1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_error.h" 21 22 #include <linux/iversion.h> 23 24 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 25 26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 27 { 28 return container_of(lip, struct xfs_inode_log_item, ili_item); 29 } 30 31 STATIC void 32 xfs_inode_item_data_fork_size( 33 struct xfs_inode_log_item *iip, 34 int *nvecs, 35 int *nbytes) 36 { 37 struct xfs_inode *ip = iip->ili_inode; 38 39 switch (ip->i_df.if_format) { 40 case XFS_DINODE_FMT_EXTENTS: 41 if ((iip->ili_fields & XFS_ILOG_DEXT) && 42 ip->i_df.if_nextents > 0 && 43 ip->i_df.if_bytes > 0) { 44 /* worst case, doesn't subtract delalloc extents */ 45 *nbytes += XFS_IFORK_DSIZE(ip); 46 *nvecs += 1; 47 } 48 break; 49 case XFS_DINODE_FMT_BTREE: 50 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 51 ip->i_df.if_broot_bytes > 0) { 52 *nbytes += ip->i_df.if_broot_bytes; 53 *nvecs += 1; 54 } 55 break; 56 case XFS_DINODE_FMT_LOCAL: 57 if ((iip->ili_fields & XFS_ILOG_DDATA) && 58 ip->i_df.if_bytes > 0) { 59 *nbytes += roundup(ip->i_df.if_bytes, 4); 60 *nvecs += 1; 61 } 62 break; 63 64 case XFS_DINODE_FMT_DEV: 65 break; 66 default: 67 ASSERT(0); 68 break; 69 } 70 } 71 72 STATIC void 73 xfs_inode_item_attr_fork_size( 74 struct xfs_inode_log_item *iip, 75 int *nvecs, 76 int *nbytes) 77 { 78 struct xfs_inode *ip = iip->ili_inode; 79 80 switch (ip->i_afp->if_format) { 81 case XFS_DINODE_FMT_EXTENTS: 82 if ((iip->ili_fields & XFS_ILOG_AEXT) && 83 ip->i_afp->if_nextents > 0 && 84 ip->i_afp->if_bytes > 0) { 85 /* worst case, doesn't subtract unused space */ 86 *nbytes += XFS_IFORK_ASIZE(ip); 87 *nvecs += 1; 88 } 89 break; 90 case XFS_DINODE_FMT_BTREE: 91 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 92 ip->i_afp->if_broot_bytes > 0) { 93 *nbytes += ip->i_afp->if_broot_bytes; 94 *nvecs += 1; 95 } 96 break; 97 case XFS_DINODE_FMT_LOCAL: 98 if ((iip->ili_fields & XFS_ILOG_ADATA) && 99 ip->i_afp->if_bytes > 0) { 100 *nbytes += roundup(ip->i_afp->if_bytes, 4); 101 *nvecs += 1; 102 } 103 break; 104 default: 105 ASSERT(0); 106 break; 107 } 108 } 109 110 /* 111 * This returns the number of iovecs needed to log the given inode item. 112 * 113 * We need one iovec for the inode log format structure, one for the 114 * inode core, and possibly one for the inode data/extents/b-tree root 115 * and one for the inode attribute data/extents/b-tree root. 116 */ 117 STATIC void 118 xfs_inode_item_size( 119 struct xfs_log_item *lip, 120 int *nvecs, 121 int *nbytes) 122 { 123 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 124 struct xfs_inode *ip = iip->ili_inode; 125 126 *nvecs += 2; 127 *nbytes += sizeof(struct xfs_inode_log_format) + 128 xfs_log_dinode_size(ip->i_mount); 129 130 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 131 if (XFS_IFORK_Q(ip)) 132 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 133 } 134 135 STATIC void 136 xfs_inode_item_format_data_fork( 137 struct xfs_inode_log_item *iip, 138 struct xfs_inode_log_format *ilf, 139 struct xfs_log_vec *lv, 140 struct xfs_log_iovec **vecp) 141 { 142 struct xfs_inode *ip = iip->ili_inode; 143 size_t data_bytes; 144 145 switch (ip->i_df.if_format) { 146 case XFS_DINODE_FMT_EXTENTS: 147 iip->ili_fields &= 148 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 149 150 if ((iip->ili_fields & XFS_ILOG_DEXT) && 151 ip->i_df.if_nextents > 0 && 152 ip->i_df.if_bytes > 0) { 153 struct xfs_bmbt_rec *p; 154 155 ASSERT(xfs_iext_count(&ip->i_df) > 0); 156 157 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 158 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 159 xlog_finish_iovec(lv, *vecp, data_bytes); 160 161 ASSERT(data_bytes <= ip->i_df.if_bytes); 