1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 23 #include <linux/iversion.h> 24 25 struct kmem_cache *xfs_ili_cache; /* inode log item */ 26 27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 28 { 29 return container_of(lip, struct xfs_inode_log_item, ili_item); 30 } 31 32 /* 33 * The logged size of an inode fork is always the current size of the inode 34 * fork. This means that when an inode fork is relogged, the size of the logged 35 * region is determined by the current state, not the combination of the 36 * previously logged state + the current state. This is different relogging 37 * behaviour to most other log items which will retain the size of the 38 * previously logged changes when smaller regions are relogged. 39 * 40 * Hence operations that remove data from the inode fork (e.g. shortform 41 * dir/attr remove, extent form extent removal, etc), the size of the relogged 42 * inode gets -smaller- rather than stays the same size as the previously logged 43 * size and this can result in the committing transaction reducing the amount of 44 * space being consumed by the CIL. 45 */ 46 STATIC void 47 xfs_inode_item_data_fork_size( 48 struct xfs_inode_log_item *iip, 49 int *nvecs, 50 int *nbytes) 51 { 52 struct xfs_inode *ip = iip->ili_inode; 53 54 switch (ip->i_df.if_format) { 55 case XFS_DINODE_FMT_EXTENTS: 56 if ((iip->ili_fields & XFS_ILOG_DEXT) && 57 ip->i_df.if_nextents > 0 && 58 ip->i_df.if_bytes > 0) { 59 /* worst case, doesn't subtract delalloc extents */ 60 *nbytes += XFS_IFORK_DSIZE(ip); 61 *nvecs += 1; 62 } 63 break; 64 case XFS_DINODE_FMT_BTREE: 65 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 66 ip->i_df.if_broot_bytes > 0) { 67 *nbytes += ip->i_df.if_broot_bytes; 68 *nvecs += 1; 69 } 70 break; 71 case XFS_DINODE_FMT_LOCAL: 72 if ((iip->ili_fields & XFS_ILOG_DDATA) && 73 ip->i_df.if_bytes > 0) { 74 *nbytes += roundup(ip->i_df.if_bytes, 4); 75 *nvecs += 1; 76 } 77 break; 78 79 case XFS_DINODE_FMT_DEV: 80 break; 81 default: 82 ASSERT(0); 83 break; 84 } 85 } 86 87 STATIC void 88 xfs_inode_item_attr_fork_size( 89 struct xfs_inode_log_item *iip, 90 int *nvecs, 91 int *nbytes) 92 { 93 struct xfs_inode *ip = iip->ili_inode; 94 95 switch (ip->i_afp->if_format) { 96 case XFS_DINODE_FMT_EXTENTS: 97 if ((iip->ili_fields & XFS_ILOG_AEXT) && 98 ip->i_afp->if_nextents > 0 && 99 ip->i_afp->if_bytes > 0) { 100 /* worst case, doesn't subtract unused space */ 101 *nbytes += XFS_IFORK_ASIZE(ip); 102 *nvecs += 1; 103 } 104 break; 105 case XFS_DINODE_FMT_BTREE: 106 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 107 ip->i_afp->if_broot_bytes > 0) { 108 *nbytes += ip->i_afp->if_broot_bytes; 109 *nvecs += 1; 110 } 111 break; 112 case XFS_DINODE_FMT_LOCAL: 113 if ((iip->ili_fields & XFS_ILOG_ADATA) && 114 ip->i_afp->if_bytes > 0) { 115 *nbytes += roundup(ip->i_afp->if_bytes, 4); 116 *nvecs += 1; 117 } 118 break; 119 default: 120 ASSERT(0); 121 break; 122 } 123 } 124 125 /* 126 * This returns the number of iovecs needed to log the given inode item. 127 * 128 * We need one iovec for the inode log format structure, one for the 129 * inode core, and possibly one for the inode data/extents/b-tree root 130 * and one for the inode attribute data/extents/b-tree root. 131 */ 132 STATIC void 133 xfs_inode_item_size( 134 struct xfs_log_item *lip, 135 int *nvecs, 136 int *nbytes) 137 { 138 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 139 struct xfs_inode *ip = iip->ili_inode; 140 141 *nvecs += 2; 142 *nbytes += sizeof(struct xfs_inode_log_format) + 143 xfs_log_dinode_size(ip->i_mount); 144 145 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 146 if (XFS_IFORK_Q(ip)) 147 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 148 } 149 150 STATIC void 151 xfs_inode_item_format_data_fork( 152 struct xfs_inode_log_item *iip, 153 struct xfs_inode_log_format *ilf, 154 struct xfs_log_vec *lv, 155 struct xfs_log_iovec **vecp) 156 { 157 struct xfs_inode *ip = iip->ili_inode; 158 size_t data_bytes; 159 160 switch (ip->i_df.if_format) { 161 case XFS_DINODE_FMT_EXTENTS: 162 iip->ili_fields &= 163 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 164 165 if ((iip->ili_fields & XFS_ILOG_DEXT) && 166 ip->i_df.if_nextents > 0 && 167 ip->i_df.if_bytes > 0) { 168 struct xfs_bmbt_rec *p; 169 170 ASSERT(xfs_iext_count(&ip->i_df) > 0); 171 172 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 173 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 174 xlog_finish_iovec(lv, *vecp, data_bytes); 175 176 ASSERT(data_bytes <= ip->i_df.if_bytes); 177 178 ilf->ilf_dsize = data_bytes; 179 ilf->ilf_size++; 180 } else { 181 iip->ili_fields &= ~XFS_ILOG_DEXT; 182 } 183 break; 184 case XFS_DINODE_FMT_BTREE: 185 iip->ili_fields &= 186 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 187 188 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 189 ip->i_df.if_broot_bytes > 0) { 190 ASSERT(ip->i_df.if_broot != NULL); 191 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 192 ip->i_df.if_broot, 193 ip->i_df.if_broot_bytes); 194 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 195 ilf->ilf_size++; 196 } else { 197 ASSERT(!(iip->ili_fields & 198 XFS_ILOG_DBROOT)); 199 iip->ili_fields &= ~XFS_ILOG_DBROOT; 200 } 201 break; 202 case XFS_DINODE_FMT_LOCAL: 203 iip->ili_fields &= 204 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 205 if ((iip->ili_fields & XFS_ILOG_DDATA) && 206 ip->i_df.if_bytes > 0) { 207 /* 208 * Round i_bytes up to a word boundary. 209 * The underlying memory is guaranteed 210 * to be there by xfs_idata_realloc(). 211 */ 212 data_bytes = roundup(ip->i_df.if_bytes, 4); 213 ASSERT(ip->i_df.if_u1.if_data != NULL); 214 ASSERT(ip->i_disk_size > 0); 215 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 216 ip->i_df.if_u1.if_data, data_bytes); 217 ilf->ilf_dsize = (unsigned)data_bytes; 218 ilf->ilf_size++; 219 } else { 220 iip->ili_fields &= ~XFS_ILOG_DDATA; 221 } 222 break; 223 case XFS_DINODE_FMT_DEV: 224 iip->ili_fields &= 225 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 226 if (iip->ili_fields & XFS_ILOG_DEV) 227 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 228 break; 229 default: 230 ASSERT(0); 231 break; 232 } 233 } 234 235 STATIC void 236 xfs_inode_item_format_attr_fork( 237 struct xfs_inode_log_item *iip, 238 struct xfs_inode_log_format *ilf, 239 struct xfs_log_vec *lv, 240 struct xfs_log_iovec **vecp) 241 { 242 struct xfs_inode *ip = iip->ili_inode; 243 size_t data_bytes; 244 245 switch (ip->i_afp->if_format) { 246 case XFS_DINODE_FMT_EXTENTS: 247 iip->ili_fields &= 248 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 249 250 if ((iip->ili_fields & XFS_ILOG_AEXT) && 251 ip->i_afp->if_nextents > 0 && 252 ip->i_afp->if_bytes > 0) { 253 struct xfs_bmbt_rec *p; 254 255 ASSERT(xfs_iext_count(ip->i_afp) == 256 ip->i_afp->if_nextents); 257 258 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 259 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 260 xlog_finish_iovec(lv, *vecp, data_bytes); 261 262 ilf->ilf_asize = data_bytes; 263 ilf->ilf_size++; 264 } else { 265 iip->ili_fields &= ~XFS_ILOG_AEXT; 266 } 267 break; 268 case XFS_DINODE_FMT_BTREE: 269 iip->ili_fields &= 270 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 271 272 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 273 ip->i_afp->if_broot_bytes > 0) { 274 ASSERT(ip->i_afp->if_broot != NULL); 275 276 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 277 ip->i_afp->if_broot, 278 ip->i_afp->if_broot_bytes); 279 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 280 ilf->ilf_size++; 281 } else { 282 iip->ili_fields &= ~XFS_ILOG_ABROOT; 283 } 284 break; 285 case XFS_DINODE_FMT_LOCAL: 286 iip->ili_fields &= 287 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 288 289 if ((iip->ili_fields & XFS_ILOG_ADATA) && 290 ip->i_afp->if_bytes > 0) { 291 /* 292 * Round i_bytes up to a word boundary. 