1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_bmap_btree.h" 28 #include "xfs_dinode.h" 29 #include "xfs_inode.h" 30 #include "xfs_inode_item.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 35 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 36 37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 38 { 39 return container_of(lip, struct xfs_inode_log_item, ili_item); 40 } 41 42 43 /* 44 * This returns the number of iovecs needed to log the given inode item. 45 * 46 * We need one iovec for the inode log format structure, one for the 47 * inode core, and possibly one for the inode data/extents/b-tree root 48 * and one for the inode attribute data/extents/b-tree root. 49 */ 50 STATIC uint 51 xfs_inode_item_size( 52 struct xfs_log_item *lip) 53 { 54 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 55 struct xfs_inode *ip = iip->ili_inode; 56 uint nvecs = 2; 57 58 switch (ip->i_d.di_format) { 59 case XFS_DINODE_FMT_EXTENTS: 60 if ((iip->ili_fields & XFS_ILOG_DEXT) && 61 ip->i_d.di_nextents > 0 && 62 ip->i_df.if_bytes > 0) 63 nvecs++; 64 break; 65 66 case XFS_DINODE_FMT_BTREE: 67 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 68 ip->i_df.if_broot_bytes > 0) 69 nvecs++; 70 break; 71 72 case XFS_DINODE_FMT_LOCAL: 73 if ((iip->ili_fields & XFS_ILOG_DDATA) && 74 ip->i_df.if_bytes > 0) 75 nvecs++; 76 break; 77 78 case XFS_DINODE_FMT_DEV: 79 case XFS_DINODE_FMT_UUID: 80 break; 81 82 default: 83 ASSERT(0); 84 break; 85 } 86 87 if (!XFS_IFORK_Q(ip)) 88 return nvecs; 89 90 91 /* 92 * Log any necessary attribute data. 93 */ 94 switch (ip->i_d.di_aformat) { 95 case XFS_DINODE_FMT_EXTENTS: 96 if ((iip->ili_fields & XFS_ILOG_AEXT) && 97 ip->i_d.di_anextents > 0 && 98 ip->i_afp->if_bytes > 0) 99 nvecs++; 100 break; 101 102 case XFS_DINODE_FMT_BTREE: 103 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 104 ip->i_afp->if_broot_bytes > 0) 105 nvecs++; 106 break; 107 108 case XFS_DINODE_FMT_LOCAL: 109 if ((iip->ili_fields & XFS_ILOG_ADATA) && 110 ip->i_afp->if_bytes > 0) 111 nvecs++; 112 break; 113 114 default: 115 ASSERT(0); 116 break; 117 } 118 119 return nvecs; 120 } 121 122 /* 123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form 124 * 125 * For either the data or attr fork in extent format, we need to endian convert 126 * the in-core extent as we place them into the on-disk inode. In this case, we 127 * need to do this conversion before we write the extents into the log. Because 128 * we don't have the disk inode to write into here, we allocate a buffer and 129 * format the extents into it via xfs_iextents_copy(). We free the buffer in 130 * the unlock routine after the copy for the log has been made. 131 * 132 * In the case of the data fork, the in-core and on-disk fork sizes can be 133 * different due to delayed allocation extents. We only log on-disk extents 134 * here, so always use the physical fork size to determine the size of the 135 * buffer we need to allocate. 136 */ 137 STATIC void 138 xfs_inode_item_format_extents( 139 struct xfs_inode *ip, 140 struct xfs_log_iovec *vecp, 141 int whichfork, 142 int type) 143 { 144 xfs_bmbt_rec_t *ext_buffer; 145 146 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); 147 if (whichfork == XFS_DATA_FORK) 148 ip->i_itemp->ili_extents_buf = ext_buffer; 149 else 150 ip->i_itemp->ili_aextents_buf = ext_buffer; 151 152 vecp->i_addr = ext_buffer; 153 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); 154 vecp->i_type = type; 155 } 156 157 /* 158 * This is called to fill in the vector of log iovecs for the 159 * given inode log item. It fills the first item with an inode 160 * log format structure, the