xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision 79f08d9e)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_dinode.h"
33 
34 
35 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
36 
37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
38 {
39 	return container_of(lip, struct xfs_inode_log_item, ili_item);
40 }
41 
42 
43 /*
44  * This returns the number of iovecs needed to log the given inode item.
45  *
46  * We need one iovec for the inode log format structure, one for the
47  * inode core, and possibly one for the inode data/extents/b-tree root
48  * and one for the inode attribute data/extents/b-tree root.
49  */
50 STATIC void
51 xfs_inode_item_size(
52 	struct xfs_log_item	*lip,
53 	int			*nvecs,
54 	int			*nbytes)
55 {
56 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 	struct xfs_inode	*ip = iip->ili_inode;
58 
59 	*nvecs += 2;
60 	*nbytes += sizeof(struct xfs_inode_log_format) +
61 		   xfs_icdinode_size(ip->i_d.di_version);
62 
63 	switch (ip->i_d.di_format) {
64 	case XFS_DINODE_FMT_EXTENTS:
65 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
66 		    ip->i_d.di_nextents > 0 &&
67 		    ip->i_df.if_bytes > 0) {
68 			/* worst case, doesn't subtract delalloc extents */
69 			*nbytes += XFS_IFORK_DSIZE(ip);
70 			*nvecs += 1;
71 		}
72 		break;
73 
74 	case XFS_DINODE_FMT_BTREE:
75 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
76 		    ip->i_df.if_broot_bytes > 0) {
77 			*nbytes += ip->i_df.if_broot_bytes;
78 			*nvecs += 1;
79 		}
80 		break;
81 
82 	case XFS_DINODE_FMT_LOCAL:
83 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
84 		    ip->i_df.if_bytes > 0) {
85 			*nbytes += roundup(ip->i_df.if_bytes, 4);
86 			*nvecs += 1;
87 		}
88 		break;
89 
90 	case XFS_DINODE_FMT_DEV:
91 	case XFS_DINODE_FMT_UUID:
92 		break;
93 
94 	default:
95 		ASSERT(0);
96 		break;
97 	}
98 
99 	if (!XFS_IFORK_Q(ip))
100 		return;
101 
102 
103 	/*
104 	 * Log any necessary attribute data.
105 	 */
106 	switch (ip->i_d.di_aformat) {
107 	case XFS_DINODE_FMT_EXTENTS:
108 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
109 		    ip->i_d.di_anextents > 0 &&
110 		    ip->i_afp->if_bytes > 0) {
111 			/* worst case, doesn't subtract unused space */
112 			*nbytes += XFS_IFORK_ASIZE(ip);
113 			*nvecs += 1;
114 		}
115 		break;
116 
117 	case XFS_DINODE_FMT_BTREE:
118 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
119 		    ip->i_afp->if_broot_bytes > 0) {
120 			*nbytes += ip->i_afp->if_broot_bytes;
121 			*nvecs += 1;
122 		}
123 		break;
124 
125 	case XFS_DINODE_FMT_LOCAL:
126 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
127 		    ip->i_afp->if_bytes > 0) {
128 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
129 			*nvecs += 1;
130 		}
131 		break;
132 
133 	default:
134 		ASSERT(0);
135 		break;
136 	}
137 }
138 
139 /*
140  * xfs_inode_item_format_extents - convert in-core extents to on-disk form
141  *
142  * For either the data or attr fork in extent format, we need to endian convert
143  * the in-core extent as we place them into the on-disk inode. In this case, we
144  * need to do this conversion before we write the extents into the log. Because
145  * we don't have the disk inode to write into here, we allocate a buffer and
146  * format the extents into it via xfs_iextents_copy(). We free the buffer in
147  * the unlock routine after the copy for the log has been made.
148  *
149  * In the case of the data fork, the in-core and on-disk fork sizes can be
150  * different due to delayed allocation extents. We only log on-disk extents
151  * here, so always use the physical fork size to determine the size of the
152  * buffer we need to allocate.