293 * The underlying memory is guaranteed 294 * to be there by xfs_idata_realloc(). 295 */ 296 data_bytes = roundup(ip->i_afp->if_bytes, 4); 297 ASSERT(ip->i_afp->if_u1.if_data != NULL); 298 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 299 ip->i_afp->if_u1.if_data, 300 data_bytes); 301 ilf->ilf_asize = (unsigned)data_bytes; 302 ilf->ilf_size++; 303 } else { 304 iip->ili_fields &= ~XFS_ILOG_ADATA; 305 } 306 break; 307 default: 308 ASSERT(0); 309 break; 310 } 311 } 312 313 /* 314 * Convert an incore timestamp to a log timestamp. Note that the log format 315 * specifies host endian format! 316 */ 317 static inline xfs_log_timestamp_t 318 xfs_inode_to_log_dinode_ts( 319 struct xfs_inode *ip, 320 const struct timespec64 tv) 321 { 322 struct xfs_log_legacy_timestamp *lits; 323 xfs_log_timestamp_t its; 324 325 if (xfs_inode_has_bigtime(ip)) 326 return xfs_inode_encode_bigtime(tv); 327 328 lits = (struct xfs_log_legacy_timestamp *)&its; 329 lits->t_sec = tv.tv_sec; 330 lits->t_nsec = tv.tv_nsec; 331 332 return its; 333 } 334 335 /* 336 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 337 * but not in the in-memory one. But we are guaranteed to have an inode buffer 338 * in memory when logging an inode, so we can just copy it from the on-disk 339 * inode to the in-log inode here so that recovery of file system with these 340 * fields set to non-zero values doesn't lose them. For all other cases we zero 341 * the fields. 342 */ 343 static void 344 xfs_copy_dm_fields_to_log_dinode( 345 struct xfs_inode *ip, 346 struct xfs_log_dinode *to) 347 { 348 struct xfs_dinode *dip; 349 350 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 351 ip->i_imap.im_boffset); 352 353 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 354 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 355 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 356 } else { 357 to->di_dmevmask = 0; 358 to->di_dmstate = 0; 359 } 360 } 361 362 static void 363 xfs_inode_to_log_dinode( 364 struct xfs_inode *ip, 365 struct xfs_log_dinode *to, 366 xfs_lsn_t lsn) 367 { 368 struct inode *inode = VFS_I(ip); 369 370 to->di_magic = XFS_DINODE_MAGIC; 371 to->di_format = xfs_ifork_format(&ip->i_df); 372 to->di_uid = i_uid_read(inode); 373 to->di_gid = i_gid_read(inode); 374 to->di_projid_lo = ip->i_projid & 0xffff; 375 to->di_projid_hi = ip->i_projid >> 16; 376 377 memset(to->di_pad, 0, sizeof(to->di_pad)); 378 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 379 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); 380 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); 381 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); 382 to->di_nlink = inode->i_nlink; 383 to->di_gen = inode->i_generation; 384 to->di_mode = inode->i_mode; 385 386 to->di_size = ip->i_disk_size; 387 to->di_nblocks = ip->i_nblocks; 388 to->di_extsize = ip->i_extsize; 389 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 390 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 391 to->di_forkoff = ip->i_forkoff; 392 to->di_aformat = xfs_ifork_format(ip->i_afp); 393 to->di_flags = ip->i_diflags; 394 395 xfs_copy_dm_fields_to_log_dinode(ip, to); 396 397 /* log a dummy value to ensure log structure is fully initialised */ 398 to->di_next_unlinked = NULLAGINO; 399 400 if (xfs_has_v3inodes(ip->i_mount)) { 401 to->di_version = 3; 402 to->di_changecount = inode_peek_iversion(inode); 403 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 404 to->di_flags2 = ip->i_diflags2; 405 to->di_cowextsize = ip->i_cowextsize; 406 to->di_ino = ip->i_ino; 407 to->di_lsn = lsn; 408 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 409 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 410 to->di_flushiter = 0; 411 } else { 412 to->di_version = 2; 413 to->di_flushiter = ip->i_flushiter; 414 } 415 } 416 417 /* 418 * Format the inode core. Current timestamp data is only in the VFS inode 419 * fields, so we need to grab them from there. Hence rather than just copying 420 * the XFS inode core structure, format the fields directly into the iovec. 