1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_inode.h" 27 #include "xfs_trans.h" 28 #include "xfs_inode_item.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 #include "xfs_trans_priv.h" 32 #include "xfs_dinode.h" 33 #include "xfs_log.h" 34 35 36 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 37 38 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 39 { 40 return container_of(lip, struct xfs_inode_log_item, ili_item); 41 } 42 43 STATIC void 44 xfs_inode_item_data_fork_size( 45 struct xfs_inode_log_item *iip, 46 int *nvecs, 47 int *nbytes) 48 { 49 struct xfs_inode *ip = iip->ili_inode; 50 51 switch (ip->i_d.di_format) { 52 case XFS_DINODE_FMT_EXTENTS: 53 if ((iip->ili_fields & XFS_ILOG_DEXT) && 54 ip->i_d.di_nextents > 0 && 55 ip->i_df.if_bytes > 0) { 56 /* worst case, doesn't subtract delalloc extents */ 57 *nbytes += XFS_IFORK_DSIZE(ip); 58 *nvecs += 1; 59 } 60 break; 61 case XFS_DINODE_FMT_BTREE: 62 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 63 ip->i_df.if_broot_bytes > 0) { 64 *nbytes += ip->i_df.if_broot_bytes; 65 *nvecs += 1; 66 } 67 break; 68 case XFS_DINODE_FMT_LOCAL: 69 if ((iip->ili_fields & XFS_ILOG_DDATA) && 70 ip->i_df.if_bytes > 0) { 71 *nbytes += roundup(ip->i_df.if_bytes, 4); 72 *nvecs += 1; 73 } 74 break; 75 76 case XFS_DINODE_FMT_DEV: 77 case XFS_DINODE_FMT_UUID: 78 break; 79 default: 80 ASSERT(0); 81 break; 82 } 83 } 84 85 STATIC void 86 xfs_inode_item_attr_fork_size( 87 struct xfs_inode_log_item *iip, 88 int *nvecs, 89 int *nbytes) 90 { 91 struct xfs_inode *ip = iip->ili_inode; 92 93 switch (ip->i_d.di_aformat) { 94 case XFS_DINODE_FMT_EXTENTS: 95 if ((iip->ili_fields & XFS_ILOG_AEXT) && 96 ip->i_d.di_anextents > 0 && 97 ip->i_afp->if_bytes > 0) { 98 /* worst case, doesn't subtract unused space */ 99 *nbytes += XFS_IFORK_ASIZE(ip); 100 *nvecs += 1; 101 } 102 break; 103 case XFS_DINODE_FMT_BTREE: 104 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 105 ip->i_afp->if_broot_bytes > 0) { 106 *nbytes += ip->i_afp->if_broot_bytes; 107 *nvecs += 1; 108 } 109 break; 110 case XFS_DINODE_FMT_LOCAL: 111 if ((iip->ili_fields & XFS_ILOG_ADATA) && 112 ip->i_afp->if_bytes > 0) { 113 *nbytes += roundup(ip->i_afp->if_bytes, 4); 114 *nvecs += 1; 115 } 116 break; 117 default: 118 ASSERT(0); 119 break; 120 } 121 } 122 123 /* 124 * This returns the number of iovecs needed to log the given inode item. 125 * 126 * We need one iovec for the inode log format structure, one for the 127 * inode core, and possibly one for the inode data/extents/b-tree root 128 * and one for the inode attribute data/extents/b-tree root. 129 */ 130 STATIC void 131 xfs_inode_item_size( 132 struct xfs_log_item *lip, 133 int *nvecs, 134 int *nbytes) 135 { 136 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 137 struct xfs_inode *ip = iip->ili_inode; 138 139 *nvecs += 2; 140 *nbytes += sizeof(struct xfs_inode_log_format) + 141 xfs_icdinode_size(ip->i_d.di_version); 142 143 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 144 if (XFS_IFORK_Q(ip)) 145 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 146 } 147 148 /* 149 * If this is a v1 format inode, then we need to log it as such. This means 150 * that we have to copy the link count from the new field to the old. We 151 * don't have to worry about the new fields, because nothing trusts them as 152 * long as the old inode version number is there. 153 */ 154 STATIC void 155 xfs_inode_item_format_v1_inode( 156 struct xfs_inode *ip) 157 { 158 if (!xfs_sb_version_hasnlink(&ip->i_mount->m_sb)) { 159 /* 160 * Convert it back. 161 */ 162 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 163 ip->i_d.di_onlink = ip->i_d.di_nlink; 164 } else { 165 /* 166 * The superblock version has already been bumped, 167 * so just make the conversion to the new inode 168 * format permanent. 