1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_bmap_btree.h" 28 #include "xfs_dinode.h" 29 #include "xfs_inode.h" 30 #include "xfs_inode_item.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 35 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 36 37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 38 { 39 return container_of(lip, struct xfs_inode_log_item, ili_item); 40 } 41 42 43 /* 44 * This returns the number of iovecs needed to log the given inode item. 45 * 46 * We need one iovec for the inode log format structure, one for the 47 * inode core, and possibly one for the inode data/extents/b-tree root 48 * and one for the inode attribute data/extents/b-tree root. 49 */ 50 STATIC uint 51 xfs_inode_item_size( 52 struct xfs_log_item *lip) 53 { 54 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 55 struct xfs_inode *ip = iip->ili_inode; 56 uint nvecs = 2; 57 58 switch (ip->i_d.di_format) { 59 case XFS_DINODE_FMT_EXTENTS: 60 if ((iip->ili_fields & XFS_ILOG_DEXT) && 61 ip->i_d.di_nextents > 0 && 62 ip->i_df.if_bytes > 0) 63 nvecs++; 64 break; 65 66 case XFS_DINODE_FMT_BTREE: 67 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 68 ip->i_df.if_broot_bytes > 0) 69 nvecs++; 70 break; 71 72 case XFS_DINODE_FMT_LOCAL: 73 if ((iip->ili_fields & XFS_ILOG_DDATA) && 74 ip->i_df.if_bytes > 0) 75 nvecs++; 76 break; 77 78 case XFS_DINODE_FMT_DEV: 79 case XFS_DINODE_FMT_UUID: 80 break; 81 82 default: 83 ASSERT(0); 84 break; 85 } 86 87 if (!XFS_IFORK_Q(ip)) 88 return nvecs; 89 90 91 /* 92 * Log any necessary attribute data. 93 */ 94 switch (ip->i_d.di_aformat) { 95 case XFS_DINODE_FMT_EXTENTS: 96 if ((iip->ili_fields & XFS_ILOG_AEXT) && 97 ip->i_d.di_anextents > 0 && 98 ip->i_afp->if_bytes > 0) 99 nvecs++; 100 break; 101 102 case XFS_DINODE_FMT_BTREE: 103 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 104 ip->i_afp->if_broot_bytes > 0) 105 nvecs++; 106 break; 107 108 case XFS_DINODE_FMT_LOCAL: 109 if ((iip->ili_fields & XFS_ILOG_ADATA) && 110 ip->i_afp->if_bytes > 0) 111 nvecs++; 112 break; 113 114 default: 115 ASSERT(0); 116 break; 117 } 118 119 return nvecs; 120 } 121 122 /* 123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form 124 * 125 * For either the data or attr fork in extent format, we need to endian convert 126 * the in-core extent as we place them into the on-disk inode. In this case, we 127 * need to do this conversion before we write the extents into the log. Because 128 * we don't have the disk inode to write into here, we allocate a buffer and 129 * format the extents into it via xfs_iextents_copy(). We free the buffer in 130 * the unlock routine after the copy for the log has been made. 131 * 132 * In the case of the data fork, the in-core and on-disk fork sizes can be 133 * different due to delayed allocation extents. We only log on-disk extents 134 * here, so always use the physical fork size to determine the size of the 135 * buffer we need to allocate. 136 */ 137 STATIC void 138 xfs_inode_item_format_extents( 139 struct xfs_inode *ip, 140 struct xfs_log_iovec *vecp, 141 int whichfork, 142 int type) 143 { 144 xfs_bmbt_rec_t *ext_buffer; 145 146 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); 147 if (whichfork == XFS_DATA_FORK) 148 ip->i_itemp->ili_extents_buf = ext_buffer; 149 else 150 ip->i_itemp->ili_aextents_buf = ext_buffer; 151 152 vecp->i_addr = ext_buffer; 153 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); 154 vecp->i_type = type; 155 } 156 157 /* 158 * This is called to fill in the vector of log iovecs for the 159 * given inode log item. It fills