1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_error.h" 21 22 #include <linux/iversion.h> 23 24 struct kmem_cache *xfs_ili_cache; /* inode log item */ 25 26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 27 { 28 return container_of(lip, struct xfs_inode_log_item, ili_item); 29 } 30 31 /* 32 * The logged size of an inode fork is always the current size of the inode 33 * fork. This means that when an inode fork is relogged, the size of the logged 34 * region is determined by the current state, not the combination of the 35 * previously logged state + the current state. This is different relogging 36 * behaviour to most other log items which will retain the size of the 37 * previously logged changes when smaller regions are relogged. 38 * 39 * Hence operations that remove data from the inode fork (e.g. shortform 40 * dir/attr remove, extent form extent removal, etc), the size of the relogged 41 * inode gets -smaller- rather than stays the same size as the previously logged 42 * size and this can result in the committing transaction reducing the amount of 43 * space being consumed by the CIL. 44 */ 45 STATIC void 46 xfs_inode_item_data_fork_size( 47 struct xfs_inode_log_item *iip, 48 int *nvecs, 49 int *nbytes) 50 { 51 struct xfs_inode *ip = iip->ili_inode; 52 53 switch (ip->i_df.if_format) { 54 case XFS_DINODE_FMT_EXTENTS: 55 if ((iip->ili_fields & XFS_ILOG_DEXT) && 56 ip->i_df.if_nextents > 0 && 57 ip->i_df.if_bytes > 0) { 58 /* worst case, doesn't subtract delalloc extents */ 59 *nbytes += XFS_IFORK_DSIZE(ip); 60 *nvecs += 1; 61 } 62 break; 63 case XFS_DINODE_FMT_BTREE: 64 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 65 ip->i_df.if_broot_bytes > 0) { 66 *nbytes += ip->i_df.if_broot_bytes; 67 *nvecs += 1; 68 } 69 break; 70 case XFS_DINODE_FMT_LOCAL: 71 if ((iip->ili_fields & XFS_ILOG_DDATA) && 72 ip->i_df.if_bytes > 0) { 73 *nbytes += roundup(ip->i_df.if_bytes, 4); 74 *nvecs += 1; 75 } 76 break; 77 78 case XFS_DINODE_FMT_DEV: 79 break; 80 default: 81 ASSERT(0); 82 break; 83 } 84 } 85 86 STATIC void 87 xfs_inode_item_attr_fork_size( 88 struct xfs_inode_log_item *iip, 89 int *nvecs, 90 int *nbytes) 91 { 92 struct xfs_inode *ip = iip->ili_inode; 93 94 switch (ip->i_afp->if_format) { 95 case XFS_DINODE_FMT_EXTENTS: 96 if ((iip->ili_fields & XFS_ILOG_AEXT) && 97 ip->i_afp->if_nextents > 0 && 98 ip->i_afp->if_bytes > 0) { 99 /* worst case, doesn't subtract unused space */ 100 *nbytes += XFS_IFORK_ASIZE(ip); 101 *nvecs += 1; 102 } 103 break; 104 case XFS_DINODE_FMT_BTREE: 105 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 106 ip->i_afp->if_broot_bytes > 0) { 107 *nbytes += ip->i_afp->if_broot_bytes; 108 *nvecs += 1; 109 } 110 break; 111 case XFS_DINODE_FMT_LOCAL: 112 if ((iip->ili_fields & XFS_ILOG_ADATA) && 113 ip->i_afp->if_bytes > 0) { 114 *nbytes += roundup(ip->i_afp->if_bytes, 4); 115 *nvecs += 1; 116 } 117 break; 118 default: 119 ASSERT(0); 120 break; 121 } 122 } 123 124 /* 125 * This returns the number of iovecs needed to log the given inode item. 126 * 127 * We need one iovec for the inode log format structure, one for the 128 * inode core, and possibly one for the inode data/extents/b-tree root 129 * and one for the inode attribute data/extents/b-tree root. 130 */ 131 STATIC void 132 xfs_inode_item_size( 133 struct xfs_log_item *lip, 134 int *nvecs, 135 int *nbytes) 136 { 137 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 138 struct xfs_inode *ip = iip->ili_inode; 139 140 *nvecs += 2; 141 *nbytes += sizeof(struct xfs_inode_log_format) + 142 xfs_log_dinode_size(ip->i_mount); 143 144 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 145 if (XFS_IFORK_Q(ip)) 146 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 147 } 148 149 STATIC void 150 xfs_inode_item_format_data_fork( 151 struct xfs_inode_log_item *iip, 152 struct xfs_inode_log_format *ilf, 153 struct xfs_log_vec *lv, 154 struct xfs_log_iovec **vecp) 155 { 156 struct xfs_inode *ip = iip->ili_inode; 157 size_t data_bytes; 158 159 switch (ip->i_df.if_format) { 160 case XFS_DINODE_FMT_EXTENTS: 161 iip->ili_fields &= 162 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 163 164 if ((iip->ili_fields & XFS_ILOG_DEXT) && 165 ip->i_df.if_nextents > 0 && 166 ip->i_df.if_bytes > 0) { 167 struct xfs_bmbt_rec *p; 168 169 ASSERT(xfs_iext_count(&ip->i_df) > 0); 170 171 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 172 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 173 xlog_finish_iovec(lv, *vecp, data_bytes); 174 175 ASSERT(data_bytes <= ip->i_df.if_bytes); 176 177 ilf->ilf_dsize = data_bytes; 178 ilf->ilf_size++; 179 } else { 180 iip->ili_fields &= ~XFS_ILOG_DEXT; 181 } 182 break; 183 case XFS_DINODE_FMT_BTREE: 184 iip->ili_fields &= 185 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 186 187 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 188 ip->i_df.if_broot_bytes > 0) { 189 ASSERT(ip->i_df.if_broot != NULL); 190 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 191 ip->i_df.if_broot, 192 ip->i_df.if_broot_bytes); 193 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 194 ilf->ilf_size++; 195 } else { 196 ASSERT(!(iip->ili_fields & 197 XFS_ILOG_DBROOT)); 198 iip->ili_fields &= ~XFS_ILOG_DBROOT; 199 } 200 break; 201 case XFS_DINODE_FMT_LOCAL: 202 iip->ili_fields &= 203 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 204 if ((iip->ili_fields & XFS_ILOG_DDATA) && 205 ip->i_df.if_bytes > 0) { 206 /* 207 * Round i_bytes up to a word boundary. 208 * The underlying memory is guaranteed 209 * to be there by xfs_idata_realloc(). 210 */ 211 data_bytes = roundup(ip->i_df.if_bytes, 4); 212 ASSERT(ip->i_df.if_u1.if_data != NULL); 213 ASSERT(ip->i_disk_size > 0); 214 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 215 ip->i_df.if_u1.if_data, data_bytes); 216 ilf->ilf_dsize = (unsigned)data_bytes; 217 ilf->ilf_size++; 218 } else { 219 iip->ili_fields &= ~XFS_ILOG_DDATA; 220 } 221 break; 222 case XFS_DINODE_FMT_DEV: 223 iip->ili_fields &= 224 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 225 if (iip->ili_fields & XFS_ILOG_DEV) 226 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 227 break; 228 default: 229 ASSERT(0); 230 break; 231 } 232 } 233 234 STATIC void 235 xfs_inode_item_format_attr_fork( 236 struct xfs_inode_log_item *iip, 237 struct xfs_inode_log_format *ilf, 238 struct xfs_log_vec *lv, 239 struct xfs_log_iovec **vecp) 240 { 241 struct xfs_inode *ip = iip->ili_inode; 242 size_t data_bytes; 243 244 switch (ip->i_afp->if_format) { 245 case XFS_DINODE_FMT_EXTENTS: 246 iip->ili_fields &= 247 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 248 249 if ((iip->ili_fields & XFS_ILOG_AEXT) && 250 ip->i_afp->if_nextents > 0 && 251 ip->i_afp->if_bytes > 0) { 252 struct xfs_bmbt_rec *p; 253 254 ASSERT(xfs_iext_count(ip->i_afp) == 255 ip->i_afp->if_nextents); 256 257 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 258 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 259 xlog_finish_iovec(lv, *vecp, data_bytes); 260 261 ilf->ilf_asize = data_bytes; 262 ilf->ilf_size++; 263 } else { 264 iip->ili_fields &= ~XFS_ILOG_AEXT; 265 } 266 break; 267 case XFS_DINODE_FMT_BTREE: 268 iip->ili_fields &= 269 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 270 271 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 272 ip->i_afp->if_broot_bytes > 0) { 273 ASSERT(ip->i_afp->if_broot != NULL); 274 275 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 276 ip->i_afp->if_broot, 277 ip->i_afp->if_broot_bytes); 278 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 279 ilf->ilf_size++; 280 } else { 281 iip->ili_fields &= ~XFS_ILOG_ABROOT; 282 } 283 break; 284 case XFS_DINODE_FMT_LOCAL: 285 iip->ili_fields &= 286 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 287 288 if ((iip->ili_fields & XFS_ILOG_ADATA) && 289 ip->i_afp->if_bytes > 0) { 290 /* 291 * Round i_bytes up to a word boundary. 