xref: /openbmc/linux/fs/xfs/xfs_inode_item.c (revision 2010776f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
21 
22 #include <linux/iversion.h>
23 
24 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
25 
26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27 {
28 	return container_of(lip, struct xfs_inode_log_item, ili_item);
29 }
30 
31 /*
32  * The logged size of an inode fork is always the current size of the inode
33  * fork. This means that when an inode fork is relogged, the size of the logged
34  * region is determined by the current state, not the combination of the
35  * previously logged state + the current state. This is different relogging
36  * behaviour to most other log items which will retain the size of the
37  * previously logged changes when smaller regions are relogged.
38  *
39  * Hence operations that remove data from the inode fork (e.g. shortform
40  * dir/attr remove, extent form extent removal, etc), the size of the relogged
41  * inode gets -smaller- rather than stays the same size as the previously logged
42  * size and this can result in the committing transaction reducing the amount of
43  * space being consumed by the CIL.
44  */
45 STATIC void
46 xfs_inode_item_data_fork_size(
47 	struct xfs_inode_log_item *iip,
48 	int			*nvecs,
49 	int			*nbytes)
50 {
51 	struct xfs_inode	*ip = iip->ili_inode;
52 
53 	switch (ip->i_df.if_format) {
54 	case XFS_DINODE_FMT_EXTENTS:
55 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
56 		    ip->i_df.if_nextents > 0 &&
57 		    ip->i_df.if_bytes > 0) {
58 			/* worst case, doesn't subtract delalloc extents */
59 			*nbytes += XFS_IFORK_DSIZE(ip);
60 			*nvecs += 1;
61 		}
62 		break;
63 	case XFS_DINODE_FMT_BTREE:
64 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
65 		    ip->i_df.if_broot_bytes > 0) {
66 			*nbytes += ip->i_df.if_broot_bytes;
67 			*nvecs += 1;
68 		}
69 		break;
70 	case XFS_DINODE_FMT_LOCAL:
71 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
72 		    ip->i_df.if_bytes > 0) {
73 			*nbytes += roundup(ip->i_df.if_bytes, 4);
74 			*nvecs += 1;
75 		}
76 		break;
77 
78 	case XFS_DINODE_FMT_DEV:
79 		break;
80 	default:
81 		ASSERT(0);
82 		break;
83 	}
84 }
85 
86 STATIC void
87 xfs_inode_item_attr_fork_size(
88 	struct xfs_inode_log_item *iip,
89 	int			*nvecs,
90 	int			*nbytes)
91 {
92 	struct xfs_inode	*ip = iip->ili_inode;
93 
94 	switch (ip->i_afp->if_format) {
95 	case XFS_DINODE_FMT_EXTENTS:
96 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97 		    ip->i_afp->if_nextents > 0 &&
98 		    ip->i_afp->if_bytes > 0) {
99 			/* worst case, doesn't subtract unused space */
100 			*nbytes += XFS_IFORK_ASIZE(ip);
101 			*nvecs += 1;
102 		}
103 		break;
104 	case XFS_DINODE_FMT_BTREE:
105 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
106 		    ip->i_afp->if_broot_bytes > 0) {
107 			*nbytes += ip->i_afp->if_broot_bytes;
108 			*nvecs += 1;
109 		}
110 		break;
111 	case XFS_DINODE_FMT_LOCAL:
112 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
113 		    ip->i_afp->if_bytes > 0) {
114 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
115 			*nvecs += 1;
116 		}
117 		break;
118 	default:
119 		ASSERT(0);
120 		break;
121 	}
122 }
123 
124 /*
125  * This returns the number of iovecs needed to log the given inode item.
126  *
127  * We need one iovec for the inode log format structure, one for the
128  * inode core, and possibly one for the inode data/extents/b-tree root
129  * and one for the inode attribute data/extents/b-tree root.