the first item with an inode 160 * log format structure, the second with the on-disk inode structure, 161 * and a possible third and/or fourth with the inode data/extents/b-tree 162 * root and inode attributes data/extents/b-tree root. 163 */ 164 STATIC void 165 xfs_inode_item_format( 166 struct xfs_log_item *lip, 167 struct xfs_log_iovec *vecp) 168 { 169 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 170 struct xfs_inode *ip = iip->ili_inode; 171 uint nvecs; 172 size_t data_bytes; 173 xfs_mount_t *mp; 174 175 vecp->i_addr = &iip->ili_format; 176 vecp->i_len = sizeof(xfs_inode_log_format_t); 177 vecp->i_type = XLOG_REG_TYPE_IFORMAT; 178 vecp++; 179 nvecs = 1; 180 181 vecp->i_addr = &ip->i_d; 182 vecp->i_len = sizeof(struct xfs_icdinode); 183 vecp->i_type = XLOG_REG_TYPE_ICORE; 184 vecp++; 185 nvecs++; 186 187 /* 188 * If this is really an old format inode, then we need to 189 * log it as such. This means that we have to copy the link 190 * count from the new field to the old. We don't have to worry 191 * about the new fields, because nothing trusts them as long as 192 * the old inode version number is there. If the superblock already 193 * has a new version number, then we don't bother converting back. 194 */ 195 mp = ip->i_mount; 196 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 197 if (ip->i_d.di_version == 1) { 198 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 199 /* 200 * Convert it back. 201 */ 202 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 203 ip->i_d.di_onlink = ip->i_d.di_nlink; 204 } else { 205 /* 206 * The superblock version has already been bumped, 207 * so just make the conversion to the new inode 208 * format permanent. 209 */ 210 ip->i_d.di_version = 2; 211 ip->i_d.di_onlink = 0; 212 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 213 } 214 } 215 216 switch (ip->i_d.di_format) { 217 case XFS_DINODE_FMT_EXTENTS: 218 iip->ili_fields &= 219 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 220 XFS_ILOG_DEV | XFS_ILOG_UUID); 221 222 if ((iip->ili_fields & XFS_ILOG_DEXT) && 223 ip->i_d.di_nextents > 0 && 224 ip->i_df.if_bytes > 0) { 225 ASSERT(ip->i_df.if_u1.if_extents != NULL); 226 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); 227 ASSERT(iip->ili_extents_buf == NULL); 228 229 #ifdef XFS_NATIVE_HOST 230 if (ip->i_d.di_nextents == ip->i_df.if_bytes / 231 (uint)sizeof(xfs_bmbt_rec_t)) { 232 /* 233 * There are no delayed allocation 234 * extents, so just point to the 235 * real extents array. 236 */ 237 vecp->i_addr = ip->i_df.if_u1.if_extents; 238 vecp->i_len = ip->i_df.if_bytes; 239 vecp->i_type = XLOG_REG_TYPE_IEXT; 240 } else 241 #endif 242 { 243 xfs_inode_item_format_extents(ip, vecp, 244 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); 245 } 246 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 247 iip->ili_format.ilf_dsize = vecp->i_len; 248 vecp++; 249 nvecs++; 250 } else { 251 iip->ili_fields &= ~XFS_ILOG_DEXT; 252 } 253 break; 254 255 case XFS_DINODE_FMT_BTREE: 256 iip->ili_fields &= 257 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 258 XFS_ILOG_DEV | XFS_ILOG_UUID); 259 260 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 261 ip->i_df.if_broot_bytes > 0) { 262 ASSERT(ip->i_df.if_broot != NULL); 263 vecp->i_addr = ip->i_df.if_broot; 264 vecp->i_len = ip->i_df.if_broot_bytes; 265 vecp->i_type = XLOG_REG_TYPE_IBROOT; 266 vecp++; 267 nvecs++; 268 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 269 } else { 270 ASSERT(!