xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_dinode.h"
33 #include "xfs_log.h"
34 
35 
36 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
37 
38 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
39 {
40 	return container_of(lip, struct xfs_inode_log_item, ili_item);
41 }
42 
43 STATIC void
44 xfs_inode_item_data_fork_size(
45 	struct xfs_inode_log_item *iip,
46 	int			*nvecs,
47 	int			*nbytes)
48 {
49 	struct xfs_inode	*ip = iip->ili_inode;
50 
51 	switch (ip->i_d.di_format) {
52 	case XFS_DINODE_FMT_EXTENTS:
53 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
54 		    ip->i_d.di_nextents > 0 &&
55 		    ip->i_df.if_bytes > 0) {
56 			/* worst case, doesn't subtract delalloc extents */
57 			*nbytes += XFS_IFORK_DSIZE(ip);
58 			*nvecs += 1;
59 		}
60 		break;
61 	case XFS_DINODE_FMT_BTREE:
62 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
63 		    ip->i_df.if_broot_bytes > 0) {
64 			*nbytes += ip->i_df.if_broot_bytes;
65 			*nvecs += 1;
66 		}
67 		break;
68 	case XFS_DINODE_FMT_LOCAL:
69 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
70 		    ip->i_df.if_bytes > 0) {
71 			*nbytes += roundup(ip->i_df.if_bytes, 4);
72 			*nvecs += 1;
73 		}
74 		break;
75 
76 	case XFS_DINODE_FMT_DEV:
77 	case XFS_DINODE_FMT_UUID:
78 		break;
79 	default:
80 		ASSERT(0);
81 		break;
82 	}
83 }
84 
85 STATIC void
86 xfs_inode_item_attr_fork_size(
87 	struct xfs_inode_log_item *iip,
88 	int			*nvecs,
89 	int			*nbytes)
90 {
91 	struct xfs_inode	*ip = iip->ili_inode;
92 
93 	switch (ip->i_d.di_aformat) {
94 	case XFS_DINODE_FMT_EXTENTS:
95 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
96 		    ip->i_d.di_anextents > 0 &&
97 		    ip->i_afp->if_bytes > 0) {
98 			/* worst case, doesn't subtract unused space */
99 			*nbytes += XFS_IFORK_ASIZE(ip);
100 			*nvecs += 1;
101 		}
102 		break;
103 	case XFS_DINODE_FMT_BTREE:
104 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
105 		    ip->i_afp->if_broot_bytes > 0) {
106 			*nbytes += ip->i_afp->if_broot_bytes;
107 			*nvecs += 1;
108 		}
109 		break;
110 	case XFS_DINODE_FMT_LOCAL:
111 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
112 		    ip->i_afp->if_bytes > 0) {
113 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
114 			*nvecs += 1;
115 		}
116 		break;
117 	default:
118 		ASSERT(0);
119 		break;
120 	}
121 }
122 
123 /*
124  * This returns the number of iovecs needed to log the given inode item.
125  *
126  * We need one iovec for the inode log format structure, one for the
127  * inode core, and possibly one for the inode data/extents/b-tree root
128  * and one for the inode attribute data/extents/b-tree root.
129  */
130 STATIC void
131 xfs_inode_item_size(
132 	struct xfs_log_item	*lip,
133 	int			*nvecs,
134 	int			*nbytes)
135 {
136 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
137 	struct xfs_inode	*ip = iip->ili_inode;
138 
139 	*nvecs += 2;
140 	*nbytes += sizeof(struct xfs_inode_log_format) +
141 		   xfs_icdinode_size(ip->i_d.di_version);
142 
143 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
144 	if (XFS_IFORK_Q(ip))
145 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
146 }
147 
148 /*
149  * If this is a v1 format inode, then we need to log it as such.  This means
150  * that we have to copy the link count from the new field to the old.  We
151  * don't have to worry about the new fields, because nothing trusts them as
152  * long as the old inode version number is there.
153  */
154 STATIC void
155 xfs_inode_item_format_v1_inode(
156 	struct xfs_inode	*ip)
157 {
158 	if (!xfs_sb_version_hasnlink(&ip->i_mount->m_sb)) {
159 		/*
160 		 * Convert it back.
161 		 */
162 		ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
163 		ip->i_d.di_onlink = ip->i_d.di_nlink;
164 	} else {
165 		/*
166 		 * The superblock version has already been bumped,
167 		 * so just make the conversion to the new inode
168 		 * format permanent.