153  */
154 STATIC void
155 xfs_inode_item_format_extents(
156 	struct xfs_inode	*ip,
157 	struct xfs_log_iovec	*vecp,
158 	int			whichfork,
159 	int			type)
160 {
161 	xfs_bmbt_rec_t		*ext_buffer;
162 
163 	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
164 	if (whichfork == XFS_DATA_FORK)
165 		ip->i_itemp->ili_extents_buf = ext_buffer;
166 	else
167 		ip->i_itemp->ili_aextents_buf = ext_buffer;
168 
169 	vecp->i_addr = ext_buffer;
170 	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
171 	vecp->i_type = type;
172 }
173 
174 /*
175  * This is called to fill in the vector of log iovecs for the
176  * given inode log item.  It fills the first item with an inode
177  * log format structure, the second with the on-disk inode structure,
178  * and a possible third and/or fourth with the inode data/extents/b-tree
179  * root and inode attributes data/extents/b-tree root.
180  */
181 STATIC void
182 xfs_inode_item_format(
183 	struct xfs_log_item	*lip,
184 	struct xfs_log_iovec	*vecp)
185 {
186 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
187 	struct xfs_inode	*ip = iip->ili_inode;
188 	uint			nvecs;
189 	size_t			data_bytes;
190 	xfs_mount_t		*mp;
191 
192 	vecp->i_addr = &iip->ili_format;
193 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
194 	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
195 	vecp++;
196 	nvecs	     = 1;
197 
198 	vecp->i_addr = &ip->i_d;
199 	vecp->i_len  = xfs_icdinode_size(ip->i_d.di_version);
200 	vecp->i_type = XLOG_REG_TYPE_ICORE;
201 	vecp++;
202 	nvecs++;
203 
204 	/*
205 	 * If this is really an old format inode, then we need to
206 	 * log it as such.  This means that we have to copy the link
207 	 * count from the new field to the old.  We don't have to worry
208 	 * about the new fields, because nothing trusts them as long as
209 	 * the old inode version number is there.  If the superblock already
210 	 * has a new version number, then we don't bother converting back.
211 	 */
212 	mp = ip->i_mount;
213 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
214 	if (ip->i_d.di_version == 1) {
215 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
216 			/*
217 			 * Convert it back.
218 			 */
219 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
220 			ip->i_d.di_onlink = ip->i_d.di_nlink;
221 		} else {
222 			/*
223 			 * The superblock version has already been bumped,
224 			 * so just make the conversion to the new inode
225 			 * format permanent.
226 			 */
227 			ip->i_d.di_version = 2;
228 			ip->i_d.di_onlink = 0;
229 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
230 		}
231 	}
232 
233 	switch (ip->i_d.di_format) {
234 	case XFS_DINODE_FMT_EXTENTS:
235 		iip->ili_fields &=
236 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
237 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
238 
239 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
240 		    ip->i_d.di_nextents > 0 &&
241 		    ip->i_df.if_bytes > 0) {
242 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
243 			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
244 			ASSERT(iip->ili_extents_buf == NULL);
245 
246 #ifdef XFS_NATIVE_HOST
247                        if (ip->i_d.di_nextents == ip->i_df.if_bytes /
248                                                (uint)sizeof(xfs_bmbt_rec_t)) {
249 				/*
250 				 * There are no delayed allocation
251 				 * extents, so just point to the
252 				 * real extents array.