second with the on-disk inode structure, 161 * and a possible third and/or fourth with the inode data/extents/b-tree 162 * root and inode attributes data/extents/b-tree root. 163 */ 164 STATIC void 165 xfs_inode_item_format( 166 struct xfs_log_item *lip, 167 struct xfs_log_iovec *vecp) 168 { 169 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 170 struct xfs_inode *ip = iip->ili_inode; 171 uint nvecs; 172 size_t data_bytes; 173 xfs_mount_t *mp; 174 175 vecp->i_addr = &iip->ili_format; 176 vecp->i_len = sizeof(xfs_inode_log_format_t); 177 vecp->i_type = XLOG_REG_TYPE_IFORMAT; 178 vecp++; 179 nvecs = 1; 180 181 vecp->i_addr = &ip->i_d; 182 vecp->i_len = sizeof(struct xfs_icdinode); 183 vecp->i_type = XLOG_REG_TYPE_ICORE; 184 vecp++; 185 nvecs++; 186 187 /* 188 * If this is really an old format inode, then we need to 189 * log it as such. This means that we have to copy the link 190 * count from the new field to the old. We don't have to worry 191 * about the new fields, because nothing trusts them as long as 192 * the old inode version number is there. If the superblock already 193 * has a new version number, then we don't bother converting back. 194 */ 195 mp = ip->i_mount; 196 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 197 if (ip->i_d.di_version == 1) { 198 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 199 /* 200 * Convert it back. 201 */ 202 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 203 ip->i_d.di_onlink = ip->i_d.di_nlink; 204 } else { 205 /* 206 * The superblock version has already been bumped, 207 * so just make the conversion to the new inode 208 * format permanent. 209 */ 210 ip->i_d.di_version = 2; 211 ip->i_d.di_onlink = 0; 212 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 213 } 214 } 215 216 switch (ip->i_d.di_format) { 217 case XFS_DINODE_FMT_EXTENTS: 218 iip->ili_fields &= 219 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 220 XFS_ILOG_DEV | XFS_ILOG_UUID); 221 222 if ((iip->ili_fields & XFS_ILOG_DEXT) && 223 ip->i_d.di_nextents > 0 && 224 ip->i_df.if_bytes > 0) { 225 ASSERT(ip->i_df.if_u1.if_extents != NULL); 226 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); 227 ASSERT(iip->ili_extents_buf == NULL); 228 229 #ifdef XFS_NATIVE_HOST 230 if (ip->i_d.di_nextents == ip->i_df.if_bytes / 231 (uint)sizeof(xfs_bmbt_rec_t)) { 232 /* 233 * There are no delayed allocation 234 * extents, so just point to the 235 * real extents array. 236 */ 237 vecp->i_addr = ip->i_df.if_u1.if_extents; 238 vecp->i_len = ip->i_df.if_bytes; 239 vecp->i_type = XLOG_REG_TYPE_IEXT; 240 } else 241 #endif 242 { 243 xfs_inode_item_format_extents(ip, vecp, 244 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); 245 } 246 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 247 iip->ili_format.ilf_dsize = vecp->i_len; 248 vecp++; 249 nvecs++; 250 } else { 251 iip->ili_fields &= ~XFS_ILOG_DEXT; 252 } 253 break; 254 255 case XFS_DINODE_FMT_BTREE: 256 iip->ili_fields &= 257 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 258 XFS_ILOG_DEV | XFS_ILOG_UUID); 259 260 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 261 ip->i_df.if_broot_bytes > 0) { 262 ASSERT(ip->i_df.if_broot != NULL); 263 vecp->i_addr = ip->i_df.if_broot; 264 vecp->i_len = ip->i_df.if_broot_bytes; 265 vecp->i_type = XLOG_REG_TYPE_IBROOT; 266 vecp++; 267 nvecs++; 268 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 269 } else { 270 ASSERT(!