1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_error.h" 21 22 #include <linux/iversion.h> 23 24 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 25 26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 27 { 28 return container_of(lip, struct xfs_inode_log_item, ili_item); 29 } 30 31 STATIC void 32 xfs_inode_item_data_fork_size( 33 struct xfs_inode_log_item *iip, 34 int *nvecs, 35 int *nbytes) 36 { 37 struct xfs_inode *ip = iip->ili_inode; 38 39 switch (ip->i_df.if_format) { 40 case XFS_DINODE_FMT_EXTENTS: 41 if ((iip->ili_fields & XFS_ILOG_DEXT) && 42 ip->i_df.if_nextents > 0 && 43 ip->i_df.if_bytes > 0) { 44 /* worst case, doesn't subtract delalloc extents */ 45 *nbytes += XFS_IFORK_DSIZE(ip); 46 *nvecs += 1; 47 } 48 break; 49 case XFS_DINODE_FMT_BTREE: 50 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 51 ip->i_df.if_broot_bytes > 0) { 52 *nbytes += ip->i_df.if_broot_bytes; 53 *nvecs += 1; 54 } 55 break; 56 case XFS_DINODE_FMT_LOCAL: 57 if ((iip->ili_fields & XFS_ILOG_DDATA) && 58 ip->i_df.if_bytes > 0) { 59 *nbytes += roundup(ip->i_df.if_bytes, 4); 60 *nvecs += 1; 61 } 62 break; 63 64 case XFS_DINODE_FMT_DEV: 65 break; 66 default: 67 ASSERT(0); 68 break; 69 } 70 } 71 72 STATIC void 73 xfs_inode_item_attr_fork_size( 74 struct xfs_inode_log_item *iip, 75 int *nvecs, 76 int *nbytes) 77 { 78 struct xfs_inode *ip = iip->ili_inode; 79 80 switch (ip->i_afp->if_format) { 81 case XFS_DINODE_FMT_EXTENTS: 82 if ((iip->ili_fields & XFS_ILOG_AEXT) && 83 ip->i_afp->if_nextents > 0 && 84 ip->i_afp->if_bytes > 0) { 85 /* worst case, doesn't subtract unused space */ 86 *nbytes += XFS_IFORK_ASIZE(ip); 87 *nvecs += 1; 88 } 89 break; 90 case XFS_DINODE_FMT_BTREE: 91 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 92 ip->i_afp->if_broot_bytes > 0) { 93 *nbytes += ip->i_afp->if_broot_bytes; 94 *nvecs += 1; 95 } 96 break; 97 case XFS_DINODE_FMT_LOCAL: 98 if ((iip->ili_fields & XFS_ILOG_ADATA) && 99 ip->i_afp->if_bytes > 0) { 100 *nbytes += roundup(ip->i_afp->if_bytes, 4); 101 *nvecs += 1; 102 } 103 break; 104 default: 105 ASSERT(0); 106 break; 107 } 108 } 109 110 /* 111 * This returns the number of iovecs needed to log the given inode item. 112 * 113 * We need one iovec for the inode log format structure, one for the 114 * inode core, and possibly one for the inode data/extents/b-tree root 115 * and one for the inode attribute data/extents/b-tree root. 116 */ 117 STATIC void 118 xfs_inode_item_size( 119 struct xfs_log_item *lip, 120 int *nvecs, 121 int *nbytes) 122 { 123 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 124 struct xfs_inode *ip = iip->ili_inode; 125 126 *nvecs += 2; 127 *nbytes += sizeof(struct xfs_inode_log_format) + 128 xfs_log_dinode_size(ip->i_mount); 129 130 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 131 if (XFS_IFORK_Q(ip)) 132 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 133 } 134 135 STATIC void 136 xfs_inode_item_format_data_fork( 137 struct xfs_inode_log_item *iip, 138 struct xfs_inode_log_format *ilf, 139 struct xfs_log_vec *lv, 140 struct xfs_log_iovec **vecp) 141 { 142 struct xfs_inode *ip = iip->ili_inode; 143 size_t data_bytes; 144 145 switch (ip->i_df.if_format) { 146 case XFS_DINODE_FMT_EXTENTS: 147 iip->ili_fields &= 148 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 149 150 if ((iip->ili_fields & XFS_ILOG_DEXT) && 151 ip->i_df.if_nextents > 0 && 152 ip->i_df.if_bytes > 0) { 153 struct xfs_bmbt_rec *p; 154 155 ASSERT(xfs_iext_count(&ip->i_df) > 0); 156 157 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 158 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 