xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision 3381df09)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
21 
22 #include <linux/iversion.h>
23 
24 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
25 
26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27 {
28 	return container_of(lip, struct xfs_inode_log_item, ili_item);
29 }
30 
31 STATIC void
32 xfs_inode_item_data_fork_size(
33 	struct xfs_inode_log_item *iip,
34 	int			*nvecs,
35 	int			*nbytes)
36 {
37 	struct xfs_inode	*ip = iip->ili_inode;
38 
39 	switch (ip->i_d.di_format) {
40 	case XFS_DINODE_FMT_EXTENTS:
41 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
42 		    ip->i_d.di_nextents > 0 &&
43 		    ip->i_df.if_bytes > 0) {
44 			/* worst case, doesn't subtract delalloc extents */
45 			*nbytes += XFS_IFORK_DSIZE(ip);
46 			*nvecs += 1;
47 		}
48 		break;
49 	case XFS_DINODE_FMT_BTREE:
50 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
51 		    ip->i_df.if_broot_bytes > 0) {
52 			*nbytes += ip->i_df.if_broot_bytes;
53 			*nvecs += 1;
54 		}
55 		break;
56 	case XFS_DINODE_FMT_LOCAL:
57 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
58 		    ip->i_df.if_bytes > 0) {
59 			*nbytes += roundup(ip->i_df.if_bytes, 4);
60 			*nvecs += 1;
61 		}
62 		break;
63 
64 	case XFS_DINODE_FMT_DEV:
65 		break;
66 	default:
67 		ASSERT(0);
68 		break;
69 	}
70 }
71 
72 STATIC void
73 xfs_inode_item_attr_fork_size(
74 	struct xfs_inode_log_item *iip,
75 	int			*nvecs,
76 	int			*nbytes)
77 {
78 	struct xfs_inode	*ip = iip->ili_inode;
79 
80 	switch (ip->i_d.di_aformat) {
81 	case XFS_DINODE_FMT_EXTENTS:
82 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
83 		    ip->i_d.di_anextents > 0 &&
84 		    ip->i_afp->if_bytes > 0) {
85 			/* worst case, doesn't subtract unused space */
86 			*nbytes += XFS_IFORK_ASIZE(ip);
87 			*nvecs += 1;
88 		}
89 		break;
90 	case XFS_DINODE_FMT_BTREE:
91 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
92 		    ip->i_afp->if_broot_bytes > 0) {
93 			*nbytes += ip->i_afp->if_broot_bytes;
94 			*nvecs += 1;
95 		}
96 		break;
97 	case XFS_DINODE_FMT_LOCAL:
98 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
99 		    ip->i_afp->if_bytes > 0) {
100 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
101 			*nvecs += 1;
102 		}
103 		break;
104 	default:
105 		ASSERT(0);
106 		break;
107 	}
108 }
109 
110 /*
111  * This returns the number of iovecs needed to log the given inode item.
112  *
113  * We need one iovec for the inode log format structure, one for the
114  * inode core, and possibly one for the inode data/extents/b-tree root
115  * and one for the inode attribute data/extents/b-tree root.