(iip->ili_fields & 271 XFS_ILOG_DBROOT)); 272 iip->ili_fields &= ~XFS_ILOG_DBROOT; 273 } 274 break; 275 276 case XFS_DINODE_FMT_LOCAL: 277 iip->ili_fields &= 278 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 279 XFS_ILOG_DEV | XFS_ILOG_UUID); 280 if ((iip->ili_fields & XFS_ILOG_DDATA) && 281 ip->i_df.if_bytes > 0) { 282 ASSERT(ip->i_df.if_u1.if_data != NULL); 283 ASSERT(ip->i_d.di_size > 0); 284 285 vecp->i_addr = ip->i_df.if_u1.if_data; 286 /* 287 * Round i_bytes up to a word boundary. 288 * The underlying memory is guaranteed to 289 * to be there by xfs_idata_realloc(). 290 */ 291 data_bytes = roundup(ip->i_df.if_bytes, 4); 292 ASSERT((ip->i_df.if_real_bytes == 0) || 293 (ip->i_df.if_real_bytes == data_bytes)); 294 vecp->i_len = (int)data_bytes; 295 vecp->i_type = XLOG_REG_TYPE_ILOCAL; 296 vecp++; 297 nvecs++; 298 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 299 } else { 300 iip->ili_fields &= ~XFS_ILOG_DDATA; 301 } 302 break; 303 304 case XFS_DINODE_FMT_DEV: 305 iip->ili_fields &= 306 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 307 XFS_ILOG_DEXT | XFS_ILOG_UUID); 308 if (iip->ili_fields & XFS_ILOG_DEV) { 309 iip->ili_format.ilf_u.ilfu_rdev = 310 ip->i_df.if_u2.if_rdev; 311 } 312 break; 313 314 case XFS_DINODE_FMT_UUID: 315 iip->ili_fields &= 316 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 317 XFS_ILOG_DEXT | XFS_ILOG_DEV); 318 if (iip->ili_fields & XFS_ILOG_UUID) { 319 iip->ili_format.ilf_u.ilfu_uuid = 320 ip->i_df.if_u2.if_uuid; 321 } 322 break; 323 324 default: 325 ASSERT(0); 326 break; 327 } 328 329 /* 330 * If there are no attributes associated with the file, then we're done. 331 */ 332 if (!XFS_IFORK_Q(ip)) { 333 iip->ili_fields &= 334 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 335 goto out; 336 } 337 338 switch (ip->i_d.di_aformat) { 339 case XFS_DINODE_FMT_EXTENTS: 340 iip->ili_fields &= 341 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 342 343 if ((iip->ili_fields & XFS_ILOG_AEXT) && 344 ip->i_d.di_anextents > 0 && 345 ip->i_afp->if_bytes > 0) { 346 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == 347 ip->i_d.di_anextents); 348 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 349 #ifdef XFS_NATIVE_HOST 350 /* 351 * There are not delayed allocation extents 352 * for attributes, so just point at the array. 353 */ 354 vecp->i_addr = ip->i_afp->if_u1.if_extents; 355 vecp->i_len = ip->i_afp->if_bytes; 356 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; 357 #else 358 ASSERT(iip->ili_aextents_buf == NULL); 359 xfs_inode_item_format_extents(ip, vecp, 360 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); 361 #endif 362 iip->ili_format.ilf_asize = vecp->i_len; 363 vecp++; 364 nvecs++; 365 } else { 366 iip->ili_fields &= ~XFS_ILOG_AEXT; 367 } 368 break; 369 370 case XFS_DINODE_FMT_BTREE: 371 iip->ili_fields &= 372 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 373 374 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 375 ip->i_afp->if_broot_bytes > 0) { 376 ASSERT(ip->i_afp->if_broot != NULL); 377 378 vecp->i_addr = ip->i_afp->if_broot; 379 vecp->i_len = ip->i_afp->if_broot_bytes; 380 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; 381 vecp++; 382 nvecs++; 383 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 384 } else { 385 iip->ili_fields &= ~XFS_ILOG_ABROOT; 386 } 387 break; 388 389 case XFS_DINODE_FMT_LOCAL: 390 iip->ili_fields &= 391 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 392 393 if ((iip->ili_fields & XFS_ILOG_ADATA) && 394 ip->i_afp->if_bytes > 0) { 395 ASSERT(ip->i_afp->if_u1.if_data != NULL); 396 397 vecp->i_addr = ip->i_afp->if_u1.if_data; 398 /* 399 * Round i_bytes up to a word boundary. 