169 		 */
170 		ip->i_d.di_version = 2;
171 		ip->i_d.di_onlink = 0;
172 		memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
173 	}
174 }
175 
176 STATIC void
177 xfs_inode_item_format_data_fork(
178 	struct xfs_inode_log_item *iip,
179 	struct xfs_inode_log_format *ilf,
180 	struct xfs_log_vec	*lv,
181 	struct xfs_log_iovec	**vecp)
182 {
183 	struct xfs_inode	*ip = iip->ili_inode;
184 	size_t			data_bytes;
185 
186 	switch (ip->i_d.di_format) {
187 	case XFS_DINODE_FMT_EXTENTS:
188 		iip->ili_fields &=
189 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
190 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
191 
192 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
193 		    ip->i_d.di_nextents > 0 &&
194 		    ip->i_df.if_bytes > 0) {
195 			struct xfs_bmbt_rec *p;
196 
197 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
198 			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
199 
200 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
201 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
202 			xlog_finish_iovec(lv, *vecp, data_bytes);
203 
204 			ASSERT(data_bytes <= ip->i_df.if_bytes);
205 
206 			ilf->ilf_dsize = data_bytes;
207 			ilf->ilf_size++;
208 		} else {
209 			iip->ili_fields &= ~XFS_ILOG_DEXT;
210 		}
211 		break;
212 	case XFS_DINODE_FMT_BTREE:
213 		iip->ili_fields &=
214 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
215 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
216 
217 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
218 		    ip->i_df.if_broot_bytes > 0) {
219 			ASSERT(ip->i_df.if_broot != NULL);
220 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
221 					ip->i_df.if_broot,
222 					ip->i_df.if_broot_bytes);
223 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
224 			ilf->ilf_size++;
225 		} else {
226 			ASSERT(!(iip->ili_fields &
227 				 XFS_ILOG_DBROOT));
228 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
229 		}
230 		break;
231 	case XFS_DINODE_FMT_LOCAL:
232 		iip->ili_fields &=
233 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
234 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
235 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
236 		    ip->i_df.if_bytes > 0) {
237 			/*
238 			 * Round i_bytes up to a word boundary.
239 			 * The underlying memory is guaranteed to
240 			 * to be there by xfs_idata_realloc().
241 			 */
242 			data_bytes = roundup(ip->i_df.if_bytes, 4);
243 			ASSERT(ip->i_df.if_real_bytes == 0 ||
244 			       ip->i_df.if_real_bytes == data_bytes);
245 			ASSERT(ip->i_df.if_u1.if_data != NULL);
246 			ASSERT(ip->i_d.di_size > 0);
247 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
248 					ip->i_df.if_u1.if_data, data_bytes);
249 			ilf->ilf_dsize = (unsigned)data_bytes;
250 			ilf->ilf_size++;
251 		} else {
252 			iip->ili_fields &= ~XFS_ILOG_DDATA;
253 		}
254 		break;
255 	case XFS_DINODE_FMT_DEV:
256 		iip->ili_fields &=
257 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
258 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
259 		if (iip->ili_fields & XFS_ILOG_DEV)
260 			ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
261 		break;
262 	case XFS_DINODE_FMT_UUID:
263 		iip->ili_fields &=
264 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
265 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
266 		if (iip->ili_fields & XFS_ILOG_UUID)
267 			ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
268 		break;
269 	default:
270 		ASSERT(0);
271 		break;
272 	}
273 }
274 
275 STATIC void
276 xfs_inode_item_format_attr_fork(
277 	struct xfs_inode_log_item *iip,
278 	struct xfs_inode_log_format *ilf,
279 	struct xfs_log_vec	*lv,
280 	struct xfs_log_iovec	**vecp)
281 {
282 	struct xfs_inode	*ip = iip->ili_inode;
283 	size_t			data_bytes;
284 
285 	switch (ip->i_d.di_aformat) {
286 	case XFS_DINODE_FMT_EXTENTS:
287 		iip->ili_fields &=
288 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
289 
290 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
291 		    ip->i_d.di_anextents > 0 &&
292 		    ip->i_afp->if_bytes > 0) {
293 			struct xfs_bmbt_rec *p;
294 
295 			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
296 				ip->i_d.di_anextents);
297 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
298 
299 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
300 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
301 			xlog_finish_iovec(lv, *vecp, data_bytes);
302 
303 			ilf->ilf_asize = data_bytes;
304 			ilf->ilf_size++;
305 		} else {
306 			iip->ili_fields &= ~XFS_ILOG_AEXT;
307 		}
308 		break;
309 	case XFS_DINODE_FMT_BTREE:
310 		iip->ili_fields &=
311 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
312 
313 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
314 		    ip->i_afp->if_broot_bytes > 0) {
315 			ASSERT(ip->i_afp->if_broot != NULL);
316 
317 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
318 					ip->i_afp->if_broot,
319 					ip->i_afp->if_broot_bytes);
320 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
321 			ilf->ilf_size++;
322 		} else {
323 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
324 		}
325 		break;
326 	case XFS_DINODE_FMT_LOCAL:
327 		iip->ili_fields &=
328 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
329 
330 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
331 		    ip->i_afp->if_bytes > 0) {
332 			/*
333 			 * Round i_bytes up to a word boundary.