(iip->ili_fields & 271 XFS_ILOG_DBROOT)); 272 #ifdef XFS_TRANS_DEBUG 273 if (iip->ili_root_size > 0) { 274 ASSERT(iip->ili_root_size == 275 ip->i_df.if_broot_bytes); 276 ASSERT(memcmp(iip->ili_orig_root, 277 ip->i_df.if_broot, 278 iip->ili_root_size) == 0); 279 } else { 280 ASSERT(ip->i_df.if_broot_bytes == 0); 281 } 282 #endif 283 iip->ili_fields &= ~XFS_ILOG_DBROOT; 284 } 285 break; 286 287 case XFS_DINODE_FMT_LOCAL: 288 iip->ili_fields &= 289 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 290 XFS_ILOG_DEV | XFS_ILOG_UUID); 291 if ((iip->ili_fields & XFS_ILOG_DDATA) && 292 ip->i_df.if_bytes > 0) { 293 ASSERT(ip->i_df.if_u1.if_data != NULL); 294 ASSERT(ip->i_d.di_size > 0); 295 296 vecp->i_addr = ip->i_df.if_u1.if_data; 297 /* 298 * Round i_bytes up to a word boundary. 299 * The underlying memory is guaranteed to 300 * to be there by xfs_idata_realloc(). 301 */ 302 data_bytes = roundup(ip->i_df.if_bytes, 4); 303 ASSERT((ip->i_df.if_real_bytes == 0) || 304 (ip->i_df.if_real_bytes == data_bytes)); 305 vecp->i_len = (int)data_bytes; 306 vecp->i_type = XLOG_REG_TYPE_ILOCAL; 307 vecp++; 308 nvecs++; 309 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 310 } else { 311 iip->ili_fields &= ~XFS_ILOG_DDATA; 312 } 313 break; 314 315 case XFS_DINODE_FMT_DEV: 316 iip->ili_fields &= 317 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 318 XFS_ILOG_DEXT | XFS_ILOG_UUID); 319 if (iip->ili_fields & XFS_ILOG_DEV) { 320 iip->ili_format.ilf_u.ilfu_rdev = 321 ip->i_df.if_u2.if_rdev; 322 } 323 break; 324 325 case XFS_DINODE_FMT_UUID: 326 iip->ili_fields &= 327 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 328 XFS_ILOG_DEXT | XFS_ILOG_DEV); 329 if (iip->ili_fields & XFS_ILOG_UUID) { 330 iip->ili_format.ilf_u.ilfu_uuid = 331 ip->i_df.if_u2.if_uuid; 332 } 333 break; 334 335 default: 336 ASSERT(0); 337 break; 338 } 339 340 /* 341 * If there are no attributes associated with the file, then we're done. 342 */ 343 if (!XFS_IFORK_Q(ip)) { 344 iip->ili_fields &= 345 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 346 goto out; 347 } 348 349 switch (ip->i_d.di_aformat) { 350 case XFS_DINODE_FMT_EXTENTS: 351 iip->ili_fields &= 352 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 353 354 if ((iip->ili_fields & XFS_ILOG_AEXT) && 355 ip->i_d.di_anextents > 0 && 356 ip->i_afp->if_bytes > 0) { 357 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == 358 ip->i_d.di_anextents); 359 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 360 #ifdef XFS_NATIVE_HOST 361 /* 362 * There are not delayed allocation extents 363 * for attributes, so just point at the array. 364 */ 365 vecp->i_addr = ip->i_afp->if_u1.if_extents; 366 vecp->i_len = ip->i_afp->if_bytes; 367 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; 368 #else 369 ASSERT(iip->ili_aextents_buf == NULL); 370 xfs_inode_item_format_extents(ip, vecp, 371 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); 372 #endif 373 iip->ili_format.ilf_asize = vecp->i_len; 374 vecp++; 375 nvecs++; 376 } else { 377 iip->ili_fields &= ~XFS_ILOG_AEXT; 378 } 379 break; 380 381 case XFS_DINODE_FMT_BTREE: 382 iip->ili_fields &= 383 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 384 385 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 386 ip->i_afp->if_broot_bytes > 0) { 387 ASSERT(ip->i_afp->if_broot != NULL); 388 389 vecp->i_addr = ip->i_afp->if_broot; 390 vecp->i_len = ip->i_afp->if_broot_bytes; 391 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; 392 vecp++; 393 nvecs++; 394 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 395 } else { 396 iip->ili_fields &= ~XFS_ILOG_ABROOT; 397 } 398 break; 399 400 case XFS_DINODE_FMT_LOCAL: 401 iip->ili_fields &= 402 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 403 404 if ((iip->ili_fields & XFS_ILOG_ADATA) && 405 ip->i_afp->if_bytes > 0) { 406 ASSERT(ip->i_afp->if_u1.if_data != NULL); 407 408 vecp->i_addr = ip->i_afp->if_u1.if_data; 409 /* 410 * Round i_bytes up to a word boundary. 