159 xlog_finish_iovec(lv, *vecp, data_bytes); 160 161 ASSERT(data_bytes <= ip->i_df.if_bytes); 162 163 ilf->ilf_dsize = data_bytes; 164 ilf->ilf_size++; 165 } else { 166 iip->ili_fields &= ~XFS_ILOG_DEXT; 167 } 168 break; 169 case XFS_DINODE_FMT_BTREE: 170 iip->ili_fields &= 171 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 172 173 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 174 ip->i_df.if_broot_bytes > 0) { 175 ASSERT(ip->i_df.if_broot != NULL); 176 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 177 ip->i_df.if_broot, 178 ip->i_df.if_broot_bytes); 179 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 180 ilf->ilf_size++; 181 } else { 182 ASSERT(!(iip->ili_fields & 183 XFS_ILOG_DBROOT)); 184 iip->ili_fields &= ~XFS_ILOG_DBROOT; 185 } 186 break; 187 case XFS_DINODE_FMT_LOCAL: 188 iip->ili_fields &= 189 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 190 if ((iip->ili_fields & XFS_ILOG_DDATA) && 191 ip->i_df.if_bytes > 0) { 192 /* 193 * Round i_bytes up to a word boundary. 194 * The underlying memory is guaranteed 195 * to be there by xfs_idata_realloc(). 196 */ 197 data_bytes = roundup(ip->i_df.if_bytes, 4); 198 ASSERT(ip->i_df.if_u1.if_data != NULL); 199 ASSERT(ip->i_d.di_size > 0); 200 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 201 ip->i_df.if_u1.if_data, data_bytes); 202 ilf->ilf_dsize = (unsigned)data_bytes; 203 ilf->ilf_size++; 204 } else { 205 iip->ili_fields &= ~XFS_ILOG_DDATA; 206 } 207 break; 208 case XFS_DINODE_FMT_DEV: 209 iip->ili_fields &= 210 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 211 if (iip->ili_fields & XFS_ILOG_DEV) 212 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 213 break; 214 default: 215 ASSERT(0); 216 break; 217 } 218 } 219 220 STATIC void 221 xfs_inode_item_format_attr_fork( 222 struct xfs_inode_log_item *iip, 223 struct xfs_inode_log_format *ilf, 224 struct xfs_log_vec *lv, 225 struct xfs_log_iovec **vecp) 226 { 227 struct xfs_inode *ip = iip->ili_inode; 228 size_t data_bytes; 229 230 switch (ip->i_afp->if_format) { 231 case XFS_DINODE_FMT_EXTENTS: 232 iip->ili_fields &= 233 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 234 235 if ((iip->ili_fields & XFS_ILOG_AEXT) && 236 ip->i_afp->if_nextents > 0 && 237 ip->i_afp->if_bytes > 0) { 238 struct xfs_bmbt_rec *p; 239 240 ASSERT(xfs_iext_count(ip->i_afp) == 241 ip->i_afp->if_nextents); 242 243 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 244 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 245 xlog_finish_iovec(lv, *vecp, data_bytes); 246 247 ilf->ilf_asize = data_bytes; 248 ilf->ilf_size++; 249 } else { 250 iip->ili_fields &= ~XFS_ILOG_AEXT; 251 } 252 break; 253 case XFS_DINODE_FMT_BTREE: 254 iip->ili_fields &= 255 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 256 257 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 258 ip->i_afp->if_broot_bytes > 0) { 259 ASSERT(ip->i_afp->if_broot != NULL); 260 261 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 262 ip->i_afp->if_broot, 263 ip->i_afp->if_broot_bytes); 264 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 265 ilf->ilf_size++; 266 } else { 267 iip->ili_fields &= ~XFS_ILOG_ABROOT; 268 } 269 break; 270 case XFS_DINODE_FMT_LOCAL: 271 iip->ili_fields &= 272 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 273 274 if ((iip->ili_fields & XFS_ILOG_ADATA) && 275 ip->i_afp->if_bytes > 0) { 276 /* 277 * Round i_bytes up to a word boundary. 278 * The underlying memory is guaranteed 279 * to be there by xfs_idata_realloc(). 