130  */
131 STATIC void
132 xfs_inode_item_size(
133 	struct xfs_log_item	*lip,
134 	int			*nvecs,
135 	int			*nbytes)
136 {
137 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
138 	struct xfs_inode	*ip = iip->ili_inode;
139 
140 	*nvecs += 2;
141 	*nbytes += sizeof(struct xfs_inode_log_format) +
142 		   xfs_log_dinode_size(ip->i_mount);
143 
144 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
145 	if (XFS_IFORK_Q(ip))
146 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
147 }
148 
149 STATIC void
150 xfs_inode_item_format_data_fork(
151 	struct xfs_inode_log_item *iip,
152 	struct xfs_inode_log_format *ilf,
153 	struct xfs_log_vec	*lv,
154 	struct xfs_log_iovec	**vecp)
155 {
156 	struct xfs_inode	*ip = iip->ili_inode;
157 	size_t			data_bytes;
158 
159 	switch (ip->i_df.if_format) {
160 	case XFS_DINODE_FMT_EXTENTS:
161 		iip->ili_fields &=
162 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
163 
164 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
165 		    ip->i_df.if_nextents > 0 &&
166 		    ip->i_df.if_bytes > 0) {
167 			struct xfs_bmbt_rec *p;
168 
169 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
170 
171 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
172 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
173 			xlog_finish_iovec(lv, *vecp, data_bytes);
174 
175 			ASSERT(data_bytes <= ip->i_df.if_bytes);
176 
177 			ilf->ilf_dsize = data_bytes;
178 			ilf->ilf_size++;
179 		} else {
180 			iip->ili_fields &= ~XFS_ILOG_DEXT;
181 		}
182 		break;
183 	case XFS_DINODE_FMT_BTREE:
184 		iip->ili_fields &=
185 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
186 
187 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
188 		    ip->i_df.if_broot_bytes > 0) {
189 			ASSERT(ip->i_df.if_broot != NULL);
190 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
191 					ip->i_df.if_broot,
192 					ip->i_df.if_broot_bytes);
193 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
194 			ilf->ilf_size++;
195 		} else {
196 			ASSERT(!(iip->ili_fields &
197 				 XFS_ILOG_DBROOT));
198 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
199 		}
200 		break;
201 	case XFS_DINODE_FMT_LOCAL:
202 		iip->ili_fields &=
203 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
204 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205 		    ip->i_df.if_bytes > 0) {
206 			/*
207 			 * Round i_bytes up to a word boundary.
208 			 * The underlying memory is guaranteed
209 			 * to be there by xfs_idata_realloc().
210 			 */
211 			data_bytes = roundup(ip->i_df.if_bytes, 4);
212 			ASSERT(ip->i_df.if_u1.if_data != NULL);
213 			ASSERT(ip->i_disk_size > 0);
214 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
215 					ip->i_df.if_u1.if_data, data_bytes);
216 			ilf->ilf_dsize = (unsigned)data_bytes;
217 			ilf->ilf_size++;
218 		} else {
219 			iip->ili_fields &= ~XFS_ILOG_DDATA;
220 		}
221 		break;
222 	case XFS_DINODE_FMT_DEV:
223 		iip->ili_fields &=
224 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
225 		if (iip->ili_fields & XFS_ILOG_DEV)
226 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
227 		break;
228 	default:
229 		ASSERT(0);
230 		break;
231 	}
232 }
233 
234 STATIC void
235 xfs_inode_item_format_attr_fork(
236 	struct xfs_inode_log_item *iip,
237 	struct xfs_inode_log_format *ilf,
238 	struct xfs_log_vec	*lv,
239 	struct xfs_log_iovec	**vecp)
240 {
241 	struct xfs_inode	*ip = iip->ili_inode;
242 	size_t			data_bytes;
243 
244 	switch (ip->i_afp->if_format) {
245 	case XFS_DINODE_FMT_EXTENTS:
246 		iip->ili_fields &=
247 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
248 
249 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
250 		    ip->i_afp->if_nextents > 0 &&
251 		    ip->i_afp->if_bytes > 0) {
252 			struct xfs_bmbt_rec *p;
253 
254 			ASSERT(xfs_iext_count(ip->i_afp) ==
255 				ip->i_afp->if_nextents);
256 
257 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
258 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
259 			xlog_finish_iovec(lv, *vecp, data_bytes);
260 
261 			ilf->ilf_asize = data_bytes;
262 			ilf->ilf_size++;
263 		} else {
264 			iip->ili_fields &= ~XFS_ILOG_AEXT;
265 		}
266 		break;
267 	case XFS_DINODE_FMT_BTREE:
268 		iip->ili_fields &=
269 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
270 
271 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
272 		    ip->i_afp->if_broot_bytes > 0) {
273 			ASSERT(ip->i_afp->if_broot != NULL);
274 
275 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
276 					ip->i_afp->if_broot,
277 					ip->i_afp->if_broot_bytes);
278 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
279 			ilf->ilf_size++;
280 		} else {
281 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
282 		}
283 		break;
284 	case XFS_DINODE_FMT_LOCAL:
285 		iip->ili_fields &=
286 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
287 
288 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
289 		    ip->i_afp->if_bytes > 0) {
290 			/*
291 			 * Round i_bytes up to a word boundary.