421 */ 422 static void 423 xfs_inode_item_format_core( 424 struct xfs_inode *ip, 425 struct xfs_log_vec *lv, 426 struct xfs_log_iovec **vecp) 427 { 428 struct xfs_log_dinode *dic; 429 430 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 431 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 432 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 433 } 434 435 /* 436 * This is called to fill in the vector of log iovecs for the given inode 437 * log item. It fills the first item with an inode log format structure, 438 * the second with the on-disk inode structure, and a possible third and/or 439 * fourth with the inode data/extents/b-tree root and inode attributes 440 * data/extents/b-tree root. 441 * 442 * Note: Always use the 64 bit inode log format structure so we don't 443 * leave an uninitialised hole in the format item on 64 bit systems. Log 444 * recovery on 32 bit systems handles this just fine, so there's no reason 445 * for not using an initialising the properly padded structure all the time. 446 */ 447 STATIC void 448 xfs_inode_item_format( 449 struct xfs_log_item *lip, 450 struct xfs_log_vec *lv) 451 { 452 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 453 struct xfs_inode *ip = iip->ili_inode; 454 struct xfs_log_iovec *vecp = NULL; 455 struct xfs_inode_log_format *ilf; 456 457 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 458 ilf->ilf_type = XFS_LI_INODE; 459 ilf->ilf_ino = ip->i_ino; 460 ilf->ilf_blkno = ip->i_imap.im_blkno; 461 ilf->ilf_len = ip->i_imap.im_len; 462 ilf->ilf_boffset = ip->i_imap.im_boffset; 463 ilf->ilf_fields = XFS_ILOG_CORE; 464 ilf->ilf_size = 2; /* format + core */ 465 466 /* 467 * make sure we don't leak uninitialised data into the log in the case 468 * when we don't log every field in the inode. 469 */ 470 ilf->ilf_dsize = 0; 471 ilf->ilf_asize = 0; 472 ilf->ilf_pad = 0; 473 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 474 475 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 476 477 xfs_inode_item_format_core(ip, lv, &vecp); 478 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 479 if (XFS_IFORK_Q(ip)) { 480 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 481 } else { 482 iip->ili_fields &= 483 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 484 } 485 486 /* update the format with the exact fields we actually logged */ 487 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 488 } 489 490 /* 491 * This is called to pin the inode associated with the inode log 492 * item in memory so it cannot be written out. 493 */ 494 STATIC void 495 xfs_inode_item_pin( 496 struct xfs_log_item *lip) 497 { 498 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 499 500 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 501 ASSERT(lip->li_buf); 502 503 trace_xfs_inode_pin(ip, _RET_IP_); 504 atomic_inc(&ip->i_pincount); 505 } 506 507 508 /* 509 * This is called to unpin the inode associated with the inode log 510 * item which was previously pinned with a call to xfs_inode_item_pin(). 511 * 512 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 513 * 514 * Note that unpin can race with inode cluster buffer freeing marking the buffer 515 * stale. In that case, flush completions are run from the buffer unpin call, 516 * which may happen before the inode is unpinned. If we lose the race, there 517 * will be no buffer attached to the log item, but the inode will be marked 518 * XFS_ISTALE. 