280 */ 281 data_bytes = roundup(ip->i_afp->if_bytes, 4); 282 ASSERT(ip->i_afp->if_u1.if_data != NULL); 283 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 284 ip->i_afp->if_u1.if_data, 285 data_bytes); 286 ilf->ilf_asize = (unsigned)data_bytes; 287 ilf->ilf_size++; 288 } else { 289 iip->ili_fields &= ~XFS_ILOG_ADATA; 290 } 291 break; 292 default: 293 ASSERT(0); 294 break; 295 } 296 } 297 298 /* 299 * Convert an incore timestamp to a log timestamp. Note that the log format 300 * specifies host endian format! 301 */ 302 static inline xfs_ictimestamp_t 303 xfs_inode_to_log_dinode_ts( 304 struct xfs_inode *ip, 305 const struct timespec64 tv) 306 { 307 struct xfs_legacy_ictimestamp *lits; 308 xfs_ictimestamp_t its; 309 310 if (xfs_inode_has_bigtime(ip)) 311 return xfs_inode_encode_bigtime(tv); 312 313 lits = (struct xfs_legacy_ictimestamp *)&its; 314 lits->t_sec = tv.tv_sec; 315 lits->t_nsec = tv.tv_nsec; 316 317 return its; 318 } 319 320 static void 321 xfs_inode_to_log_dinode( 322 struct xfs_inode *ip, 323 struct xfs_log_dinode *to, 324 xfs_lsn_t lsn) 325 { 326 struct xfs_icdinode *from = &ip->i_d; 327 struct inode *inode = VFS_I(ip); 328 329 to->di_magic = XFS_DINODE_MAGIC; 330 to->di_format = xfs_ifork_format(&ip->i_df); 331 to->di_uid = i_uid_read(inode); 332 to->di_gid = i_gid_read(inode); 333 to->di_projid_lo = from->di_projid & 0xffff; 334 to->di_projid_hi = from->di_projid >> 16; 335 336 memset(to->di_pad, 0, sizeof(to->di_pad)); 337 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 338 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); 339 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); 340 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); 341 to->di_nlink = inode->i_nlink; 342 to->di_gen = inode->i_generation; 343 to->di_mode = inode->i_mode; 344 345 to->di_size = from->di_size; 346 to->di_nblocks = from->di_nblocks; 347 to->di_extsize = from->di_extsize; 348 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 349 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 350 to->di_forkoff = from->di_forkoff; 351 to->di_aformat = xfs_ifork_format(ip->i_afp); 352 to->di_dmevmask = from->di_dmevmask; 353 to->di_dmstate = from->di_dmstate; 354 to->di_flags = from->di_flags; 355 356 /* log a dummy value to ensure log structure is fully initialised */ 357 to->di_next_unlinked = NULLAGINO; 358 359 if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { 360 to->di_version = 3; 361 to->di_changecount = inode_peek_iversion(inode); 362 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, from->di_crtime); 363 to->di_flags2 = from->di_flags2; 364 to->di_cowextsize = from->di_cowextsize; 365 to->di_ino = ip->i_ino; 366 to->di_lsn = lsn; 367 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 368 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 369 to->di_flushiter = 0; 370 } else { 371 to->di_version = 2; 372 to->di_flushiter = from->di_flushiter; 373 } 374 } 375 376 /* 377 * Format the inode core. Current timestamp data is only in the VFS inode 378 * fields, so we need to grab them from there. Hence rather than just copying 379 * the XFS inode core structure, format the fields directly into the iovec. 