162 163 ilf->ilf_dsize = data_bytes; 164 ilf->ilf_size++; 165 } else { 166 iip->ili_fields &= ~XFS_ILOG_DEXT; 167 } 168 break; 169 case XFS_DINODE_FMT_BTREE: 170 iip->ili_fields &= 171 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 172 173 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 174 ip->i_df.if_broot_bytes > 0) { 175 ASSERT(ip->i_df.if_broot != NULL); 176 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 177 ip->i_df.if_broot, 178 ip->i_df.if_broot_bytes); 179 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 180 ilf->ilf_size++; 181 } else { 182 ASSERT(!(iip->ili_fields & 183 XFS_ILOG_DBROOT)); 184 iip->ili_fields &= ~XFS_ILOG_DBROOT; 185 } 186 break; 187 case XFS_DINODE_FMT_LOCAL: 188 iip->ili_fields &= 189 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 190 if ((iip->ili_fields & XFS_ILOG_DDATA) && 191 ip->i_df.if_bytes > 0) { 192 /* 193 * Round i_bytes up to a word boundary. 194 * The underlying memory is guaranteed 195 * to be there by xfs_idata_realloc(). 196 */ 197 data_bytes = roundup(ip->i_df.if_bytes, 4); 198 ASSERT(ip->i_df.if_u1.if_data != NULL); 199 ASSERT(ip->i_disk_size > 0); 200 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 201 ip->i_df.if_u1.if_data, data_bytes); 202 ilf->ilf_dsize = (unsigned)data_bytes; 203 ilf->ilf_size++; 204 } else { 205 iip->ili_fields &= ~XFS_ILOG_DDATA; 206 } 207 break; 208 case XFS_DINODE_FMT_DEV: 209 iip->ili_fields &= 210 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 211 if (iip->ili_fields & XFS_ILOG_DEV) 212 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 213 break; 214 default: 215 ASSERT(0); 216 break; 217 } 218 } 219 220 STATIC void 221 xfs_inode_item_format_attr_fork( 222 struct xfs_inode_log_item *iip, 223 struct xfs_inode_log_format *ilf, 224 struct xfs_log_vec *lv, 225 struct xfs_log_iovec **vecp) 226 { 227 struct xfs_inode *ip = iip->ili_inode; 228 size_t data_bytes; 229 230 switch (ip->i_afp->if_format) { 231 case XFS_DINODE_FMT_EXTENTS: 232 iip->ili_fields &= 233 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 234 235 if ((iip->ili_fields & XFS_ILOG_AEXT) && 236 ip->i_afp->if_nextents > 0 && 237 ip->i_afp->if_bytes > 0) { 238 struct xfs_bmbt_rec *p; 239 240 ASSERT(xfs_iext_count(ip->i_afp) == 241 ip->i_afp->if_nextents); 242 243 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 244 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 245 xlog_finish_iovec(lv, *vecp, data_bytes); 246 247 ilf->ilf_asize = data_bytes; 248 ilf->ilf_size++; 249 } else { 250 iip->ili_fields &= ~XFS_ILOG_AEXT; 251 } 252 break; 253 case XFS_DINODE_FMT_BTREE: 254 iip->ili_fields &= 255 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 256 257 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 258 ip->i_afp->if_broot_bytes > 0) { 259 ASSERT(ip->i_afp->if_broot != NULL); 260 261 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 262 ip->i_afp->if_broot, 263 ip->i_afp->if_broot_bytes); 264 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 265 ilf->ilf_size++; 266 } else { 267 iip->ili_fields &= ~XFS_ILOG_ABROOT; 268 } 269 break; 270 case XFS_DINODE_FMT_LOCAL: 271 iip->ili_fields &= 272 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 273 274 if ((iip->ili_fields & XFS_ILOG_ADATA) && 275 ip->i_afp->if_bytes > 0) { 276 /* 277 * Round i_bytes up to a word boundary. 278 * The underlying memory is guaranteed 279 * to be there by xfs_idata_realloc(). 280 */ 281 data_bytes = roundup(ip->i_afp->if_bytes, 4); 282 ASSERT(ip->i_afp->if_u1.if_data != NULL); 283 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 284 ip->i_afp->if_u1.if_data, 285 data_bytes); 286 ilf->ilf_asize = (unsigned)data_bytes; 287 ilf->ilf_size++; 288 } else { 289 iip->ili_fields &= ~XFS_ILOG_ADATA; 290 } 291 break; 292 default: 293 ASSERT(0); 294 break; 295 } 296 } 297 298 /* 299 * Convert an incore timestamp to a log timestamp. Note that the log format 300 * specifies host endian format! 