1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 23 #include <linux/iversion.h> 24 25 struct kmem_cache *xfs_ili_cache; /* inode log item */ 26 27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 28 { 29 return container_of(lip, struct xfs_inode_log_item, ili_item); 30 } 31 32 /* 33 * The logged size of an inode fork is always the current size of the inode 34 * fork. This means that when an inode fork is relogged, the size of the logged 35 * region is determined by the current state, not the combination of the 36 * previously logged state + the current state. This is different relogging 37 * behaviour to most other log items which will retain the size of the 38 * previously logged changes when smaller regions are relogged. 39 * 40 * Hence operations that remove data from the inode fork (e.g. shortform 41 * dir/attr remove, extent form extent removal, etc), the size of the relogged 42 * inode gets -smaller- rather than stays the same size as the previously logged 43 * size and this can result in the committing transaction reducing the amount of 44 * space being consumed by the CIL. 45 */ 46 STATIC void 47 xfs_inode_item_data_fork_size( 48 struct xfs_inode_log_item *iip, 49 int *nvecs, 50 int *nbytes) 51 { 52 struct xfs_inode *ip = iip->ili_inode; 53 54 switch (ip->i_df.if_format) { 55 case XFS_DINODE_FMT_EXTENTS: 56 if ((iip->ili_fields & XFS_ILOG_DEXT) && 57 ip->i_df.if_nextents > 0 && 58 ip->i_df.if_bytes > 0) { 59 /* worst case, doesn't subtract delalloc extents */ 60 *nbytes += XFS_IFORK_DSIZE(ip); 61 *nvecs += 1; 62 } 63 break; 64 case XFS_DINODE_FMT_BTREE: 65 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 66 ip->i_df.if_broot_bytes > 0) { 67 *nbytes += ip->i_df.if_broot_bytes; 68 *nvecs += 1; 69 } 70 break; 71 case XFS_DINODE_FMT_LOCAL: 72 if ((iip->ili_fields & XFS_ILOG_DDATA) && 73 ip->i_df.if_bytes > 0) { 74 *nbytes += roundup(ip->i_df.if_bytes, 4); 75 *nvecs += 1; 76 } 77 break; 78 79 case XFS_DINODE_FMT_DEV: 80 break; 81 default: 82 ASSERT(0); 83 break; 84 } 85 } 86 87 STATIC void 88 xfs_inode_item_attr_fork_size( 89 struct xfs_inode_log_item *iip, 90 int *nvecs, 91 int *nbytes) 92 { 93 struct xfs_inode *ip = iip->ili_inode; 94 95 switch (ip->i_afp->if_format) { 96 case XFS_DINODE_FMT_EXTENTS: 97 if ((iip->ili_fields & XFS_ILOG_AEXT) && 98 ip->i_afp->if_nextents > 0 && 99 ip->i_afp->if_bytes > 0) { 100 /* worst case, doesn't subtract unused space */ 101 *nbytes += XFS_IFORK_ASIZE(ip); 102 *nvecs += 1; 103 } 104 break; 105 case XFS_DINODE_FMT_BTREE: 106 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 107 ip->i_afp->if_broot_bytes > 0) { 108 *nbytes += ip->i_afp->if_broot_bytes; 109 *nvecs += 1; 110 } 111 break; 112 case XFS_DINODE_FMT_LOCAL: 113 if ((iip->ili_fields & XFS_ILOG_ADATA) && 114 ip->i_afp->if_bytes > 0) { 115 *nbytes += roundup(ip->i_afp->if_bytes, 4); 116 *nvecs += 1; 117 } 118 break; 119 default: 120 ASSERT(0); 121 break; 122 } 123 } 124 125 /* 126 * This returns the number of iovecs needed to log the given inode item. 127 * 128 * We need one iovec for the inode log format structure, one for the 129 * inode core, and possibly one for the inode data/extents/b-tree root 130 * and one for the inode attribute data/extents/b-tree root. 131 */ 132 STATIC void 133 xfs_inode_item_size( 134 struct xfs_log_item *lip, 135 int *nvecs, 136 int *nbytes) 137 { 138 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 139 struct xfs_inode *ip = iip->ili_inode; 140 141 *nvecs += 2; 142 *nbytes += sizeof(struct xfs_inode_log_format) + 143 xfs_log_dinode_size(ip->i_mount); 144 145 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 146 if (XFS_IFORK_Q(ip)) 147 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 148 } 149 150 STATIC void 151 xfs_inode_item_format_data_fork( 152 struct xfs_inode_log_item *iip, 153 struct xfs_inode_log_format *ilf, 154 struct