116  */
117 STATIC void
118 xfs_inode_item_size(
119 	struct xfs_log_item	*lip,
120 	int			*nvecs,
121 	int			*nbytes)
122 {
123 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124 	struct xfs_inode	*ip = iip->ili_inode;
125 
126 	*nvecs += 2;
127 	*nbytes += sizeof(struct xfs_inode_log_format) +
128 		   xfs_log_dinode_size(ip->i_mount);
129 
130 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131 	if (XFS_IFORK_Q(ip))
132 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
133 }
134 
135 STATIC void
136 xfs_inode_item_format_data_fork(
137 	struct xfs_inode_log_item *iip,
138 	struct xfs_inode_log_format *ilf,
139 	struct xfs_log_vec	*lv,
140 	struct xfs_log_iovec	**vecp)
141 {
142 	struct xfs_inode	*ip = iip->ili_inode;
143 	size_t			data_bytes;
144 
145 	switch (ip->i_d.di_format) {
146 	case XFS_DINODE_FMT_EXTENTS:
147 		iip->ili_fields &=
148 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
149 
150 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151 		    ip->i_d.di_nextents > 0 &&
152 		    ip->i_df.if_bytes > 0) {
153 			struct xfs_bmbt_rec *p;
154 
155 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
156 
157 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159 			xlog_finish_iovec(lv, *vecp, data_bytes);
160 
161 			ASSERT(data_bytes <= ip->i_df.if_bytes);
162 
163 			ilf->ilf_dsize = data_bytes;
164 			ilf->ilf_size++;
165 		} else {
166 			iip->ili_fields &= ~XFS_ILOG_DEXT;
167 		}
168 		break;
169 	case XFS_DINODE_FMT_BTREE:
170 		iip->ili_fields &=
171 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
172 
173 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174 		    ip->i_df.if_broot_bytes > 0) {
175 			ASSERT(ip->i_df.if_broot != NULL);
176 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177 					ip->i_df.if_broot,
178 					ip->i_df.if_broot_bytes);
179 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180 			ilf->ilf_size++;
181 		} else {
182 			ASSERT(!(iip->ili_fields &
183 				 XFS_ILOG_DBROOT));
184 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
185 		}
186 		break;
187 	case XFS_DINODE_FMT_LOCAL:
188 		iip->ili_fields &=
189 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191 		    ip->i_df.if_bytes > 0) {
192 			/*
193 			 * Round i_bytes up to a word boundary.
194 			 * The underlying memory is guaranteed to
195 			 * to be there by xfs_idata_realloc().
196 			 */
197 			data_bytes = roundup(ip->i_df.if_bytes, 4);
198 			ASSERT(ip->i_df.if_u1.if_data != NULL);
199 			ASSERT(ip->i_d.di_size > 0);
200 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201 					ip->i_df.if_u1.if_data, data_bytes);
202 			ilf->ilf_dsize = (unsigned)data_bytes;
203 			ilf->ilf_size++;
204 		} else {
205 			iip->ili_fields &= ~XFS_ILOG_DDATA;
206 		}
207 		break;
208 	case XFS_DINODE_FMT_DEV:
209 		iip->ili_fields &=
210 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211 		if (iip->ili_fields & XFS_ILOG_DEV)
212 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
213 		break;
214 	default:
215 		ASSERT(0);
216 		break;
217 	}
218 }
219 
220 STATIC void
221 xfs_inode_item_format_attr_fork(
222 	struct xfs_inode_log_item *iip,
223 	struct xfs_inode_log_format *ilf,
224 	struct xfs_log_vec	*lv,
225 	struct xfs_log_iovec	**vecp)
226 {
227 	struct xfs_inode	*ip = iip->ili_inode;
228 	size_t			data_bytes;
229 
230 	switch (ip->i_d.di_aformat) {
231 	case XFS_DINODE_FMT_EXTENTS:
232 		iip->ili_fields &=
233 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234 
235 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236 		    ip->i_d.di_anextents > 0 &&
237 		    ip->i_afp->if_bytes > 0) {
238 			struct xfs_bmbt_rec *p;
239 
240 			ASSERT(xfs_iext_count(ip->i_afp) ==
241 				ip->i_d.di_anextents);
242 
243 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245 			xlog_finish_iovec(lv, *vecp, data_bytes);
246 
247 			ilf->ilf_asize = data_bytes;
248 			ilf->ilf_size++;
249 		} else {
250 			iip->ili_fields &= ~XFS_ILOG_AEXT;
251 		}
252 		break;
253 	case XFS_DINODE_FMT_BTREE:
254 		iip->ili_fields &=
255 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256 
257 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258 		    ip->i_afp->if_broot_bytes > 0) {
259 			ASSERT(ip->i_afp->if_broot != NULL);
260 
261 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262 					ip->i_afp->if_broot,
263 					ip->i_afp->if_broot_bytes);
264 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265 			ilf->ilf_size++;
266 		} else {
267 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
268 		}
269 		break;
270 	case XFS_DINODE_FMT_LOCAL:
271 		iip->ili_fields &=
272 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
273 
274 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275 		    ip->i_afp->if_bytes > 0) {
276 			/*
277 			 * Round i_bytes up to a word boundary.