292 			 * The underlying memory is guaranteed
293 			 * to be there by xfs_idata_realloc().
294 			 */
295 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
296 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
297 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
298 					ip->i_afp->if_u1.if_data,
299 					data_bytes);
300 			ilf->ilf_asize = (unsigned)data_bytes;
301 			ilf->ilf_size++;
302 		} else {
303 			iip->ili_fields &= ~XFS_ILOG_ADATA;
304 		}
305 		break;
306 	default:
307 		ASSERT(0);
308 		break;
309 	}
310 }
311 
312 /*
313  * Convert an incore timestamp to a log timestamp.  Note that the log format
314  * specifies host endian format!
315  */
316 static inline xfs_log_timestamp_t
317 xfs_inode_to_log_dinode_ts(
318 	struct xfs_inode		*ip,
319 	const struct timespec64		tv)
320 {
321 	struct xfs_log_legacy_timestamp	*lits;
322 	xfs_log_timestamp_t		its;
323 
324 	if (xfs_inode_has_bigtime(ip))
325 		return xfs_inode_encode_bigtime(tv);
326 
327 	lits = (struct xfs_log_legacy_timestamp *)&its;
328 	lits->t_sec = tv.tv_sec;
329 	lits->t_nsec = tv.tv_nsec;
330 
331 	return its;
332 }
333 
334 /*
335  * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
336  * but not in the in-memory one.  But we are guaranteed to have an inode buffer
337  * in memory when logging an inode, so we can just copy it from the on-disk
338  * inode to the in-log inode here so that recovery of file system with these
339  * fields set to non-zero values doesn't lose them.  For all other cases we zero
340  * the fields.
341  */
342 static void
343 xfs_copy_dm_fields_to_log_dinode(
344 	struct xfs_inode	*ip,
345 	struct xfs_log_dinode	*to)
346 {
347 	struct xfs_dinode	*dip;
348 
349 	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
350 			     ip->i_imap.im_boffset);
351 
352 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
353 		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
354 		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
355 	} else {
356 		to->di_dmevmask = 0;
357 		to->di_dmstate = 0;
358 	}
359 }
360 
361 static void
362 xfs_inode_to_log_dinode(
363 	struct xfs_inode	*ip,
364 	struct xfs_log_dinode	*to,
365 	xfs_lsn_t		lsn)
366 {
367 	struct inode		*inode = VFS_I(ip);
368 
369 	to->di_magic = XFS_DINODE_MAGIC;
370 	to->di_format = xfs_ifork_format(&ip->i_df);
371 	to->di_uid = i_uid_read(inode);
372 	to->di_gid = i_gid_read(inode);
373 	to->di_projid_lo = ip->i_projid & 0xffff;
374 	to->di_projid_hi = ip->i_projid >> 16;
375 
376 	memset(to->di_pad, 0, sizeof(to->di_pad));
377 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
378 	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
379 	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
380 	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
381 	to->di_nlink = inode->i_nlink;
382 	to->di_gen = inode->i_generation;
383 	to->di_mode = inode->i_mode;
384 
385 	to->di_size = ip->i_disk_size;
386 	to->di_nblocks = ip->i_nblocks;
387 	to->di_extsize = ip->i_extsize;
388 	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
389 	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
390 	to->di_forkoff = ip->i_forkoff;
391 	to->di_aformat = xfs_ifork_format(ip->i_afp);
392 	to->di_flags = ip->i_diflags;
393 
394 	xfs_copy_dm_fields_to_log_dinode(ip, to);
395 
396 	/* log a dummy value to ensure log structure is fully initialised */
397 	to->di_next_unlinked = NULLAGINO;
398 
399 	if (xfs_has_v3inodes(ip->i_mount)) {
400 		to->di_version = 3;
401 		to->di_changecount = inode_peek_iversion(inode);
402 		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
403 		to->di_flags2 = ip->i_diflags2;
404 		to->di_cowextsize = ip->i_cowextsize;
405 		to->di_ino = ip->i_ino;
406 		to->di_lsn = lsn;
407 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
408 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
409 		to->di_flushiter = 0;
410 	} else {
411 		to->di_version = 2;
412 		to->di_flushiter = ip->i_flushiter;
413 	}
414 }
415 
416 /*
417  * Format the inode core. Current timestamp data is only in the VFS inode
418  * fields, so we need to grab them from there. Hence rather than just copying
419  * the XFS inode core structure, format the fields directly into the iovec.