400 * The underlying memory is guaranteed to 401 * to be there by xfs_idata_realloc(). 402 */ 403 data_bytes = roundup(ip->i_afp->if_bytes, 4); 404 ASSERT((ip->i_afp->if_real_bytes == 0) || 405 (ip->i_afp->if_real_bytes == data_bytes)); 406 vecp->i_len = (int)data_bytes; 407 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; 408 vecp++; 409 nvecs++; 410 iip->ili_format.ilf_asize = (unsigned)data_bytes; 411 } else { 412 iip->ili_fields &= ~XFS_ILOG_ADATA; 413 } 414 break; 415 416 default: 417 ASSERT(0); 418 break; 419 } 420 421 out: 422 /* 423 * Now update the log format that goes out to disk from the in-core 424 * values. We always write the inode core to make the arithmetic 425 * games in recovery easier, which isn't a big deal as just about any 426 * transaction would dirty it anyway. 427 */ 428 iip->ili_format.ilf_fields = XFS_ILOG_CORE | 429 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 430 iip->ili_format.ilf_size = nvecs; 431 } 432 433 434 /* 435 * This is called to pin the inode associated with the inode log 436 * item in memory so it cannot be written out. 437 */ 438 STATIC void 439 xfs_inode_item_pin( 440 struct xfs_log_item *lip) 441 { 442 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 443 444 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 445 446 trace_xfs_inode_pin(ip, _RET_IP_); 447 atomic_inc(&ip->i_pincount); 448 } 449 450 451 /* 452 * This is called to unpin the inode associated with the inode log 453 * item which was previously pinned with a call to xfs_inode_item_pin(). 454 * 455 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 456 */ 457 STATIC void 458 xfs_inode_item_unpin( 459 struct xfs_log_item *lip, 460 int remove) 461 { 462 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 463 464 trace_xfs_inode_unpin(ip, _RET_IP_); 465 ASSERT(atomic_read(&ip->i_pincount) > 0); 466 if (atomic_dec_and_test(&ip->i_pincount)) 467 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 468 } 469 470 STATIC uint 471 xfs_inode_item_push( 472 struct xfs_log_item *lip, 473 struct list_head *buffer_list) 474 { 475 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 476 struct xfs_inode *ip = iip->ili_inode; 477 struct xfs_buf *bp = NULL; 478 uint rval = XFS_ITEM_SUCCESS; 479 int error; 480 481 if (xfs_ipincount(ip) > 0) 482 return XFS_ITEM_PINNED; 483 484 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 485 return XFS_ITEM_LOCKED; 486 487 /* 488 * Re-check the pincount now that we stabilized the value by 489 * taking the ilock. 490 */ 491 if (xfs_ipincount(ip) > 0) { 492 rval = XFS_ITEM_PINNED; 493 goto out_unlock; 494 } 495 496 /* 497 * Stale inode items should force out the iclog. 498 */ 499 if (ip->i_flags & XFS_ISTALE) { 500 rval = XFS_ITEM_PINNED; 501 goto out_unlock; 502 } 503 504 /* 505 * Someone else is already flushing the inode. Nothing we can do 506 * here but wait for the flush to finish and remove the item from 507 * the AIL. 508 */ 509 if (!xfs_iflock_nowait(ip)) { 510 rval = XFS_ITEM_FLUSHING; 511 goto out_unlock; 512 } 513 514 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 515 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 516 517 spin_unlock(&lip->li_ailp->xa_lock); 518 519 error = xfs_iflush(ip, &bp); 520 if (!error) { 521 if (!xfs_buf_delwri_queue(bp, buffer_list)) 522 rval = XFS_ITEM_FLUSHING; 523 xfs_buf_relse(bp); 524 } 525 526 spin_lock(&lip->li_ailp->xa_lock); 527 out_unlock: 528 xfs_iunlock(ip, XFS_ILOCK_SHARED); 529 return rval; 530 } 531 532 /* 533 * Unlock the inode associated with the inode log item. 534 * Clear the fields of the inode and inode log item that 535 * are specific to the current transaction. If the 536 * hold flags is set, do not unlock the inode. 