xfs_log_vec *lv, 155 struct xfs_log_iovec **vecp) 156 { 157 struct xfs_inode *ip = iip->ili_inode; 158 size_t data_bytes; 159 160 switch (ip->i_df.if_format) { 161 case XFS_DINODE_FMT_EXTENTS: 162 iip->ili_fields &= 163 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 164 165 if ((iip->ili_fields & XFS_ILOG_DEXT) && 166 ip->i_df.if_nextents > 0 && 167 ip->i_df.if_bytes > 0) { 168 struct xfs_bmbt_rec *p; 169 170 ASSERT(xfs_iext_count(&ip->i_df) > 0); 171 172 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 173 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 174 xlog_finish_iovec(lv, *vecp, data_bytes); 175 176 ASSERT(data_bytes <= ip->i_df.if_bytes); 177 178 ilf->ilf_dsize = data_bytes; 179 ilf->ilf_size++; 180 } else { 181 iip->ili_fields &= ~XFS_ILOG_DEXT; 182 } 183 break; 184 case XFS_DINODE_FMT_BTREE: 185 iip->ili_fields &= 186 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 187 188 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 189 ip->i_df.if_broot_bytes > 0) { 190 ASSERT(ip->i_df.if_broot != NULL); 191 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 192 ip->i_df.if_broot, 193 ip->i_df.if_broot_bytes); 194 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 195 ilf->ilf_size++; 196 } else { 197 ASSERT(!(iip->ili_fields & 198 XFS_ILOG_DBROOT)); 199 iip->ili_fields &= ~XFS_ILOG_DBROOT; 200 } 201 break; 202 case XFS_DINODE_FMT_LOCAL: 203 iip->ili_fields &= 204 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 205 if ((iip->ili_fields & XFS_ILOG_DDATA) && 206 ip->i_df.if_bytes > 0) { 207 /* 208 * Round i_bytes up to a word boundary. 209 * The underlying memory is guaranteed 210 * to be there by xfs_idata_realloc(). 211 */ 212 data_bytes = roundup(ip->i_df.if_bytes, 4); 213 ASSERT(ip->i_df.if_u1.if_data != NULL); 214 ASSERT(ip->i_disk_size > 0); 215 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 216 ip->i_df.if_u1.if_data, data_bytes); 217 ilf->ilf_dsize = (unsigned)data_bytes; 218 ilf->ilf_size++; 219 } else { 220 iip->ili_fields &= ~XFS_ILOG_DDATA; 221 } 222 break; 223 case XFS_DINODE_FMT_DEV: 224 iip->ili_fields &= 225 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 226 if (iip->ili_fields & XFS_ILOG_DEV) 227 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 228 break; 229 default: 230 ASSERT(0); 231 break; 232 } 233 } 234 235 STATIC void 236 xfs_inode_item_format_attr_fork( 237 struct xfs_inode_log_item *iip, 238 struct xfs_inode_log_format *ilf, 239 struct xfs_log_vec *lv, 240 struct xfs_log_iovec **vecp) 241 { 242 struct xfs_inode *ip = iip->ili_inode; 243 size_t data_bytes; 244 245 switch (ip->i_afp->if_format) { 246 case XFS_DINODE_FMT_EXTENTS: 247 iip->ili_fields &= 248 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 249 250 if ((iip->ili_fields & XFS_ILOG_AEXT) && 251 ip->i_afp->if_nextents > 0 && 252 ip->i_afp->if_bytes > 0) { 253 struct xfs_bmbt_rec *p; 254 255 ASSERT(xfs_iext_count(ip->i_afp) == 256 ip->i_afp->if_nextents); 257 258 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 259 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 260 xlog_finish_iovec(lv, *vecp, data_bytes); 261 262 ilf->ilf_asize = data_bytes; 263 ilf->ilf_size++; 264 } else { 265 iip->ili_fields &= ~XFS_ILOG_AEXT; 266 } 267 break; 268 case XFS_DINODE_FMT_BTREE: 269 iip->ili_fields &= 270 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 271 272 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 273 ip->i_afp->if_broot_bytes > 0) { 274 ASSERT(ip->i_afp->if_broot != NULL); 275 276 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 277 ip->i_afp->if_broot, 278 ip->i_afp->if_broot_bytes); 279 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 280 ilf->ilf_size++; 281 } else { 282 iip->ili_fields &= ~XFS_ILOG_ABROOT; 283 } 284 break; 285 case XFS_DINODE_FMT_LOCAL: 286 iip->ili_fields &= 287 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 288 289 if ((iip->ili_fields & XFS_ILOG_ADATA) && 290 ip->i_afp->if_bytes > 0) { 291 /* 292 * Round i_bytes up to a word boundary. 