519 */ 520 STATIC void 521 xfs_inode_item_unpin( 522 struct xfs_log_item *lip, 523 int remove) 524 { 525 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 526 527 trace_xfs_inode_unpin(ip, _RET_IP_); 528 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 529 ASSERT(atomic_read(&ip->i_pincount) > 0); 530 if (atomic_dec_and_test(&ip->i_pincount)) 531 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 532 } 533 534 STATIC uint 535 xfs_inode_item_push( 536 struct xfs_log_item *lip, 537 struct list_head *buffer_list) 538 __releases(&lip->li_ailp->ail_lock) 539 __acquires(&lip->li_ailp->ail_lock) 540 { 541 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 542 struct xfs_inode *ip = iip->ili_inode; 543 struct xfs_buf *bp = lip->li_buf; 544 uint rval = XFS_ITEM_SUCCESS; 545 int error; 546 547 if (!bp || (ip->i_flags & XFS_ISTALE)) { 548 /* 549 * Inode item/buffer is being being aborted due to cluster 550 * buffer deletion. Trigger a log force to have that operation 551 * completed and items removed from the AIL before the next push 552 * attempt. 553 */ 554 return XFS_ITEM_PINNED; 555 } 556 557 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) 558 return XFS_ITEM_PINNED; 559 560 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 561 return XFS_ITEM_FLUSHING; 562 563 if (!xfs_buf_trylock(bp)) 564 return XFS_ITEM_LOCKED; 565 566 spin_unlock(&lip->li_ailp->ail_lock); 567 568 /* 569 * We need to hold a reference for flushing the cluster buffer as it may 570 * fail the buffer without IO submission. In which case, we better get a 571 * reference for that completion because otherwise we don't get a 572 * reference for IO until we queue the buffer for delwri submission. 573 */ 574 xfs_buf_hold(bp); 575 error = xfs_iflush_cluster(bp); 576 if (!error) { 577 if (!xfs_buf_delwri_queue(bp, buffer_list)) 578 rval = XFS_ITEM_FLUSHING; 579 xfs_buf_relse(bp); 580 } else { 581 /* 582 * Release the buffer if we were unable to flush anything. On 583 * any other error, the buffer has already been released. 584 */ 585 if (error == -EAGAIN) 586 xfs_buf_relse(bp); 587 rval = XFS_ITEM_LOCKED; 588 } 589 590 spin_lock(&lip->li_ailp->ail_lock); 591 return rval; 592 } 593 594 /* 595 * Unlock the inode associated with the inode log item. 596 */ 597 STATIC void 598 xfs_inode_item_release( 599 struct xfs_log_item *lip) 600 { 601 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 602 struct xfs_inode *ip = iip->ili_inode; 603 unsigned short lock_flags; 604 605 ASSERT(ip->i_itemp != NULL); 606 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 607 608 lock_flags = iip->ili_lock_flags; 609 iip->ili_lock_flags = 0; 610 if (lock_flags) 611 xfs_iunlock(ip, lock_flags); 612 } 613 614 /* 615 * This is called to find out where the oldest active copy of the inode log 616 * item in the on disk log resides now that the last log write of it completed 617 * at the given lsn. Since we always re-log all dirty data in an inode, the 618 * latest copy in the on disk log is the only one that matters. Therefore, 619 * simply return the given lsn. 620 * 621 * If the inode has been marked stale because the cluster is being freed, we 622 * don't want to (re-)insert this inode into the AIL. There is a race condition 623 * where the cluster buffer may be unpinned before the inode is inserted into 624 * the AIL during transaction committed processing. If the buffer is unpinned 625 * before the inode item has been committed and inserted, then it is possible 626 * for the buffer to be written and IO completes before the inode is inserted 627 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 628 * AIL which will never get removed. It will, however, get