169 */ 170 ip->i_d.di_version = 2; 171 ip->i_d.di_onlink = 0; 172 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 173 } 174 } 175 176 STATIC void 177 xfs_inode_item_format_data_fork( 178 struct xfs_inode_log_item *iip, 179 struct xfs_inode_log_format *ilf, 180 struct xfs_log_vec *lv, 181 struct xfs_log_iovec **vecp) 182 { 183 struct xfs_inode *ip = iip->ili_inode; 184 size_t data_bytes; 185 186 switch (ip->i_d.di_format) { 187 case XFS_DINODE_FMT_EXTENTS: 188 iip->ili_fields &= 189 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 190 XFS_ILOG_DEV | XFS_ILOG_UUID); 191 192 if ((iip->ili_fields & XFS_ILOG_DEXT) && 193 ip->i_d.di_nextents > 0 && 194 ip->i_df.if_bytes > 0) { 195 struct xfs_bmbt_rec *p; 196 197 ASSERT(ip->i_df.if_u1.if_extents != NULL); 198 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); 199 200 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 201 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 202 xlog_finish_iovec(lv, *vecp, data_bytes); 203 204 ASSERT(data_bytes <= ip->i_df.if_bytes); 205 206 ilf->ilf_dsize = data_bytes; 207 ilf->ilf_size++; 208 } else { 209 iip->ili_fields &= ~XFS_ILOG_DEXT; 210 } 211 break; 212 case XFS_DINODE_FMT_BTREE: 213 iip->ili_fields &= 214 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 215 XFS_ILOG_DEV | XFS_ILOG_UUID); 216 217 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 218 ip->i_df.if_broot_bytes > 0) { 219 ASSERT(ip->i_df.if_broot != NULL); 220 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 221 ip->i_df.if_broot, 222 ip->i_df.if_broot_bytes); 223 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 224 ilf->ilf_size++; 225 } else { 226 ASSERT(!(iip->ili_fields & 227 XFS_ILOG_DBROOT)); 228 iip->ili_fields &= ~XFS_ILOG_DBROOT; 229 } 230 break; 231 case XFS_DINODE_FMT_LOCAL: 232 iip->ili_fields &= 233 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 234 XFS_ILOG_DEV | XFS_ILOG_UUID); 235 if ((iip->ili_fields & XFS_ILOG_DDATA) && 236 ip->i_df.if_bytes > 0) { 237 /* 238 * Round i_bytes up to a word boundary. 239 * The underlying memory is guaranteed to 240 * to be there by xfs_idata_realloc(). 241 */ 242 data_bytes = roundup(ip->i_df.if_bytes, 4); 243 ASSERT(ip->i_df.if_real_bytes == 0 || 244 ip->i_df.if_real_bytes == data_bytes); 245 ASSERT(ip->i_df.if_u1.if_data != NULL); 246 ASSERT(ip->i_d.di_size > 0); 247 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 248 ip->i_df.if_u1.if_data, data_bytes); 249 ilf->ilf_dsize = (unsigned)data_bytes; 250 ilf->ilf_size++; 251 } else { 252 iip->ili_fields &= ~XFS_ILOG_DDATA; 253 } 254 break; 255 case XFS_DINODE_FMT_DEV: 256 iip->ili_fields &= 257 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 258 XFS_ILOG_DEXT | XFS_ILOG_UUID); 259 if (iip->ili_fields & XFS_ILOG_DEV) 260 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; 261 break; 262 case XFS_DINODE_FMT_UUID: 263 iip->ili_fields &= 264 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 265 XFS_ILOG_DEXT | XFS_ILOG_DEV); 266 if (iip->ili_fields & XFS_ILOG_UUID) 267 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; 268 break; 269 default: 270 ASSERT(0); 271 break; 272 } 273 } 274 275 STATIC void 276 xfs_inode_item_format_attr_fork( 277 struct xfs_inode_log_item *iip, 278 struct xfs_inode_log_format *ilf, 279 struct xfs_log_vec *lv, 280 struct xfs_log_iovec **vecp) 281 { 282 struct xfs_inode *ip = iip->ili_inode; 283 size_t data_bytes; 284 285 switch (ip->i_d.di_aformat) { 286 case XFS_DINODE_FMT_EXTENTS: 287 iip->ili_fields &= 288 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 289 290 if ((iip->ili_fields & XFS_ILOG_AEXT) && 291 ip->i_d.di_anextents > 0 && 292 ip->i_afp->if_bytes > 0) { 293 struct xfs_bmbt_rec *p; 294 295 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == 296 ip->i_d.di_anextents); 297 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 298 299 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 300 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 