380 */ 381 static void 382 xfs_inode_item_format_core( 383 struct xfs_inode *ip, 384 struct xfs_log_vec *lv, 385 struct xfs_log_iovec **vecp) 386 { 387 struct xfs_log_dinode *dic; 388 389 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 390 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 391 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 392 } 393 394 /* 395 * This is called to fill in the vector of log iovecs for the given inode 396 * log item. It fills the first item with an inode log format structure, 397 * the second with the on-disk inode structure, and a possible third and/or 398 * fourth with the inode data/extents/b-tree root and inode attributes 399 * data/extents/b-tree root. 400 * 401 * Note: Always use the 64 bit inode log format structure so we don't 402 * leave an uninitialised hole in the format item on 64 bit systems. Log 403 * recovery on 32 bit systems handles this just fine, so there's no reason 404 * for not using an initialising the properly padded structure all the time. 405 */ 406 STATIC void 407 xfs_inode_item_format( 408 struct xfs_log_item *lip, 409 struct xfs_log_vec *lv) 410 { 411 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 412 struct xfs_inode *ip = iip->ili_inode; 413 struct xfs_log_iovec *vecp = NULL; 414 struct xfs_inode_log_format *ilf; 415 416 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 417 ilf->ilf_type = XFS_LI_INODE; 418 ilf->ilf_ino = ip->i_ino; 419 ilf->ilf_blkno = ip->i_imap.im_blkno; 420 ilf->ilf_len = ip->i_imap.im_len; 421 ilf->ilf_boffset = ip->i_imap.im_boffset; 422 ilf->ilf_fields = XFS_ILOG_CORE; 423 ilf->ilf_size = 2; /* format + core */ 424 425 /* 426 * make sure we don't leak uninitialised data into the log in the case 427 * when we don't log every field in the inode. 428 */ 429 ilf->ilf_dsize = 0; 430 ilf->ilf_asize = 0; 431 ilf->ilf_pad = 0; 432 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 433 434 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 435 436 xfs_inode_item_format_core(ip, lv, &vecp); 437 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 438 if (XFS_IFORK_Q(ip)) { 439 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 440 } else { 441 iip->ili_fields &= 442 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 443 } 444 445 /* update the format with the exact fields we actually logged */ 446 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 447 } 448 449 /* 450 * This is called to pin the inode associated with the inode log 451 * item in memory so it cannot be written out. 452 */ 453 STATIC void 454 xfs_inode_item_pin( 455 struct xfs_log_item *lip) 456 { 457 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 458 459 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 460 ASSERT(lip->li_buf); 461 462 trace_xfs_inode_pin(ip, _RET_IP_); 463 atomic_inc(&ip->i_pincount); 464 } 465 466 467 /* 468 * This is called to unpin the inode associated with the inode log 469 * item which was previously pinned with a call to xfs_inode_item_pin(). 470 * 471 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 472 * 473 * Note that unpin can race with inode cluster buffer freeing marking the buffer 474 * stale. In that case, flush completions are run from the buffer unpin call, 475 * which may happen before the inode is unpinned. If we lose the race, there 476 * will be no buffer attached to the log item, but the inode will be marked 477 * XFS_ISTALE. 478 */ 479 STATIC void 480 xfs_inode_item_unpin( 481 struct xfs_log_item *lip, 482 int remove) 483 { 484 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 485 486 trace_xfs_inode_unpin(ip, _RET_IP_); 487 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 488 ASSERT(atomic_read(&ip->i_pincount) > 0); 489 if (atomic_dec_and_test(&ip->i_pincount)) 490 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 491 } 492 493 STATIC uint 494 xfs_inode_item_push( 495 struct xfs_log_item *lip, 496 struct list_head *buffer_list) 497 __releases(&lip->li_ailp->ail_lock) 498 __acquires(&lip->li_ailp->ail_lock) 499 { 500 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 501 struct xfs_inode *ip = iip->ili_inode; 502 struct xfs_buf *bp = lip->li_buf; 503 uint rval = XFS_ITEM_SUCCESS; 504 int error; 505 506 ASSERT(iip->ili_item.li_buf); 507 508 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) || 509 (ip->i_flags & XFS_ISTALE)) 510 return XFS_ITEM_PINNED; 511 512 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 513 return XFS_ITEM_FLUSHING; 514 515 if (!xfs_buf_trylock(bp)) 516 return XFS_ITEM_LOCKED; 517 518 spin_unlock(&lip->li_ailp->ail_lock); 519 520 /* 521 * We need to hold a reference for flushing the cluster buffer as it may 522 * fail the buffer without IO submission. In which case, we better get a 523 * reference for that completion because otherwise we don't get a 524 * reference for IO until we queue the buffer for delwri submission. 525 */ 526 xfs_buf_hold(bp); 527 error = xfs_iflush_cluster(bp); 528 if (!error) { 529 if (!xfs_buf_delwri_queue(bp, buffer_list)) 530 rval = XFS_ITEM_FLUSHING; 531 xfs_buf_relse(bp); 532 } else { 533 /* 534 * Release the buffer if we were unable to flush anything. On 535 * any other error, the buffer has already been released. 536 */ 537 if (error == -EAGAIN) 538 xfs_buf_relse(bp); 539 rval = XFS_ITEM_LOCKED; 540 } 541 542 spin_lock(&lip->li_ailp->ail_lock); 543 return rval; 544 } 545 546 /* 547 * Unlock the inode associated with the inode log item. 548 */ 549 STATIC void 550 xfs_inode_item_release( 551 struct xfs_log_item *lip) 552 { 553 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 554 struct xfs_inode *ip = iip->ili_inode; 555 unsigned short lock_flags; 556 557 ASSERT(ip->i_itemp != NULL); 558 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 559 560 lock_flags = iip->ili_lock_flags; 561 iip->ili_lock_flags = 0; 562 if (lock_flags) 563 xfs_iunlock(ip, lock_flags); 564 } 565 566 /* 567 * This is called to find out where the oldest active copy of the inode log 568 * item in the on disk log resides now that the last log write of it completed 569 * at the given lsn. Since we always re-log all dirty data in an inode, the 570 * latest copy in the on disk log is the only one that matters. Therefore, 571 * simply return the given lsn. 572 * 573 * If the inode has been marked stale because the cluster is being freed, we 574 * don't want to (re-)insert this inode into the AIL. There is a race condition 575 * where the cluster buffer may be unpinned before the inode is inserted into 576 * the AIL during transaction committed processing. If the buffer is unpinned 577 * before the inode item has been committed and inserted, then it is possible 578 * for the buffer to be written and IO completes before the inode is inserted 579 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 580 * AIL which will never get removed. It will, however, get reclaimed which 581 * triggers an assert in xfs_inode_free() complaining about freein an inode 582 * still in the AIL. 583 * 584 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 585 * transaction committed code knows that it does not need to do any further 586 * processing on the item. 587 */ 588 STATIC xfs_lsn_t 589 xfs_inode_item_committed( 590 struct xfs_log_item *lip, 591 xfs_lsn_t lsn) 592 { 593 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 594 struct xfs_inode *ip = iip->ili_inode; 595 596 if (xfs_iflags_test(ip, XFS_ISTALE)) { 597 xfs_inode_item_unpin(lip, 0); 598 return -1; 599 } 600 return lsn; 601 } 602 603 STATIC void 604 xfs_inode_item_committing( 605 struct xfs_log_item *lip, 606 