293 * The underlying memory is guaranteed 294 * to be there by xfs_idata_realloc(). 295 */ 296 data_bytes = roundup(ip->i_afp->if_bytes, 4); 297 ASSERT(ip->i_afp->if_u1.if_data != NULL); 298 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 299 ip->i_afp->if_u1.if_data, 300 data_bytes); 301 ilf->ilf_asize = (unsigned)data_bytes; 302 ilf->ilf_size++; 303 } else { 304 iip->ili_fields &= ~XFS_ILOG_ADATA; 305 } 306 break; 307 default: 308 ASSERT(0); 309 break; 310 } 311 } 312 313 /* 314 * Convert an incore timestamp to a log timestamp. Note that the log format 315 * specifies host endian format! 316 */ 317 static inline xfs_log_timestamp_t 318 xfs_inode_to_log_dinode_ts( 319 struct xfs_inode *ip, 320 const struct timespec64 tv) 321 { 322 struct xfs_log_legacy_timestamp *lits; 323 xfs_log_timestamp_t its; 324 325 if (xfs_inode_has_bigtime(ip)) 326 return xfs_inode_encode_bigtime(tv); 327 328 lits = (struct xfs_log_legacy_timestamp *)&its; 329 lits->t_sec = tv.tv_sec; 330 lits->t_nsec = tv.tv_nsec; 331 332 return its; 333 } 334 335 /* 336 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 337 * but not in the in-memory one. But we are guaranteed to have an inode buffer 338 * in memory when logging an inode, so we can just copy it from the on-disk 339 * inode to the in-log inode here so that recovery of file system with these 340 * fields set to non-zero values doesn't lose them. For all other cases we zero 341 * the fields. 342 */ 343 static void 344 xfs_copy_dm_fields_to_log_dinode( 345 struct xfs_inode *ip, 346 struct xfs_log_dinode *to) 347 { 348 struct xfs_dinode *dip; 349 350 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 351 ip->i_imap.im_boffset); 352 353 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 354 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 355 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 356 } else { 357 to->di_dmevmask = 0; 358 to->di_dmstate = 0; 359 } 360 } 361 362 static void 363 xfs_inode_to_log_dinode( 364 struct xfs_inode *ip, 365 struct xfs_log_dinode *to, 366 xfs_lsn_t lsn) 367 { 368 struct inode *inode = VFS_I(ip); 369 370 to->di_magic = XFS_DINODE_MAGIC; 371 to->di_format = xfs_ifork_format(&ip->i_df); 372 to->di_uid = i_uid_read(inode); 373 to->di_gid = i_gid_read(inode); 374 to->di_projid_lo = ip->i_projid & 0xffff; 375 to->di_projid_hi = ip->i_projid >> 16; 376 377 memset(to->di_pad, 0, sizeof(to->di_pad)); 378 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 379 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); 380 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); 381 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); 382 to->di_nlink = inode->i_nlink; 383 to->di_gen = inode->i_generation; 384 to->di_mode = inode->i_mode; 385 386 to->di_size = ip->i_disk_size; 387 to->di_nblocks = ip->i_nblocks; 388 to->di_extsize = ip->i_extsize; 389 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 390 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 391 to->di_forkoff = ip->i_forkoff; 392 to->di_aformat = xfs_ifork_format(ip->i_afp); 393 to->di_flags = ip->i_diflags; 394 395 xfs_copy_dm_fields_to_log_dinode(ip, to); 396 397 /* log a dummy value to ensure log structure is fully initialised */ 398 to->di_next_unlinked = NULLAGINO; 399 400 if (xfs_has_v3inodes(ip->i_mount)) { 401 to->di_version = 3; 402 to->di_changecount = inode_peek_iversion(inode); 403 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 404 to->di_flags2 = ip->i_diflags2; 405 to->di_cowextsize = ip->i_cowextsize; 406 to->di_ino = ip->i_ino; 407 to->di_lsn = lsn; 408 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 409 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 410 to->di_flushiter = 0; 411 } else { 412 to->di_version = 2; 413 to->di_flushiter = ip->i_flushiter; 414 } 415 } 416 417 /* 418 * Format the inode core. Current timestamp data is only in the VFS inode 419 * fields, so we need to grab them from there. Hence rather than just copying 420 * the XFS inode core structure, format the fields directly into the iovec. 