1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_error.h" 28 #include "xfs_trace.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_log.h" 32 33 #include <linux/iversion.h> 34 35 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 36 37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 38 { 39 return container_of(lip, struct xfs_inode_log_item, ili_item); 40 } 41 42 STATIC void 43 xfs_inode_item_data_fork_size( 44 struct xfs_inode_log_item *iip, 45 int *nvecs, 46 int *nbytes) 47 { 48 struct xfs_inode *ip = iip->ili_inode; 49 50 switch (ip->i_d.di_format) { 51 case XFS_DINODE_FMT_EXTENTS: 52 if ((iip->ili_fields & XFS_ILOG_DEXT) && 53 ip->i_d.di_nextents > 0 && 54 ip->i_df.if_bytes > 0) { 55 /* worst case, doesn't subtract delalloc extents */ 56 *nbytes += XFS_IFORK_DSIZE(ip); 57 *nvecs += 1; 58 } 59 break; 60 case XFS_DINODE_FMT_BTREE: 61 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 62 ip->i_df.if_broot_bytes > 0) { 63 *nbytes += ip->i_df.if_broot_bytes; 64 *nvecs += 1; 65 } 66 break; 67 case XFS_DINODE_FMT_LOCAL: 68 if ((iip->ili_fields & XFS_ILOG_DDATA) && 69 ip->i_df.if_bytes > 0) { 70 *nbytes += roundup(ip->i_df.if_bytes, 4); 71 *nvecs += 1; 72 } 73 break; 74 75 case XFS_DINODE_FMT_DEV: 76 break; 77 default: 78 ASSERT(0); 79 break; 80 } 81 } 82 83 STATIC void 84 xfs_inode_item_attr_fork_size( 85 struct xfs_inode_log_item *iip, 86 int *nvecs, 87 int *nbytes) 88 { 89 struct xfs_inode *ip = iip->ili_inode; 90 91 switch (ip->i_d.di_aformat) { 92 case XFS_DINODE_FMT_EXTENTS: 93 if ((iip->ili_fields & XFS_ILOG_AEXT) && 94 ip->i_d.di_anextents > 0 && 95 ip->i_afp->if_bytes > 0) { 96 /* worst case, doesn't subtract unused space */ 97 *nbytes += XFS_IFORK_ASIZE(ip); 98 *nvecs += 1; 99 } 100 break; 101 case XFS_DINODE_FMT_BTREE: 102 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 103 ip->i_afp->if_broot_bytes > 0) { 104 *nbytes += ip->i_afp->if_broot_bytes; 105 *nvecs += 1; 106 } 107 break; 108 case XFS_DINODE_FMT_LOCAL: 109 if ((iip->ili_fields & XFS_ILOG_ADATA) && 110 ip->i_afp->if_bytes > 0) { 111 *nbytes += roundup(ip->i_afp->if_bytes, 4); 112 *nvecs += 1; 113 } 114 break; 115 default: 116 ASSERT(0); 117 break; 118 } 119 } 120 121 /* 122 * This returns the number of iovecs needed to log the given inode item. 123 * 124 * We need one iovec for the inode log format structure, one for the 125 * inode core, and possibly one for the inode data/extents/b-tree root 126 * and one for the inode attribute data/extents/b-tree root. 127 */ 128 STATIC void 129 xfs_inode_item_size( 130 struct xfs_log_item *lip, 131 int *nvecs, 132 int *nbytes) 133 { 134 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 135 struct xfs_inode *ip = iip->ili_inode; 136 137 *nvecs += 2; 138 *nbytes += sizeof(struct xfs_inode_log_format) + 139 xfs_log_dinode_size(ip->i_d.di_version); 140 141 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 142 if (XFS_IFORK_Q(ip)) 143 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 144 } 145 146 STATIC void 147 xfs_inode_item_format_data_fork( 148 struct xfs_inode_log_item *iip, 149 struct xfs_inode_log_format *ilf, 150 struct xfs_log_vec *lv, 151 struct xfs_log_iovec **vecp) 152 { 153 struct xfs_inode *ip = iip->ili_inode; 154 size_t data_bytes; 155 156 switch (ip->i_d.di_format) { 157 case XFS_DINODE_FMT_EXTENTS: 158 iip->ili_fields &= 159 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 160 161 if ((iip->ili_fields & XFS_ILOG_DEXT) && 162 ip->i_d.di_nextents > 0 && 163 ip->i_df.if_bytes > 0) { 164 struct xfs_bmbt_rec *p; 165 166 ASSERT(xfs_iext_count(&ip->i_df) > 0); 167 168 