301 */ 302 static inline xfs_log_timestamp_t 303 xfs_inode_to_log_dinode_ts( 304 struct xfs_inode *ip, 305 const struct timespec64 tv) 306 { 307 struct xfs_log_legacy_timestamp *lits; 308 xfs_log_timestamp_t its; 309 310 if (xfs_inode_has_bigtime(ip)) 311 return xfs_inode_encode_bigtime(tv); 312 313 lits = (struct xfs_log_legacy_timestamp *)&its; 314 lits->t_sec = tv.tv_sec; 315 lits->t_nsec = tv.tv_nsec; 316 317 return its; 318 } 319 320 /* 321 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 322 * but not in the in-memory one. But we are guaranteed to have an inode buffer 323 * in memory when logging an inode, so we can just copy it from the on-disk 324 * inode to the in-log inode here so that recovery of file system with these 325 * fields set to non-zero values doesn't lose them. For all other cases we zero 326 * the fields. 327 */ 328 static void 329 xfs_copy_dm_fields_to_log_dinode( 330 struct xfs_inode *ip, 331 struct xfs_log_dinode *to) 332 { 333 struct xfs_dinode *dip; 334 335 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 336 ip->i_imap.im_boffset); 337 338 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 339 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 340 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 341 } else { 342 to->di_dmevmask = 0; 343 to->di_dmstate = 0; 344 } 345 } 346 347 static void 348 xfs_inode_to_log_dinode( 349 struct xfs_inode *ip, 350 struct xfs_log_dinode *to, 351 xfs_lsn_t lsn) 352 { 353 struct inode *inode = VFS_I(ip); 354 355 to->di_magic = XFS_DINODE_MAGIC; 356 to->di_format = xfs_ifork_format(&ip->i_df); 357 to->di_uid = i_uid_read(inode); 358 to->di_gid = i_gid_read(inode); 359 to->di_projid_lo = ip->i_projid & 0xffff; 360 to->di_projid_hi = ip->i_projid >> 16; 361 362 memset(to->di_pad, 0, sizeof(to->di_pad)); 363 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 364 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); 365 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); 366 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); 367 to->di_nlink = inode->i_nlink; 368 to->di_gen = inode->i_generation; 369 to->di_mode = inode->i_mode; 370 371 to->di_size = ip->i_disk_size; 372 to->di_nblocks = ip->i_nblocks; 373 to->di_extsize = ip->i_extsize; 374 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 375 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 376 to->di_forkoff = ip->i_forkoff; 377 to->di_aformat = xfs_ifork_format(ip->i_afp); 378 to->di_flags = ip->i_diflags; 379 380 xfs_copy_dm_fields_to_log_dinode(ip, to); 381 382 /* log a dummy value to ensure log structure is fully initialised */ 383 to->di_next_unlinked = NULLAGINO; 384 385 if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { 386 to->di_version = 3; 387 to->di_changecount = inode_peek_iversion(inode); 388 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 389 to->di_flags2 = ip->i_diflags2; 390 to->di_cowextsize = ip->i_cowextsize; 391 to->di_ino = ip->i_ino; 392 to->di_lsn = lsn; 393 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 394 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 395 to->di_flushiter = 0; 396 } else { 397 to->di_version = 2; 398 to->di_flushiter = ip->i_flushiter; 399 } 400 } 401 402 /* 403 * Format the inode core. Current timestamp data is only in the VFS inode 404 * fields, so we need to grab them from there. Hence rather than just copying 405 * the XFS inode core structure, format the fields directly into the iovec. 