278 			 * The underlying memory is guaranteed to
279 			 * to be there by xfs_idata_realloc().
280 			 */
281 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
282 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
283 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284 					ip->i_afp->if_u1.if_data,
285 					data_bytes);
286 			ilf->ilf_asize = (unsigned)data_bytes;
287 			ilf->ilf_size++;
288 		} else {
289 			iip->ili_fields &= ~XFS_ILOG_ADATA;
290 		}
291 		break;
292 	default:
293 		ASSERT(0);
294 		break;
295 	}
296 }
297 
298 static void
299 xfs_inode_to_log_dinode(
300 	struct xfs_inode	*ip,
301 	struct xfs_log_dinode	*to,
302 	xfs_lsn_t		lsn)
303 {
304 	struct xfs_icdinode	*from = &ip->i_d;
305 	struct inode		*inode = VFS_I(ip);
306 
307 	to->di_magic = XFS_DINODE_MAGIC;
308 	to->di_format = from->di_format;
309 	to->di_uid = i_uid_read(inode);
310 	to->di_gid = i_gid_read(inode);
311 	to->di_projid_lo = from->di_projid & 0xffff;
312 	to->di_projid_hi = from->di_projid >> 16;
313 
314 	memset(to->di_pad, 0, sizeof(to->di_pad));
315 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
316 	to->di_atime.t_sec = inode->i_atime.tv_sec;
317 	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
318 	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
319 	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
320 	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
321 	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
322 	to->di_nlink = inode->i_nlink;
323 	to->di_gen = inode->i_generation;
324 	to->di_mode = inode->i_mode;
325 
326 	to->di_size = from->di_size;
327 	to->di_nblocks = from->di_nblocks;
328 	to->di_extsize = from->di_extsize;
329 	to->di_nextents = from->di_nextents;
330 	to->di_anextents = from->di_anextents;
331 	to->di_forkoff = from->di_forkoff;
332 	to->di_aformat = from->di_aformat;
333 	to->di_dmevmask = from->di_dmevmask;
334 	to->di_dmstate = from->di_dmstate;
335 	to->di_flags = from->di_flags;
336 
337 	/* log a dummy value to ensure log structure is fully initialised */
338 	to->di_next_unlinked = NULLAGINO;
339 
340 	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
341 		to->di_version = 3;
342 		to->di_changecount = inode_peek_iversion(inode);
343 		to->di_crtime.t_sec = from->di_crtime.tv_sec;
344 		to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
345 		to->di_flags2 = from->di_flags2;
346 		to->di_cowextsize = from->di_cowextsize;
347 		to->di_ino = ip->i_ino;
348 		to->di_lsn = lsn;
349 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351 		to->di_flushiter = 0;
352 	} else {
353 		to->di_version = 2;
354 		to->di_flushiter = from->di_flushiter;
355 	}
356 }
357 
358 /*
359  * Format the inode core. Current timestamp data is only in the VFS inode
360  * fields, so we need to grab them from there. Hence rather than just copying
361  * the XFS inode core structure, format the fields directly into the iovec.
362  */
363 static void
364 xfs_inode_item_format_core(
365 	struct xfs_inode	*ip,
366 	struct xfs_log_vec	*lv,
367 	struct xfs_log_iovec	**vecp)
368 {
369 	struct xfs_log_dinode	*dic;
370 
371 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
374 }
375 
376 /*
377  * This is called to fill in the vector of log iovecs for the given inode
378  * log item.  It fills the first item with an inode log format structure,
379  * the second with the on-disk inode structure, and a possible third and/or
380  * fourth with the inode data/extents/b-tree root and inode attributes
381  * data/extents/b-tree root.