420  */
421 static void
422 xfs_inode_item_format_core(
423 	struct xfs_inode	*ip,
424 	struct xfs_log_vec	*lv,
425 	struct xfs_log_iovec	**vecp)
426 {
427 	struct xfs_log_dinode	*dic;
428 
429 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
430 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
431 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
432 }
433 
434 /*
435  * This is called to fill in the vector of log iovecs for the given inode
436  * log item.  It fills the first item with an inode log format structure,
437  * the second with the on-disk inode structure, and a possible third and/or
438  * fourth with the inode data/extents/b-tree root and inode attributes
439  * data/extents/b-tree root.
440  *
441  * Note: Always use the 64 bit inode log format structure so we don't
442  * leave an uninitialised hole in the format item on 64 bit systems. Log
443  * recovery on 32 bit systems handles this just fine, so there's no reason
444  * for not using an initialising the properly padded structure all the time.
445  */
446 STATIC void
447 xfs_inode_item_format(
448 	struct xfs_log_item	*lip,
449 	struct xfs_log_vec	*lv)
450 {
451 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
452 	struct xfs_inode	*ip = iip->ili_inode;
453 	struct xfs_log_iovec	*vecp = NULL;
454 	struct xfs_inode_log_format *ilf;
455 
456 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
457 	ilf->ilf_type = XFS_LI_INODE;
458 	ilf->ilf_ino = ip->i_ino;
459 	ilf->ilf_blkno = ip->i_imap.im_blkno;
460 	ilf->ilf_len = ip->i_imap.im_len;
461 	ilf->ilf_boffset = ip->i_imap.im_boffset;
462 	ilf->ilf_fields = XFS_ILOG_CORE;
463 	ilf->ilf_size = 2; /* format + core */
464 
465 	/*
466 	 * make sure we don't leak uninitialised data into the log in the case
467 	 * when we don't log every field in the inode.
468 	 */
469 	ilf->ilf_dsize = 0;
470 	ilf->ilf_asize = 0;
471 	ilf->ilf_pad = 0;
472 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
473 
474 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
475 
476 	xfs_inode_item_format_core(ip, lv, &vecp);
477 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
478 	if (XFS_IFORK_Q(ip)) {
479 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
480 	} else {
481 		iip->ili_fields &=
482 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
483 	}
484 
485 	/* update the format with the exact fields we actually logged */
486 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
487 }
488 
489 /*
490  * This is called to pin the inode associated with the inode log
491  * item in memory so it cannot be written out.
492  */
493 STATIC void
494 xfs_inode_item_pin(
495 	struct xfs_log_item	*lip)
496 {
497 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
498 
499 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
500 	ASSERT(lip->li_buf);
501 
502 	trace_xfs_inode_pin(ip, _RET_IP_);
503 	atomic_inc(&ip->i_pincount);
504 }
505 
506 
507 /*
508  * This is called to unpin the inode associated with the inode log
509  * item which was previously pinned with a call to xfs_inode_item_pin().
510  *
511  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
512  *
513  * Note that unpin can race with inode cluster buffer freeing marking the buffer
514  * stale. In that case, flush completions are run from the buffer unpin call,
515  * which may happen before the inode is unpinned. If we lose the race, there
516  * will be no buffer attached to the log item, but the inode will be marked
517  * XFS_ISTALE.
