1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 23 #include <linux/iversion.h> 24 25 struct kmem_cache *xfs_ili_cache; /* inode log item */ 26 27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 28 { 29 return container_of(lip, struct xfs_inode_log_item, ili_item); 30 } 31 32 /* 33 * The logged size of an inode fork is always the current size of the inode 34 * fork. This means that when an inode fork is relogged, the size of the logged 35 * region is determined by the current state, not the combination of the 36 * previously logged state + the current state. This is different relogging 37 * behaviour to most other log items which will retain the size of the 38 * previously logged changes when smaller regions are relogged. 39 * 40 * Hence operations that remove data from the inode fork (e.g. shortform 41 * dir/attr remove, extent form extent removal, etc), the size of the relogged 42 * inode gets -smaller- rather than stays the same size as the previously logged 43 * size and this can result in the committing transaction reducing the amount of 44 * space being consumed by the CIL. 45 */ 46 STATIC void 47 xfs_inode_item_data_fork_size( 48 struct xfs_inode_log_item *iip, 49 int *nvecs, 50 int *nbytes) 51 { 52 struct xfs_inode *ip = iip->ili_inode; 53 54 switch (ip->i_df.if_format) { 55 case XFS_DINODE_FMT_EXTENTS: 56 if ((iip->ili_fields & XFS_ILOG_DEXT) && 57 ip->i_df.if_nextents > 0 && 58 ip->i_df.if_bytes > 0) { 59 /* worst case, doesn't subtract delalloc extents */ 60 *nbytes += XFS_IFORK_DSIZE(ip); 61 *nvecs += 1; 62 } 63 break; 64 case XFS_DINODE_FMT_BTREE: 65 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 66 ip->i_df.if_broot_bytes > 0) { 67 *nbytes += ip->i_df.if_broot_bytes; 68 *nvecs += 1; 69 } 70 break; 71 case XFS_DINODE_FMT_LOCAL: 72 if ((iip->ili_fields & XFS_ILOG_DDATA) && 73 ip->i_df.if_bytes > 0) { 74 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); 75 *nvecs += 1; 76 } 77 break; 78 79 case XFS_DINODE_FMT_DEV: 80 break; 81 default: 82 ASSERT(0); 83 break; 84 } 85 } 86 87 STATIC void 88 xfs_inode_item_attr_fork_size( 89 struct xfs_inode_log_item *iip, 90 int *nvecs, 91 int *nbytes) 92 { 93 struct xfs_inode *ip = iip->ili_inode; 94 95 switch (ip->i_afp->if_format) { 96 case XFS_DINODE_FMT_EXTENTS: 97 if ((iip->ili_fields & XFS_ILOG_AEXT) && 98 ip->i_afp->if_nextents > 0 && 99 ip->i_afp->if_bytes > 0) { 100 /* worst case, doesn't subtract unused space */ 101 *nbytes += XFS_IFORK_ASIZE(ip); 102 *nvecs += 1; 103 } 104 break; 105 case XFS_DINODE_FMT_BTREE: 106 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 107 ip->i_afp->if_broot_bytes > 0) { 108 *nbytes += ip->i_afp->if_broot_bytes; 109 *nvecs += 1; 110 } 111 break; 112 case XFS_DINODE_FMT_LOCAL: 113 if ((iip->ili_fields & XFS_ILOG_ADATA) && 114 ip->i_afp->if_bytes > 0) { 115 *nbytes += xlog_calc_iovec_len(ip->i_afp->if_bytes); 116 *nvecs += 1; 117 } 118 break; 119 default: 120 ASSERT(0); 121 break; 122 } 123 } 124 125 /* 126 * This returns the number of iovecs needed to log the given inode item. 127 * 128 * We need one iovec for the inode log format structure, one for the 129 * inode core, and possibly one for the inode data/extents/b-tree root 130 * and one for the inode attribute data/extents/b-tree root. 131 */ 132 STATIC void 133 xfs_inode_item_size( 134 struct xfs_log_item *lip, 135 int *nvecs, 136 int *nbytes) 137 { 138 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 139 struct xfs_inode *ip = iip->ili_inode; 140 141 *nvecs += 2; 142 *nbytes += sizeof(struct xfs_inode_log_format) + 143 xfs_log_dinode_size(ip->i_mount); 144 145 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 146 if (XFS_IFORK_Q(ip)) 147 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 148 } 149 150 STATIC void 151 xfs_inode_item_format_data_fork( 152 struct xfs_inode_log_item *iip, 153 struct xfs_inode_log_format *ilf, 154 struct xfs_log_vec *lv, 155 struct xfs_log_iovec **vecp) 156 { 157 struct xfs_inode *ip = iip->ili_inode; 158 size_t data_bytes; 159 160 switch (ip->i_df.if_format) { 161 case XFS_DINODE_FMT_EXTENTS: 162 iip->ili_fields &= 163 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 164 165 if ((iip->ili_fields & XFS_ILOG_DEXT) && 166 ip->i_df.if_nextents > 0 && 167 ip->i_df.if_bytes > 0) { 168 struct xfs_bmbt_rec *p; 169 170 ASSERT(xfs_iext_count(&ip->i_df) > 0); 171 172 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 173 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 174 xlog_finish_iovec(lv, *vecp, data_bytes); 175 176 ASSERT(data_bytes <= ip->i_df.if_bytes); 177 178 ilf->ilf_dsize = data_bytes; 179 ilf->ilf_size++; 180 } else { 181 iip->ili_fields &= ~XFS_ILOG_DEXT; 182 } 183 break; 184 case XFS_DINODE_FMT_BTREE: 185 iip->ili_fields &= 186 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 187 188 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 189 ip->i_df.if_broot_bytes > 0) { 190 ASSERT(ip->i_df.if_broot != NULL); 191 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 192 ip->i_df.if_broot, 193 ip->i_df.if_broot_bytes); 194 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 195 ilf->ilf_size++; 196 } else { 197 ASSERT(!(iip->ili_fields & 198 XFS_ILOG_DBROOT)); 199 iip->ili_fields &= ~XFS_ILOG_DBROOT; 200 } 201 break; 202 case XFS_DINODE_FMT_LOCAL: 203 iip->ili_fields &= 204 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 205 if ((iip->ili_fields & XFS_ILOG_DDATA) && 206 ip->i_df.if_bytes > 0) { 207 ASSERT(ip->i_df.if_u1.if_data != NULL); 208 ASSERT(ip->i_disk_size > 0); 209 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 210 ip->i_df.if_u1.if_data, 211 ip->i_df.if_bytes); 212 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; 213 ilf->ilf_size++; 214 } else { 215 iip->ili_fields &= ~XFS_ILOG_DDATA; 216 } 217 break; 218 case XFS_DINODE_FMT_DEV: 219 iip->ili_fields &= 220 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 221 if (iip->ili_fields & XFS_ILOG_DEV) 222 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 223 break; 224 default: 225 ASSERT(0); 226 break; 227 } 228 } 229 230 STATIC void 231 xfs_inode_item_format_attr_fork( 232 struct xfs_inode_log_item *iip, 233 struct xfs_inode_log_format *ilf, 234 struct xfs_log_vec *lv, 235 struct xfs_log_iovec **vecp) 236 { 237 struct xfs_inode *ip = iip->ili_inode; 238 size_t data_bytes; 239 240 switch (ip->i_afp->if_format) { 241 case XFS_DINODE_FMT_EXTENTS: 242 iip->ili_fields &= 243 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 244 245 if ((iip->ili_fields & XFS_ILOG_AEXT) && 246 ip->i_afp->if_nextents > 0 && 247 ip->i_afp->if_bytes > 0) { 248 struct xfs_bmbt_rec *p; 249 250 ASSERT(xfs_iext_count(ip->i_afp) == 251 ip->i_afp->if_nextents); 252 253 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 254 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 255 xlog_finish_iovec(lv, *vecp, data_bytes); 256 257 ilf->ilf_asize = data_bytes; 258 ilf->ilf_size++; 259 } else { 260 iip->ili_fields &= ~XFS_ILOG_AEXT; 261 } 262 break; 263 case XFS_DINODE_FMT_BTREE: 264 iip->ili_fields &= 265 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 266 267 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 268 ip->i_afp->if_broot_bytes > 0) { 269 ASSERT(ip->i_afp->if_broot != NULL); 270 271 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 272 ip->i_afp->if_broot, 273 ip->i_afp->if_broot_bytes); 274 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 275 ilf->ilf_size++; 276 } else { 277 iip->ili_fields &= ~XFS_ILOG_ABROOT; 278 } 279 break; 280 case XFS_DINODE_FMT_LOCAL: 281 iip->ili_fields &= 282 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 283 284 if ((iip->ili_fields & XFS_ILOG_ADATA) && 285 ip->i_afp->if_bytes > 0) { 286 ASSERT(ip->i_afp->if_u1.if_data != NULL); 287 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 288 ip->i_afp->if_u1.if_data, 289 ip->i_afp->if_bytes); 290 ilf->ilf_asize = (unsigned)ip->i_afp->if_bytes; 291 ilf->ilf_size++; 292 } else { 293 iip->ili_fields &= ~XFS_ILOG_ADATA; 294 } 295 break; 296 default: 297 ASSERT(0); 298 break; 299 } 300 } 301 302 /* 303 * Convert an incore timestamp to a log timestamp. Note that the log format 304 * specifies host endian format! 