292 * The underlying memory is guaranteed 293 * to be there by xfs_idata_realloc(). 294 */ 295 data_bytes = roundup(ip->i_afp->if_bytes, 4); 296 ASSERT(ip->i_afp->if_u1.if_data != NULL); 297 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 298 ip->i_afp->if_u1.if_data, 299 data_bytes); 300 ilf->ilf_asize = (unsigned)data_bytes; 301 ilf->ilf_size++; 302 } else { 303 iip->ili_fields &= ~XFS_ILOG_ADATA; 304 } 305 break; 306 default: 307 ASSERT(0); 308 break; 309 } 310 } 311 312 /* 313 * Convert an incore timestamp to a log timestamp. Note that the log format 314 * specifies host endian format! 315 */ 316 static inline xfs_log_timestamp_t 317 xfs_inode_to_log_dinode_ts( 318 struct xfs_inode *ip, 319 const struct timespec64 tv) 320 { 321 struct xfs_log_legacy_timestamp *lits; 322 xfs_log_timestamp_t its; 323 324 if (xfs_inode_has_bigtime(ip)) 325 return xfs_inode_encode_bigtime(tv); 326 327 lits = (struct xfs_log_legacy_timestamp *)&its; 328 lits->t_sec = tv.tv_sec; 329 lits->t_nsec = tv.tv_nsec; 330 331 return its; 332 } 333 334 /* 335 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 336 * but not in the in-memory one. But we are guaranteed to have an inode buffer 337 * in memory when logging an inode, so we can just copy it from the on-disk 338 * inode to the in-log inode here so that recovery of file system with these 339 * fields set to non-zero values doesn't lose them. For all other cases we zero 340 * the fields. 341 */ 342 static void 343 xfs_copy_dm_fields_to_log_dinode( 344 struct xfs_inode *ip, 345 struct xfs_log_dinode *to) 346 { 347 struct xfs_dinode *dip; 348 349 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 350 ip->i_imap.im_boffset); 351 352 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 353 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 354 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 355 } else { 356 to->di_dmevmask = 0; 357 to->di_dmstate = 0; 358 } 359 } 360 361 static void 362 xfs_inode_to_log_dinode( 363 struct xfs_inode *ip, 364 struct xfs_log_dinode *to, 365 xfs_lsn_t lsn) 366 { 367 struct inode *inode = VFS_I(ip); 368 369 to->di_magic = XFS_DINODE_MAGIC; 370 to->di_format = xfs_ifork_format(&ip->i_df); 371 to->di_uid = i_uid_read(inode); 372 to->di_gid = i_gid_read(inode); 373 to->di_projid_lo = ip->i_projid & 0xffff; 374 to->di_projid_hi = ip->i_projid >> 16; 375 376 memset(to->di_pad, 0, sizeof(to->di_pad)); 377 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 378 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); 379 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); 380 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); 381 to->di_nlink = inode->i_nlink; 382 to->di_gen = inode->i_generation; 383 to->di_mode = inode->i_mode; 384 385 to->di_size = ip->i_disk_size; 386 to->di_nblocks = ip->i_nblocks; 387 to->di_extsize = ip->i_extsize; 388 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 389 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 390 to->di_forkoff = ip->i_forkoff; 391 to->di_aformat = xfs_ifork_format(ip->i_afp); 392 to->di_flags = ip->i_diflags; 393 394 xfs_copy_dm_fields_to_log_dinode(ip, to); 395 396 /* log a dummy value to ensure log structure is fully initialised */ 397 to->di_next_unlinked = NULLAGINO; 398 399 if (xfs_has_v3inodes(ip->i_mount)) { 400 to->di_version = 3; 401 to->di_changecount = inode_peek_iversion(inode); 402 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 403 to->di_flags2 = ip->i_diflags2; 404 to->di_cowextsize = ip->i_cowextsize; 405 to->di_ino = ip->i_ino; 406 to->di_lsn = lsn; 407 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 408 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 409 to->di_flushiter = 0; 410 } else { 411 to->di_version = 2; 412 to->di_flushiter = ip->i_flushiter; 413 } 414 } 415 416 /* 417 * Format the inode core. Current timestamp data is only in the VFS inode 418 * fields, so we need to grab them from there. Hence rather than just copying 419 * the XFS inode core structure, format the fields directly into the iovec. 