reclaimed which 629 * triggers an assert in xfs_inode_free() complaining about freein an inode 630 * still in the AIL. 631 * 632 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 633 * transaction committed code knows that it does not need to do any further 634 * processing on the item. 635 */ 636 STATIC xfs_lsn_t 637 xfs_inode_item_committed( 638 struct xfs_log_item *lip, 639 xfs_lsn_t lsn) 640 { 641 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 642 struct xfs_inode *ip = iip->ili_inode; 643 644 if (xfs_iflags_test(ip, XFS_ISTALE)) { 645 xfs_inode_item_unpin(lip, 0); 646 return -1; 647 } 648 return lsn; 649 } 650 651 STATIC void 652 xfs_inode_item_committing( 653 struct xfs_log_item *lip, 654 xfs_csn_t seq) 655 { 656 INODE_ITEM(lip)->ili_commit_seq = seq; 657 return xfs_inode_item_release(lip); 658 } 659 660 static const struct xfs_item_ops xfs_inode_item_ops = { 661 .iop_size = xfs_inode_item_size, 662 .iop_format = xfs_inode_item_format, 663 .iop_pin = xfs_inode_item_pin, 664 .iop_unpin = xfs_inode_item_unpin, 665 .iop_release = xfs_inode_item_release, 666 .iop_committed = xfs_inode_item_committed, 667 .iop_push = xfs_inode_item_push, 668 .iop_committing = xfs_inode_item_committing, 669 }; 670 671 672 /* 673 * Initialize the inode log item for a newly allocated (in-core) inode. 674 */ 675 void 676 xfs_inode_item_init( 677 struct xfs_inode *ip, 678 struct xfs_mount *mp) 679 { 680 struct xfs_inode_log_item *iip; 681 682 ASSERT(ip->i_itemp == NULL); 683 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 684 GFP_KERNEL | __GFP_NOFAIL); 685 686 iip->ili_inode = ip; 687 spin_lock_init(&iip->ili_lock); 688 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 689 &xfs_inode_item_ops); 690 } 691 692 /* 693 * Free the inode log item and any memory hanging off of it. 694 */ 695 void 696 xfs_inode_item_destroy( 697 struct xfs_inode *ip) 698 { 699 struct xfs_inode_log_item *iip = ip->i_itemp; 700 701 ASSERT(iip->ili_item.li_buf == NULL); 702 703 ip->i_itemp = NULL; 704 kmem_free(iip->ili_item.li_lv_shadow); 705 kmem_cache_free(xfs_ili_cache, iip); 706 } 707 708 709 /* 710 * We only want to pull the item from the AIL if it is actually there 711 * and its location in the log has not changed since we started the 712 * flush. Thus, we only bother if the inode's lsn has not changed. 713 */ 714 static void 715 xfs_iflush_ail_updates( 716 struct xfs_ail *ailp, 717 struct list_head *list) 718 { 719 struct xfs_log_item *lip; 720 xfs_lsn_t tail_lsn = 0; 721 722 /* this is an opencoded batch version of xfs_trans_ail_delete */ 723 spin_lock(&ailp->ail_lock); 724 list_for_each_entry(lip, list, li_bio_list) { 725 xfs_lsn_t lsn; 726 727 clear_bit(XFS_LI_FAILED, &lip->li_flags); 728 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 729 continue; 730 731 /* 732 * dgc: Not sure how this happens, but it happens very 733 * occassionaly via generic/388. xfs_iflush_abort() also 734 * silently handles this same "under writeback but not in AIL at 735 * shutdown" condition via xfs_trans_ail_delete(). 736 */ 737 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 738 ASSERT(xlog_is_shutdown(lip->li_log)); 739 continue; 740 } 741 742 lsn = xfs_ail_delete_one(ailp, lip); 743 if (!tail_lsn && lsn) 744 tail_lsn = lsn; 745 } 746 xfs_ail_update_finish(ailp, tail_lsn); 747 } 748 749 /* 750 * Walk the list of inodes that have completed their IOs. If they are clean 751 * remove them from the list and dissociate them from the buffer. Buffers that 752 * are still dirty remain linked to the buffer and on the list. Caller must 753 * handle them appropriately. 