253 				 */
254 				vecp->i_addr = ip->i_df.if_u1.if_extents;
255 				vecp->i_len = ip->i_df.if_bytes;
256 				vecp->i_type = XLOG_REG_TYPE_IEXT;
257 			} else
258 #endif
259 			{
260 				xfs_inode_item_format_extents(ip, vecp,
261 					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
262 			}
263 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
264 			iip->ili_format.ilf_dsize = vecp->i_len;
265 			vecp++;
266 			nvecs++;
267 		} else {
268 			iip->ili_fields &= ~XFS_ILOG_DEXT;
269 		}
270 		break;
271 
272 	case XFS_DINODE_FMT_BTREE:
273 		iip->ili_fields &=
274 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
275 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
276 
277 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
278 		    ip->i_df.if_broot_bytes > 0) {
279 			ASSERT(ip->i_df.if_broot != NULL);
280 			vecp->i_addr = ip->i_df.if_broot;
281 			vecp->i_len = ip->i_df.if_broot_bytes;
282 			vecp->i_type = XLOG_REG_TYPE_IBROOT;
283 			vecp++;
284 			nvecs++;
285 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
286 		} else {
287 			ASSERT(!(iip->ili_fields &
288 				 XFS_ILOG_DBROOT));
289 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
290 		}
291 		break;
292 
293 	case XFS_DINODE_FMT_LOCAL:
294 		iip->ili_fields &=
295 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
296 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
297 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
298 		    ip->i_df.if_bytes > 0) {
299 			ASSERT(ip->i_df.if_u1.if_data != NULL);
300 			ASSERT(ip->i_d.di_size > 0);
301 
302 			vecp->i_addr = ip->i_df.if_u1.if_data;
303 			/*
304 			 * Round i_bytes up to a word boundary.
305 			 * The underlying memory is guaranteed to
306 			 * to be there by xfs_idata_realloc().
307 			 */
308 			data_bytes = roundup(ip->i_df.if_bytes, 4);
309 			ASSERT((ip->i_df.if_real_bytes == 0) ||
310 			       (ip->i_df.if_real_bytes == data_bytes));
311 			vecp->i_len = (int)data_bytes;
312 			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
313 			vecp++;
314 			nvecs++;
315 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
316 		} else {
317 			iip->ili_fields &= ~XFS_ILOG_DDATA;
318 		}
319 		break;
320 
321 	case XFS_DINODE_FMT_DEV:
322 		iip->ili_fields &=
323 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
324 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
325 		if (iip->ili_fields & XFS_ILOG_DEV) {
326 			iip->ili_format.ilf_u.ilfu_rdev =
327 				ip->i_df.if_u2.if_rdev;
328 		}
329 		break;
330 
331 	case XFS_DINODE_FMT_UUID:
332 		iip->ili_fields &=
333 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
334 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
335 		if (iip->ili_fields & XFS_ILOG_UUID) {
336 			iip->ili_format.ilf_u.ilfu_uuid =
337 				ip->i_df.if_u2.if_uuid;
338 		}
339 		break;
340 
341 	default:
342 		ASSERT(0);
343 		break;
344 	}
345 
346 	/*
347 	 * If there are no attributes associated with the file, then we're done.
348 	 */
349 	if (!XFS_IFORK_Q(ip)) {
350 		iip->ili_fields &=
351 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
352 		goto out;
353 	}
354 
355 	switch (ip->i_d.di_aformat) {
356 	case XFS_DINODE_FMT_EXTENTS:
357 		iip->ili_fields &=
358 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
359 
360 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
361 		    ip->i_d.di_anextents > 0 &&
362 		    ip->i_afp->if_bytes > 0) {
363 			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
364 				ip->i_d.di_anextents);
365 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
366 #ifdef XFS_NATIVE_HOST
367 			/*
368 			 * There are not delayed allocation extents
369 			 * for attributes, so just point at the array.
370 			 */
371 			vecp->i_addr = ip->i_afp->if_u1.if_extents;
372 			vecp->i_len = ip->i_afp->if_bytes;
373 			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
374 #else
375 			ASSERT(iip->ili_aextents_buf == NULL);
376 			xfs_inode_item_format_extents(ip, vecp,
377 					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
378 #endif
379 			iip->ili_format.ilf_asize = vecp->i_len;
380 			vecp++;
381 			nvecs++;
382 		} else {
383 			iip->ili_fields &= ~XFS_ILOG_AEXT;
384 		}
385 		break;
386 
387 	case XFS_DINODE_FMT_BTREE:
388 		iip->ili_fields &=
389 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
390 
391 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
392 		    ip->i_afp->if_broot_bytes > 0) {
393 			ASSERT(ip->i_afp->if_broot != NULL);
394 
395 			vecp->i_addr = ip->i_afp->if_broot;
396 			vecp->i_len = ip->i_afp->if_broot_bytes;
397 			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
398 			vecp++;
399 			nvecs++;
400 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
401 		} else {
402 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
403 		}
404 		break;
405 
406 	case XFS_DINODE_FMT_LOCAL:
407 		iip->ili_fields &=
408 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
409 
410 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
411 		    ip->i_afp->if_bytes > 0) {
412 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
413 
414 			vecp->i_addr = ip->i_afp->if_u1.if_data;
415 			/*
416 			 * Round i_bytes up to a word boundary.