537 */ 538 STATIC void 539 xfs_inode_item_unlock( 540 struct xfs_log_item *lip) 541 { 542 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 543 struct xfs_inode *ip = iip->ili_inode; 544 unsigned short lock_flags; 545 546 ASSERT(ip->i_itemp != NULL); 547 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 548 549 /* 550 * If the inode needed a separate buffer with which to log 551 * its extents, then free it now. 552 */ 553 if (iip->ili_extents_buf != NULL) { 554 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 555 ASSERT(ip->i_d.di_nextents > 0); 556 ASSERT(iip->ili_fields & XFS_ILOG_DEXT); 557 ASSERT(ip->i_df.if_bytes > 0); 558 kmem_free(iip->ili_extents_buf); 559 iip->ili_extents_buf = NULL; 560 } 561 if (iip->ili_aextents_buf != NULL) { 562 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 563 ASSERT(ip->i_d.di_anextents > 0); 564 ASSERT(iip->ili_fields & XFS_ILOG_AEXT); 565 ASSERT(ip->i_afp->if_bytes > 0); 566 kmem_free(iip->ili_aextents_buf); 567 iip->ili_aextents_buf = NULL; 568 } 569 570 lock_flags = iip->ili_lock_flags; 571 iip->ili_lock_flags = 0; 572 if (lock_flags) 573 xfs_iunlock(ip, lock_flags); 574 } 575 576 /* 577 * This is called to find out where the oldest active copy of the inode log 578 * item in the on disk log resides now that the last log write of it completed 579 * at the given lsn. Since we always re-log all dirty data in an inode, the 580 * latest copy in the on disk log is the only one that matters. Therefore, 581 * simply return the given lsn. 582 * 583 * If the inode has been marked stale because the cluster is being freed, we 584 * don't want to (re-)insert this inode into the AIL. There is a race condition 585 * where the cluster buffer may be unpinned before the inode is inserted into 586 * the AIL during transaction committed processing. If the buffer is unpinned 587 * before the inode item has been committed and inserted, then it is possible 588 * for the buffer to be written and IO completes before the inode is inserted 589 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 590 * AIL which will never get removed. It will, however, get reclaimed which 591 * triggers an assert in xfs_inode_free() complaining about freein an inode 592 * still in the AIL. 593 * 594 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 595 * transaction committed code knows that it does not need to do any further 596 * processing on the item. 597 */ 598 STATIC xfs_lsn_t 599 xfs_inode_item_committed( 600 struct xfs_log_item *lip, 601 xfs_lsn_t lsn) 602 { 603 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 604 struct xfs_inode *ip = iip->ili_inode; 605 606 if (xfs_iflags_test(ip, XFS_ISTALE)) { 607 xfs_inode_item_unpin(lip, 0); 608 return -1; 609 } 610 return lsn; 611 } 612 613 /* 614 * XXX rcc - this one really has to do something. Probably needs 615 * to stamp in a new field in the incore inode. 616 */ 617 STATIC void 618 xfs_inode_item_committing( 619 struct xfs_log_item *lip, 620 xfs_lsn_t lsn) 621 { 622 INODE_ITEM(lip)->ili_last_lsn = lsn; 623 } 624 625 /* 626 * This is the ops vector shared by all buf log items. 627 */ 628 static const struct xfs_item_ops xfs_inode_item_ops = { 629 .iop_size = xfs_inode_item_size, 630 .iop_format = xfs_inode_item_format, 631 .iop_pin = xfs_inode_item_pin, 632 .iop_unpin = xfs_inode_item_unpin, 633 .iop_unlock = xfs_inode_item_unlock, 634 .iop_committed = xfs_inode_item_committed, 635 .iop_push = xfs_inode_item_push, 636 .iop_committing = xfs_inode_item_committing 637 }; 638 639 640 /* 641 * Initialize the inode log item for a newly allocated (in-core) inode. 