305 */ 306 static inline xfs_log_timestamp_t 307 xfs_inode_to_log_dinode_ts( 308 struct xfs_inode *ip, 309 const struct timespec64 tv) 310 { 311 struct xfs_log_legacy_timestamp *lits; 312 xfs_log_timestamp_t its; 313 314 if (xfs_inode_has_bigtime(ip)) 315 return xfs_inode_encode_bigtime(tv); 316 317 lits = (struct xfs_log_legacy_timestamp *)&its; 318 lits->t_sec = tv.tv_sec; 319 lits->t_nsec = tv.tv_nsec; 320 321 return its; 322 } 323 324 /* 325 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 326 * but not in the in-memory one. But we are guaranteed to have an inode buffer 327 * in memory when logging an inode, so we can just copy it from the on-disk 328 * inode to the in-log inode here so that recovery of file system with these 329 * fields set to non-zero values doesn't lose them. For all other cases we zero 330 * the fields. 331 */ 332 static void 333 xfs_copy_dm_fields_to_log_dinode( 334 struct xfs_inode *ip, 335 struct xfs_log_dinode *to) 336 { 337 struct xfs_dinode *dip; 338 339 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 340 ip->i_imap.im_boffset); 341 342 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 343 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 344 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 345 } else { 346 to->di_dmevmask = 0; 347 to->di_dmstate = 0; 348 } 349 } 350 351 static inline void 352 xfs_inode_to_log_dinode_iext_counters( 353 struct xfs_inode *ip, 354 struct xfs_log_dinode *to) 355 { 356 if (xfs_inode_has_large_extent_counts(ip)) { 357 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); 358 to->di_big_anextents = xfs_ifork_nextents(ip->i_afp); 359 to->di_nrext64_pad = 0; 360 } else { 361 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 362 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 363 } 364 } 365 366 static void 367 xfs_inode_to_log_dinode( 368 struct xfs_inode *ip, 369 struct xfs_log_dinode *to, 370 xfs_lsn_t lsn) 371 { 372 struct inode *inode = VFS_I(ip); 373 374 to->di_magic = XFS_DINODE_MAGIC; 375 to->di_format = xfs_ifork_format(&ip->i_df); 376 to->di_uid = i_uid_read(inode); 377 to->di_gid = i_gid_read(inode); 378 to->di_projid_lo = ip->i_projid & 0xffff; 379 to->di_projid_hi = ip->i_projid >> 16; 380 381 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 382 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); 383 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); 384 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); 385 to->di_nlink = inode->i_nlink; 386 to->di_gen = inode->i_generation; 387 to->di_mode = inode->i_mode; 388 389 to->di_size = ip->i_disk_size; 390 to->di_nblocks = ip->i_nblocks; 391 to->di_extsize = ip->i_extsize; 392 to->di_forkoff = ip->i_forkoff; 393 to->di_aformat = xfs_ifork_format(ip->i_afp); 394 to->di_flags = ip->i_diflags; 395 396 xfs_copy_dm_fields_to_log_dinode(ip, to); 397 398 /* log a dummy value to ensure log structure is fully initialised */ 399 to->di_next_unlinked = NULLAGINO; 400 401 if (xfs_has_v3inodes(ip->i_mount)) { 402 to->di_version = 3; 403 to->di_changecount = inode_peek_iversion(inode); 404 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 405 to->di_flags2 = ip->i_diflags2; 406 to->di_cowextsize = ip->i_cowextsize; 407 to->di_ino = ip->i_ino; 408 to->di_lsn = lsn; 409 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 410 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 411 to->di_v3_pad = 0; 412 } else { 413 to->di_version = 2; 414 to->di_flushiter = ip->i_flushiter; 415 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); 416 } 417 418 xfs_inode_to_log_dinode_iext_counters(ip, to); 419 } 420 421 /* 422 * Format the inode core. Current timestamp data is only in the VFS inode 423 * fields, so we need to grab them from there. Hence rather than just copying 424 * the XFS inode core structure, format the fields directly into the iovec. 