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 169 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 170 xlog_finish_iovec(lv, *vecp, data_bytes); 171 172 ASSERT(data_bytes <= ip->i_df.if_bytes); 173 174 ilf->ilf_dsize = data_bytes; 175 ilf->ilf_size++; 176 } else { 177 iip->ili_fields &= ~XFS_ILOG_DEXT; 178 } 179 break; 180 case XFS_DINODE_FMT_BTREE: 181 iip->ili_fields &= 182 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 183 184 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 185 ip->i_df.if_broot_bytes > 0) { 186 ASSERT(ip->i_df.if_broot != NULL); 187 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 188 ip->i_df.if_broot, 189 ip->i_df.if_broot_bytes); 190 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 191 ilf->ilf_size++; 192 } else { 193 ASSERT(!(iip->ili_fields & 194 XFS_ILOG_DBROOT)); 195 iip->ili_fields &= ~XFS_ILOG_DBROOT; 196 } 197 break; 198 case XFS_DINODE_FMT_LOCAL: 199 iip->ili_fields &= 200 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 201 if ((iip->ili_fields & XFS_ILOG_DDATA) && 202 ip->i_df.if_bytes > 0) { 203 /* 204 * Round i_bytes up to a word boundary. 205 * The underlying memory is guaranteed to 206 * to be there by xfs_idata_realloc(). 207 */ 208 data_bytes = roundup(ip->i_df.if_bytes, 4); 209 ASSERT(ip->i_df.if_real_bytes == 0 || 210 ip->i_df.if_real_bytes >= data_bytes); 211 ASSERT(ip->i_df.if_u1.if_data != NULL); 212 ASSERT(ip->i_d.di_size > 0); 213 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 214 ip->i_df.if_u1.if_data, data_bytes); 215 ilf->ilf_dsize = (unsigned)data_bytes; 216 ilf->ilf_size++; 217 } else { 218 iip->ili_fields &= ~XFS_ILOG_DDATA; 219 } 220 break; 221 case XFS_DINODE_FMT_DEV: 222 iip->ili_fields &= 223 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 224 if (iip->ili_fields & XFS_ILOG_DEV) 225 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 226 break; 227 default: 228 ASSERT(0); 229 break; 230 } 231 } 232 233 STATIC void 234 xfs_inode_item_format_attr_fork( 235 struct xfs_inode_log_item *iip, 236 struct xfs_inode_log_format *ilf, 237 struct xfs_log_vec *lv, 238 struct xfs_log_iovec **vecp) 239 { 240 struct xfs_inode *ip = iip->ili_inode; 241 size_t data_bytes; 242 243 switch (ip->i_d.di_aformat) { 244 case XFS_DINODE_FMT_EXTENTS: 245 iip->ili_fields &= 246 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 247 248 if ((iip->ili_fields & XFS_ILOG_AEXT) && 249 ip->i_d.di_anextents > 0 && 250 ip->i_afp->if_bytes > 0) { 251 struct xfs_bmbt_rec *p; 252 253 ASSERT(xfs_iext_count(ip->i_afp) == 254 ip->i_d.di_anextents); 255 256 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 257 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 258 xlog_finish_iovec(lv, *vecp, data_bytes); 259 260 ilf->ilf_asize = data_bytes; 261 ilf->ilf_size++; 262 } else { 263 iip->ili_fields &= ~XFS_ILOG_AEXT; 264 } 265 break; 266 case XFS_DINODE_FMT_BTREE: 267 iip->ili_fields &= 268 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 269 270 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 271 ip->i_afp->if_broot_bytes > 0) { 272 ASSERT(ip->i_afp->if_broot != NULL); 273 274 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 275 ip->i_afp->if_broot, 276 ip->i_afp->if_broot_bytes); 277 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 278 ilf->ilf_size++; 279 } else { 280 iip->ili_fields &= ~XFS_ILOG_ABROOT; 281 } 282 break; 283 case XFS_DINODE_FMT_LOCAL: 284 iip->ili_fields &= 285 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 286 287 if ((iip->ili_fields & XFS_ILOG_ADATA) && 288 ip->i_afp->if_bytes > 0) { 289 /* 290 * Round i_bytes up to a word boundary. 