642 */ 643 void 644 xfs_inode_item_init( 645 struct xfs_inode *ip, 646 struct xfs_mount *mp) 647 { 648 struct xfs_inode_log_item *iip; 649 650 ASSERT(ip->i_itemp == NULL); 651 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 652 653 iip->ili_inode = ip; 654 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 655 &xfs_inode_item_ops); 656 iip->ili_format.ilf_type = XFS_LI_INODE; 657 iip->ili_format.ilf_ino = ip->i_ino; 658 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; 659 iip->ili_format.ilf_len = ip->i_imap.im_len; 660 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; 661 } 662 663 /* 664 * Free the inode log item and any memory hanging off of it. 665 */ 666 void 667 xfs_inode_item_destroy( 668 xfs_inode_t *ip) 669 { 670 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 671 } 672 673 674 /* 675 * This is the inode flushing I/O completion routine. It is called 676 * from interrupt level when the buffer containing the inode is 677 * flushed to disk. It is responsible for removing the inode item 678 * from the AIL if it has not been re-logged, and unlocking the inode's 679 * flush lock. 680 * 681 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 682 * list for other inodes that will run this function. We remove them from the 683 * buffer list so we can process all the inode IO completions in one AIL lock 684 * traversal. 685 */ 686 void 687 xfs_iflush_done( 688 struct xfs_buf *bp, 689 struct xfs_log_item *lip) 690 { 691 struct xfs_inode_log_item *iip; 692 struct xfs_log_item *blip; 693 struct xfs_log_item *next; 694 struct xfs_log_item *prev; 695 struct xfs_ail *ailp = lip->li_ailp; 696 int need_ail = 0; 697 698 /* 699 * Scan the buffer IO completions for other inodes being completed and 700 * attach them to the current inode log item. 701 */ 702 blip = bp->b_fspriv; 703 prev = NULL; 704 while (blip != NULL) { 705 if (lip->li_cb != xfs_iflush_done) { 706 prev = blip; 707 blip = blip->li_bio_list; 708 continue; 709 } 710 711 /* remove from list */ 712 next = blip->li_bio_list; 713 if (!prev) { 714 bp->b_fspriv = next; 715 } else { 716 prev->li_bio_list = next; 717 } 718 719 /* add to current list */ 720 blip->li_bio_list = lip->li_bio_list; 721 lip->li_bio_list = blip; 722 723 /* 724 * while we have the item, do the unlocked check for needing 725 * the AIL lock. 726 */ 727 iip = INODE_ITEM(blip); 728 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 729 need_ail++; 730 731 blip = next; 732 } 733 734 /* make sure we capture the state of the initial inode. */ 735 iip = INODE_ITEM(lip); 736 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 737 need_ail++; 738 739 /* 740 * We only want to pull the item from the AIL if it is 741 * actually there and its location in the log has not 742 * changed since we started the flush. Thus, we only bother 743 * if the ili_logged flag is set and the inode's lsn has not 744 * changed. First we check the lsn outside 745 * the lock since it's cheaper, and then we recheck while 746 * holding the lock before removing the inode from the AIL. 747 */ 748 if (need_ail) { 749 struct xfs_log_item *log_items[need_ail]; 750 int i = 0; 751 spin_lock(&ailp->xa_lock); 752 for (blip = lip; blip; blip = blip->li_bio_list) { 753 iip = INODE_ITEM(blip); 754 if (iip->ili_logged && 755 blip->li_lsn == iip->ili_flush_lsn) { 756 log_items[i++] = blip; 757 } 758 ASSERT(i <= need_ail); 759 } 760 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 