382  *
383  * Note: Always use the 64 bit inode log format structure so we don't
384  * leave an uninitialised hole in the format item on 64 bit systems. Log
385  * recovery on 32 bit systems handles this just fine, so there's no reason
386  * for not using an initialising the properly padded structure all the time.
387  */
388 STATIC void
389 xfs_inode_item_format(
390 	struct xfs_log_item	*lip,
391 	struct xfs_log_vec	*lv)
392 {
393 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394 	struct xfs_inode	*ip = iip->ili_inode;
395 	struct xfs_log_iovec	*vecp = NULL;
396 	struct xfs_inode_log_format *ilf;
397 
398 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
399 	ilf->ilf_type = XFS_LI_INODE;
400 	ilf->ilf_ino = ip->i_ino;
401 	ilf->ilf_blkno = ip->i_imap.im_blkno;
402 	ilf->ilf_len = ip->i_imap.im_len;
403 	ilf->ilf_boffset = ip->i_imap.im_boffset;
404 	ilf->ilf_fields = XFS_ILOG_CORE;
405 	ilf->ilf_size = 2; /* format + core */
406 
407 	/*
408 	 * make sure we don't leak uninitialised data into the log in the case
409 	 * when we don't log every field in the inode.
410 	 */
411 	ilf->ilf_dsize = 0;
412 	ilf->ilf_asize = 0;
413 	ilf->ilf_pad = 0;
414 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
415 
416 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
417 
418 	xfs_inode_item_format_core(ip, lv, &vecp);
419 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
420 	if (XFS_IFORK_Q(ip)) {
421 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
422 	} else {
423 		iip->ili_fields &=
424 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
425 	}
426 
427 	/* update the format with the exact fields we actually logged */
428 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
429 }
430 
431 /*
432  * This is called to pin the inode associated with the inode log
433  * item in memory so it cannot be written out.
434  */
435 STATIC void
436 xfs_inode_item_pin(
437 	struct xfs_log_item	*lip)
438 {
439 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
440 
441 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
442 
443 	trace_xfs_inode_pin(ip, _RET_IP_);
444 	atomic_inc(&ip->i_pincount);
445 }
446 
447 
448 /*
449  * This is called to unpin the inode associated with the inode log
450  * item which was previously pinned with a call to xfs_inode_item_pin().
451  *
452  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
453  */
454 STATIC void
455 xfs_inode_item_unpin(
456 	struct xfs_log_item	*lip,
457 	int			remove)
458 {
459 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
460 
461 	trace_xfs_inode_unpin(ip, _RET_IP_);
462 	ASSERT(atomic_read(&ip->i_pincount) > 0);
463 	if (atomic_dec_and_test(&ip->i_pincount))
464 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
465 }
466 
467 /*
468  * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
469  * have been failed during writeback
470  *
471  * This informs the AIL that the inode is already flush locked on the next push,
472  * and acquires a hold on the buffer to ensure that it isn't reclaimed before
473  * dirty data makes it to disk.
474  */
475 STATIC void
476 xfs_inode_item_error(
477 	struct xfs_log_item	*lip,
478 	struct xfs_buf		*bp)
479 {
480 	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
481 	xfs_set_li_failed(lip, bp);
482 }
483 
484 STATIC uint
485 xfs_inode_item_push(
486 	struct xfs_log_item	*lip,
487 	struct list_head	*buffer_list)
488 		__releases(&lip->li_ailp->ail_lock)
489 		__acquires(&lip->li_ailp->ail_lock)
490 {
491 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
492 	struct xfs_inode	*ip = iip->ili_inode;
493 	struct xfs_buf		*bp = lip->li_buf;
494 	uint			rval = XFS_ITEM_SUCCESS;
495 	int			error;
496 
497 	if (xfs_ipincount(ip) > 0)
498 		return XFS_ITEM_PINNED;
499 
500 	/*
501 	 * The buffer containing this item failed to be written back
502 	 * previously. Resubmit the buffer for IO.