291 * The underlying memory is guaranteed to 292 * to be there by xfs_idata_realloc(). 293 */ 294 data_bytes = roundup(ip->i_afp->if_bytes, 4); 295 ASSERT(ip->i_afp->if_real_bytes == 0 || 296 ip->i_afp->if_real_bytes >= data_bytes); 297 ASSERT(ip->i_afp->if_u1.if_data != NULL); 298 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 299 ip->i_afp->if_u1.if_data, 300 data_bytes); 301 ilf->ilf_asize = (unsigned)data_bytes; 302 ilf->ilf_size++; 303 } else { 304 iip->ili_fields &= ~XFS_ILOG_ADATA; 305 } 306 break; 307 default: 308 ASSERT(0); 309 break; 310 } 311 } 312 313 static void 314 xfs_inode_to_log_dinode( 315 struct xfs_inode *ip, 316 struct xfs_log_dinode *to, 317 xfs_lsn_t lsn) 318 { 319 struct xfs_icdinode *from = &ip->i_d; 320 struct inode *inode = VFS_I(ip); 321 322 to->di_magic = XFS_DINODE_MAGIC; 323 324 to->di_version = from->di_version; 325 to->di_format = from->di_format; 326 to->di_uid = from->di_uid; 327 to->di_gid = from->di_gid; 328 to->di_projid_lo = from->di_projid_lo; 329 to->di_projid_hi = from->di_projid_hi; 330 331 memset(to->di_pad, 0, sizeof(to->di_pad)); 332 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 333 to->di_atime.t_sec = inode->i_atime.tv_sec; 334 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 335 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 336 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 337 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 338 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 339 to->di_nlink = inode->i_nlink; 340 to->di_gen = inode->i_generation; 341 to->di_mode = inode->i_mode; 342 343 to->di_size = from->di_size; 344 to->di_nblocks = from->di_nblocks; 345 to->di_extsize = from->di_extsize; 346 to->di_nextents = from->di_nextents; 347 to->di_anextents = from->di_anextents; 348 to->di_forkoff = from->di_forkoff; 349 to->di_aformat = from->di_aformat; 350 to->di_dmevmask = from->di_dmevmask; 351 to->di_dmstate = from->di_dmstate; 352 to->di_flags = from->di_flags; 353 354 /* log a dummy value to ensure log structure is fully initialised */ 355 to->di_next_unlinked = NULLAGINO; 356 357 if (from->di_version == 3) { 358 to->di_changecount = inode_peek_iversion(inode); 359 to->di_crtime.t_sec = from->di_crtime.t_sec; 360 to->di_crtime.t_nsec = from->di_crtime.t_nsec; 361 to->di_flags2 = from->di_flags2; 362 to->di_cowextsize = from->di_cowextsize; 363 to->di_ino = ip->i_ino; 364 to->di_lsn = lsn; 365 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 366 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 367 to->di_flushiter = 0; 368 } else { 369 to->di_flushiter = from->di_flushiter; 370 } 371 } 372 373 /* 374 * Format the inode core. Current timestamp data is only in the VFS inode 375 * fields, so we need to grab them from there. Hence rather than just copying 376 * the XFS inode core structure, format the fields directly into the iovec. 377 */ 378 static void 379 xfs_inode_item_format_core( 380 struct xfs_inode *ip, 381 struct xfs_log_vec *lv, 382 struct xfs_log_iovec **vecp) 383 { 384 struct xfs_log_dinode *dic; 385 386 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 387 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 388 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); 389 } 390 391 /* 392 * This is called to fill in the vector of log iovecs for the given inode 393 * log item. It fills the first item with an inode log format structure, 394 * the second with the on-disk inode structure, and a possible third and/or 395 * fourth with the inode data/extents/b-tree root and inode