from xfs_iflush when
759  * the filesystem is shutting down to clean up the inode state.  It is
760  * responsible for removing the inode item from the AIL if it has not been
761  * re-logged, and unlocking the inode's flush lock.
762  */
763 void
764 xfs_iflush_abort(
765 	struct xfs_inode		*ip)
766 {
767 	struct xfs_inode_log_item	*iip = ip->i_itemp;
768 
769 	if (iip) {
770 		xfs_trans_ail_delete(&iip->ili_item, 0);
771 		iip->ili_logged = 0;
772 		/*
773 		 * Clear the ili_last_fields bits now that we know that the
774 		 * data corresponding to them is safely on disk.
775 		 */
776 		iip->ili_last_fields = 0;
777 		/*
778 		 * Clear the inode logging fields so no more flushes are
779 		 * attempted.
780 		 */
781 		iip->ili_fields = 0;
782 		iip->ili_fsync_fields = 0;
783 	}
784 	/*
785 	 * Release the inode's flush lock since we're done with it.
786 	 */
787 	xfs_ifunlock(ip);
788 }
789 
790 void
791 xfs_istale_done(
792 	struct xfs_buf		*bp,
793 	struct xfs_log_item	*lip)
794 {
795 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
796 }
797 
798 /*
799  * convert an xfs_inode_log_format struct from the old 32 bit version
800  * (which can have different field alignments) to the native 64 bit version
801  */
802 int
803 xfs_inode_item_format_convert(
804 	struct xfs_log_iovec		*buf,
805 	struct xfs_inode_log_format	*in_f)
806 {
807 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
808 
809 	if (buf->i_len != sizeof(*in_f32)) {
810 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
811 		return -EFSCORRUPTED;
812 	}
813 
814 	in_f->ilf_type = in_f32->ilf_type;
815 	in_f->ilf_size = in_f32->ilf_size;
816 	in_f->ilf_fields = in_f32->ilf_fields;
817 	in_f->ilf_asize = in_f32->ilf_asize;
818 	in_f->ilf_dsize = in_f32->ilf_dsize;
819 	in_f->ilf_ino = in_f32->ilf_ino;
820 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
821 	in_f->ilf_blkno = in_f32->ilf_blkno;
822 	in_f->ilf_len = in_f32->ilf_len;
823 	in_f->ilf_boffset = in_f32->ilf_boffset;
824 	return 0;
825 }
826