420 */ 421 static void 422 xfs_inode_item_format_core( 423 struct xfs_inode *ip, 424 struct xfs_log_vec *lv, 425 struct xfs_log_iovec **vecp) 426 { 427 struct xfs_log_dinode *dic; 428 429 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 430 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 431 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 432 } 433 434 /* 435 * This is called to fill in the vector of log iovecs for the given inode 436 * log item. It fills the first item with an inode log format structure, 437 * the second with the on-disk inode structure, and a possible third and/or 438 * fourth with the inode data/extents/b-tree root and inode attributes 439 * data/extents/b-tree root. 440 * 441 * Note: Always use the 64 bit inode log format structure so we don't 442 * leave an uninitialised hole in the format item on 64 bit systems. Log 443 * recovery on 32 bit systems handles this just fine, so there's no reason 444 * for not using an initialising the properly padded structure all the time. 445 */ 446 STATIC void 447 xfs_inode_item_format( 448 struct xfs_log_item *lip, 449 struct xfs_log_vec *lv) 450 { 451 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 452 struct xfs_inode *ip = iip->ili_inode; 453 struct xfs_log_iovec *vecp = NULL; 454 struct xfs_inode_log_format *ilf; 455 456 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 457 ilf->ilf_type = XFS_LI_INODE; 458 ilf->ilf_ino = ip->i_ino; 459 ilf->ilf_blkno = ip->i_imap.im_blkno; 460 ilf->ilf_len = ip->i_imap.im_len; 461 ilf->ilf_boffset = ip->i_imap.im_boffset; 462 ilf->ilf_fields = XFS_ILOG_CORE; 463 ilf->ilf_size = 2; /* format + core */ 464 465 /* 466 * make sure we don't leak uninitialised data into the log in the case 467 * when we don't log every field in the inode. 468 */ 469 ilf->ilf_dsize = 0; 470 ilf->ilf_asize = 0; 471 ilf->ilf_pad = 0; 472 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 473 474 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 475 476 xfs_inode_item_format_core(ip, lv, &vecp); 477 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 478 if (XFS_IFORK_Q(ip)) { 479 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 480 } else { 481 iip->ili_fields &= 482 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 483 } 484 485 /* update the format with the exact fields we actually logged */ 486 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 487 } 488 489 /* 490 * This is called to pin the inode associated with the inode log 491 * item in memory so it cannot be written out. 492 */ 493 STATIC void 494 xfs_inode_item_pin( 495 struct xfs_log_item *lip) 496 { 497 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 498 499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 500 ASSERT(lip->li_buf); 501 502 trace_xfs_inode_pin(ip, _RET_IP_); 503 atomic_inc(&ip->i_pincount); 504 } 505 506 507 /* 508 * This is called to unpin the inode associated with the inode log 509 * item which was previously pinned with a call to xfs_inode_item_pin(). 510 * 511 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 512 * 513 * Note that unpin can race with inode cluster buffer freeing marking the buffer 514 * stale. In that case, flush completions are run from the buffer unpin call, 515 * which may happen before the inode is unpinned. If we lose the race, there 516 * will be no buffer attached to the log item, but the inode will be marked 517 * XFS_ISTALE. 