301 xlog_finish_iovec(lv, *vecp, data_bytes); 302 303 ilf->ilf_asize = data_bytes; 304 ilf->ilf_size++; 305 } else { 306 iip->ili_fields &= ~XFS_ILOG_AEXT; 307 } 308 break; 309 case XFS_DINODE_FMT_BTREE: 310 iip->ili_fields &= 311 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 312 313 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 314 ip->i_afp->if_broot_bytes > 0) { 315 ASSERT(ip->i_afp->if_broot != NULL); 316 317 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 318 ip->i_afp->if_broot, 319 ip->i_afp->if_broot_bytes); 320 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 321 ilf->ilf_size++; 322 } else { 323 iip->ili_fields &= ~XFS_ILOG_ABROOT; 324 } 325 break; 326 case XFS_DINODE_FMT_LOCAL: 327 iip->ili_fields &= 328 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 329 330 if ((iip->ili_fields & XFS_ILOG_ADATA) && 331 ip->i_afp->if_bytes > 0) { 332 /* 333 * Round i_bytes up to a word boundary. 334 * The underlying memory is guaranteed to 335 * to be there by xfs_idata_realloc(). 336 */ 337 data_bytes = roundup(ip->i_afp->if_bytes, 4); 338 ASSERT(ip->i_afp->if_real_bytes == 0 || 339 ip->i_afp->if_real_bytes == data_bytes); 340 ASSERT(ip->i_afp->if_u1.if_data != NULL); 341 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 342 ip->i_afp->if_u1.if_data, 343 data_bytes); 344 ilf->ilf_asize = (unsigned)data_bytes; 345 ilf->ilf_size++; 346 } else { 347 iip->ili_fields &= ~XFS_ILOG_ADATA; 348 } 349 break; 350 default: 351 ASSERT(0); 352 break; 353 } 354 } 355 356 /* 357 * This is called to fill in the vector of log iovecs for the given inode 358 * log item. It fills the first item with an inode log format structure, 359 * the second with the on-disk inode structure, and a possible third and/or 360 * fourth with the inode data/extents/b-tree root and inode attributes 361 * data/extents/b-tree root. 362 */ 363 STATIC void 364 xfs_inode_item_format( 365 struct xfs_log_item *lip, 366 struct xfs_log_vec *lv) 367 { 368 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 369 struct xfs_inode *ip = iip->ili_inode; 370 struct xfs_inode_log_format *ilf; 371 struct xfs_log_iovec *vecp = NULL; 372 373 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 374 ilf->ilf_type = XFS_LI_INODE; 375 ilf->ilf_ino = ip->i_ino; 376 ilf->ilf_blkno = ip->i_imap.im_blkno; 377 ilf->ilf_len = ip->i_imap.im_len; 378 ilf->ilf_boffset = ip->i_imap.im_boffset; 379 ilf->ilf_fields = XFS_ILOG_CORE; 380 ilf->ilf_size = 2; /* format + core */ 381 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format)); 382 383 if (ip->i_d.di_version == 1) 384 xfs_inode_item_format_v1_inode(ip); 385 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE, 386 &ip->i_d, 387 xfs_icdinode_size(ip->i_d.di_version)); 388 389 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 390 if (XFS_IFORK_Q(ip)) { 391 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 392 } else { 393 iip->ili_fields &= 394 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 395 } 396 397 /* update the format with the exact fields we actually logged */ 398 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 399 } 400 401 /* 402 * This is called to pin the inode associated with the inode log 403 * item in memory so it cannot be written out. 404 */ 405 STATIC void 406 xfs_inode_item_pin( 407 struct xfs_log_item *lip) 408 { 409 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 410 411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 412 413 trace_xfs_inode_pin(ip, _RET_IP_); 414 atomic_inc(&ip->i_pincount); 415 } 416 417 418 /* 419 * This is called to unpin the inode associated with the inode log 420 * item which was previously pinned with a call to xfs_inode_item_pin(). 