411 * The underlying memory is guaranteed to 412 * to be there by xfs_idata_realloc(). 413 */ 414 data_bytes = roundup(ip->i_afp->if_bytes, 4); 415 ASSERT((ip->i_afp->if_real_bytes == 0) || 416 (ip->i_afp->if_real_bytes == data_bytes)); 417 vecp->i_len = (int)data_bytes; 418 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; 419 vecp++; 420 nvecs++; 421 iip->ili_format.ilf_asize = (unsigned)data_bytes; 422 } else { 423 iip->ili_fields &= ~XFS_ILOG_ADATA; 424 } 425 break; 426 427 default: 428 ASSERT(0); 429 break; 430 } 431 432 out: 433 /* 434 * Now update the log format that goes out to disk from the in-core 435 * values. We always write the inode core to make the arithmetic 436 * games in recovery easier, which isn't a big deal as just about any 437 * transaction would dirty it anyway. 438 */ 439 iip->ili_format.ilf_fields = XFS_ILOG_CORE | 440 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 441 iip->ili_format.ilf_size = nvecs; 442 } 443 444 445 /* 446 * This is called to pin the inode associated with the inode log 447 * item in memory so it cannot be written out. 448 */ 449 STATIC void 450 xfs_inode_item_pin( 451 struct xfs_log_item *lip) 452 { 453 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 454 455 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 456 457 trace_xfs_inode_pin(ip, _RET_IP_); 458 atomic_inc(&ip->i_pincount); 459 } 460 461 462 /* 463 * This is called to unpin the inode associated with the inode log 464 * item which was previously pinned with a call to xfs_inode_item_pin(). 465 * 466 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 467 */ 468 STATIC void 469 xfs_inode_item_unpin( 470 struct xfs_log_item *lip, 471 int remove) 472 { 473 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 474 475 trace_xfs_inode_unpin(ip, _RET_IP_); 476 ASSERT(atomic_read(&ip->i_pincount) > 0); 477 if (atomic_dec_and_test(&ip->i_pincount)) 478 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 479 } 480 481 STATIC uint 482 xfs_inode_item_push( 483 struct xfs_log_item *lip, 484 struct list_head *buffer_list) 485 { 486 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 487 struct xfs_inode *ip = iip->ili_inode; 488 struct xfs_buf *bp = NULL; 489 uint rval = XFS_ITEM_SUCCESS; 490 int error; 491 492 if (xfs_ipincount(ip) > 0) 493 return XFS_ITEM_PINNED; 494 495 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 496 return XFS_ITEM_LOCKED; 497 498 /* 499 * Re-check the pincount now that we stabilized the value by 500 * taking the ilock. 501 */ 502 if (xfs_ipincount(ip) > 0) { 503 rval = XFS_ITEM_PINNED; 504 goto out_unlock; 505 } 506 507 /* 508 * Stale inode items should force out the iclog. 509 */ 510 if (ip->i_flags & XFS_ISTALE) { 511 rval = XFS_ITEM_PINNED; 512 goto out_unlock; 513 } 514 515 /* 516 * Someone else is already flushing the inode. Nothing we can do 517 * here but wait for the flush to finish and remove the item from 518 * the AIL. 519 */ 520 if (!xfs_iflock_nowait(ip)) { 521 rval = XFS_ITEM_FLUSHING; 522 goto out_unlock; 523 } 524 525 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 526 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 527 528 spin_unlock(&lip->li_ailp->xa_lock); 529 530 error = xfs_iflush(ip, &bp); 531 if (!error) { 532 if (!xfs_buf_delwri_queue(bp, buffer_list)) 533 rval = XFS_ITEM_FLUSHING; 534 xfs_buf_relse(bp); 535 } 536 537 spin_lock(&lip->li_ailp->xa_lock); 538 out_unlock: 539 xfs_iunlock(ip, XFS_ILOCK_SHARED); 540 return rval; 541 } 542 543 /* 544 * Unlock the inode associated with the inode log item. 545 * Clear the fields of the inode and inode log item that 546 * are specific to the current transaction. If the 547 * hold flags is set, do not unlock the inode. 