518 */ 519 STATIC void 520 xfs_inode_item_unpin( 521 struct xfs_log_item *lip, 522 int remove) 523 { 524 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 525 526 trace_xfs_inode_unpin(ip, _RET_IP_); 527 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 528 ASSERT(atomic_read(&ip->i_pincount) > 0); 529 if (atomic_dec_and_test(&ip->i_pincount)) 530 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 531 } 532 533 STATIC uint 534 xfs_inode_item_push( 535 struct xfs_log_item *lip, 536 struct list_head *buffer_list) 537 __releases(&lip->li_ailp->ail_lock) 538 __acquires(&lip->li_ailp->ail_lock) 539 { 540 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 541 struct xfs_inode *ip = iip->ili_inode; 542 struct xfs_buf *bp = lip->li_buf; 543 uint rval = XFS_ITEM_SUCCESS; 544 int error; 545 546 ASSERT(iip->ili_item.li_buf); 547 548 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) || 549 (ip->i_flags & XFS_ISTALE)) 550 return XFS_ITEM_PINNED; 551 552 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 553 return XFS_ITEM_FLUSHING; 554 555 if (!xfs_buf_trylock(bp)) 556 return XFS_ITEM_LOCKED; 557 558 spin_unlock(&lip->li_ailp->ail_lock); 559 560 /* 561 * We need to hold a reference for flushing the cluster buffer as it may 562 * fail the buffer without IO submission. In which case, we better get a 563 * reference for that completion because otherwise we don't get a 564 * reference for IO until we queue the buffer for delwri submission. 565 */ 566 xfs_buf_hold(bp); 567 error = xfs_iflush_cluster(bp); 568 if (!error) { 569 if (!xfs_buf_delwri_queue(bp, buffer_list)) 570 rval = XFS_ITEM_FLUSHING; 571 xfs_buf_relse(bp); 572 } else { 573 /* 574 * Release the buffer if we were unable to flush anything. On 575 * any other error, the buffer has already been released. 576 */ 577 if (error == -EAGAIN) 578 xfs_buf_relse(bp); 579 rval = XFS_ITEM_LOCKED; 580 } 581 582 spin_lock(&lip->li_ailp->ail_lock); 583 return rval; 584 } 585 586 /* 587 * Unlock the inode associated with the inode log item. 588 */ 589 STATIC void 590 xfs_inode_item_release( 591 struct xfs_log_item *lip) 592 { 593 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 594 struct xfs_inode *ip = iip->ili_inode; 595 unsigned short lock_flags; 596 597 ASSERT(ip->i_itemp != NULL); 598 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 599 600 lock_flags = iip->ili_lock_flags; 601 iip->ili_lock_flags = 0; 602 if (lock_flags) 603 xfs_iunlock(ip, lock_flags); 604 } 605 606 /* 607 * This is called to find out where the oldest active copy of the inode log 608 * item in the on disk log resides now that the last log write of it completed 609 * at the given lsn. Since we always re-log all dirty data in an inode, the 610 * latest copy in the on disk log is the only one that matters. Therefore, 611 * simply return the given lsn. 612 * 613 * If the inode has been marked stale because the cluster is being freed, we 614 * don't want to (re-)insert this inode into the AIL. There is a race condition 615 * where the cluster buffer may be unpinned before the inode is inserted into 616 * the AIL during transaction committed processing. If the buffer is unpinned 617 * before the inode item has been committed and inserted, then it is possible 618 * for the buffer to be written and IO completes before the inode is inserted 619 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 620 * AIL which will never get removed. It will, however, get reclaimed which 621 * triggers an assert in xfs_inode_free() complaining about freein an inode 622 * still in the AIL. 623 * 624 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 625 * transaction committed code knows