421 * 422 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 423 */ 424 STATIC void 425 xfs_inode_item_unpin( 426 struct xfs_log_item *lip, 427 int remove) 428 { 429 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 430 431 trace_xfs_inode_unpin(ip, _RET_IP_); 432 ASSERT(atomic_read(&ip->i_pincount) > 0); 433 if (atomic_dec_and_test(&ip->i_pincount)) 434 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 435 } 436 437 STATIC uint 438 xfs_inode_item_push( 439 struct xfs_log_item *lip, 440 struct list_head *buffer_list) 441 { 442 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 443 struct xfs_inode *ip = iip->ili_inode; 444 struct xfs_buf *bp = NULL; 445 uint rval = XFS_ITEM_SUCCESS; 446 int error; 447 448 if (xfs_ipincount(ip) > 0) 449 return XFS_ITEM_PINNED; 450 451 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 452 return XFS_ITEM_LOCKED; 453 454 /* 455 * Re-check the pincount now that we stabilized the value by 456 * taking the ilock. 457 */ 458 if (xfs_ipincount(ip) > 0) { 459 rval = XFS_ITEM_PINNED; 460 goto out_unlock; 461 } 462 463 /* 464 * Stale inode items should force out the iclog. 465 */ 466 if (ip->i_flags & XFS_ISTALE) { 467 rval = XFS_ITEM_PINNED; 468 goto out_unlock; 469 } 470 471 /* 472 * Someone else is already flushing the inode. Nothing we can do 473 * here but wait for the flush to finish and remove the item from 474 * the AIL. 475 */ 476 if (!xfs_iflock_nowait(ip)) { 477 rval = XFS_ITEM_FLUSHING; 478 goto out_unlock; 479 } 480 481 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 482 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 483 484 spin_unlock(&lip->li_ailp->xa_lock); 485 486 error = xfs_iflush(ip, &bp); 487 if (!error) { 488 if (!xfs_buf_delwri_queue(bp, buffer_list)) 489 rval = XFS_ITEM_FLUSHING; 490 xfs_buf_relse(bp); 491 } 492 493 spin_lock(&lip->li_ailp->xa_lock); 494 out_unlock: 495 xfs_iunlock(ip, XFS_ILOCK_SHARED); 496 return rval; 497 } 498 499 /* 500 * Unlock the inode associated with the inode log item. 501 * Clear the fields of the inode and inode log item that 502 * are specific to the current transaction. If the 503 * hold flags is set, do not unlock the inode. 504 */ 505 STATIC void 506 xfs_inode_item_unlock( 507 struct xfs_log_item *lip) 508 { 509 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 510 struct xfs_inode *ip = iip->ili_inode; 511 unsigned short lock_flags; 512 513 ASSERT(ip->i_itemp != NULL); 514 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 515 516 lock_flags = iip->ili_lock_flags; 517 iip->ili_lock_flags = 0; 518 if (lock_flags) 519 xfs_iunlock(ip, lock_flags); 520 } 521 522 /* 523 * This is called to find out where the oldest active copy of the inode log 524 * item in the on disk log resides now that the last log write of it completed 525 * at the given lsn. Since we always re-log all dirty data in an inode, the 526 * latest copy in the on disk log is the only one that matters. Therefore, 527 * simply return the given lsn. 528 * 529 * If the inode has been marked stale because the cluster is being freed, we 530 * don't want to (re-)insert this inode into the AIL. There is a race condition 531 * where the cluster buffer may be unpinned before the inode is inserted into 532 * the AIL during transaction committed processing. If the buffer is unpinned 533 * before the inode item has been committed and inserted, then it is possible 534 * for the buffer to be written and IO completes before the inode is inserted 535 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 536 * AIL which will never get removed. It will, however, get reclaimed which 537 * triggers an assert in xfs_inode_free() complaining about freein an inode 538 * still in the AIL. 539 * 540 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 541 * transaction committed code knows that it does not need to do any further 542 * processing on the item. 543 */ 544 STATIC xfs_lsn_t 545 xfs_inode_item_committed( 546 struct xfs_log_item *lip, 547 xfs_lsn_t lsn) 548 { 549 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 550 struct xfs_inode *ip = iip->ili_inode; 551 552 if (xfs_iflags_test(ip, XFS_ISTALE)) { 553 xfs_inode_item_unpin(lip, 0); 554 return -1; 555 } 556 return lsn; 557 } 558 559 /* 560 * XXX rcc - this one really has to do something. Probably needs 561 * to stamp in a new field in the incore inode. 