503 	 */
504 	if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
505 		if (!xfs_buf_trylock(bp))
506 			return XFS_ITEM_LOCKED;
507 
508 		if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
509 			rval = XFS_ITEM_FLUSHING;
510 
511 		xfs_buf_unlock(bp);
512 		return rval;
513 	}
514 
515 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
516 		return XFS_ITEM_LOCKED;
517 
518 	/*
519 	 * Re-check the pincount now that we stabilized the value by
520 	 * taking the ilock.
521 	 */
522 	if (xfs_ipincount(ip) > 0) {
523 		rval = XFS_ITEM_PINNED;
524 		goto out_unlock;
525 	}
526 
527 	/*
528 	 * Stale inode items should force out the iclog.
529 	 */
530 	if (ip->i_flags & XFS_ISTALE) {
531 		rval = XFS_ITEM_PINNED;
532 		goto out_unlock;
533 	}
534 
535 	/*
536 	 * Someone else is already flushing the inode.  Nothing we can do
537 	 * here but wait for the flush to finish and remove the item from
538 	 * the AIL.
539 	 */
540 	if (!xfs_iflock_nowait(ip)) {
541 		rval = XFS_ITEM_FLUSHING;
542 		goto out_unlock;
543 	}
544 
545 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
546 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
547 
548 	spin_unlock(&lip->li_ailp->ail_lock);
549 
550 	error = xfs_iflush(ip, &bp);
551 	if (!error) {
552 		if (!xfs_buf_delwri_queue(bp, buffer_list))
553 			rval = XFS_ITEM_FLUSHING;
554 		xfs_buf_relse(bp);
555 	} else if (error == -EAGAIN)
556 		rval = XFS_ITEM_LOCKED;
557 
558 	spin_lock(&lip->li_ailp->ail_lock);
559 out_unlock:
560 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
561 	return rval;
562 }
563 
564 /*
565  * Unlock the inode associated with the inode log item.
566  */
567 STATIC void
568 xfs_inode_item_release(
569 	struct xfs_log_item	*lip)
570 {
571 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
572 	struct xfs_inode	*ip = iip->ili_inode;
573 	unsigned short		lock_flags;
574 
575 	ASSERT(ip->i_itemp != NULL);
576 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
577 
578 	lock_flags = iip->ili_lock_flags;
579 	iip->ili_lock_flags = 0;
580 	if (lock_flags)
581 		xfs_iunlock(ip, lock_flags);
582 }
583 
584 /*
585  * This is called to find out where the oldest active copy of the inode log
586  * item in the on disk log resides now that the last log write of it completed
587  * at the given lsn.  Since we always re-log all dirty data in an inode, the
588  * latest copy in the on disk log is the only one that matters.  Therefore,
589  * simply return the given lsn.
590  *
591  * If the inode has been marked stale because the cluster is being freed, we
592  * don't want to (re-)insert this inode into the AIL. There is a race condition
593  * where the cluster buffer may be unpinned before the inode is inserted into
594  * the AIL during transaction committed processing. If the buffer is unpinned
595  * before the inode item has been committed and inserted, then it is possible
596  * for the buffer to be written and IO completes before the inode is inserted
597  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
598  * AIL which will never get removed. It will, however, get reclaimed which
599  * triggers an assert in xfs_inode_free() complaining about freein an inode
600  * still in the AIL.
601  *
602  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
603  * transaction committed code knows that it does not need to do any further
604  * processing on the item.