406 */ 407 static void 408 xfs_inode_item_format_core( 409 struct xfs_inode *ip, 410 struct xfs_log_vec *lv, 411 struct xfs_log_iovec **vecp) 412 { 413 struct xfs_log_dinode *dic; 414 415 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 416 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 417 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 418 } 419 420 /* 421 * This is called to fill in the vector of log iovecs for the given inode 422 * log item. It fills the first item with an inode log format structure, 423 * the second with the on-disk inode structure, and a possible third and/or 424 * fourth with the inode data/extents/b-tree root and inode attributes 425 * data/extents/b-tree root. 426 * 427 * Note: Always use the 64 bit inode log format structure so we don't 428 * leave an uninitialised hole in the format item on 64 bit systems. Log 429 * recovery on 32 bit systems handles this just fine, so there's no reason 430 * for not using an initialising the properly padded structure all the time. 431 */ 432 STATIC void 433 xfs_inode_item_format( 434 struct xfs_log_item *lip, 435 struct xfs_log_vec *lv) 436 { 437 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 438 struct xfs_inode *ip = iip->ili_inode; 439 struct xfs_log_iovec *vecp = NULL; 440 struct xfs_inode_log_format *ilf; 441 442 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 443 ilf->ilf_type = XFS_LI_INODE; 444 ilf->ilf_ino = ip->i_ino; 445 ilf->ilf_blkno = ip->i_imap.im_blkno; 446 ilf->ilf_len = ip->i_imap.im_len; 447 ilf->ilf_boffset = ip->i_imap.im_boffset; 448 ilf->ilf_fields = XFS_ILOG_CORE; 449 ilf->ilf_size = 2; /* format + core */ 450 451 /* 452 * make sure we don't leak uninitialised data into the log in the case 453 * when we don't log every field in the inode. 454 */ 455 ilf->ilf_dsize = 0; 456 ilf->ilf_asize = 0; 457 ilf->ilf_pad = 0; 458 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 459 460 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 461 462 xfs_inode_item_format_core(ip, lv, &vecp); 463 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 464 if (XFS_IFORK_Q(ip)) { 465 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 466 } else { 467 iip->ili_fields &= 468 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 469 } 470 471 /* update the format with the exact fields we actually logged */ 472 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 473 } 474 475 /* 476 * This is called to pin the inode associated with the inode log 477 * item in memory so it cannot be written out. 478 */ 479 STATIC void 480 xfs_inode_item_pin( 481 struct xfs_log_item *lip) 482 { 483 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 484 485 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 486 ASSERT(lip->li_buf); 487 488 trace_xfs_inode_pin(ip, _RET_IP_); 489 atomic_inc(&ip->i_pincount); 490 } 491 492 493 /* 494 * This is called to unpin the inode associated with the inode log 495 * item which was previously pinned with a call to xfs_inode_item_pin(). 496 * 497 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 498 * 499 * Note that unpin can race with inode cluster buffer freeing marking the buffer 500 * stale. In that case, flush completions are run from the buffer unpin call, 501 * which may happen before the inode is unpinned. If we lose the race, there 502 * will be no buffer attached to the log item, but the inode will be marked 503 * XFS_ISTALE. 