that it does not need to do any further 626 * processing on the item. 627 */ 628 STATIC xfs_lsn_t 629 xfs_inode_item_committed( 630 struct xfs_log_item *lip, 631 xfs_lsn_t lsn) 632 { 633 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 634 struct xfs_inode *ip = iip->ili_inode; 635 636 if (xfs_iflags_test(ip, XFS_ISTALE)) { 637 xfs_inode_item_unpin(lip, 0); 638 return -1; 639 } 640 return lsn; 641 } 642 643 STATIC void 644 xfs_inode_item_committing( 645 struct xfs_log_item *lip, 646 xfs_csn_t seq) 647 { 648 INODE_ITEM(lip)->ili_commit_seq = seq; 649 return xfs_inode_item_release(lip); 650 } 651 652 static const struct xfs_item_ops xfs_inode_item_ops = { 653 .iop_size = xfs_inode_item_size, 654 .iop_format = xfs_inode_item_format, 655 .iop_pin = xfs_inode_item_pin, 656 .iop_unpin = xfs_inode_item_unpin, 657 .iop_release = xfs_inode_item_release, 658 .iop_committed = xfs_inode_item_committed, 659 .iop_push = xfs_inode_item_push, 660 .iop_committing = xfs_inode_item_committing, 661 }; 662 663 664 /* 665 * Initialize the inode log item for a newly allocated (in-core) inode. 666 */ 667 void 668 xfs_inode_item_init( 669 struct xfs_inode *ip, 670 struct xfs_mount *mp) 671 { 672 struct xfs_inode_log_item *iip; 673 674 ASSERT(ip->i_itemp == NULL); 675 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 676 GFP_KERNEL | __GFP_NOFAIL); 677 678 iip->ili_inode = ip; 679 spin_lock_init(&iip->ili_lock); 680 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 681 &xfs_inode_item_ops); 682 } 683 684 /* 685 * Free the inode log item and any memory hanging off of it. 686 */ 687 void 688 xfs_inode_item_destroy( 689 struct xfs_inode *ip) 690 { 691 struct xfs_inode_log_item *iip = ip->i_itemp; 692 693 ASSERT(iip->ili_item.li_buf == NULL); 694 695 ip->i_itemp = NULL; 696 kmem_free(iip->ili_item.li_lv_shadow); 697 kmem_cache_free(xfs_ili_cache, iip); 698 } 699 700 701 /* 702 * We only want to pull the item from the AIL if it is actually there 703 * and its location in the log has not changed since we started the 704 * flush. Thus, we only bother if the inode's lsn has not changed. 705 */ 706 static void 707 xfs_iflush_ail_updates( 708 struct xfs_ail *ailp, 709 struct list_head *list) 710 { 711 struct xfs_log_item *lip; 712 xfs_lsn_t tail_lsn = 0; 713 714 /* this is an opencoded batch version of xfs_trans_ail_delete */ 715 spin_lock(&ailp->ail_lock); 716 list_for_each_entry(lip, list, li_bio_list) { 717 xfs_lsn_t lsn; 718 719 clear_bit(XFS_LI_FAILED, &lip->li_flags); 720 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 721 continue; 722 723 lsn = xfs_ail_delete_one(ailp, lip); 724 if (!tail_lsn && lsn) 725 tail_lsn = lsn; 726 } 727 xfs_ail_update_finish(ailp, tail_lsn); 728 } 729 730 /* 731 * Walk the list of inodes that have completed their IOs. If they are clean 732 * remove them from the list and dissociate them from the buffer. Buffers that 733 * are still dirty remain linked to the buffer and on the list. Caller must 734 * handle them appropriately. 735 */ 736 static void 737 xfs_iflush_finish( 738 struct xfs_buf *bp, 739 struct list_head *list) 740 { 741 struct xfs_log_item *lip, *n; 742 743 list_for_each_entry_safe(lip, n, list, li_bio_list) { 744 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 745 bool drop_buffer = false; 746 747 spin_lock(&iip->ili_lock); 748 749 /* 750 * Remove the reference to the cluster buffer if the inode is 751 * clean in memory and drop the buffer reference once we've 752 * dropped the locks we hold. 753 */ 754 ASSERT(iip->ili_item.li_buf == bp); 755 if (!iip->ili_fields) { 756 iip->ili_item.li_buf = NULL; 757 list_del_init(&lip->li_bio_list); 758 drop_buffer = true; 759 } 760 iip->ili_last_fields = 0; 761 iip->ili_flush_lsn = 0; 762 spin_unlock(&iip->ili_lock); 763 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 764 if (drop_buffer) 765 xfs_buf_rele(bp); 766 } 767 } 768 769 /* 770 * Inode buffer IO completion routine. It is responsible for removing inodes 771 * attached to the buffer from the AIL if they have not been re-logged and 772 * completing the inode flush. 