334 			 * The underlying memory is guaranteed to
335 			 * to be there by xfs_idata_realloc().
336 			 */
337 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
338 			ASSERT(ip->i_afp->if_real_bytes == 0 ||
339 			       ip->i_afp->if_real_bytes == data_bytes);
340 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
341 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
342 					ip->i_afp->if_u1.if_data,
343 					data_bytes);
344 			ilf->ilf_asize = (unsigned)data_bytes;
345 			ilf->ilf_size++;
346 		} else {
347 			iip->ili_fields &= ~XFS_ILOG_ADATA;
348 		}
349 		break;
350 	default:
351 		ASSERT(0);
352 		break;
353 	}
354 }
355 
356 /*
357  * This is called to fill in the vector of log iovecs for the given inode
358  * log item.  It fills the first item with an inode log format structure,
359  * the second with the on-disk inode structure, and a possible third and/or
360  * fourth with the inode data/extents/b-tree root and inode attributes
361  * data/extents/b-tree root.
362  */
363 STATIC void
364 xfs_inode_item_format(
365 	struct xfs_log_item	*lip,
366 	struct xfs_log_vec	*lv)
367 {
368 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
369 	struct xfs_inode	*ip = iip->ili_inode;
370 	struct xfs_inode_log_format *ilf;
371 	struct xfs_log_iovec	*vecp = NULL;
372 
373 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
374 	ilf->ilf_type = XFS_LI_INODE;
375 	ilf->ilf_ino = ip->i_ino;
376 	ilf->ilf_blkno = ip->i_imap.im_blkno;
377 	ilf->ilf_len = ip->i_imap.im_len;
378 	ilf->ilf_boffset = ip->i_imap.im_boffset;
379 	ilf->ilf_fields = XFS_ILOG_CORE;
380 	ilf->ilf_size = 2; /* format + core */
381 	xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
382 
383 	if (ip->i_d.di_version == 1)
384 		xfs_inode_item_format_v1_inode(ip);
385 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE,
386 			&ip->i_d,
387 			xfs_icdinode_size(ip->i_d.di_version));
388 
389 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
390 	if (XFS_IFORK_Q(ip)) {
391 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
392 	} else {
393 		iip->ili_fields &=
394 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
395 	}
396 
397 	/* update the format with the exact fields we actually logged */
398 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
399 }
400 
401 /*
402  * This is called to pin the inode associated with the inode log
403  * item in memory so it cannot be written out.
404  */
405 STATIC void
406 xfs_inode_item_pin(
407 	struct xfs_log_item	*lip)
408 {
409 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
410 
411 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
412 
413 	trace_xfs_inode_pin(ip, _RET_IP_);
414 	atomic_inc(&ip->i_pincount);
415 }
416 
417 
418 /*
419  * This is called to unpin the inode associated with the inode log
420  * item which was previously pinned with a call to xfs_inode_item_pin().