425 */ 426 static void 427 xfs_inode_item_format_core( 428 struct xfs_inode *ip, 429 struct xfs_log_vec *lv, 430 struct xfs_log_iovec **vecp) 431 { 432 struct xfs_log_dinode *dic; 433 434 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 435 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 436 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 437 } 438 439 /* 440 * This is called to fill in the vector of log iovecs for the given inode 441 * log item. It fills the first item with an inode log format structure, 442 * the second with the on-disk inode structure, and a possible third and/or 443 * fourth with the inode data/extents/b-tree root and inode attributes 444 * data/extents/b-tree root. 445 * 446 * Note: Always use the 64 bit inode log format structure so we don't 447 * leave an uninitialised hole in the format item on 64 bit systems. Log 448 * recovery on 32 bit systems handles this just fine, so there's no reason 449 * for not using an initialising the properly padded structure all the time. 450 */ 451 STATIC void 452 xfs_inode_item_format( 453 struct xfs_log_item *lip, 454 struct xfs_log_vec *lv) 455 { 456 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 457 struct xfs_inode *ip = iip->ili_inode; 458 struct xfs_log_iovec *vecp = NULL; 459 struct xfs_inode_log_format *ilf; 460 461 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 462 ilf->ilf_type = XFS_LI_INODE; 463 ilf->ilf_ino = ip->i_ino; 464 ilf->ilf_blkno = ip->i_imap.im_blkno; 465 ilf->ilf_len = ip->i_imap.im_len; 466 ilf->ilf_boffset = ip->i_imap.im_boffset; 467 ilf->ilf_fields = XFS_ILOG_CORE; 468 ilf->ilf_size = 2; /* format + core */ 469 470 /* 471 * make sure we don't leak uninitialised data into the log in the case 472 * when we don't log every field in the inode. 473 */ 474 ilf->ilf_dsize = 0; 475 ilf->ilf_asize = 0; 476 ilf->ilf_pad = 0; 477 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 478 479 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 480 481 xfs_inode_item_format_core(ip, lv, &vecp); 482 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 483 if (XFS_IFORK_Q(ip)) { 484 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 485 } else { 486 iip->ili_fields &= 487 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 488 } 489 490 /* update the format with the exact fields we actually logged */ 491 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 492 } 493 494 /* 495 * This is called to pin the inode associated with the inode log 496 * item in memory so it cannot be written out. 497 */ 498 STATIC void 499 xfs_inode_item_pin( 500 struct xfs_log_item *lip) 501 { 502 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 503 504 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 505 ASSERT(lip->li_buf); 506 507 trace_xfs_inode_pin(ip, _RET_IP_); 508 atomic_inc(&ip->i_pincount); 509 } 510 511 512 /* 513 * This is called to unpin the inode associated with the inode log 514 * item which was previously pinned with a call to xfs_inode_item_pin(). 515 * 516 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 517 * 518 * Note that unpin can race with inode cluster buffer freeing marking the buffer 519 * stale. In that case, flush completions are run from the buffer unpin call, 520 * which may happen before the inode is unpinned. If we lose the race, there 521 * will be no buffer attached to the log item, but the inode will be marked 522 * XFS_ISTALE. 