attributes 396 * data/extents/b-tree root. 397 * 398 * Note: Always use the 64 bit inode log format structure so we don't 399 * leave an uninitialised hole in the format item on 64 bit systems. Log 400 * recovery on 32 bit systems handles this just fine, so there's no reason 401 * for not using an initialising the properly padded structure all the time. 402 */ 403 STATIC void 404 xfs_inode_item_format( 405 struct xfs_log_item *lip, 406 struct xfs_log_vec *lv) 407 { 408 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 409 struct xfs_inode *ip = iip->ili_inode; 410 struct xfs_log_iovec *vecp = NULL; 411 struct xfs_inode_log_format *ilf; 412 413 ASSERT(ip->i_d.di_version > 1); 414 415 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 416 ilf->ilf_type = XFS_LI_INODE; 417 ilf->ilf_ino = ip->i_ino; 418 ilf->ilf_blkno = ip->i_imap.im_blkno; 419 ilf->ilf_len = ip->i_imap.im_len; 420 ilf->ilf_boffset = ip->i_imap.im_boffset; 421 ilf->ilf_fields = XFS_ILOG_CORE; 422 ilf->ilf_size = 2; /* format + core */ 423 424 /* 425 * make sure we don't leak uninitialised data into the log in the case 426 * when we don't log every field in the inode. 427 */ 428 ilf->ilf_dsize = 0; 429 ilf->ilf_asize = 0; 430 ilf->ilf_pad = 0; 431 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 432 433 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 434 435 xfs_inode_item_format_core(ip, lv, &vecp); 436 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 437 if (XFS_IFORK_Q(ip)) { 438 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 439 } else { 440 iip->ili_fields &= 441 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 442 } 443 444 /* update the format with the exact fields we actually logged */ 445 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 446 } 447 448 /* 449 * This is called to pin the inode associated with the inode log 450 * item in memory so it cannot be written out. 451 */ 452 STATIC void 453 xfs_inode_item_pin( 454 struct xfs_log_item *lip) 455 { 456 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 457 458 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 459 460 trace_xfs_inode_pin(ip, _RET_IP_); 461 atomic_inc(&ip->i_pincount); 462 } 463 464 465 /* 466 * This is called to unpin the inode associated with the inode log 467 * item which was previously pinned with a call to xfs_inode_item_pin(). 468 * 469 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 470 */ 471 STATIC void 472 xfs_inode_item_unpin( 473 struct xfs_log_item *lip, 474 int remove) 475 { 476 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 477 478 trace_xfs_inode_unpin(ip, _RET_IP_); 479 ASSERT(atomic_read(&ip->i_pincount) > 0); 480 if (atomic_dec_and_test(&ip->i_pincount)) 481 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 482 } 483 484 /* 485 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer 486 * have been failed during writeback 487 * 488 * This informs the AIL that the inode is already flush locked on the next push, 489 * and acquires a hold on the buffer to ensure that it isn't reclaimed before 490 * dirty data makes it to disk. 491 */ 492 STATIC void 493 xfs_inode_item_error( 494 struct xfs_log_item *lip, 495 struct xfs_buf *bp) 496 { 497 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); 498 xfs_set_li_failed(lip, bp); 499 } 500 501 STATIC uint 502 xfs_inode_item_push( 503 struct xfs_log_item *lip, 504 struct list_head *buffer_list) 505 __releases(&lip->li_ailp->xa_lock) 506 __acquires(&lip->li_ailp->xa_lock) 507 { 508 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 509 struct xfs_inode *ip = iip->ili_inode; 510 struct xfs_buf *bp = lip->li_buf; 511 uint rval = XFS_ITEM_SUCCESS; 512 int error; 513 514 if (xfs_ipincount(ip) > 0) 515 return XFS_ITEM_PINNED; 516 517 /* 518 * The buffer containing this item failed to be written back 519 * previously. Resubmit the buffer for IO. 520 */ 521 if (lip->li_flags & XFS_LI_FAILED) { 522 if (!xfs_buf_trylock(bp)) 523 return XFS_ITEM_LOCKED; 524 525 if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list)) 526 rval = XFS_ITEM_FLUSHING; 527 528 xfs_buf_unlock(bp); 529 return rval; 530 } 531 532 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 533 return XFS_ITEM_LOCKED; 534 535 /* 536 * Re-check the pincount now that we stabilized the value by 537 * taking the ilock. 538 */ 539 if (xfs_ipincount(ip) > 0) { 540 rval = XFS_ITEM_PINNED; 541 goto out_unlock; 542 } 543 544 /* 545 * Stale inode items should force out the iclog. 546 */ 547 if (ip->i_flags & XFS_ISTALE) { 548 rval = XFS_ITEM_PINNED; 549 goto out_unlock; 550 } 551 552 /* 553 * Someone else is already flushing the inode. Nothing we can do 554 * here but wait for the flush to finish and remove the item from 555 * the AIL. 556 */ 557 if (!xfs_iflock_nowait(ip)) { 558 rval = XFS_ITEM_FLUSHING; 559 goto out_unlock; 560 } 561 562 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 563 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 564 565 spin_unlock(&lip->li_ailp->xa_lock); 566 567 error = xfs_iflush(ip, &bp); 568 if (!error) { 569 if (!xfs_buf_delwri_queue(bp, buffer_list)) 570 rval = XFS_ITEM_FLUSHING; 571 xfs_buf_relse(bp); 572 } 573 574 spin_lock(&lip->li_ailp->xa_lock); 575 out_unlock: 576 xfs_iunlock(ip, XFS_ILOCK_SHARED); 577 return rval; 578 } 579 580 /* 581 * Unlock the inode associated with the inode log item. 582 * Clear the fields of the inode and inode log item that 583 * are specific to the current transaction. If the 584 * hold flags is set, do not unlock the inode. 585 */ 586 STATIC void 587 xfs_inode_item_unlock( 588 struct xfs_log_item *lip) 589 { 590 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 591 struct xfs_inode *ip = iip->ili_inode; 592 unsigned short lock_flags; 593 594 ASSERT(ip->i_itemp != NULL); 595 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 596 597 lock_flags = iip->ili_lock_flags; 598 iip->ili_lock_flags = 0; 599 if (lock_flags) 600 xfs_iunlock(ip, lock_flags); 601 } 602 603 /* 604 * This is called to find out where the oldest active copy of the inode log 605 * item in the on disk log resides now that the last log write of it completed 606 * at the given lsn. Since we always re-log all dirty data in an inode, the 607 * latest copy in the on disk log is the only one that matters. Therefore, 608 * simply return the given lsn. 609 * 610 * If the inode has been marked stale because the cluster is being freed, we 611 * don't want to (re-)insert this inode into the AIL. There is a race condition 612 * where the cluster buffer may be unpinned before the inode is inserted into 613 * the AIL during transaction committed processing. If the buffer is unpinned 614 * before the inode item has been committed and inserted, then it is possible 615 * for the buffer to be written and IO completes before the inode is inserted 616 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 617 * AIL which will never get removed. It will, however, get reclaimed which 618 * triggers an assert in xfs_inode_free() complaining about freein an inode 619 * still in the AIL. 620 * 621 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 622 * transaction committed code knows that it does not need to do any further 623 * processing on the item. 624 */ 625 STATIC xfs_lsn_t 626 xfs_inode_item_committed( 627 struct xfs_log_item *lip, 628 xfs_lsn_t lsn) 629 { 630 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 631 struct xfs_inode *ip = iip->ili_inode; 632 633 if (xfs_iflags_test(ip, XFS_ISTALE)) { 634 xfs_inode_item_unpin(lip, 0); 635 return -1; 636 } 637 return lsn; 638 } 639 640 /* 641 * XXX rcc - this one really has to do something. Probably needs 642 * to stamp in a new field in the incore inode. 