761 xfs_trans_ail_delete_bulk(ailp, log_items, i, 762 SHUTDOWN_CORRUPT_INCORE); 763 } 764 765 766 /* 767 * clean up and unlock the flush lock now we are done. We can clear the 768 * ili_last_fields bits now that we know that the data corresponding to 769 * them is safely on disk. 770 */ 771 for (blip = lip; blip; blip = next) { 772 next = blip->li_bio_list; 773 blip->li_bio_list = NULL; 774 775 iip = INODE_ITEM(blip); 776 iip->ili_logged = 0; 777 iip->ili_last_fields = 0; 778 xfs_ifunlock(iip->ili_inode); 779 } 780 } 781 782 /* 783 * This is the inode flushing abort routine. It is called from xfs_iflush when 784 * the filesystem is shutting down to clean up the inode state. It is 785 * responsible for removing the inode item from the AIL if it has not been 786 * re-logged, and unlocking the inode's flush lock. 787 */ 788 void 789 xfs_iflush_abort( 790 xfs_inode_t *ip, 791 bool stale) 792 { 793 xfs_inode_log_item_t *iip = ip->i_itemp; 794 795 if (iip) { 796 struct xfs_ail *ailp = iip->ili_item.li_ailp; 797 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 798 spin_lock(&ailp->xa_lock); 799 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 800 /* xfs_trans_ail_delete() drops the AIL lock. */ 801 xfs_trans_ail_delete(ailp, &iip->ili_item, 802 stale ? 803 SHUTDOWN_LOG_IO_ERROR : 804 SHUTDOWN_CORRUPT_INCORE); 805 } else 806 spin_unlock(&ailp->xa_lock); 807 } 808 iip->ili_logged = 0; 809 /* 810 * Clear the ili_last_fields bits now that we know that the 811 * data corresponding to them is safely on disk. 812 */ 813 iip->ili_last_fields = 0; 814 /* 815 * Clear the inode logging fields so no more flushes are 816 * attempted. 817 */ 818 iip->ili_fields = 0; 819 } 820 /* 821 * Release the inode's flush lock since we're done with it. 822 */ 823 xfs_ifunlock(ip); 824 } 825 826 void 827 xfs_istale_done( 828 struct xfs_buf *bp, 829 struct xfs_log_item *lip) 830 { 831 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 832 } 833 834 /* 835 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 836 * (which can have different field alignments) to the native version 837 */ 838 int 839 xfs_inode_item_format_convert( 840 xfs_log_iovec_t *buf, 841 xfs_inode_log_format_t *in_f) 842 { 843 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 844 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 845 846 in_f->ilf_type = in_f32->ilf_type; 847 in_f->ilf_size = in_f32->ilf_size; 848 in_f->ilf_fields = in_f32->ilf_fields; 849 in_f->ilf_asize = in_f32->ilf_asize; 850 in_f->ilf_dsize = in_f32->ilf_dsize; 851 in_f->ilf_ino = in_f32->ilf_ino; 852 /* copy biggest field of ilf_u */ 853 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 854 in_f32->ilf_u.ilfu_uuid.__u_bits, 855 sizeof(uuid_t)); 856 in_f->ilf_blkno = in_f32->ilf_blkno; 857 in_f->ilf_len = in_f32->ilf_len; 858 in_f->ilf_boffset = in_f32->ilf_boffset; 859 return 0; 860 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 861 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 862 863 in_f->ilf_type = in_f64->ilf_type; 864 in_f->ilf_size = in_f64->ilf_size; 865 in_f->ilf_fields = in_f64->ilf_fields; 866 in_f->ilf_asize = in_f64->ilf_asize; 867 in_f->ilf_dsize = in_f64->ilf_dsize; 868 in_f->ilf_ino = in_f64->ilf_ino; 869 /* copy biggest field of ilf_u */ 870 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 871 in_f64->ilf_u.ilfu_uuid.__u_bits, 872 sizeof(uuid_t)); 873 in_f->ilf_blkno = in_f64->ilf_blkno; 874 in_f->ilf_len = in_f64->ilf_len; 875 in_f->ilf_boffset = in_f64->ilf_boffset; 876 return 0; 877 } 878 return EFSCORRUPTED; 879 } 880