523 */ 524 STATIC void 525 xfs_inode_item_unpin( 526 struct xfs_log_item *lip, 527 int remove) 528 { 529 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 530 531 trace_xfs_inode_unpin(ip, _RET_IP_); 532 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 533 ASSERT(atomic_read(&ip->i_pincount) > 0); 534 if (atomic_dec_and_test(&ip->i_pincount)) 535 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 536 } 537 538 STATIC uint 539 xfs_inode_item_push( 540 struct xfs_log_item *lip, 541 struct list_head *buffer_list) 542 __releases(&lip->li_ailp->ail_lock) 543 __acquires(&lip->li_ailp->ail_lock) 544 { 545 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 546 struct xfs_inode *ip = iip->ili_inode; 547 struct xfs_buf *bp = lip->li_buf; 548 uint rval = XFS_ITEM_SUCCESS; 549 int error; 550 551 if (!bp || (ip->i_flags & XFS_ISTALE)) { 552 /* 553 * Inode item/buffer is being being aborted due to cluster 554 * buffer deletion. Trigger a log force to have that operation 555 * completed and items removed from the AIL before the next push 556 * attempt. 557 */ 558 return XFS_ITEM_PINNED; 559 } 560 561 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) 562 return XFS_ITEM_PINNED; 563 564 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 565 return XFS_ITEM_FLUSHING; 566 567 if (!xfs_buf_trylock(bp)) 568 return XFS_ITEM_LOCKED; 569 570 spin_unlock(&lip->li_ailp->ail_lock); 571 572 /* 573 * We need to hold a reference for flushing the cluster buffer as it may 574 * fail the buffer without IO submission. In which case, we better get a 575 * reference for that completion because otherwise we don't get a 576 * reference for IO until we queue the buffer for delwri submission. 577 */ 578 xfs_buf_hold(bp); 579 error = xfs_iflush_cluster(bp); 580 if (!error) { 581 if (!xfs_buf_delwri_queue(bp, buffer_list)) 582 rval = XFS_ITEM_FLUSHING; 583 xfs_buf_relse(bp); 584 } else { 585 /* 586 * Release the buffer if we were unable to flush anything. On 587 * any other error, the buffer has already been released. 588 */ 589 if (error == -EAGAIN) 590 xfs_buf_relse(bp); 591 rval = XFS_ITEM_LOCKED; 592 } 593 594 spin_lock(&lip->li_ailp->ail_lock); 595 return rval; 596 } 597 598 /* 599 * Unlock the inode associated with the inode log item. 600 */ 601 STATIC void 602 xfs_inode_item_release( 603 struct xfs_log_item *lip) 604 { 605 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 606 struct xfs_inode *ip = iip->ili_inode; 607 unsigned short lock_flags; 608 609 ASSERT(ip->i_itemp != NULL); 610 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 611 612 lock_flags = iip->ili_lock_flags; 613 iip->ili_lock_flags = 0; 614 if (lock_flags) 615 xfs_iunlock(ip, lock_flags); 616 } 617 618 /* 619 * This is called to find out where the oldest active copy of the inode log 620 * item in the on disk log resides now that the last log write of it completed 621 * at the given lsn. Since we always re-log all dirty data in an inode, the 622 * latest copy in the on disk log is the only one that matters. Therefore, 623 * simply return the given lsn. 624 * 625 * If the inode has been marked stale because the cluster is being freed, we 626 * don't want to (re-)insert this inode into the AIL. There is a race condition 627 * where the cluster buffer may be unpinned before the inode is inserted into 628 * the AIL during transaction committed processing. If the buffer is unpinned 629 * before the inode item has been committed and inserted, then it is possible 630 * for the buffer to be written and IO completes before the inode is inserted 631 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 632 * AIL which will