417 			 * The underlying memory is guaranteed to
418 			 * to be there by xfs_idata_realloc().
419 			 */
420 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
421 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
422 			       (ip->i_afp->if_real_bytes == data_bytes));
423 			vecp->i_len = (int)data_bytes;
424 			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
425 			vecp++;
426 			nvecs++;
427 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
428 		} else {
429 			iip->ili_fields &= ~XFS_ILOG_ADATA;
430 		}
431 		break;
432 
433 	default:
434 		ASSERT(0);
435 		break;
436 	}
437 
438 out:
439 	/*
440 	 * Now update the log format that goes out to disk from the in-core
441 	 * values.  We always write the inode core to make the arithmetic
442 	 * games in recovery easier, which isn't a big deal as just about any
443 	 * transaction would dirty it anyway.
444 	 */
445 	iip->ili_format.ilf_fields = XFS_ILOG_CORE |
446 		(iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
447 	iip->ili_format.ilf_size = nvecs;
448 }
449 
450 
451 /*
452  * This is called to pin the inode associated with the inode log
453  * item in memory so it cannot be written out.
454  */
455 STATIC void
456 xfs_inode_item_pin(
457 	struct xfs_log_item	*lip)
458 {
459 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
460 
461 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
462 
463 	trace_xfs_inode_pin(ip, _RET_IP_);
464 	atomic_inc(&ip->i_pincount);
465 }
466 
467 
468 /*
469  * This is called to unpin the inode associated with the inode log
470  * item which was previously pinned with a call to xfs_inode_item_pin().
471  *
472  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
473  */
474 STATIC void
475 xfs_inode_item_unpin(
476 	struct xfs_log_item	*lip,
477 	int			remove)
478 {
479 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
480 
481 	trace_xfs_inode_unpin(ip, _RET_IP_);
482 	ASSERT(atomic_read(&ip->i_pincount) > 0);
483 	if (atomic_dec_and_test(&ip->i_pincount))
484 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
485 }
486 
487 STATIC uint
488 xfs_inode_item_push(
489 	struct xfs_log_item	*lip,
490 	struct list_head	*buffer_list)
491 {
492 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
493 	struct xfs_inode	*ip = iip->ili_inode;
494 	struct xfs_buf		*bp = NULL;
495 	uint			rval = XFS_ITEM_SUCCESS;
496 	int			error;
497 
498 	if (xfs_ipincount(ip) > 0)
499 		return XFS_ITEM_PINNED;
500 
501 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
502 		return XFS_ITEM_LOCKED;
503 
504 	/*
505 	 * Re-check the pincount now that we stabilized the value by
506 	 * taking the ilock.
507 	 */
508 	if (xfs_ipincount(ip) > 0) {
509 		rval = XFS_ITEM_PINNED;
510 		goto out_unlock;
511 	}
512 
513 	/*
514 	 * Stale inode items should force out the iclog.
515 	 */
516 	if (ip->i_flags & XFS_ISTALE) {
517 		rval = XFS_ITEM_PINNED;
518 		goto out_unlock;
519 	}
520 
521 	/*
522 	 * Someone else is already flushing the inode.  Nothing we can do
523 	 * here but wait for the flush to finish and remove the item from
524 	 * the AIL.
525 	 */
526 	if (!xfs_iflock_nowait(ip)) {
527 		rval = XFS_ITEM_FLUSHING;
528 		goto out_unlock;
529 	}
530 
531 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
532 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
533 
534 	spin_unlock(&lip->li_ailp->xa_lock);
535 
536 	error = xfs_iflush(ip, &bp);
537 	if (!error) {
538 		if (!xfs_buf_delwri_queue(bp, buffer_list))
539 			rval = XFS_ITEM_FLUSHING;
540 		xfs_buf_relse(bp);
541 	}
542 
543 	spin_lock(&lip->li_ailp->xa_lock);
544 out_unlock:
545 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
546 	return rval;
547 }
548 
549 /*
550  * Unlock the inode associated with the inode log item.