421 */ 422 static void 423 xfs_inode_item_format_core( 424 struct xfs_inode *ip, 425 struct xfs_log_vec *lv, 426 struct xfs_log_iovec **vecp) 427 { 428 struct xfs_log_dinode *dic; 429 430 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 431 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 432 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 433 } 434 435 /* 436 * This is called to fill in the vector of log iovecs for the given inode 437 * log item. It fills the first item with an inode log format structure, 438 * the second with the on-disk inode structure, and a possible third and/or 439 * fourth with the inode data/extents/b-tree root and inode attributes 440 * data/extents/b-tree root. 441 * 442 * Note: Always use the 64 bit inode log format structure so we don't 443 * leave an uninitialised hole in the format item on 64 bit systems. Log 444 * recovery on 32 bit systems handles this just fine, so there's no reason 445 * for not using an initialising the properly padded structure all the time. 446 */ 447 STATIC void 448 xfs_inode_item_format( 449 struct xfs_log_item *lip, 450 struct xfs_log_vec *lv) 451 { 452 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 453 struct xfs_inode *ip = iip->ili_inode; 454 struct xfs_log_iovec *vecp = NULL; 455 struct xfs_inode_log_format *ilf; 456 457 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 458 ilf->ilf_type = XFS_LI_INODE; 459 ilf->ilf_ino = ip->i_ino; 460 ilf->ilf_blkno = ip->i_imap.im_blkno; 461 ilf->ilf_len = ip->i_imap.im_len; 462 ilf->ilf_boffset = ip->i_imap.im_boffset; 463 ilf->ilf_fields = XFS_ILOG_CORE; 464 ilf->ilf_size = 2; /* format + core */ 465 466 /* 467 * make sure we don't leak uninitialised data into the log in the case 468 * when we don't log every field in the inode. 469 */ 470 ilf->ilf_dsize = 0; 471 ilf->ilf_asize = 0; 472 ilf->ilf_pad = 0; 473 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 474 475 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 476 477 xfs_inode_item_format_core(ip, lv, &vecp); 478 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 479 if (XFS_IFORK_Q(ip)) { 480 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 481 } else { 482 iip->ili_fields &= 483 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 484 } 485 486 /* update the format with the exact fields we actually logged */ 487 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 488 } 489 490 /* 491 * This is called to pin the inode associated with the inode log 492 * item in memory so it cannot be written out. 493 */ 494 STATIC void 495 xfs_inode_item_pin( 496 struct xfs_log_item *lip) 497 { 498 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 499 500 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 501 ASSERT(lip->li_buf); 502 503 trace_xfs_inode_pin(ip, _RET_IP_); 504 atomic_inc(&ip->i_pincount); 505 } 506 507 508 /* 509 * This is called to unpin the inode associated with the inode log 510 * item which was previously pinned with a call to xfs_inode_item_pin(). 511 * 512 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 513 * 514 * Note that unpin can race with inode cluster buffer freeing marking the buffer 515 * stale. In that case, flush completions are run from the buffer unpin call, 516 * which may happen before the inode is unpinned. If we lose the race, there 517 * will be no buffer attached to the log item, but the inode will be marked 518 * XFS_ISTALE. 