605  */
606 STATIC xfs_lsn_t
607 xfs_inode_item_committed(
608 	struct xfs_log_item	*lip,
609 	xfs_lsn_t		lsn)
610 {
611 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
612 	struct xfs_inode	*ip = iip->ili_inode;
613 
614 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
615 		xfs_inode_item_unpin(lip, 0);
616 		return -1;
617 	}
618 	return lsn;
619 }
620 
621 STATIC void
622 xfs_inode_item_committing(
623 	struct xfs_log_item	*lip,
624 	xfs_lsn_t		commit_lsn)
625 {
626 	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
627 	return xfs_inode_item_release(lip);
628 }
629 
630 static const struct xfs_item_ops xfs_inode_item_ops = {
631 	.iop_size	= xfs_inode_item_size,
632 	.iop_format	= xfs_inode_item_format,
633 	.iop_pin	= xfs_inode_item_pin,
634 	.iop_unpin	= xfs_inode_item_unpin,
635 	.iop_release	= xfs_inode_item_release,
636 	.iop_committed	= xfs_inode_item_committed,
637 	.iop_push	= xfs_inode_item_push,
638 	.iop_committing	= xfs_inode_item_committing,
639 	.iop_error	= xfs_inode_item_error
640 };
641 
642 
643 /*
644  * Initialize the inode log item for a newly allocated (in-core) inode.
645  */
646 void
647 xfs_inode_item_init(
648 	struct xfs_inode	*ip,
649 	struct xfs_mount	*mp)
650 {
651 	struct xfs_inode_log_item *iip;
652 
653 	ASSERT(ip->i_itemp == NULL);
654 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
655 
656 	iip->ili_inode = ip;
657 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
658 						&xfs_inode_item_ops);
659 }
660 
661 /*
662  * Free the inode log item and any memory hanging off of it.
663  */
664 void
665 xfs_inode_item_destroy(
666 	xfs_inode_t	*ip)
667 {
668 	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
669 	kmem_cache_free(xfs_ili_zone, ip->i_itemp);
670 }
671 
672 
673 /*
674  * This is the inode flushing I/O completion routine.  It is called
675  * from interrupt level when the buffer containing the inode is
676  * flushed to disk.  It is responsible for removing the inode item
677  * from the AIL if it has not been re-logged, and unlocking the inode's
678  * flush lock.
679  *
680  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
681  * list for other inodes that will run this function. We remove them from the
682  * buffer list so we can process all the inode IO completions in one AIL lock
683  * traversal.
684  */
685 void
686 xfs_iflush_done(
687 	struct xfs_buf		*bp,
688 	struct xfs_log_item	*lip)
689 {
690 	struct xfs_inode_log_item *iip;
691 	struct xfs_log_item	*blip, *n;
692 	struct xfs_ail		*ailp = lip->li_ailp;
693 	int			need_ail = 0;
694 	LIST_HEAD(tmp);
695 
696 	/*
697 	 * Scan the buffer IO completions for other inodes being completed and
698 	 * attach them to the current inode log item.
699 	 */
700 
701 	list_add_tail(&lip->li_bio_list, &tmp);
702 
703 	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
704 		if (lip->li_cb != xfs_iflush_done)
705 			continue;
706 
707 		list_move_tail(&blip->li_bio_list, &tmp);
708 		/*
709 		 * while we have the item, do the unlocked check for needing
710 		 * the AIL lock.
711 		 */
712 		iip = INODE_ITEM(blip);
713 		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
714 		    test_bit(XFS_LI_FAILED, &blip->li_flags))
715 			need_ail++;
716 	}
717 
718 	/* make sure we capture the state of the initial inode. */
719 	iip = INODE_ITEM(lip);
720 	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
721 	    test_bit(XFS_LI_FAILED, &lip->li_flags))
722 		need_ail++;
723 
724 	/*
725 	 * We only want to pull the item from the AIL if it is
726 	 * actually there and its location in the log has not
727 	 * changed since we started the flush.  Thus, we only bother
728 	 * if the ili_logged flag is set and the inode's lsn has not
729 	 * changed.  First we check the lsn outside
730 	 * the lock since it's cheaper, and then we recheck while
731 	 * holding the lock before removing the inode from the AIL.