548 */ 549 STATIC void 550 xfs_inode_item_unlock( 551 struct xfs_log_item *lip) 552 { 553 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 554 struct xfs_inode *ip = iip->ili_inode; 555 unsigned short lock_flags; 556 557 ASSERT(ip->i_itemp != NULL); 558 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 559 560 /* 561 * If the inode needed a separate buffer with which to log 562 * its extents, then free it now. 563 */ 564 if (iip->ili_extents_buf != NULL) { 565 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 566 ASSERT(ip->i_d.di_nextents > 0); 567 ASSERT(iip->ili_fields & XFS_ILOG_DEXT); 568 ASSERT(ip->i_df.if_bytes > 0); 569 kmem_free(iip->ili_extents_buf); 570 iip->ili_extents_buf = NULL; 571 } 572 if (iip->ili_aextents_buf != NULL) { 573 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 574 ASSERT(ip->i_d.di_anextents > 0); 575 ASSERT(iip->ili_fields & XFS_ILOG_AEXT); 576 ASSERT(ip->i_afp->if_bytes > 0); 577 kmem_free(iip->ili_aextents_buf); 578 iip->ili_aextents_buf = NULL; 579 } 580 581 lock_flags = iip->ili_lock_flags; 582 iip->ili_lock_flags = 0; 583 if (lock_flags) 584 xfs_iunlock(ip, lock_flags); 585 } 586 587 /* 588 * This is called to find out where the oldest active copy of the inode log 589 * item in the on disk log resides now that the last log write of it completed 590 * at the given lsn. Since we always re-log all dirty data in an inode, the 591 * latest copy in the on disk log is the only one that matters. Therefore, 592 * simply return the given lsn. 593 * 594 * If the inode has been marked stale because the cluster is being freed, we 595 * don't want to (re-)insert this inode into the AIL. There is a race condition 596 * where the cluster buffer may be unpinned before the inode is inserted into 597 * the AIL during transaction committed processing. If the buffer is unpinned 598 * before the inode item has been committed and inserted, then it is possible 599 * for the buffer to be written and IO completes before the inode is inserted 600 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 601 * AIL which will never get removed. It will, however, get reclaimed which 602 * triggers an assert in xfs_inode_free() complaining about freein an inode 603 * still in the AIL. 604 * 605 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 606 * transaction committed code knows that it does not need to do any further 607 * processing on the item. 608 */ 609 STATIC xfs_lsn_t 610 xfs_inode_item_committed( 611 struct xfs_log_item *lip, 612 xfs_lsn_t lsn) 613 { 614 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 615 struct xfs_inode *ip = iip->ili_inode; 616 617 if (xfs_iflags_test(ip, XFS_ISTALE)) { 618 xfs_inode_item_unpin(lip, 0); 619 return -1; 620 } 621 return lsn; 622 } 623 624 /* 625 * XXX rcc - this one really has to do something. Probably needs 626 * to stamp in a new field in the incore inode. 627 */ 628 STATIC void 629 xfs_inode_item_committing( 630 struct xfs_log_item *lip, 631 xfs_lsn_t lsn) 632 { 633 INODE_ITEM(lip)->ili_last_lsn = lsn; 634 } 635 636 /* 637 * This is the ops vector shared by all buf log items. 638 */ 639 static const struct xfs_item_ops xfs_inode_item_ops = { 640 .iop_size = xfs_inode_item_size, 641 .iop_format = xfs_inode_item_format, 642 .iop_pin = xfs_inode_item_pin, 643 .iop_unpin = xfs_inode_item_unpin, 644 .iop_unlock = xfs_inode_item_unlock, 645 .iop_committed = xfs_inode_item_committed, 646 .iop_push = xfs_inode_item_push, 647 .iop_committing = xfs_inode_item_committing 648 }; 649 650 651 /* 652 * Initialize the inode log item for a newly allocated (in-core) inode. 