519 */ 520 STATIC void 521 xfs_inode_item_unpin( 522 struct xfs_log_item *lip, 523 int remove) 524 { 525 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 526 527 trace_xfs_inode_unpin(ip, _RET_IP_); 528 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 529 ASSERT(atomic_read(&ip->i_pincount) > 0); 530 if (atomic_dec_and_test(&ip->i_pincount)) 531 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 532 } 533 534 STATIC uint 535 xfs_inode_item_push( 536 struct xfs_log_item *lip, 537 struct list_head *buffer_list) 538 __releases(&lip->li_ailp->ail_lock) 539 __acquires(&lip->li_ailp->ail_lock) 540 { 541 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 542 struct xfs_inode *ip = iip->ili_inode; 543 struct xfs_buf *bp = lip->li_buf; 544 uint rval = XFS_ITEM_SUCCESS; 545 int error; 546 547 ASSERT(iip->ili_item.li_buf); 548 549 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) || 550 (ip->i_flags & XFS_ISTALE)) 551 return XFS_ITEM_PINNED; 552 553 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 554 return XFS_ITEM_FLUSHING; 555 556 if (!xfs_buf_trylock(bp)) 557 return XFS_ITEM_LOCKED; 558 559 spin_unlock(&lip->li_ailp->ail_lock); 560 561 /* 562 * We need to hold a reference for flushing the cluster buffer as it may 563 * fail the buffer without IO submission. In which case, we better get a 564 * reference for that completion because otherwise we don't get a 565 * reference for IO until we queue the buffer for delwri submission. 566 */ 567 xfs_buf_hold(bp); 568 error = xfs_iflush_cluster(bp); 569 if (!error) { 570 if (!xfs_buf_delwri_queue(bp, buffer_list)) 571 rval = XFS_ITEM_FLUSHING; 572 xfs_buf_relse(bp); 573 } else { 574 /* 575 * Release the buffer if we were unable to flush anything. On 576 * any other error, the buffer has already been released. 577 */ 578 if (error == -EAGAIN) 579 xfs_buf_relse(bp); 580 rval = XFS_ITEM_LOCKED; 581 } 582 583 spin_lock(&lip->li_ailp->ail_lock); 584 return rval; 585 } 586 587 /* 588 * Unlock the inode associated with the inode log item. 589 */ 590 STATIC void 591 xfs_inode_item_release( 592 struct xfs_log_item *lip) 593 { 594 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 595 struct xfs_inode *ip = iip->ili_inode; 596 unsigned short lock_flags; 597 598 ASSERT(ip->i_itemp != NULL); 599 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 600 601 lock_flags = iip->ili_lock_flags; 602 iip->ili_lock_flags = 0; 603 if (lock_flags) 604 xfs_iunlock(ip, lock_flags); 605 } 606 607 /* 608 * This is called to find out where the oldest active copy of the inode log 609 * item in the on disk log resides now that the last log write of it completed 610 * at the given lsn. Since we always re-log all dirty data in an inode, the 611 * latest copy in the on disk log is the only one that matters. Therefore, 612 * simply return the given lsn. 613 * 614 * If the inode has been marked stale because the cluster is being freed, we 615 * don't want to (re-)insert this inode into the AIL. There is a race condition 616 * where the cluster buffer may be unpinned before the inode is inserted into 617 * the AIL during transaction committed processing. If the buffer is unpinned 618 * before the inode item has been committed and inserted, then it is possible 619 * for the buffer to be written and IO completes before the inode is inserted 620 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 621 * AIL which will never get removed. It will, however, get reclaimed which 622 * triggers an assert in xfs_inode_free() complaining about freein an inode 623 * still in the AIL. 624 * 625 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 626 * transaction committed code knows that it does not need to do any further 627 * processing on the item. 628 */ 629 STATIC xfs_lsn_t 630 xfs_inode_item_committed( 631 struct xfs_log_item *lip, 632 xfs_lsn_t lsn) 633 { 634 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 635 struct xfs_inode *ip = iip->ili_inode; 636 637 if (xfs_iflags_test(ip, XFS_ISTALE)) { 638 xfs_inode_item_unpin(lip, 0); 639 return -1; 640 } 641 return lsn; 642 } 643 644 STATIC void 645 xfs_inode_item_committing( 646 struct xfs_log_item *lip, 647 xfs_csn_t seq) 648 { 649 INODE_ITEM(lip)->ili_commit_seq = seq; 650 return xfs_inode_item_release(lip); 651 } 652 653 static const struct xfs_item_ops xfs_inode_item_ops = { 654 .iop_size = xfs_inode_item_size, 655 .iop_format = xfs_inode_item_format, 656 .iop_pin = xfs_inode_item_pin, 657 .iop_unpin = xfs_inode_item_unpin, 658 .iop_release = xfs_inode_item_release, 659 .iop_committed = xfs_inode_item_committed, 660 .iop_push = xfs_inode_item_push, 661 .iop_committing = xfs_inode_item_committing, 662 }; 663 664 665 /* 666 * Initialize the inode log item for a newly allocated (in-core) inode. 667 */ 668 void 669 xfs_inode_item_init( 670 struct xfs_inode *ip, 671 struct xfs_mount *mp) 672 { 673 struct xfs_inode_log_item *iip; 674 675 ASSERT(ip->i_itemp == NULL); 676 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 677 GFP_KERNEL | __GFP_NOFAIL); 678 679 iip->ili_inode = ip; 680 spin_lock_init(&iip->ili_lock); 681 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 682 &xfs_inode_item_ops); 683 } 684 685 /* 686 * Free the inode log item and any memory hanging off of it. 687 */ 688 void 689 xfs_inode_item_destroy( 690 struct xfs_inode *ip) 691 { 692 struct xfs_inode_log_item *iip = ip->i_itemp; 693 694 ASSERT(iip->ili_item.li_buf == NULL); 695 696 ip->i_itemp = NULL; 697 kmem_free(iip->ili_item.li_lv_shadow); 698 kmem_cache_free(xfs_ili_cache, iip); 699 } 700 701 702 /* 703 * We only want to pull the item from the AIL if it is actually there 704 * and its location in the log has not changed since we started the 705 * flush. Thus, we only bother if the inode's lsn has not changed. 706 */ 707 static void 708 xfs_iflush_ail_updates( 709 struct xfs_ail *ailp, 710 struct list_head *list) 711 { 712 struct xfs_log_item *lip; 713 xfs_lsn_t tail_lsn = 0; 714 715 /* this is an opencoded batch version of xfs_trans_ail_delete */ 716 spin_lock(&ailp->ail_lock); 717 list_for_each_entry(lip, list, li_bio_list) { 718 xfs_lsn_t lsn; 719 720 clear_bit(XFS_LI_FAILED, &lip->li_flags); 721 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 722 continue; 723 724 /* 725 * dgc: Not sure how this happens, but it happens very 726 * occassionaly via generic/388. xfs_iflush_abort() also 727 * silently handles this same "under writeback but not in AIL at 728 * shutdown" condition via xfs_trans_ail_delete(). 729 */ 730 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 731 ASSERT(xlog_is_shutdown(lip->li_log)); 732 continue; 733 } 734 735 lsn = xfs_ail_delete_one(ailp, lip); 736 if (!tail_lsn && lsn) 737 tail_lsn = lsn; 738 } 739 xfs_ail_update_finish(ailp, tail_lsn); 740 } 741 742 /* 743 * Walk the list of inodes that have completed their IOs. If they are clean 744 * remove them from the list and dissociate them from the buffer. Buffers that 745 * are still dirty remain linked to the buffer and on the list. Caller must 746 * handle them appropriately. 747 */ 748 static void 749 xfs_iflush_finish( 750 struct xfs_buf *bp, 751 struct list_head *list) 752 { 753 struct xfs_log_item *lip, *n; 754 755 list_for_each_entry_safe(lip, n, list, li_bio_list) { 756 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 757 bool drop_buffer = false; 758 759 spin_lock(&iip->ili_lock); 760 761 /* 762 * Remove the reference to the cluster buffer if the inode is 763 * clean in memory and drop the buffer reference once we've 764 * dropped the locks we hold. 765 */ 766 ASSERT(iip->ili_item.li_buf == bp); 767 if (!iip->ili_fields) { 768 iip->ili_item.li_buf = NULL; 769 list_del_init(&lip->li_bio_list); 770 drop_buffer = true; 771 } 772 iip->ili_last_fields = 0; 773 iip->ili_flush_lsn = 0; 774 spin_unlock(&iip->ili_lock); 775 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 776 if (drop_buffer) 777 xfs_buf_rele(bp); 778 } 779 } 780 781 /* 782 * Inode buffer IO completion routine. It is responsible for removing inodes 783 * attached to the buffer from the AIL if they have not been re-logged and 784 * completing the inode flush. 