562 */ 563 STATIC void 564 xfs_inode_item_committing( 565 struct xfs_log_item *lip, 566 xfs_lsn_t lsn) 567 { 568 INODE_ITEM(lip)->ili_last_lsn = lsn; 569 } 570 571 /* 572 * This is the ops vector shared by all buf log items. 573 */ 574 static const struct xfs_item_ops xfs_inode_item_ops = { 575 .iop_size = xfs_inode_item_size, 576 .iop_format = xfs_inode_item_format, 577 .iop_pin = xfs_inode_item_pin, 578 .iop_unpin = xfs_inode_item_unpin, 579 .iop_unlock = xfs_inode_item_unlock, 580 .iop_committed = xfs_inode_item_committed, 581 .iop_push = xfs_inode_item_push, 582 .iop_committing = xfs_inode_item_committing 583 }; 584 585 586 /* 587 * Initialize the inode log item for a newly allocated (in-core) inode. 588 */ 589 void 590 xfs_inode_item_init( 591 struct xfs_inode *ip, 592 struct xfs_mount *mp) 593 { 594 struct xfs_inode_log_item *iip; 595 596 ASSERT(ip->i_itemp == NULL); 597 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 598 599 iip->ili_inode = ip; 600 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 601 &xfs_inode_item_ops); 602 } 603 604 /* 605 * Free the inode log item and any memory hanging off of it. 606 */ 607 void 608 xfs_inode_item_destroy( 609 xfs_inode_t *ip) 610 { 611 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 612 } 613 614 615 /* 616 * This is the inode flushing I/O completion routine. It is called 617 * from interrupt level when the buffer containing the inode is 618 * flushed to disk. It is responsible for removing the inode item 619 * from the AIL if it has not been re-logged, and unlocking the inode's 620 * flush lock. 621 * 622 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 623 * list for other inodes that will run this function. We remove them from the 624 * buffer list so we can process all the inode IO completions in one AIL lock 625 * traversal. 626 */ 627 void 628 xfs_iflush_done( 629 struct xfs_buf *bp, 630 struct xfs_log_item *lip) 631 { 632 struct xfs_inode_log_item *iip; 633 struct xfs_log_item *blip; 634 struct xfs_log_item *next; 635 struct xfs_log_item *prev; 636 struct xfs_ail *ailp = lip->li_ailp; 637 int need_ail = 0; 638 639 /* 640 * Scan the buffer IO completions for other inodes being completed and 641 * attach them to the current inode log item. 642 */ 643 blip = bp->b_fspriv; 644 prev = NULL; 645 while (blip != NULL) { 646 if (lip->li_cb != xfs_iflush_done) { 647 prev = blip; 648 blip = blip->li_bio_list; 649 continue; 650 } 651 652 /* remove from list */ 653 next = blip->li_bio_list; 654 if (!prev) { 655 bp->b_fspriv = next; 656 } else { 657 prev->li_bio_list = next; 658 } 659 660 /* add to current list */ 661 blip->li_bio_list = lip->li_bio_list; 662 lip->li_bio_list = blip; 663 664 /* 665 * while we have the item, do the unlocked check for needing 666 * the AIL lock. 667 */ 668 iip = INODE_ITEM(blip); 669 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 670 need_ail++; 671 672 blip = next; 673 } 674 675 /* make sure we capture the state of the initial inode. */ 676 iip = INODE_ITEM(lip); 677 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 678 need_ail++; 679 680 /* 681 * We only want to pull the item from the AIL if it is 682 * actually there and its location in the log has not 683 * changed since we started the flush. Thus, we only bother 684 * if the ili_logged flag is set and the inode's lsn has not 685 * changed. First we check the lsn outside 686 * the lock since it's cheaper, and then we recheck while 687 * holding the lock before removing the inode from the AIL. 688 */ 689 if (need_ail) { 690 struct xfs_log_item *log_items[need_ail]; 