518  */
519 STATIC void
520 xfs_inode_item_unpin(
521 	struct xfs_log_item	*lip,
522 	int			remove)
523 {
524 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
525 
526 	trace_xfs_inode_unpin(ip, _RET_IP_);
527 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
528 	ASSERT(atomic_read(&ip->i_pincount) > 0);
529 	if (atomic_dec_and_test(&ip->i_pincount))
530 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
531 }
532 
533 STATIC uint
534 xfs_inode_item_push(
535 	struct xfs_log_item	*lip,
536 	struct list_head	*buffer_list)
537 		__releases(&lip->li_ailp->ail_lock)
538 		__acquires(&lip->li_ailp->ail_lock)
539 {
540 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
541 	struct xfs_inode	*ip = iip->ili_inode;
542 	struct xfs_buf		*bp = lip->li_buf;
543 	uint			rval = XFS_ITEM_SUCCESS;
544 	int			error;
545 
546 	ASSERT(iip->ili_item.li_buf);
547 
548 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
549 	    (ip->i_flags & XFS_ISTALE))
550 		return XFS_ITEM_PINNED;
551 
552 	if (xfs_iflags_test(ip, XFS_IFLUSHING))
553 		return XFS_ITEM_FLUSHING;
554 
555 	if (!xfs_buf_trylock(bp))
556 		return XFS_ITEM_LOCKED;
557 
558 	spin_unlock(&lip->li_ailp->ail_lock);
559 
560 	/*
561 	 * We need to hold a reference for flushing the cluster buffer as it may
562 	 * fail the buffer without IO submission. In which case, we better get a
563 	 * reference for that completion because otherwise we don't get a
564 	 * reference for IO until we queue the buffer for delwri submission.
565 	 */
566 	xfs_buf_hold(bp);
567 	error = xfs_iflush_cluster(bp);
568 	if (!error) {
569 		if (!xfs_buf_delwri_queue(bp, buffer_list))
570 			rval = XFS_ITEM_FLUSHING;
571 		xfs_buf_relse(bp);
572 	} else {
573 		/*
574 		 * Release the buffer if we were unable to flush anything. On
575 		 * any other error, the buffer has already been released.
576 		 */
577 		if (error == -EAGAIN)
578 			xfs_buf_relse(bp);
579 		rval = XFS_ITEM_LOCKED;
580 	}
581 
582 	spin_lock(&lip->li_ailp->ail_lock);
583 	return rval;
584 }
585 
586 /*
587  * Unlock the inode associated with the inode log item.
588  */
589 STATIC void
590 xfs_inode_item_release(
591 	struct xfs_log_item	*lip)
592 {
593 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
594 	struct xfs_inode	*ip = iip->ili_inode;
595 	unsigned short		lock_flags;
596 
597 	ASSERT(ip->i_itemp != NULL);
598 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
599 
600 	lock_flags = iip->ili_lock_flags;
601 	iip->ili_lock_flags = 0;
602 	if (lock_flags)
603 		xfs_iunlock(ip, lock_flags);
604 }
605 
606 /*
607  * This is called to find out where the oldest active copy of the inode log
608  * item in the on disk log resides now that the last log write of it completed
609  * at the given lsn.  Since we always re-log all dirty data in an inode, the
610  * latest copy in the on disk log is the only one that matters.  Therefore,
611  * simply return the given lsn.
612  *
613  * If the inode has been marked stale because the cluster is being freed, we
614  * don't want to (re-)insert this inode into the AIL. There is a race condition
615  * where the cluster buffer may be unpinned before the inode is inserted into
616  * the AIL during transaction committed processing. If the buffer is unpinned
617  * before the inode item has been committed and inserted, then it is possible
618  * for the buffer to be written and IO completes before the inode is inserted
619  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
620  * AIL which will never get removed. It will, however, get reclaimed which
621  * triggers an assert in xfs_inode_free() complaining about freein an inode
622  * still in the AIL.
623  *
624  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
625  * transaction committed code knows that it does not need to do any further
626  * processing on the item.