504 */ 505 STATIC void 506 xfs_inode_item_unpin( 507 struct xfs_log_item *lip, 508 int remove) 509 { 510 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 511 512 trace_xfs_inode_unpin(ip, _RET_IP_); 513 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 514 ASSERT(atomic_read(&ip->i_pincount) > 0); 515 if (atomic_dec_and_test(&ip->i_pincount)) 516 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 517 } 518 519 STATIC uint 520 xfs_inode_item_push( 521 struct xfs_log_item *lip, 522 struct list_head *buffer_list) 523 __releases(&lip->li_ailp->ail_lock) 524 __acquires(&lip->li_ailp->ail_lock) 525 { 526 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 527 struct xfs_inode *ip = iip->ili_inode; 528 struct xfs_buf *bp = lip->li_buf; 529 uint rval = XFS_ITEM_SUCCESS; 530 int error; 531 532 ASSERT(iip->ili_item.li_buf); 533 534 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) || 535 (ip->i_flags & XFS_ISTALE)) 536 return XFS_ITEM_PINNED; 537 538 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 539 return XFS_ITEM_FLUSHING; 540 541 if (!xfs_buf_trylock(bp)) 542 return XFS_ITEM_LOCKED; 543 544 spin_unlock(&lip->li_ailp->ail_lock); 545 546 /* 547 * We need to hold a reference for flushing the cluster buffer as it may 548 * fail the buffer without IO submission. In which case, we better get a 549 * reference for that completion because otherwise we don't get a 550 * reference for IO until we queue the buffer for delwri submission. 551 */ 552 xfs_buf_hold(bp); 553 error = xfs_iflush_cluster(bp); 554 if (!error) { 555 if (!xfs_buf_delwri_queue(bp, buffer_list)) 556 rval = XFS_ITEM_FLUSHING; 557 xfs_buf_relse(bp); 558 } else { 559 /* 560 * Release the buffer if we were unable to flush anything. On 561 * any other error, the buffer has already been released. 562 */ 563 if (error == -EAGAIN) 564 xfs_buf_relse(bp); 565 rval = XFS_ITEM_LOCKED; 566 } 567 568 spin_lock(&lip->li_ailp->ail_lock); 569 return rval; 570 } 571 572 /* 573 * Unlock the inode associated with the inode log item. 574 */ 575 STATIC void 576 xfs_inode_item_release( 577 struct xfs_log_item *lip) 578 { 579 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 580 struct xfs_inode *ip = iip->ili_inode; 581 unsigned short lock_flags; 582 583 ASSERT(ip->i_itemp != NULL); 584 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 585 586 lock_flags = iip->ili_lock_flags; 587 iip->ili_lock_flags = 0; 588 if (lock_flags) 589 xfs_iunlock(ip, lock_flags); 590 } 591 592 /* 593 * This is called to find out where the oldest active copy of the inode log 594 * item in the on disk log resides now that the last log write of it completed 595 * at the given lsn. Since we always re-log all dirty data in an inode, the 596 * latest copy in the on disk log is the only one that matters. Therefore, 597 * simply return the given lsn. 598 * 599 * If the inode has been marked stale because the cluster is being freed, we 600 * don't want to (re-)insert this inode into the AIL. There is a race condition 601 * where the cluster buffer may be unpinned before the inode is inserted into 602 * the AIL during transaction committed processing. If the buffer is unpinned 603 * before the inode item has been committed and inserted, then it is possible 604 * for the buffer to be written and IO completes before the inode is inserted 605 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 606 * AIL which will never get removed. It will, however, get reclaimed which 607 * triggers an assert in xfs_inode_free() complaining about freein an inode 608 * still in the AIL. 609 * 610 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 611 * transaction committed code knows that it does not need to do any further 612 * processing on the item. 613 */ 614 STATIC xfs_lsn_t 615 xfs_inode_item_committed( 616 struct xfs_log_item *lip, 617 xfs_lsn_t lsn) 618 { 619 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 620 