421  *
422  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
423  */
424 STATIC void
425 xfs_inode_item_unpin(
426 	struct xfs_log_item	*lip,
427 	int			remove)
428 {
429 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
430 
431 	trace_xfs_inode_unpin(ip, _RET_IP_);
432 	ASSERT(atomic_read(&ip->i_pincount) > 0);
433 	if (atomic_dec_and_test(&ip->i_pincount))
434 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
435 }
436 
437 STATIC uint
438 xfs_inode_item_push(
439 	struct xfs_log_item	*lip,
440 	struct list_head	*buffer_list)
441 {
442 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
443 	struct xfs_inode	*ip = iip->ili_inode;
444 	struct xfs_buf		*bp = NULL;
445 	uint			rval = XFS_ITEM_SUCCESS;
446 	int			error;
447 
448 	if (xfs_ipincount(ip) > 0)
449 		return XFS_ITEM_PINNED;
450 
451 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
452 		return XFS_ITEM_LOCKED;
453 
454 	/*
455 	 * Re-check the pincount now that we stabilized the value by
456 	 * taking the ilock.
457 	 */
458 	if (xfs_ipincount(ip) > 0) {
459 		rval = XFS_ITEM_PINNED;
460 		goto out_unlock;
461 	}
462 
463 	/*
464 	 * Stale inode items should force out the iclog.
465 	 */
466 	if (ip->i_flags & XFS_ISTALE) {
467 		rval = XFS_ITEM_PINNED;
468 		goto out_unlock;
469 	}
470 
471 	/*
472 	 * Someone else is already flushing the inode.  Nothing we can do
473 	 * here but wait for the flush to finish and remove the item from
474 	 * the AIL.
475 	 */
476 	if (!xfs_iflock_nowait(ip)) {
477 		rval = XFS_ITEM_FLUSHING;
478 		goto out_unlock;
479 	}
480 
481 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
482 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
483 
484 	spin_unlock(&lip->li_ailp->xa_lock);
485 
486 	error = xfs_iflush(ip, &bp);
487 	if (!error) {
488 		if (!xfs_buf_delwri_queue(bp, buffer_list))
489 			rval = XFS_ITEM_FLUSHING;
490 		xfs_buf_relse(bp);
491 	}
492 
493 	spin_lock(&lip->li_ailp->xa_lock);
494 out_unlock:
495 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
496 	return rval;
497 }
498 
499 /*
500  * Unlock the inode associated with the inode log item.
501  * Clear the fields of the inode and inode log item that
502  * are specific to the current transaction.  If the
503  * hold flags is set, do not unlock the inode.
504  */
505 STATIC void
506 xfs_inode_item_unlock(
507 	struct xfs_log_item	*lip)
508 {
509 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
510 	struct xfs_inode	*ip = iip->ili_inode;
511 	unsigned short		lock_flags;
512 
513 	ASSERT(ip->i_itemp != NULL);
514 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
515 
516 	lock_flags = iip->ili_lock_flags;
517 	iip->ili_lock_flags = 0;
518 	if (lock_flags)
519 		xfs_iunlock(ip, lock_flags);
520 }
521 
522 /*
523  * This is called to find out where the oldest active copy of the inode log
524  * item in the on disk log resides now that the last log write of it completed
525  * at the given lsn.  Since we always re-log all dirty data in an inode, the
526  * latest copy in the on disk log is the only one that matters.  Therefore,
527  * simply return the given lsn.
528  *
529  * If the inode has been marked stale because the cluster is being freed, we
530  * don't want to (re-)insert this inode into the AIL. There is a race condition
531  * where the cluster buffer may be unpinned before the inode is inserted into
532  * the AIL during transaction committed processing. If the buffer is unpinned
533  * before the inode item has been committed and inserted, then it is possible
534  * for the buffer to be written and IO completes before the inode is inserted
535  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
536  * AIL which will never get removed. It will, however, get reclaimed which
537  * triggers an assert in xfs_inode_free() complaining about freein an inode
538  * still in the AIL.
539  *
540  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
541  * transaction committed code knows that it does not need to do any further
542  * processing on the item.
543  */
544 STATIC xfs_lsn_t
545 xfs_inode_item_committed(
546 	struct xfs_log_item	*lip,
547 	xfs_lsn_t		lsn)
548 {
549 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
550 	struct xfs_inode	*ip = iip->ili_inode;
551 
552 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
553 		xfs_inode_item_unpin(lip, 0);
554 		return -1;
555 	}
556 	return lsn;
557 }
558 
559 /*
560  * XXX rcc - this one really has to do something.  Probably needs
561  * to stamp in a new field in the incore inode.
562  */
563 STATIC void
564 xfs_inode_item_committing(
565 	struct xfs_log_item	*lip,
566 	xfs_lsn_t		lsn)
567 {
568 	INODE_ITEM(lip)->ili_last_lsn = lsn;
569 }
570 
571 /*
572  * This is the ops vector shared by all buf log items.