never get removed. It will, however, get reclaimed which 633 * triggers an assert in xfs_inode_free() complaining about freein an inode 634 * still in the AIL. 635 * 636 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 637 * transaction committed code knows that it does not need to do any further 638 * processing on the item. 639 */ 640 STATIC xfs_lsn_t 641 xfs_inode_item_committed( 642 struct xfs_log_item *lip, 643 xfs_lsn_t lsn) 644 { 645 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 646 struct xfs_inode *ip = iip->ili_inode; 647 648 if (xfs_iflags_test(ip, XFS_ISTALE)) { 649 xfs_inode_item_unpin(lip, 0); 650 return -1; 651 } 652 return lsn; 653 } 654 655 STATIC void 656 xfs_inode_item_committing( 657 struct xfs_log_item *lip, 658 xfs_csn_t seq) 659 { 660 INODE_ITEM(lip)->ili_commit_seq = seq; 661 return xfs_inode_item_release(lip); 662 } 663 664 static const struct xfs_item_ops xfs_inode_item_ops = { 665 .iop_size = xfs_inode_item_size, 666 .iop_format = xfs_inode_item_format, 667 .iop_pin = xfs_inode_item_pin, 668 .iop_unpin = xfs_inode_item_unpin, 669 .iop_release = xfs_inode_item_release, 670 .iop_committed = xfs_inode_item_committed, 671 .iop_push = xfs_inode_item_push, 672 .iop_committing = xfs_inode_item_committing, 673 }; 674 675 676 /* 677 * Initialize the inode log item for a newly allocated (in-core) inode. 678 */ 679 void 680 xfs_inode_item_init( 681 struct xfs_inode *ip, 682 struct xfs_mount *mp) 683 { 684 struct xfs_inode_log_item *iip; 685 686 ASSERT(ip->i_itemp == NULL); 687 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 688 GFP_KERNEL | __GFP_NOFAIL); 689 690 iip->ili_inode = ip; 691 spin_lock_init(&iip->ili_lock); 692 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 693 &xfs_inode_item_ops); 694 } 695 696 /* 697 * Free the inode log item and any memory hanging off of it. 698 */ 699 void 700 xfs_inode_item_destroy( 701 struct xfs_inode *ip) 702 { 703 struct xfs_inode_log_item *iip = ip->i_itemp; 704 705 ASSERT(iip->ili_item.li_buf == NULL); 706 707 ip->i_itemp = NULL; 708 kmem_free(iip->ili_item.li_lv_shadow); 709 kmem_cache_free(xfs_ili_cache, iip); 710 } 711 712 713 /* 714 * We only want to pull the item from the AIL if it is actually there 715 * and its location in the log has not changed since we started the 716 * flush. Thus, we only bother if the inode's lsn has not changed. 717 */ 718 static void 719 xfs_iflush_ail_updates( 720 struct xfs_ail *ailp, 721 struct list_head *list) 722 { 723 struct xfs_log_item *lip; 724 xfs_lsn_t tail_lsn = 0; 725 726 /* this is an opencoded batch version of xfs_trans_ail_delete */ 727 spin_lock(&ailp->ail_lock); 728 list_for_each_entry(lip, list, li_bio_list) { 729 xfs_lsn_t lsn; 730 731 clear_bit(XFS_LI_FAILED, &lip->li_flags); 732 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 733 continue; 734 735 /* 736 * dgc: Not sure how this happens, but it happens very 737 * occassionaly via generic/388. xfs_iflush_abort() also 738 * silently handles this same "under writeback but not in AIL at 739 * shutdown" condition via xfs_trans_ail_delete(). 740 */ 741 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 742 ASSERT(xlog_is_shutdown(lip->li_log)); 743 continue; 744 } 745 746 lsn = xfs_ail_delete_one(ailp, lip); 747 if (!tail_lsn && lsn) 748 tail_lsn = lsn; 749 } 750 xfs_ail_update_finish(ailp, tail_lsn); 751 } 752 753 /* 754 * Walk the list of inodes that have completed their IOs. If they are clean 755 * remove them from the list and dissociate them from the buffer. Buffers that 756 * are still dirty remain linked to the buffer and on the list. Caller must 757 * handle them appropriately. 