struct xfs_inode *ip = iip->ili_inode; 621 622 if (xfs_iflags_test(ip, XFS_ISTALE)) { 623 xfs_inode_item_unpin(lip, 0); 624 return -1; 625 } 626 return lsn; 627 } 628 629 STATIC void 630 xfs_inode_item_committing( 631 struct xfs_log_item *lip, 632 xfs_lsn_t commit_lsn) 633 { 634 INODE_ITEM(lip)->ili_last_lsn = commit_lsn; 635 return xfs_inode_item_release(lip); 636 } 637 638 static const struct xfs_item_ops xfs_inode_item_ops = { 639 .iop_size = xfs_inode_item_size, 640 .iop_format = xfs_inode_item_format, 641 .iop_pin = xfs_inode_item_pin, 642 .iop_unpin = xfs_inode_item_unpin, 643 .iop_release = xfs_inode_item_release, 644 .iop_committed = xfs_inode_item_committed, 645 .iop_push = xfs_inode_item_push, 646 .iop_committing = xfs_inode_item_committing, 647 }; 648 649 650 /* 651 * Initialize the inode log item for a newly allocated (in-core) inode. 652 */ 653 void 654 xfs_inode_item_init( 655 struct xfs_inode *ip, 656 struct xfs_mount *mp) 657 { 658 struct xfs_inode_log_item *iip; 659 660 ASSERT(ip->i_itemp == NULL); 661 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone, 662 GFP_KERNEL | __GFP_NOFAIL); 663 664 iip->ili_inode = ip; 665 spin_lock_init(&iip->ili_lock); 666 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 667 &xfs_inode_item_ops); 668 } 669 670 /* 671 * Free the inode log item and any memory hanging off of it. 672 */ 673 void 674 xfs_inode_item_destroy( 675 struct xfs_inode *ip) 676 { 677 struct xfs_inode_log_item *iip = ip->i_itemp; 678 679 ASSERT(iip->ili_item.li_buf == NULL); 680 681 ip->i_itemp = NULL; 682 kmem_free(iip->ili_item.li_lv_shadow); 683 kmem_cache_free(xfs_ili_zone, iip); 684 } 685 686 687 /* 688 * We only want to pull the item from the AIL if it is actually there 689 * and its location in the log has not changed since we started the 690 * flush. Thus, we only bother if the inode's lsn has not changed. 691 */ 692 static void 693 xfs_iflush_ail_updates( 694 struct xfs_ail *ailp, 695 struct list_head *list) 696 { 697 struct xfs_log_item *lip; 698 xfs_lsn_t tail_lsn = 0; 699 700 /* this is an opencoded batch version of xfs_trans_ail_delete */ 701 spin_lock(&ailp->ail_lock); 702 list_for_each_entry(lip, list, li_bio_list) { 703 xfs_lsn_t lsn; 704 705 clear_bit(XFS_LI_FAILED, &lip->li_flags); 706 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 707 continue; 708 709 lsn = xfs_ail_delete_one(ailp, lip); 710 if (!tail_lsn && lsn) 711 tail_lsn = lsn; 712 } 713 xfs_ail_update_finish(ailp, tail_lsn); 714 } 715 716 /* 717 * Walk the list of inodes that have completed their IOs. If they are clean 718 * remove them from the list and dissociate them from the buffer. Buffers that 719 * are still dirty remain linked to the buffer and on the list. Caller must 720 * handle them appropriately. 721 */ 722 static void 723 xfs_iflush_finish( 724 struct xfs_buf *bp, 725 struct list_head *list) 726 { 727 struct xfs_log_item *lip, *n; 728 729 list_for_each_entry_safe(lip, n, list, li_bio_list) { 730 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 731 bool drop_buffer = false; 732 733 spin_lock(&iip->ili_lock); 734 735 /* 736 * Remove the reference to the cluster buffer if the inode is 737 * clean in memory and drop the buffer reference once we've 738 * dropped the locks we hold. 739 */ 740 ASSERT(iip->ili_item.li_buf == bp); 741 if (!iip->ili_fields) { 742 iip->ili_item.li_buf = NULL; 743 list_del_init(&lip->li_bio_list); 744 drop_buffer = true; 745 } 746 iip->ili_last_fields = 0; 747 iip->ili_flush_lsn = 0; 748 spin_unlock(&iip->ili_lock); 749 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 750 if (drop_buffer) 751 xfs_buf_rele(bp); 752 } 753 } 754 755 /* 756 * Inode buffer IO completion routine. It is responsible for removing inodes 757 * attached to the buffer from the AIL if they have not been re-logged and 758 * completing the inode flush. 