573  */
574 static const struct xfs_item_ops xfs_inode_item_ops = {
575 	.iop_size	= xfs_inode_item_size,
576 	.iop_format	= xfs_inode_item_format,
577 	.iop_pin	= xfs_inode_item_pin,
578 	.iop_unpin	= xfs_inode_item_unpin,
579 	.iop_unlock	= xfs_inode_item_unlock,
580 	.iop_committed	= xfs_inode_item_committed,
581 	.iop_push	= xfs_inode_item_push,
582 	.iop_committing = xfs_inode_item_committing
583 };
584 
585 
586 /*
587  * Initialize the inode log item for a newly allocated (in-core) inode.
588  */
589 void
590 xfs_inode_item_init(
591 	struct xfs_inode	*ip,
592 	struct xfs_mount	*mp)
593 {
594 	struct xfs_inode_log_item *iip;
595 
596 	ASSERT(ip->i_itemp == NULL);
597 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
598 
599 	iip->ili_inode = ip;
600 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
601 						&xfs_inode_item_ops);
602 }
603 
604 /*
605  * Free the inode log item and any memory hanging off of it.
606  */
607 void
608 xfs_inode_item_destroy(
609 	xfs_inode_t	*ip)
610 {
611 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
612 }
613 
614 
615 /*
616  * This is the inode flushing I/O completion routine.  It is called
617  * from interrupt level when the buffer containing the inode is
618  * flushed to disk.  It is responsible for removing the inode item
619  * from the AIL if it has not been re-logged, and unlocking the inode's
620  * flush lock.
621  *
622  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
623  * list for other inodes that will run this function. We remove them from the
624  * buffer list so we can process all the inode IO completions in one AIL lock
625  * traversal.
626  */
627 void
628 xfs_iflush_done(
629 	struct xfs_buf		*bp,
630 	struct xfs_log_item	*lip)
631 {
632 	struct xfs_inode_log_item *iip;
633 	struct xfs_log_item	*blip;
634 	struct xfs_log_item	*next;
635 	struct xfs_log_item	*prev;
636 	struct xfs_ail		*ailp = lip->li_ailp;
637 	int			need_ail = 0;
638 
639 	/*
640 	 * Scan the buffer IO completions for other inodes being completed and
641 	 * attach them to the current inode log item.
642 	 */
643 	blip = bp->b_fspriv;
644 	prev = NULL;
645 	while (blip != NULL) {
646 		if (lip->li_cb != xfs_iflush_done) {
647 			prev = blip;
648 			blip = blip->li_bio_list;
649 			continue;
650 		}
651 
652 		/* remove from list */
653 		next = blip->li_bio_list;
654 		if (!prev) {
655 			bp->b_fspriv = next;
656 		} else {
657 			prev->li_bio_list = next;
658 		}
659 
660 		/* add to current list */
661 		blip->li_bio_list = lip->li_bio_list;
662 		lip->li_bio_list = blip;
663 
664 		/*
665 		 * while we have the item, do the unlocked check for needing
666 		 * the AIL lock.
667 		 */
668 		iip = INODE_ITEM(blip);
669 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
670 			need_ail++;
671 
672 		blip = next;
673 	}
674 
675 	/* make sure we capture the state of the initial inode. */
676 	iip = INODE_ITEM(lip);
677 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
678 		need_ail++;
679 
680 	/*
681 	 * We only want to pull the item from the AIL if it is
682 	 * actually there and its location in the log has not
683 	 * changed since we started the flush.  Thus, we only bother
684 	 * if the ili_logged flag is set and the inode's lsn has not
685 	 * changed.  First we check the lsn outside
686 	 * the lock since it's cheaper, and then we recheck while
687 	 * holding the lock before removing the inode from the AIL.
688 	 */
689 	if (need_ail) {
690 		struct xfs_log_item *log_items[need_ail];
691 		int i = 0;
692 		spin_lock(&ailp->xa_lock);
693 		for (blip = lip; blip; blip = blip->li_bio_list) {
694 			iip = INODE_ITEM(blip);
695 			if (iip->ili_logged &&
696 			    blip->li_lsn == iip->ili_flush_lsn) {
697 				log_items[i++] = blip;
698 			}
699 			ASSERT(i <= need_ail);
700 		}
701 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
702 		xfs_trans_ail_delete_bulk(ailp, log_items, i,
703 					  SHUTDOWN_CORRUPT_INCORE);
704 	}
705 
706 
707 	/*
708 	 * clean up and unlock the flush lock now we are done. We can clear the
709 	 * ili_last_fields bits now that we know that the data corresponding to
710 	 * them is safely on disk.