691 int i = 0; 692 spin_lock(&ailp->xa_lock); 693 for (blip = lip; blip; blip = blip->li_bio_list) { 694 iip = INODE_ITEM(blip); 695 if (iip->ili_logged && 696 blip->li_lsn == iip->ili_flush_lsn) { 697 log_items[i++] = blip; 698 } 699 ASSERT(i <= need_ail); 700 } 701 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 702 xfs_trans_ail_delete_bulk(ailp, log_items, i, 703 SHUTDOWN_CORRUPT_INCORE); 704 } 705 706 707 /* 708 * clean up and unlock the flush lock now we are done. We can clear the 709 * ili_last_fields bits now that we know that the data corresponding to 710 * them is safely on disk. 711 */ 712 for (blip = lip; blip; blip = next) { 713 next = blip->li_bio_list; 714 blip->li_bio_list = NULL; 715 716 iip = INODE_ITEM(blip); 717 iip->ili_logged = 0; 718 iip->ili_last_fields = 0; 719 xfs_ifunlock(iip->ili_inode); 720 } 721 } 722 723 /* 724 * This is the inode flushing abort routine. It is called from xfs_iflush when 725 * the filesystem is shutting down to clean up the inode state. It is 726 * responsible for removing the inode item from the AIL if it has not been 727 * re-logged, and unlocking the inode's flush lock. 728 */ 729 void 730 xfs_iflush_abort( 731 xfs_inode_t *ip, 732 bool stale) 733 { 734 xfs_inode_log_item_t *iip = ip->i_itemp; 735 736 if (iip) { 737 struct xfs_ail *ailp = iip->ili_item.li_ailp; 738 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 739 spin_lock(&ailp->xa_lock); 740 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 741 /* xfs_trans_ail_delete() drops the AIL lock. */ 742 xfs_trans_ail_delete(ailp, &iip->ili_item, 743 stale ? 744 SHUTDOWN_LOG_IO_ERROR : 745 SHUTDOWN_CORRUPT_INCORE); 746 } else 747 spin_unlock(&ailp->xa_lock); 748 } 749 iip->ili_logged = 0; 750 /* 751 * Clear the ili_last_fields bits now that we know that the 752 * data corresponding to them is safely on disk. 753 */ 754 iip->ili_last_fields = 0; 755 /* 756 * Clear the inode logging fields so no more flushes are 757 * attempted. 758 */ 759 iip->ili_fields = 0; 760 } 761 /* 762 * Release the inode's flush lock since we're done with it. 763 */ 764 xfs_ifunlock(ip); 765 } 766 767 void 768 xfs_istale_done( 769 struct xfs_buf *bp, 770 struct xfs_log_item *lip) 771 { 772 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 773 } 774 775 /* 776 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 777 * (which can have different field alignments) to the native version 778 */ 779 int 780 xfs_inode_item_format_convert( 781 xfs_log_iovec_t *buf, 782 xfs_inode_log_format_t *in_f) 783 { 784 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 785 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 786 787 in_f->ilf_type = in_f32->ilf_type; 788 in_f->ilf_size = in_f32->ilf_size; 789 in_f->ilf_fields = in_f32->ilf_fields; 790 in_f->ilf_asize = in_f32->ilf_asize; 791 in_f->ilf_dsize = in_f32->ilf_dsize; 792 in_f->ilf_ino = in_f32->ilf_ino; 793 /* copy biggest field of ilf_u */ 794 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 795 in_f32->ilf_u.ilfu_uuid.__u_bits, 796 sizeof(uuid_t)); 797 in_f->ilf_blkno = in_f32->ilf_blkno; 798 in_f->ilf_len = in_f32->ilf_len; 799 in_f->ilf_boffset = in_f32->ilf_boffset; 800 return 0; 801 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 802 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 803 804 in_f->ilf_type = in_f64->ilf_type; 805 in_f->ilf_size = in_f64->ilf_size; 806 in_f->ilf_fields = in_f64->ilf_fields; 807 in_f->ilf_asize = in_f64->ilf_asize; 808 in_f->ilf_dsize = in_f64->ilf_dsize; 809 in_f->ilf_ino = in_f64->ilf_ino; 810 /* copy biggest field of ilf_u */ 811 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 812 in_f64->ilf_u.ilfu_uuid.__u_bits, 813 sizeof(uuid_t)); 814 in_f->ilf_blkno = in_f64->ilf_blkno; 815 in_f->ilf_len = in_f64->ilf_len; 816 in_f->ilf_boffset = in_f64->ilf_boffset; 817 return 0; 818 } 819 return EFSCORRUPTED; 820 } 821