627  */
628 STATIC xfs_lsn_t
629 xfs_inode_item_committed(
630 	struct xfs_log_item	*lip,
631 	xfs_lsn_t		lsn)
632 {
633 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
634 	struct xfs_inode	*ip = iip->ili_inode;
635 
636 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
637 		xfs_inode_item_unpin(lip, 0);
638 		return -1;
639 	}
640 	return lsn;
641 }
642 
643 STATIC void
644 xfs_inode_item_committing(
645 	struct xfs_log_item	*lip,
646 	xfs_csn_t		seq)
647 {
648 	INODE_ITEM(lip)->ili_commit_seq = seq;
649 	return xfs_inode_item_release(lip);
650 }
651 
652 static const struct xfs_item_ops xfs_inode_item_ops = {
653 	.iop_size	= xfs_inode_item_size,
654 	.iop_format	= xfs_inode_item_format,
655 	.iop_pin	= xfs_inode_item_pin,
656 	.iop_unpin	= xfs_inode_item_unpin,
657 	.iop_release	= xfs_inode_item_release,
658 	.iop_committed	= xfs_inode_item_committed,
659 	.iop_push	= xfs_inode_item_push,
660 	.iop_committing	= xfs_inode_item_committing,
661 };
662 
663 
664 /*
665  * Initialize the inode log item for a newly allocated (in-core) inode.
666  */
667 void
668 xfs_inode_item_init(
669 	struct xfs_inode	*ip,
670 	struct xfs_mount	*mp)
671 {
672 	struct xfs_inode_log_item *iip;
673 
674 	ASSERT(ip->i_itemp == NULL);
675 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
676 					      GFP_KERNEL | __GFP_NOFAIL);
677 
678 	iip->ili_inode = ip;
679 	spin_lock_init(&iip->ili_lock);
680 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
681 						&xfs_inode_item_ops);
682 }
683 
684 /*
685  * Free the inode log item and any memory hanging off of it.
686  */
687 void
688 xfs_inode_item_destroy(
689 	struct xfs_inode	*ip)
690 {
691 	struct xfs_inode_log_item *iip = ip->i_itemp;
692 
693 	ASSERT(iip->ili_item.li_buf == NULL);
694 
695 	ip->i_itemp = NULL;
696 	kmem_free(iip->ili_item.li_lv_shadow);
697 	kmem_cache_free(xfs_ili_zone, iip);
698 }
699 
700 
701 /*
702  * We only want to pull the item from the AIL if it is actually there
703  * and its location in the log has not changed since we started the
704  * flush.  Thus, we only bother if the inode's lsn has not changed.
705  */
706 static void
707 xfs_iflush_ail_updates(
708 	struct xfs_ail		*ailp,
709 	struct list_head	*list)
710 {
711 	struct xfs_log_item	*lip;
712 	xfs_lsn_t		tail_lsn = 0;
713 
714 	/* this is an opencoded batch version of xfs_trans_ail_delete */
715 	spin_lock(&ailp->ail_lock);
716 	list_for_each_entry(lip, list, li_bio_list) {
717 		xfs_lsn_t	lsn;
718 
719 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
720 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
721 			continue;
722 
723 		lsn = xfs_ail_delete_one(ailp, lip);
724 		if (!tail_lsn && lsn)
725 			tail_lsn = lsn;
726 	}
727 	xfs_ail_update_finish(ailp, tail_lsn);
728 }
729 
730 /*
731  * Walk the list of inodes that have completed their IOs. If they are clean
732  * remove them from the list and dissociate them from the buffer. Buffers that
733  * are still dirty remain linked to the buffer and on the list. Caller must
734  * handle them appropriately.
735  */
736 static void
737 xfs_iflush_finish(
738 	struct xfs_buf		*bp,
739 	struct list_head	*list)
740 {
741 	struct xfs_log_item	*lip, *n;
742 
743 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
744 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
745 		bool	drop_buffer = false;
746 
747 		spin_lock(&iip->ili_lock);
748 
749 		/*
750 		 * Remove the reference to the cluster buffer if the inode is
751 		 * clean in memory and drop the buffer reference once we've
752 		 * dropped the locks we hold.
753 		 */
754 		ASSERT(iip->ili_item.li_buf == bp);
755 		if (!iip->ili_fields) {
756 			iip->ili_item.li_buf = NULL;
757 			list_del_init(&lip->li_bio_list);
758 			drop_buffer = true;
759 		}
760 		iip->ili_last_fields = 0;
761 		iip->ili_flush_lsn = 0;
762 		spin_unlock(&iip->ili_lock);
763 		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
764 		if (drop_buffer)
765 			xfs_buf_rele(bp);
766 	}
767 }
768 
769 /*
770  * Inode buffer IO completion routine.  It is responsible for removing inodes
771  * attached to the buffer from the AIL if they have not been re-logged and
772  * completing the inode flush.