732 	 */
733 	if (need_ail) {
734 		xfs_lsn_t	tail_lsn = 0;
735 
736 		/* this is an opencoded batch version of xfs_trans_ail_delete */
737 		spin_lock(&ailp->ail_lock);
738 		list_for_each_entry(blip, &tmp, li_bio_list) {
739 			if (INODE_ITEM(blip)->ili_logged &&
740 			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) {
741 				/*
742 				 * xfs_ail_update_finish() only cares about the
743 				 * lsn of the first tail item removed, any
744 				 * others will be at the same or higher lsn so
745 				 * we just ignore them.
746 				 */
747 				xfs_lsn_t lsn = xfs_ail_delete_one(ailp, blip);
748 				if (!tail_lsn && lsn)
749 					tail_lsn = lsn;
750 			} else {
751 				xfs_clear_li_failed(blip);
752 			}
753 		}
754 		xfs_ail_update_finish(ailp, tail_lsn);
755 	}
756 
757 	/*
758 	 * clean up and unlock the flush lock now we are done. We can clear the
759 	 * ili_last_fields bits now that we know that the data corresponding to
760 	 * them is safely on disk.
761 	 */
762 	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
763 		list_del_init(&blip->li_bio_list);
764 		iip = INODE_ITEM(blip);
765 		iip->ili_logged = 0;
766 		iip->ili_last_fields = 0;
767 		xfs_ifunlock(iip->ili_inode);
768 	}
769 	list_del(&tmp);
770 }
771 
772 /*
773  * This is the inode flushing abort routine.  It is called from xfs_iflush when
774  * the filesystem is shutting down to clean up the inode state.  It is
775  * responsible for removing the inode item from the AIL if it has not been
776  * re-logged, and unlocking the inode's flush lock.
777  */
778 void
779 xfs_iflush_abort(
780 	xfs_inode_t		*ip,
781 	bool			stale)
782 {
783 	xfs_inode_log_item_t	*iip = ip->i_itemp;
784 
785 	if (iip) {
786 		if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
787 			xfs_trans_ail_remove(&iip->ili_item,
788 					     stale ? SHUTDOWN_LOG_IO_ERROR :
789 						     SHUTDOWN_CORRUPT_INCORE);
790 		}
791 		iip->ili_logged = 0;
792 		/*
793 		 * Clear the ili_last_fields bits now that we know that the
794 		 * data corresponding to them is safely on disk.
795 		 */
796 		iip->ili_last_fields = 0;
797 		/*
798 		 * Clear the inode logging fields so no more flushes are
799 		 * attempted.
800 		 */
801 		iip->ili_fields = 0;
802 		iip->ili_fsync_fields = 0;
803 	}
804 	/*
805 	 * Release the inode's flush lock since we're done with it.
806 	 */
807 	xfs_ifunlock(ip);
808 }
809 
810 void
811 xfs_istale_done(
812 	struct xfs_buf		*bp,
813 	struct xfs_log_item	*lip)
814 {
815 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
816 }
817 
818 /*
819  * convert an xfs_inode_log_format struct from the old 32 bit version
820  * (which can have different field alignments) to the native 64 bit version
821  */
822 int
823 xfs_inode_item_format_convert(
824 	struct xfs_log_iovec		*buf,
825 	struct xfs_inode_log_format	*in_f)
826 {
827 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
828 
829 	if (buf->i_len != sizeof(*in_f32)) {
830 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
831 		return -EFSCORRUPTED;
832 	}
833 
834 	in_f->ilf_type = in_f32->ilf_type;
835 	in_f->ilf_size = in_f32->ilf_size;
836 	in_f->ilf_fields = in_f32->ilf_fields;
837 	in_f->ilf_asize = in_f32->ilf_asize;
838 	in_f->ilf_dsize = in_f32->ilf_dsize;
839 	in_f->ilf_ino = in_f32->ilf_ino;
840 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
841 	in_f->ilf_blkno = in_f32->ilf_blkno;
842 	in_f->ilf_len = in_f32->ilf_len;
843 	in_f->ilf_boffset = in_f32->ilf_boffset;
844 	return 0;
845 }
846