759 */ 760 void 761 xfs_buf_inode_iodone( 762 struct xfs_buf *bp) 763 { 764 struct xfs_log_item *lip, *n; 765 LIST_HEAD(flushed_inodes); 766 LIST_HEAD(ail_updates); 767 768 /* 769 * Pull the attached inodes from the buffer one at a time and take the 770 * appropriate action on them. 771 */ 772 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 773 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 774 775 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 776 xfs_iflush_abort(iip->ili_inode); 777 continue; 778 } 779 if (!iip->ili_last_fields) 780 continue; 781 782 /* Do an unlocked check for needing the AIL lock. */ 783 if (iip->ili_flush_lsn == lip->li_lsn || 784 test_bit(XFS_LI_FAILED, &lip->li_flags)) 785 list_move_tail(&lip->li_bio_list, &ail_updates); 786 else 787 list_move_tail(&lip->li_bio_list, &flushed_inodes); 788 } 789 790 if (!list_empty(&ail_updates)) { 791 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 792 list_splice_tail(&ail_updates, &flushed_inodes); 793 } 794 795 xfs_iflush_finish(bp, &flushed_inodes); 796 if (!list_empty(&flushed_inodes)) 797 list_splice_tail(&flushed_inodes, &bp->b_li_list); 798 } 799 800 void 801 xfs_buf_inode_io_fail( 802 struct xfs_buf *bp) 803 { 804 struct xfs_log_item *lip; 805 806 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 807 set_bit(XFS_LI_FAILED, &lip->li_flags); 808 } 809 810 /* 811 * This is the inode flushing abort routine. It is called when 812 * the filesystem is shutting down to clean up the inode state. It is 813 * responsible for removing the inode item from the AIL if it has not been 814 * re-logged and clearing the inode's flush state. 815 */ 816 void 817 xfs_iflush_abort( 818 struct xfs_inode *ip) 819 { 820 struct xfs_inode_log_item *iip = ip->i_itemp; 821 struct xfs_buf *bp = NULL; 822 823 if (iip) { 824 /* 825 * Clear the failed bit before removing the item from the AIL so 826 * xfs_trans_ail_delete() doesn't try to clear and release the 827 * buffer attached to the log item before we are done with it. 828 */ 829 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 830 xfs_trans_ail_delete(&iip->ili_item, 0); 831 832 /* 833 * Clear the inode logging fields so no more flushes are 834 * attempted. 835 */ 836 spin_lock(&iip->ili_lock); 837 iip->ili_last_fields = 0; 838 iip->ili_fields = 0; 839 iip->ili_fsync_fields = 0; 840 iip->ili_flush_lsn = 0; 841 bp = iip->ili_item.li_buf; 842 iip->ili_item.li_buf = NULL; 843 list_del_init(&iip->ili_item.li_bio_list); 844 spin_unlock(&iip->ili_lock); 845 } 846 xfs_iflags_clear(ip, XFS_IFLUSHING); 847 if (bp) 848 xfs_buf_rele(bp); 849 } 850 851 /* 852 * convert an xfs_inode_log_format struct from the old 32 bit version 853 * (which can have different field alignments) to the native 64 bit version 854 */ 855 int 856 xfs_inode_item_format_convert( 857 struct xfs_log_iovec *buf, 858 struct xfs_inode_log_format *in_f) 859 { 860 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 861 862 if (buf->i_len != sizeof(*in_f32)) { 863 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 864 return -EFSCORRUPTED; 865 } 866 867 in_f->ilf_type = in_f32->ilf_type; 868 in_f->ilf_size = in_f32->ilf_size; 869 in_f->ilf_fields = in_f32->ilf_fields; 870 in_f->ilf_asize = in_f32->ilf_asize; 871 in_f->ilf_dsize = in_f32->ilf_dsize; 872 in_f->ilf_ino = in_f32->ilf_ino; 873 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 874 in_f->ilf_blkno = in_f32->ilf_blkno; 875 in_f->ilf_len = in_f32->ilf_len; 876 in_f->ilf_boffset = in_f32->ilf_boffset; 877 return 0; 878 } 879