551  * Clear the fields of the inode and inode log item that
552  * are specific to the current transaction.  If the
553  * hold flags is set, do not unlock the inode.
554  */
555 STATIC void
556 xfs_inode_item_unlock(
557 	struct xfs_log_item	*lip)
558 {
559 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
560 	struct xfs_inode	*ip = iip->ili_inode;
561 	unsigned short		lock_flags;
562 
563 	ASSERT(ip->i_itemp != NULL);
564 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
565 
566 	/*
567 	 * If the inode needed a separate buffer with which to log
568 	 * its extents, then free it now.
569 	 */
570 	if (iip->ili_extents_buf != NULL) {
571 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
572 		ASSERT(ip->i_d.di_nextents > 0);
573 		ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
574 		ASSERT(ip->i_df.if_bytes > 0);
575 		kmem_free(iip->ili_extents_buf);
576 		iip->ili_extents_buf = NULL;
577 	}
578 	if (iip->ili_aextents_buf != NULL) {
579 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
580 		ASSERT(ip->i_d.di_anextents > 0);
581 		ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
582 		ASSERT(ip->i_afp->if_bytes > 0);
583 		kmem_free(iip->ili_aextents_buf);
584 		iip->ili_aextents_buf = NULL;
585 	}
586 
587 	lock_flags = iip->ili_lock_flags;
588 	iip->ili_lock_flags = 0;
589 	if (lock_flags)
590 		xfs_iunlock(ip, lock_flags);
591 }
592 
593 /*
594  * This is called to find out where the oldest active copy of the inode log
595  * item in the on disk log resides now that the last log write of it completed
596  * at the given lsn.  Since we always re-log all dirty data in an inode, the
597  * latest copy in the on disk log is the only one that matters.  Therefore,
598  * simply return the given lsn.
599  *
600  * If the inode has been marked stale because the cluster is being freed, we
601  * don't want to (re-)insert this inode into the AIL. There is a race condition
602  * where the cluster buffer may be unpinned before the inode is inserted into
603  * the AIL during transaction committed processing. If the buffer is unpinned
604  * before the inode item has been committed and inserted, then it is possible
605  * for the buffer to be written and IO completes before the inode is inserted
606  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
607  * AIL which will never get removed. It will, however, get reclaimed which
608  * triggers an assert in xfs_inode_free() complaining about freein an inode
609  * still in the AIL.
610  *
611  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
612  * transaction committed code knows that it does not need to do any further
613  * processing on the item.
614  */
615 STATIC xfs_lsn_t
616 xfs_inode_item_committed(
617 	struct xfs_log_item	*lip,
618 	xfs_lsn_t		lsn)
619 {
620 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
621 	struct xfs_inode	*ip = iip->ili_inode;
622 
623 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
624 		xfs_inode_item_unpin(lip, 0);
625 		return -1;
626 	}
627 	return lsn;
628 }
629 
630 /*
631  * XXX rcc - this one really has to do something.  Probably needs
632  * to stamp in a new field in the incore inode.
633  */
634 STATIC void
635 xfs_inode_item_committing(
636 	struct xfs_log_item	*lip,
637 	xfs_lsn_t		lsn)
638 {
639 	INODE_ITEM(lip)->ili_last_lsn = lsn;
640 }
641 
642 /*
643  * This is the ops vector shared by all buf log items.
644  */
645 static const struct xfs_item_ops xfs_inode_item_ops = {
646 	.iop_size	= xfs_inode_item_size,
647 	.iop_format	= xfs_inode_item_format,
648 	.iop_pin	= xfs_inode_item_pin,
649 	.iop_unpin	= xfs_inode_item_unpin,
650 	.iop_unlock	= xfs_inode_item_unlock,
651 	.iop_committed	= xfs_inode_item_committed,
652 	.iop_push	= xfs_inode_item_push,
653 	.iop_committing = xfs_inode_item_committing
654 };
655 
656 
657 /*
658  * Initialize the inode log item for a newly allocated (in-core) inode.