754 */ 755 static void 756 xfs_iflush_finish( 757 struct xfs_buf *bp, 758 struct list_head *list) 759 { 760 struct xfs_log_item *lip, *n; 761 762 list_for_each_entry_safe(lip, n, list, li_bio_list) { 763 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 764 bool drop_buffer = false; 765 766 spin_lock(&iip->ili_lock); 767 768 /* 769 * Remove the reference to the cluster buffer if the inode is 770 * clean in memory and drop the buffer reference once we've 771 * dropped the locks we hold. 772 */ 773 ASSERT(iip->ili_item.li_buf == bp); 774 if (!iip->ili_fields) { 775 iip->ili_item.li_buf = NULL; 776 list_del_init(&lip->li_bio_list); 777 drop_buffer = true; 778 } 779 iip->ili_last_fields = 0; 780 iip->ili_flush_lsn = 0; 781 spin_unlock(&iip->ili_lock); 782 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 783 if (drop_buffer) 784 xfs_buf_rele(bp); 785 } 786 } 787 788 /* 789 * Inode buffer IO completion routine. It is responsible for removing inodes 790 * attached to the buffer from the AIL if they have not been re-logged and 791 * completing the inode flush. 792 */ 793 void 794 xfs_buf_inode_iodone( 795 struct xfs_buf *bp) 796 { 797 struct xfs_log_item *lip, *n; 798 LIST_HEAD(flushed_inodes); 799 LIST_HEAD(ail_updates); 800 801 /* 802 * Pull the attached inodes from the buffer one at a time and take the 803 * appropriate action on them. 804 */ 805 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 806 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 807 808 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 809 xfs_iflush_abort(iip->ili_inode); 810 continue; 811 } 812 if (!iip->ili_last_fields) 813 continue; 814 815 /* Do an unlocked check for needing the AIL lock. */ 816 if (iip->ili_flush_lsn == lip->li_lsn || 817 test_bit(XFS_LI_FAILED, &lip->li_flags)) 818 list_move_tail(&lip->li_bio_list, &ail_updates); 819 else 820 list_move_tail(&lip->li_bio_list, &flushed_inodes); 821 } 822 823 if (!list_empty(&ail_updates)) { 824 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 825 list_splice_tail(&ail_updates, &flushed_inodes); 826 } 827 828 xfs_iflush_finish(bp, &flushed_inodes); 829 if (!list_empty(&flushed_inodes)) 830 list_splice_tail(&flushed_inodes, &bp->b_li_list); 831 } 832 833 void 834 xfs_buf_inode_io_fail( 835 struct xfs_buf *bp) 836 { 837 struct xfs_log_item *lip; 838 839 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 840 set_bit(XFS_LI_FAILED, &lip->li_flags); 841 } 842 843 /* 844 * Clear the inode logging fields so no more flushes are attempted. If we are 845 * on a buffer list, it is now safe to remove it because the buffer is 846 * guaranteed to be locked. The caller will drop the reference to the buffer 847 * the log item held. 848 */ 849 static void 850 xfs_iflush_abort_clean( 851 struct xfs_inode_log_item *iip) 852 { 853 iip->ili_last_fields = 0; 854 iip->ili_fields = 0; 855 iip->ili_fsync_fields = 0; 856 iip->ili_flush_lsn = 0; 857 iip->ili_item.li_buf = NULL; 858 list_del_init(&iip->ili_item.li_bio_list); 859 } 860 861 /* 862 * Abort flushing the inode from a context holding the cluster buffer locked. 863 * 864 * This is the normal runtime method of aborting writeback of an inode that is 865 * attached to a cluster buffer. It occurs when the inode and the backing 866 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 867 * flushing or buffer IO completion encounters a log shutdown situation. 868 * 869 * If we need to abort inode writeback and we don't already hold the buffer 870 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 871 * necessary in a shutdown situation. 872 */ 873 void 874 xfs_iflush_abort( 875 struct xfs_inode *ip) 876 { 877 struct xfs_inode_log_item *iip = ip->i_itemp; 878 struct xfs_buf *bp; 879 880 if (!iip) { 881 /* clean inode, nothing to do */ 882 xfs_iflags_clear(ip, XFS_IFLUSHING); 883 return; 884 } 885 886 /* 887 * Remove the inode item from the AIL before we clear its internal 888 * state. Whilst the inode is in the AIL, it should have a valid buffer 889 * pointer for push operations to access - it is only safe to remove the 890 * inode from the buffer once it has been removed from the AIL. 891 * 892 * We also clear the failed bit before removing the item from the AIL 893 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer 894 * references the inode item owns and needs to hold until we've fully 895 * aborted the inode log item and detached it from the buffer. 