643 */ 644 STATIC void 645 xfs_inode_item_committing( 646 struct xfs_log_item *lip, 647 xfs_lsn_t lsn) 648 { 649 INODE_ITEM(lip)->ili_last_lsn = lsn; 650 } 651 652 /* 653 * This is the ops vector shared by all buf log items. 654 */ 655 static const struct xfs_item_ops xfs_inode_item_ops = { 656 .iop_size = xfs_inode_item_size, 657 .iop_format = xfs_inode_item_format, 658 .iop_pin = xfs_inode_item_pin, 659 .iop_unpin = xfs_inode_item_unpin, 660 .iop_unlock = xfs_inode_item_unlock, 661 .iop_committed = xfs_inode_item_committed, 662 .iop_push = xfs_inode_item_push, 663 .iop_committing = xfs_inode_item_committing, 664 .iop_error = xfs_inode_item_error 665 }; 666 667 668 /* 669 * Initialize the inode log item for a newly allocated (in-core) inode. 670 */ 671 void 672 xfs_inode_item_init( 673 struct xfs_inode *ip, 674 struct xfs_mount *mp) 675 { 676 struct xfs_inode_log_item *iip; 677 678 ASSERT(ip->i_itemp == NULL); 679 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 680 681 iip->ili_inode = ip; 682 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 683 &xfs_inode_item_ops); 684 } 685 686 /* 687 * Free the inode log item and any memory hanging off of it. 688 */ 689 void 690 xfs_inode_item_destroy( 691 xfs_inode_t *ip) 692 { 693 kmem_free(ip->i_itemp->ili_item.li_lv_shadow); 694 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 695 } 696 697 698 /* 699 * This is the inode flushing I/O completion routine. It is called 700 * from interrupt level when the buffer containing the inode is 701 * flushed to disk. It is responsible for removing the inode item 702 * from the AIL if it has not been re-logged, and unlocking the inode's 703 * flush lock. 704 * 705 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 706 * list for other inodes that will run this function. We remove them from the 707 * buffer list so we can process all the inode IO completions in one AIL lock 708 * traversal. 709 */ 710 void 711 xfs_iflush_done( 712 struct xfs_buf *bp, 713 struct xfs_log_item *lip) 714 { 715 struct xfs_inode_log_item *iip; 716 struct xfs_log_item *blip, *n; 717 struct xfs_ail *ailp = lip->li_ailp; 718 int need_ail = 0; 719 LIST_HEAD(tmp); 720 721 /* 722 * Scan the buffer IO completions for other inodes being completed and 723 * attach them to the current inode log item. 724 */ 725 726 list_add_tail(&lip->li_bio_list, &tmp); 727 728 list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) { 729 if (lip->li_cb != xfs_iflush_done) 730 continue; 731 732 list_move_tail(&blip->li_bio_list, &tmp); 733 /* 734 * while we have the item, do the unlocked check for needing 735 * the AIL lock. 736 */ 737 iip = INODE_ITEM(blip); 738 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || 739 (blip->li_flags & XFS_LI_FAILED)) 740 need_ail++; 741 } 742 743 /* make sure we capture the state of the initial inode. */ 744 iip = INODE_ITEM(lip); 745 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || 746 lip->li_flags & XFS_LI_FAILED) 747 need_ail++; 748 749 /* 750 * We only want to pull the item from the AIL if it is 751 * actually there