659  */
660 void
661 xfs_inode_item_init(
662 	struct xfs_inode	*ip,
663 	struct xfs_mount	*mp)
664 {
665 	struct xfs_inode_log_item *iip;
666 
667 	ASSERT(ip->i_itemp == NULL);
668 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
669 
670 	iip->ili_inode = ip;
671 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
672 						&xfs_inode_item_ops);
673 	iip->ili_format.ilf_type = XFS_LI_INODE;
674 	iip->ili_format.ilf_ino = ip->i_ino;
675 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
676 	iip->ili_format.ilf_len = ip->i_imap.im_len;
677 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
678 }
679 
680 /*
681  * Free the inode log item and any memory hanging off of it.
682  */
683 void
684 xfs_inode_item_destroy(
685 	xfs_inode_t	*ip)
686 {
687 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
688 }
689 
690 
691 /*
692  * This is the inode flushing I/O completion routine.  It is called
693  * from interrupt level when the buffer containing the inode is
694  * flushed to disk.  It is responsible for removing the inode item
695  * from the AIL if it has not been re-logged, and unlocking the inode's
696  * flush lock.
697  *
698  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
699  * list for other inodes that will run this function. We remove them from the
700  * buffer list so we can process all the inode IO completions in one AIL lock
701  * traversal.
702  */
703 void
704 xfs_iflush_done(
705 	struct xfs_buf		*bp,
706 	struct xfs_log_item	*lip)
707 {
708 	struct xfs_inode_log_item *iip;
709 	struct xfs_log_item	*blip;
710 	struct xfs_log_item	*next;
711 	struct xfs_log_item	*prev;
712 	struct xfs_ail		*ailp = lip->li_ailp;
713 	int			need_ail = 0;
714 
715 	/*
716 	 * Scan the buffer IO completions for other inodes being completed and
717 	 * attach them to the current inode log item.
718 	 */
719 	blip = bp->b_fspriv;
720 	prev = NULL;
721 	while (blip != NULL) {
722 		if (lip->li_cb != xfs_iflush_done) {
723 			prev = blip;
724 			blip = blip->li_bio_list;
725 			continue;
726 		}
727 
728 		/* remove from list */
729 		next = blip->li_bio_list;
730 		if (!prev) {
731 			bp->b_fspriv = next;
732 		} else {
733 			prev->li_bio_list = next;
734 		}
735 
736 		/* add to current list */
737 		blip->li_bio_list = lip->li_bio_list;
738 		lip->li_bio_list = blip;
739 
740 		/*
741 		 * while we have the item, do the unlocked check for needing
742 		 * the AIL lock.
743 		 */
744 		iip = INODE_ITEM(blip);
745 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
746 			need_ail++;
747 
748 		blip = next;
749 	}
750 
751 	/* make sure we capture the state of the initial inode. */
752 	iip = INODE_ITEM(lip);
753 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
754 		need_ail++;
755 
756 	/*
757 	 * We only want to pull the item from the AIL if it is
758 	 * actually there and its location in the log has not
759 	 * changed since we started the flush.  Thus, we only bother
760 	 * if the ili_logged flag is set and the inode's lsn has not
761 	 * changed.  First we check the lsn outside
762 	 * the lock since it's cheaper, and then we recheck while
763 	 * holding the lock before removing the inode from the AIL.
764 	 */
765 	if (need_ail) {
766 		struct xfs_log_item *log_items[need_ail];
767 		int i = 0;
768 		spin_lock(&ailp->xa_lock);
769 		for (blip = lip; blip; blip = blip->li_bio_list) {
770 			iip = INODE_ITEM(blip);
771 			if (iip->ili_logged &&
772 			    blip->li_lsn == iip->ili_flush_lsn) {
773 				log_items[i++] = blip;
774 			}
775 			ASSERT(i <= need_ail);
776 		}
777 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
778 		xfs_trans_ail_delete_bulk(ailp, log_items, i,
779 					  SHUTDOWN_CORRUPT_INCORE);
780 	}
781 
782 
783 	/*
784 	 * clean up and unlock the flush lock now we are done. We can clear the
785 	 * ili_last_fields bits now that we know that the data corresponding to
786 	 * them is safely on disk.