711 	 */
712 	for (blip = lip; blip; blip = next) {
713 		next = blip->li_bio_list;
714 		blip->li_bio_list = NULL;
715 
716 		iip = INODE_ITEM(blip);
717 		iip->ili_logged = 0;
718 		iip->ili_last_fields = 0;
719 		xfs_ifunlock(iip->ili_inode);
720 	}
721 }
722 
723 /*
724  * This is the inode flushing abort routine.  It is called from xfs_iflush when
725  * the filesystem is shutting down to clean up the inode state.  It is
726  * responsible for removing the inode item from the AIL if it has not been
727  * re-logged, and unlocking the inode's flush lock.
728  */
729 void
730 xfs_iflush_abort(
731 	xfs_inode_t		*ip,
732 	bool			stale)
733 {
734 	xfs_inode_log_item_t	*iip = ip->i_itemp;
735 
736 	if (iip) {
737 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
738 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
739 			spin_lock(&ailp->xa_lock);
740 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
741 				/* xfs_trans_ail_delete() drops the AIL lock. */
742 				xfs_trans_ail_delete(ailp, &iip->ili_item,
743 						stale ?
744 						     SHUTDOWN_LOG_IO_ERROR :
745 						     SHUTDOWN_CORRUPT_INCORE);
746 			} else
747 				spin_unlock(&ailp->xa_lock);
748 		}
749 		iip->ili_logged = 0;
750 		/*
751 		 * Clear the ili_last_fields bits now that we know that the
752 		 * data corresponding to them is safely on disk.
753 		 */
754 		iip->ili_last_fields = 0;
755 		/*
756 		 * Clear the inode logging fields so no more flushes are
757 		 * attempted.
758 		 */
759 		iip->ili_fields = 0;
760 	}
761 	/*
762 	 * Release the inode's flush lock since we're done with it.
763 	 */
764 	xfs_ifunlock(ip);
765 }
766 
767 void
768 xfs_istale_done(
769 	struct xfs_buf		*bp,
770 	struct xfs_log_item	*lip)
771 {
772 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
773 }
774 
775 /*
776  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
777  * (which can have different field alignments) to the native version
778  */
779 int
780 xfs_inode_item_format_convert(
781 	xfs_log_iovec_t		*buf,
782 	xfs_inode_log_format_t	*in_f)
783 {
784 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
785 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
786 
787 		in_f->ilf_type = in_f32->ilf_type;
788 		in_f->ilf_size = in_f32->ilf_size;
789 		in_f->ilf_fields = in_f32->ilf_fields;
790 		in_f->ilf_asize = in_f32->ilf_asize;
791 		in_f->ilf_dsize = in_f32->ilf_dsize;
792 		in_f->ilf_ino = in_f32->ilf_ino;
793 		/* copy biggest field of ilf_u */
794 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
795 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
796 		       sizeof(uuid_t));
797 		in_f->ilf_blkno = in_f32->ilf_blkno;
798 		in_f->ilf_len = in_f32->ilf_len;
799 		in_f->ilf_boffset = in_f32->ilf_boffset;
800 		return 0;
801 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
802 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
803 
804 		in_f->ilf_type = in_f64->ilf_type;
805 		in_f->ilf_size = in_f64->ilf_size;
806 		in_f->ilf_fields = in_f64->ilf_fields;
807 		in_f->ilf_asize = in_f64->ilf_asize;
808 		in_f->ilf_dsize = in_f64->ilf_dsize;
809 		in_f->ilf_ino = in_f64->ilf_ino;
810 		/* copy biggest field of ilf_u */
811 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
812 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
813 		       sizeof(uuid_t));
814 		in_f->ilf_blkno = in_f64->ilf_blkno;
815 		in_f->ilf_len = in_f64->ilf_len;
816 		in_f->ilf_boffset = in_f64->ilf_boffset;
817 		return 0;
818 	}
819 	return EFSCORRUPTED;
820 }
821