and its location in the log has not 752 * changed since we started the flush. Thus, we only bother 753 * if the ili_logged flag is set and the inode's lsn has not 754 * changed. First we check the lsn outside 755 * the lock since it's cheaper, and then we recheck while 756 * holding the lock before removing the inode from the AIL. 757 */ 758 if (need_ail) { 759 bool mlip_changed = false; 760 761 /* this is an opencoded batch version of xfs_trans_ail_delete */ 762 spin_lock(&ailp->xa_lock); 763 list_for_each_entry(blip, &tmp, li_bio_list) { 764 if (INODE_ITEM(blip)->ili_logged && 765 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) 766 mlip_changed |= xfs_ail_delete_one(ailp, blip); 767 else { 768 xfs_clear_li_failed(blip); 769 } 770 } 771 772 if (mlip_changed) { 773 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) 774 xlog_assign_tail_lsn_locked(ailp->xa_mount); 775 if (list_empty(&ailp->xa_ail)) 776 wake_up_all(&ailp->xa_empty); 777 } 778 spin_unlock(&ailp->xa_lock); 779 780 if (mlip_changed) 781 xfs_log_space_wake(ailp->xa_mount); 782 } 783 784 /* 785 * clean up and unlock the flush lock now we are done. We can clear the 786 * ili_last_fields bits now that we know that the data corresponding to 787 * them is safely on disk. 788 */ 789 list_for_each_entry_safe(blip, n, &tmp, li_bio_list) { 790 list_del_init(&blip->li_bio_list); 791 iip = INODE_ITEM(blip); 792 iip->ili_logged = 0; 793 iip->ili_last_fields = 0; 794 xfs_ifunlock(iip->ili_inode); 795 } 796 list_del(&tmp); 797 } 798 799 /* 800 * This is the inode flushing abort routine. It is called from xfs_iflush when 801 * the filesystem is shutting down to clean up the inode state. It is 802 * responsible for removing the inode item from the AIL if it has not been 803 * re-logged, and unlocking the inode's flush lock. 804 */ 805 void 806 xfs_iflush_abort( 807 xfs_inode_t *ip, 808 bool stale) 809 { 810 xfs_inode_log_item_t *iip = ip->i_itemp; 811 812 if (iip) { 813 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 814 xfs_trans_ail_remove(&iip->ili_item, 815 stale ? SHUTDOWN_LOG_IO_ERROR : 816 SHUTDOWN_CORRUPT_INCORE); 817 } 818 iip->ili_logged = 0; 819 /* 820 * Clear the ili_last_fields bits now that we know that the 821 * data corresponding to them is safely on disk. 822 */ 823 iip->ili_last_fields = 0; 824 /* 825 * Clear the inode logging fields so no more flushes are 826 * attempted. 827 */ 828 iip->ili_fields = 0; 829 iip->ili_fsync_fields = 0; 830 } 831 /* 832 * Release the inode's flush lock since we're done with it. 833 */ 834 xfs_ifunlock(ip); 835 } 836 837 void 838 xfs_istale_done( 839 struct xfs_buf *bp, 840 struct xfs_log_item *lip) 841 { 842 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 843 } 844 845 /* 846 * convert an xfs_inode_log_format struct from the old 32 bit version 847 * (which can have different field alignments) to the native 64 bit version 848 */ 849 int 850 xfs_inode_item_format_convert( 851 struct xfs_log_iovec *buf, 852 struct xfs_inode_log_format *in_f) 853 { 854 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 855 856 if (buf->i_len != sizeof(*in_f32)) 857 return -EFSCORRUPTED; 858 859 in_f->ilf_type = in_f32->ilf_type; 860 in_f->ilf_size = in_f32->ilf_size; 861 in_f->ilf_fields = in_f32->ilf_fields; 862 in_f->ilf_asize = in_f32->ilf_asize; 863 in_f->ilf_dsize = in_f32->ilf_dsize; 864 in_f->ilf_ino = in_f32->ilf_ino; 865 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 866 in_f->ilf_blkno = in_f32->ilf_blkno; 867 in_f->ilf_len = in_f32->ilf_len; 868 in_f->ilf_boffset = in_f32->ilf_boffset; 869 return 0; 870 } 871