773  */
774 void
775 xfs_buf_inode_iodone(
776 	struct xfs_buf		*bp)
777 {
778 	struct xfs_log_item	*lip, *n;
779 	LIST_HEAD(flushed_inodes);
780 	LIST_HEAD(ail_updates);
781 
782 	/*
783 	 * Pull the attached inodes from the buffer one at a time and take the
784 	 * appropriate action on them.
785 	 */
786 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
787 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
788 
789 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
790 			xfs_iflush_abort(iip->ili_inode);
791 			continue;
792 		}
793 		if (!iip->ili_last_fields)
794 			continue;
795 
796 		/* Do an unlocked check for needing the AIL lock. */
797 		if (iip->ili_flush_lsn == lip->li_lsn ||
798 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
799 			list_move_tail(&lip->li_bio_list, &ail_updates);
800 		else
801 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
802 	}
803 
804 	if (!list_empty(&ail_updates)) {
805 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
806 		list_splice_tail(&ail_updates, &flushed_inodes);
807 	}
808 
809 	xfs_iflush_finish(bp, &flushed_inodes);
810 	if (!list_empty(&flushed_inodes))
811 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
812 }
813 
814 void
815 xfs_buf_inode_io_fail(
816 	struct xfs_buf		*bp)
817 {
818 	struct xfs_log_item	*lip;
819 
820 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
821 		set_bit(XFS_LI_FAILED, &lip->li_flags);
822 }
823 
824 /*
825  * This is the inode flushing abort routine.  It is called when
826  * the filesystem is shutting down to clean up the inode state.  It is
827  * responsible for removing the inode item from the AIL if it has not been
828  * re-logged and clearing the inode's flush state.
829  */
830 void
831 xfs_iflush_abort(
832 	struct xfs_inode	*ip)
833 {
834 	struct xfs_inode_log_item *iip = ip->i_itemp;
835 	struct xfs_buf		*bp = NULL;
836 
837 	if (iip) {
838 		/*
839 		 * Clear the failed bit before removing the item from the AIL so
840 		 * xfs_trans_ail_delete() doesn't try to clear and release the
841 		 * buffer attached to the log item before we are done with it.
842 		 */
843 		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
844 		xfs_trans_ail_delete(&iip->ili_item, 0);
845 
846 		/*
847 		 * Clear the inode logging fields so no more flushes are
848 		 * attempted.
849 		 */
850 		spin_lock(&iip->ili_lock);
851 		iip->ili_last_fields = 0;
852 		iip->ili_fields = 0;
853 		iip->ili_fsync_fields = 0;
854 		iip->ili_flush_lsn = 0;
855 		bp = iip->ili_item.li_buf;
856 		iip->ili_item.li_buf = NULL;
857 		list_del_init(&iip->ili_item.li_bio_list);
858 		spin_unlock(&iip->ili_lock);
859 	}
860 	xfs_iflags_clear(ip, XFS_IFLUSHING);
861 	if (bp)
862 		xfs_buf_rele(bp);
863 }
864 
865 /*
866  * convert an xfs_inode_log_format struct from the old 32 bit version
867  * (which can have different field alignments) to the native 64 bit version
868  */
869 int
870 xfs_inode_item_format_convert(
871 	struct xfs_log_iovec		*buf,
872 	struct xfs_inode_log_format	*in_f)
873 {
874 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
875 
876 	if (buf->i_len != sizeof(*in_f32)) {
877 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
878 		return -EFSCORRUPTED;
879 	}
880 
881 	in_f->ilf_type = in_f32->ilf_type;
882 	in_f->ilf_size = in_f32->ilf_size;
883 	in_f->ilf_fields = in_f32->ilf_fields;
884 	in_f->ilf_asize = in_f32->ilf_asize;
885 	in_f->ilf_dsize = in_f32->ilf_dsize;
886 	in_f->ilf_ino = in_f32->ilf_ino;
887 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
888 	in_f->ilf_blkno = in_f32->ilf_blkno;
889 	in_f->ilf_len = in_f32->ilf_len;
890 	in_f->ilf_boffset = in_f32->ilf_boffset;
891 	return 0;
892 }
893