785 */ 786 void 787 xfs_buf_inode_iodone( 788 struct xfs_buf *bp) 789 { 790 struct xfs_log_item *lip, *n; 791 LIST_HEAD(flushed_inodes); 792 LIST_HEAD(ail_updates); 793 794 /* 795 * Pull the attached inodes from the buffer one at a time and take the 796 * appropriate action on them. 797 */ 798 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 799 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 800 801 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 802 xfs_iflush_abort(iip->ili_inode); 803 continue; 804 } 805 if (!iip->ili_last_fields) 806 continue; 807 808 /* Do an unlocked check for needing the AIL lock. */ 809 if (iip->ili_flush_lsn == lip->li_lsn || 810 test_bit(XFS_LI_FAILED, &lip->li_flags)) 811 list_move_tail(&lip->li_bio_list, &ail_updates); 812 else 813 list_move_tail(&lip->li_bio_list, &flushed_inodes); 814 } 815 816 if (!list_empty(&ail_updates)) { 817 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 818 list_splice_tail(&ail_updates, &flushed_inodes); 819 } 820 821 xfs_iflush_finish(bp, &flushed_inodes); 822 if (!list_empty(&flushed_inodes)) 823 list_splice_tail(&flushed_inodes, &bp->b_li_list); 824 } 825 826 void 827 xfs_buf_inode_io_fail( 828 struct xfs_buf *bp) 829 { 830 struct xfs_log_item *lip; 831 832 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 833 set_bit(XFS_LI_FAILED, &lip->li_flags); 834 } 835 836 /* 837 * This is the inode flushing abort routine. It is called when 838 * the filesystem is shutting down to clean up the inode state. It is 839 * responsible for removing the inode item from the AIL if it has not been 840 * re-logged and clearing the inode's flush state. 841 */ 842 void 843 xfs_iflush_abort( 844 struct xfs_inode *ip) 845 { 846 struct xfs_inode_log_item *iip = ip->i_itemp; 847 struct xfs_buf *bp = NULL; 848 849 if (iip) { 850 /* 851 * Clear the failed bit before removing the item from the AIL so 852 * xfs_trans_ail_delete() doesn't try to clear and release the 853 * buffer attached to the log item before we are done with it. 854 */ 855 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 856 xfs_trans_ail_delete(&iip->ili_item, 0); 857 858 /* 859 * Clear the inode logging fields so no more flushes are 860 * attempted. 861 */ 862 spin_lock(&iip->ili_lock); 863 iip->ili_last_fields = 0; 864 iip->ili_fields = 0; 865 iip->ili_fsync_fields = 0; 866 iip->ili_flush_lsn = 0; 867 bp = iip->ili_item.li_buf; 868 iip->ili_item.li_buf = NULL; 869 list_del_init(&iip->ili_item.li_bio_list); 870 spin_unlock(&iip->ili_lock); 871 } 872 xfs_iflags_clear(ip, XFS_IFLUSHING); 873 if (bp) 874 xfs_buf_rele(bp); 875 } 876 877 /* 878 * convert an xfs_inode_log_format struct from the old 32 bit version 879 * (which can have different field alignments) to the native 64 bit version 880 */ 881 int 882 xfs_inode_item_format_convert( 883 struct xfs_log_iovec *buf, 884 struct xfs_inode_log_format *in_f) 885 { 886 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 887 888 if (buf->i_len != sizeof(*in_f32)) { 889 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 890 return -EFSCORRUPTED; 891 } 892 893 in_f->ilf_type = in_f32->ilf_type; 894 in_f->ilf_size = in_f32->ilf_size; 895 in_f->ilf_fields = in_f32->ilf_fields; 896 in_f->ilf_asize = in_f32->ilf_asize; 897 in_f->ilf_dsize = in_f32->ilf_dsize; 898 in_f->ilf_ino = in_f32->ilf_ino; 899 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 900 in_f->ilf_blkno = in_f32->ilf_blkno; 901 in_f->ilf_len = in_f32->ilf_len; 902 in_f->ilf_boffset = in_f32->ilf_boffset; 903 return 0; 904 } 905