787 	 */
788 	for (blip = lip; blip; blip = next) {
789 		next = blip->li_bio_list;
790 		blip->li_bio_list = NULL;
791 
792 		iip = INODE_ITEM(blip);
793 		iip->ili_logged = 0;
794 		iip->ili_last_fields = 0;
795 		xfs_ifunlock(iip->ili_inode);
796 	}
797 }
798 
799 /*
800  * This is the inode flushing abort routine.  It is called from xfs_iflush when
801  * the filesystem is shutting down to clean up the inode state.  It is
802  * responsible for removing the inode item from the AIL if it has not been
803  * re-logged, and unlocking the inode's flush lock.
804  */
805 void
806 xfs_iflush_abort(
807 	xfs_inode_t		*ip,
808 	bool			stale)
809 {
810 	xfs_inode_log_item_t	*iip = ip->i_itemp;
811 
812 	if (iip) {
813 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
814 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
815 			spin_lock(&ailp->xa_lock);
816 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
817 				/* xfs_trans_ail_delete() drops the AIL lock. */
818 				xfs_trans_ail_delete(ailp, &iip->ili_item,
819 						stale ?
820 						     SHUTDOWN_LOG_IO_ERROR :
821 						     SHUTDOWN_CORRUPT_INCORE);
822 			} else
823 				spin_unlock(&ailp->xa_lock);
824 		}
825 		iip->ili_logged = 0;
826 		/*
827 		 * Clear the ili_last_fields bits now that we know that the
828 		 * data corresponding to them is safely on disk.
829 		 */
830 		iip->ili_last_fields = 0;
831 		/*
832 		 * Clear the inode logging fields so no more flushes are
833 		 * attempted.
834 		 */
835 		iip->ili_fields = 0;
836 	}
837 	/*
838 	 * Release the inode's flush lock since we're done with it.
839 	 */
840 	xfs_ifunlock(ip);
841 }
842 
843 void
844 xfs_istale_done(
845 	struct xfs_buf		*bp,
846 	struct xfs_log_item	*lip)
847 {
848 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
849 }
850 
851 /*
852  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
853  * (which can have different field alignments) to the native version
854  */
855 int
856 xfs_inode_item_format_convert(
857 	xfs_log_iovec_t		*buf,
858 	xfs_inode_log_format_t	*in_f)
859 {
860 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
861 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
862 
863 		in_f->ilf_type = in_f32->ilf_type;
864 		in_f->ilf_size = in_f32->ilf_size;
865 		in_f->ilf_fields = in_f32->ilf_fields;
866 		in_f->ilf_asize = in_f32->ilf_asize;
867 		in_f->ilf_dsize = in_f32->ilf_dsize;
868 		in_f->ilf_ino = in_f32->ilf_ino;
869 		/* copy biggest field of ilf_u */
870 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
871 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
872 		       sizeof(uuid_t));
873 		in_f->ilf_blkno = in_f32->ilf_blkno;
874 		in_f->ilf_len = in_f32->ilf_len;
875 		in_f->ilf_boffset = in_f32->ilf_boffset;
876 		return 0;
877 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
878 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
879 
880 		in_f->ilf_type = in_f64->ilf_type;
881 		in_f->ilf_size = in_f64->ilf_size;
882 		in_f->ilf_fields = in_f64->ilf_fields;
883 		in_f->ilf_asize = in_f64->ilf_asize;
884 		in_f->ilf_dsize = in_f64->ilf_dsize;
885 		in_f->ilf_ino = in_f64->ilf_ino;
886 		/* copy biggest field of ilf_u */
887 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
888 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
889 		       sizeof(uuid_t));
890 		in_f->ilf_blkno = in_f64->ilf_blkno;
891 		in_f->ilf_len = in_f64->ilf_len;
892 		in_f->ilf_boffset = in_f64->ilf_boffset;
893 		return 0;
894 	}
895 	return EFSCORRUPTED;
896 }
897