758 */ 759 static void 760 xfs_iflush_finish( 761 struct xfs_buf *bp, 762 struct list_head *list) 763 { 764 struct xfs_log_item *lip, *n; 765 766 list_for_each_entry_safe(lip, n, list, li_bio_list) { 767 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 768 bool drop_buffer = false; 769 770 spin_lock(&iip->ili_lock); 771 772 /* 773 * Remove the reference to the cluster buffer if the inode is 774 * clean in memory and drop the buffer reference once we've 775 * dropped the locks we hold. 776 */ 777 ASSERT(iip->ili_item.li_buf == bp); 778 if (!iip->ili_fields) { 779 iip->ili_item.li_buf = NULL; 780 list_del_init(&lip->li_bio_list); 781 drop_buffer = true; 782 } 783 iip->ili_last_fields = 0; 784 iip->ili_flush_lsn = 0; 785 spin_unlock(&iip->ili_lock); 786 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 787 if (drop_buffer) 788 xfs_buf_rele(bp); 789 } 790 } 791 792 /* 793 * Inode buffer IO completion routine. It is responsible for removing inodes 794 * attached to the buffer from the AIL if they have not been re-logged and 795 * completing the inode flush. 796 */ 797 void 798 xfs_buf_inode_iodone( 799 struct xfs_buf *bp) 800 { 801 struct xfs_log_item *lip, *n; 802 LIST_HEAD(flushed_inodes); 803 LIST_HEAD(ail_updates); 804 805 /* 806 * Pull the attached inodes from the buffer one at a time and take the 807 * appropriate action on them. 808 */ 809 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 810 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 811 812 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 813 xfs_iflush_abort(iip->ili_inode); 814 continue; 815 } 816 if (!iip->ili_last_fields) 817 continue; 818 819 /* Do an unlocked check for needing the AIL lock. */ 820 if (iip->ili_flush_lsn == lip->li_lsn || 821 test_bit(XFS_LI_FAILED, &lip->li_flags)) 822 list_move_tail(&lip->li_bio_list, &ail_updates); 823 else 824 list_move_tail(&lip->li_bio_list, &flushed_inodes); 825 } 826 827 if (!list_empty(&ail_updates)) { 828 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 829 list_splice_tail(&ail_updates, &flushed_inodes); 830 } 831 832 xfs_iflush_finish(bp, &flushed_inodes); 833 if (!list_empty(&flushed_inodes)) 834 list_splice_tail(&flushed_inodes, &bp->b_li_list); 835 } 836 837 void 838 xfs_buf_inode_io_fail( 839 struct xfs_buf *bp) 840 { 841 struct xfs_log_item *lip; 842 843 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 844 set_bit(XFS_LI_FAILED, &lip->li_flags); 845 } 846 847 /* 848 * Clear the inode logging fields so no more flushes are attempted. If we are 849 * on a buffer list, it is now safe to remove it because the buffer is 850 * guaranteed to be locked. The caller will drop the reference to the buffer 851 * the log item held. 852 */ 853 static void 854 xfs_iflush_abort_clean( 855 struct xfs_inode_log_item *iip) 856 { 857 iip->ili_last_fields = 0; 858 iip->ili_fields = 0; 859 iip->ili_fsync_fields = 0; 860 iip->ili_flush_lsn = 0; 861 iip->ili_item.li_buf = NULL; 862 list_del_init(&iip->ili_item.li_bio_list); 863 } 864 865 /* 866 * Abort flushing the inode from a context holding the cluster buffer locked. 867 * 868 * This is the normal runtime method of aborting writeback of an inode that is 869 * attached to a cluster buffer. It occurs when the inode and the backing 870 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 871 * flushing or buffer IO completion encounters a log shutdown situation. 872 * 873 * If we need to abort inode writeback and we don't already hold the buffer 874 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 875 * necessary in a shutdown situation. 