773 */ 774 void 775 xfs_buf_inode_iodone( 776 struct xfs_buf *bp) 777 { 778 struct xfs_log_item *lip, *n; 779 LIST_HEAD(flushed_inodes); 780 LIST_HEAD(ail_updates); 781 782 /* 783 * Pull the attached inodes from the buffer one at a time and take the 784 * appropriate action on them. 785 */ 786 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 787 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 788 789 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 790 xfs_iflush_abort(iip->ili_inode); 791 continue; 792 } 793 if (!iip->ili_last_fields) 794 continue; 795 796 /* Do an unlocked check for needing the AIL lock. */ 797 if (iip->ili_flush_lsn == lip->li_lsn || 798 test_bit(XFS_LI_FAILED, &lip->li_flags)) 799 list_move_tail(&lip->li_bio_list, &ail_updates); 800 else 801 list_move_tail(&lip->li_bio_list, &flushed_inodes); 802 } 803 804 if (!list_empty(&ail_updates)) { 805 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 806 list_splice_tail(&ail_updates, &flushed_inodes); 807 } 808 809 xfs_iflush_finish(bp, &flushed_inodes); 810 if (!list_empty(&flushed_inodes)) 811 list_splice_tail(&flushed_inodes, &bp->b_li_list); 812 } 813 814 void 815 xfs_buf_inode_io_fail( 816 struct xfs_buf *bp) 817 { 818 struct xfs_log_item *lip; 819 820 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 821 set_bit(XFS_LI_FAILED, &lip->li_flags); 822 } 823 824 /* 825 * This is the inode flushing abort routine. It is called when 826 * the filesystem is shutting down to clean up the inode state. It is 827 * responsible for removing the inode item from the AIL if it has not been 828 * re-logged and clearing the inode's flush state. 829 */ 830 void 831 xfs_iflush_abort( 832 struct xfs_inode *ip) 833 { 834 struct xfs_inode_log_item *iip = ip->i_itemp; 835 struct xfs_buf *bp = NULL; 836 837 if (iip) { 838 /* 839 * Clear the failed bit before removing the item from the AIL so 840 * xfs_trans_ail_delete() doesn't try to clear and release the 841 * buffer attached to the log item before we are done with it. 842 */ 843 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 844 xfs_trans_ail_delete(&iip->ili_item, 0); 845 846 /* 847 * Clear the inode logging fields so no more flushes are 848 * attempted. 849 */ 850 spin_lock(&iip->ili_lock); 851 iip->ili_last_fields = 0; 852 iip->ili_fields = 0; 853 iip->ili_fsync_fields = 0; 854 iip->ili_flush_lsn = 0; 855 bp = iip->ili_item.li_buf; 856 iip->ili_item.li_buf = NULL; 857 list_del_init(&iip->ili_item.li_bio_list); 858 spin_unlock(&iip->ili_lock); 859 } 860 xfs_iflags_clear(ip, XFS_IFLUSHING); 861 if (bp) 862 xfs_buf_rele(bp); 863 } 864 865 /* 866 * convert an xfs_inode_log_format struct from the old 32 bit version 867 * (which can have different field alignments) to the native 64 bit version 868 */ 869 int 870 xfs_inode_item_format_convert( 871 struct xfs_log_iovec *buf, 872 struct xfs_inode_log_format *in_f) 873 { 874 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 875 876 if (buf->i_len != sizeof(*in_f32)) { 877 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 878 return -EFSCORRUPTED; 879 } 880 881 in_f->ilf_type = in_f32->ilf_type; 882 in_f->ilf_size = in_f32->ilf_size; 883 in_f->ilf_fields = in_f32->ilf_fields; 884 in_f->ilf_asize = in_f32->ilf_asize; 885 in_f->ilf_dsize = in_f32->ilf_dsize; 886 in_f->ilf_ino = in_f32->ilf_ino; 887 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 888 in_f->ilf_blkno = in_f32->ilf_blkno; 889 in_f->ilf_len = in_f32->ilf_len; 890 in_f->ilf_boffset = in_f32->ilf_boffset; 891 return 0; 892 } 893