653 */ 654 void 655 xfs_inode_item_init( 656 struct xfs_inode *ip, 657 struct xfs_mount *mp) 658 { 659 struct xfs_inode_log_item *iip; 660 661 ASSERT(ip->i_itemp == NULL); 662 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 663 664 iip->ili_inode = ip; 665 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 666 &xfs_inode_item_ops); 667 iip->ili_format.ilf_type = XFS_LI_INODE; 668 iip->ili_format.ilf_ino = ip->i_ino; 669 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; 670 iip->ili_format.ilf_len = ip->i_imap.im_len; 671 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; 672 } 673 674 /* 675 * Free the inode log item and any memory hanging off of it. 676 */ 677 void 678 xfs_inode_item_destroy( 679 xfs_inode_t *ip) 680 { 681 #ifdef XFS_TRANS_DEBUG 682 if (ip->i_itemp->ili_root_size != 0) { 683 kmem_free(ip->i_itemp->ili_orig_root); 684 } 685 #endif 686 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 687 } 688 689 690 /* 691 * This is the inode flushing I/O completion routine. It is called 692 * from interrupt level when the buffer containing the inode is 693 * flushed to disk. It is responsible for removing the inode item 694 * from the AIL if it has not been re-logged, and unlocking the inode's 695 * flush lock. 696 * 697 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 698 * list for other inodes that will run this function. We remove them from the 699 * buffer list so we can process all the inode IO completions in one AIL lock 700 * traversal. 701 */ 702 void 703 xfs_iflush_done( 704 struct xfs_buf *bp, 705 struct xfs_log_item *lip) 706 { 707 struct xfs_inode_log_item *iip; 708 struct xfs_log_item *blip; 709 struct xfs_log_item *next; 710 struct xfs_log_item *prev; 711 struct xfs_ail *ailp = lip->li_ailp; 712 int need_ail = 0; 713 714 /* 715 * Scan the buffer IO completions for other inodes being completed and 716 * attach them to the current inode log item. 717 */ 718 blip = bp->b_fspriv; 719 prev = NULL; 720 while (blip != NULL) { 721 if (lip->li_cb != xfs_iflush_done) { 722 prev = blip; 723 blip = blip->li_bio_list; 724 continue; 725 } 726 727 /* remove from list */ 728 next = blip->li_bio_list; 729 if (!prev) { 730 bp->b_fspriv = next; 731 } else { 732 prev->li_bio_list = next; 733 } 734 735 /* add to current list */ 736 blip->li_bio_list = lip->li_bio_list; 737 lip->li_bio_list = blip; 738 739 /* 740 * while we have the item, do the unlocked check for needing 741 * the AIL lock. 742 */ 743 iip = INODE_ITEM(blip); 744 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 745 need_ail++; 746 747 blip = next; 748 } 749 750 /* make sure we capture the state of the initial inode. */ 751 iip = INODE_ITEM(lip); 752 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 753 need_ail++; 754 755 /* 756 * We only want to pull the item from the AIL if it is 757 * actually there and its location in the log has not 758 * changed since we started the flush. Thus, we only bother 759 * if the ili_logged flag is set and the inode's lsn has not 760 * changed. First we check the lsn outside 761 * the lock since it's cheaper, and then we recheck while 762 * holding the lock before removing the inode from the AIL. 763 */ 764 if (need_ail) { 765 struct xfs_log_item *log_items[need_ail]; 766 int i = 0; 767 spin_lock(&ailp->xa_lock); 768 for (blip = lip; blip; blip = blip->li_bio_list) { 769 iip = INODE_ITEM(blip); 770 if (iip->ili_logged && 771 blip->li_lsn == iip->ili_flush_lsn) { 772 log_items[i++] = blip; 773 } 774 