876 */ 877 void 878 xfs_iflush_abort( 879 struct xfs_inode *ip) 880 { 881 struct xfs_inode_log_item *iip = ip->i_itemp; 882 struct xfs_buf *bp; 883 884 if (!iip) { 885 /* clean inode, nothing to do */ 886 xfs_iflags_clear(ip, XFS_IFLUSHING); 887 return; 888 } 889 890 /* 891 * Remove the inode item from the AIL before we clear its internal 892 * state. Whilst the inode is in the AIL, it should have a valid buffer 893 * pointer for push operations to access - it is only safe to remove the 894 * inode from the buffer once it has been removed from the AIL. 895 * 896 * We also clear the failed bit before removing the item from the AIL 897 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer 898 * references the inode item owns and needs to hold until we've fully 899 * aborted the inode log item and detached it from the buffer. 900 */ 901 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 902 xfs_trans_ail_delete(&iip->ili_item, 0); 903 904 /* 905 * Grab the inode buffer so can we release the reference the inode log 906 * item holds on it. 907 */ 908 spin_lock(&iip->ili_lock); 909 bp = iip->ili_item.li_buf; 910 xfs_iflush_abort_clean(iip); 911 spin_unlock(&iip->ili_lock); 912 913 xfs_iflags_clear(ip, XFS_IFLUSHING); 914 if (bp) 915 xfs_buf_rele(bp); 916 } 917 918 /* 919 * Abort an inode flush in the case of a shutdown filesystem. This can be called 920 * from anywhere with just an inode reference and does not require holding the 921 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 922 * it will grab and lock it safely, then abort the inode flush. 923 */ 924 void 925 xfs_iflush_shutdown_abort( 926 struct xfs_inode *ip) 927 { 928 struct xfs_inode_log_item *iip = ip->i_itemp; 929 struct xfs_buf *bp; 930 931 if (!iip) { 932 /* clean inode, nothing to do */ 933 xfs_iflags_clear(ip, XFS_IFLUSHING); 934 return; 935 } 936 937 spin_lock(&iip->ili_lock); 938 bp = iip->ili_item.li_buf; 939 if (!bp) { 940 spin_unlock(&iip->ili_lock); 941 xfs_iflush_abort(ip); 942 return; 943 } 944 945 /* 946 * We have to take a reference to the buffer so that it doesn't get 947 * freed when we drop the ili_lock and then wait to lock the buffer. 948 * We'll clean up the extra reference after we pick up the ili_lock 949 * again. 950 */ 951 xfs_buf_hold(bp); 952 spin_unlock(&iip->ili_lock); 953 xfs_buf_lock(bp); 954 955 spin_lock(&iip->ili_lock); 956 if (!iip->ili_item.li_buf) { 957 /* 958 * Raced with another removal, hold the only reference 959 * to bp now. Inode should not be in the AIL now, so just clean 960 * up and return; 961 */ 962 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 963 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 964 xfs_iflush_abort_clean(iip); 965 spin_unlock(&iip->ili_lock); 966 xfs_iflags_clear(ip, XFS_IFLUSHING); 967 xfs_buf_relse(bp); 968 return; 969 } 970 971 /* 972 * Got two references to bp. The first will get dropped by 973 * xfs_iflush_abort() when the item is removed from the buffer list, but 974 * we can't drop our reference until _abort() returns because we have to 975 * unlock the buffer as well. Hence we abort and then unlock and release 976 * our reference to the buffer. 977 */ 978 ASSERT(iip->ili_item.li_buf == bp); 979 spin_unlock(&iip->ili_lock); 980 xfs_iflush_abort(ip); 981 xfs_buf_relse(bp); 982 } 983 984 985 /* 986 * convert an xfs_inode_log_format struct from the old 32 bit version 987 * (which can have different field alignments) to the native 64 bit version 988 */ 989 int 990 xfs_inode_item_format_convert( 991 struct xfs_log_iovec *buf, 992 struct xfs_inode_log_format *in_f) 993 { 994 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 995 996 if (buf->i_len != sizeof(*in_f32)) { 997 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 998 return -EFSCORRUPTED; 999 } 1000 1001 in_f->ilf_type = in_f32->ilf_type; 1002 in_f->ilf_size = in_f32->ilf_size; 1003 in_f->ilf_fields = in_f32->ilf_fields; 1004 in_f->ilf_asize = in_f32->ilf_asize; 1005 in_f->ilf_dsize = in_f32->ilf_dsize; 1006 in_f->ilf_ino = in_f32->ilf_ino; 1007 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1008 in_f->ilf_blkno = in_f32->ilf_blkno; 1009 in_f->ilf_len = in_f32->ilf_len; 1010 in_f->ilf_boffset = in_f32->ilf_boffset; 1011 return 0; 1012 } 1013