896 */ 897 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 898 xfs_trans_ail_delete(&iip->ili_item, 0); 899 900 /* 901 * Grab the inode buffer so can we release the reference the inode log 902 * item holds on it. 903 */ 904 spin_lock(&iip->ili_lock); 905 bp = iip->ili_item.li_buf; 906 xfs_iflush_abort_clean(iip); 907 spin_unlock(&iip->ili_lock); 908 909 xfs_iflags_clear(ip, XFS_IFLUSHING); 910 if (bp) 911 xfs_buf_rele(bp); 912 } 913 914 /* 915 * Abort an inode flush in the case of a shutdown filesystem. This can be called 916 * from anywhere with just an inode reference and does not require holding the 917 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 918 * it will grab and lock it safely, then abort the inode flush. 919 */ 920 void 921 xfs_iflush_shutdown_abort( 922 struct xfs_inode *ip) 923 { 924 struct xfs_inode_log_item *iip = ip->i_itemp; 925 struct xfs_buf *bp; 926 927 if (!iip) { 928 /* clean inode, nothing to do */ 929 xfs_iflags_clear(ip, XFS_IFLUSHING); 930 return; 931 } 932 933 spin_lock(&iip->ili_lock); 934 bp = iip->ili_item.li_buf; 935 if (!bp) { 936 spin_unlock(&iip->ili_lock); 937 xfs_iflush_abort(ip); 938 return; 939 } 940 941 /* 942 * We have to take a reference to the buffer so that it doesn't get 943 * freed when we drop the ili_lock and then wait to lock the buffer. 944 * We'll clean up the extra reference after we pick up the ili_lock 945 * again. 946 */ 947 xfs_buf_hold(bp); 948 spin_unlock(&iip->ili_lock); 949 xfs_buf_lock(bp); 950 951 spin_lock(&iip->ili_lock); 952 if (!iip->ili_item.li_buf) { 953 /* 954 * Raced with another removal, hold the only reference 955 * to bp now. Inode should not be in the AIL now, so just clean 956 * up and return; 957 */ 958 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 959 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 960 xfs_iflush_abort_clean(iip); 961 spin_unlock(&iip->ili_lock); 962 xfs_iflags_clear(ip, XFS_IFLUSHING); 963 xfs_buf_relse(bp); 964 return; 965 } 966 967 /* 968 * Got two references to bp. The first will get dropped by 969 * xfs_iflush_abort() when the item is removed from the buffer list, but 970 * we can't drop our reference until _abort() returns because we have to 971 * unlock the buffer as well. Hence we abort and then unlock and release 972 * our reference to the buffer. 973 */ 974 ASSERT(iip->ili_item.li_buf == bp); 975 spin_unlock(&iip->ili_lock); 976 xfs_iflush_abort(ip); 977 xfs_buf_relse(bp); 978 } 979 980 981 /* 982 * convert an xfs_inode_log_format struct from the old 32 bit version 983 * (which can have different field alignments) to the native 64 bit version 984 */ 985 int 986 xfs_inode_item_format_convert( 987 struct xfs_log_iovec *buf, 988 struct xfs_inode_log_format *in_f) 989 { 990 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 991 992 if (buf->i_len != sizeof(*in_f32)) { 993 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 994 return -EFSCORRUPTED; 995 } 996 997 in_f->ilf_type = in_f32->ilf_type; 998 in_f->ilf_size = in_f32->ilf_size; 999 in_f->ilf_fields = in_f32->ilf_fields; 1000 in_f->ilf_asize = in_f32->ilf_asize; 1001 in_f->ilf_dsize = in_f32->ilf_dsize; 1002 in_f->ilf_ino = in_f32->ilf_ino; 1003 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1004 in_f->ilf_blkno = in_f32->ilf_blkno; 1005 in_f->ilf_len = in_f32->ilf_len; 1006 in_f->ilf_boffset = in_f32->ilf_boffset; 1007 return 0; 1008 } 1009