ASSERT(i <= need_ail); 775 } 776 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 777 xfs_trans_ail_delete_bulk(ailp, log_items, i, 778 SHUTDOWN_CORRUPT_INCORE); 779 } 780 781 782 /* 783 * clean up and unlock the flush lock now we are done. We can clear the 784 * ili_last_fields bits now that we know that the data corresponding to 785 * them is safely on disk. 786 */ 787 for (blip = lip; blip; blip = next) { 788 next = blip->li_bio_list; 789 blip->li_bio_list = NULL; 790 791 iip = INODE_ITEM(blip); 792 iip->ili_logged = 0; 793 iip->ili_last_fields = 0; 794 xfs_ifunlock(iip->ili_inode); 795 } 796 } 797 798 /* 799 * This is the inode flushing abort routine. It is called from xfs_iflush when 800 * the filesystem is shutting down to clean up the inode state. It is 801 * responsible for removing the inode item from the AIL if it has not been 802 * re-logged, and unlocking the inode's flush lock. 803 */ 804 void 805 xfs_iflush_abort( 806 xfs_inode_t *ip, 807 bool stale) 808 { 809 xfs_inode_log_item_t *iip = ip->i_itemp; 810 811 if (iip) { 812 struct xfs_ail *ailp = iip->ili_item.li_ailp; 813 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 814 spin_lock(&ailp->xa_lock); 815 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 816 /* xfs_trans_ail_delete() drops the AIL lock. */ 817 xfs_trans_ail_delete(ailp, &iip->ili_item, 818 stale ? 819 SHUTDOWN_LOG_IO_ERROR : 820 SHUTDOWN_CORRUPT_INCORE); 821 } else 822 spin_unlock(&ailp->xa_lock); 823 } 824 iip->ili_logged = 0; 825 /* 826 * Clear the ili_last_fields bits now that we know that the 827 * data corresponding to them is safely on disk. 828 */ 829 iip->ili_last_fields = 0; 830 /* 831 * Clear the inode logging fields so no more flushes are 832 * attempted. 833 */ 834 iip->ili_fields = 0; 835 } 836 /* 837 * Release the inode's flush lock since we're done with it. 838 */ 839 xfs_ifunlock(ip); 840 } 841 842 void 843 xfs_istale_done( 844 struct xfs_buf *bp, 845 struct xfs_log_item *lip) 846 { 847 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 848 } 849 850 /* 851 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 852 * (which can have different field alignments) to the native version 853 */ 854 int 855 xfs_inode_item_format_convert( 856 xfs_log_iovec_t *buf, 857 xfs_inode_log_format_t *in_f) 858 { 859 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 860 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 861 862 in_f->ilf_type = in_f32->ilf_type; 863 in_f->ilf_size = in_f32->ilf_size; 864 in_f->ilf_fields = in_f32->ilf_fields; 865 in_f->ilf_asize = in_f32->ilf_asize; 866 in_f->ilf_dsize = in_f32->ilf_dsize; 867 in_f->ilf_ino = in_f32->ilf_ino; 868 /* copy biggest field of ilf_u */ 869 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 870 in_f32->ilf_u.ilfu_uuid.__u_bits, 871 sizeof(uuid_t)); 872 in_f->ilf_blkno = in_f32->ilf_blkno; 873 in_f->ilf_len = in_f32->ilf_len; 874 in_f->ilf_boffset = in_f32->ilf_boffset; 875 return 0; 876 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 877 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 878 879 in_f->ilf_type = in_f64->ilf_type; 880 in_f->ilf_size = in_f64->ilf_size; 881 in_f->ilf_fields = in_f64->ilf_fields; 882 in_f->ilf_asize = in_f64->ilf_asize; 883 in_f->ilf_dsize = in_f64->ilf_dsize; 884 in_f->ilf_ino = in_f64->ilf_ino; 885 /* copy biggest field of ilf_u */ 886 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 887 in_f64->ilf_u.ilfu_uuid.__u_bits, 888 sizeof(uuid_t)); 889 in_f->ilf_blkno = in_f64->ilf_blkno; 890 in_f->ilf_len = in_f64->ilf_len; 891 in_f->ilf_boffset = in_f64->ilf_boffset; 892 return 0; 893 } 894 return EFSCORRUPTED; 895 } 896