xfs_lsn_t commit_lsn) 607 { 608 INODE_ITEM(lip)->ili_last_lsn = commit_lsn; 609 return xfs_inode_item_release(lip); 610 } 611 612 static const struct xfs_item_ops xfs_inode_item_ops = { 613 .iop_size = xfs_inode_item_size, 614 .iop_format = xfs_inode_item_format, 615 .iop_pin = xfs_inode_item_pin, 616 .iop_unpin = xfs_inode_item_unpin, 617 .iop_release = xfs_inode_item_release, 618 .iop_committed = xfs_inode_item_committed, 619 .iop_push = xfs_inode_item_push, 620 .iop_committing = xfs_inode_item_committing, 621 }; 622 623 624 /* 625 * Initialize the inode log item for a newly allocated (in-core) inode. 626 */ 627 void 628 xfs_inode_item_init( 629 struct xfs_inode *ip, 630 struct xfs_mount *mp) 631 { 632 struct xfs_inode_log_item *iip; 633 634 ASSERT(ip->i_itemp == NULL); 635 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone, 636 GFP_KERNEL | __GFP_NOFAIL); 637 638 iip->ili_inode = ip; 639 spin_lock_init(&iip->ili_lock); 640 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 641 &xfs_inode_item_ops); 642 } 643 644 /* 645 * Free the inode log item and any memory hanging off of it. 646 */ 647 void 648 xfs_inode_item_destroy( 649 struct xfs_inode *ip) 650 { 651 struct xfs_inode_log_item *iip = ip->i_itemp; 652 653 ASSERT(iip->ili_item.li_buf == NULL); 654 655 ip->i_itemp = NULL; 656 kmem_free(iip->ili_item.li_lv_shadow); 657 kmem_cache_free(xfs_ili_zone, iip); 658 } 659 660 661 /* 662 * We only want to pull the item from the AIL if it is actually there 663 * and its location in the log has not changed since we started the 664 * flush. Thus, we only bother if the inode's lsn has not changed. 665 */ 666 static void 667 xfs_iflush_ail_updates( 668 struct xfs_ail *ailp, 669 struct list_head *list) 670 { 671 struct xfs_log_item *lip; 672 xfs_lsn_t tail_lsn = 0; 673 674 /* this is an opencoded batch version of xfs_trans_ail_delete */ 675 spin_lock(&ailp->ail_lock); 676 list_for_each_entry(lip, list, li_bio_list) { 677 xfs_lsn_t lsn; 678 679 clear_bit(XFS_LI_FAILED, &lip->li_flags); 680 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 681 continue; 682 683 lsn = xfs_ail_delete_one(ailp, lip); 684 if (!tail_lsn && lsn) 685 tail_lsn = lsn; 686 } 687 xfs_ail_update_finish(ailp, tail_lsn); 688 } 689 690 /* 691 * Walk the list of inodes that have completed their IOs. If they are clean 692 * remove them from the list and dissociate them from the buffer. Buffers that 693 * are still dirty remain linked to the buffer and on the list. Caller must 694 * handle them appropriately. 695 */ 696 static void 697 xfs_iflush_finish( 698 struct xfs_buf *bp, 699 struct list_head *list) 700 { 701 struct xfs_log_item *lip, *n; 702 703 list_for_each_entry_safe(lip, n, list, li_bio_list) { 704 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 705 bool drop_buffer = false; 706 707 spin_lock(&iip->ili_lock); 708 709 /* 710 * Remove the reference to the cluster buffer if the inode is 711 * clean in memory and drop the buffer reference once we've 712 * dropped the locks we hold. 713 */ 714 ASSERT(iip->ili_item.li_buf == bp); 715 if (!iip->ili_fields) { 716 iip->ili_item.li_buf = NULL; 717 list_del_init(&lip->li_bio_list); 718 drop_buffer = true; 719 } 720 iip->ili_last_fields = 0; 721 iip->ili_flush_lsn = 0; 722 spin_unlock(&iip->ili_lock); 723 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 724 if (drop_buffer) 725 xfs_buf_rele(bp); 726 } 727 } 728 729 /* 730 * Inode buffer IO completion routine. It is responsible for removing inodes 731 * attached to the buffer from the AIL if they have not been re-logged and 732 * completing the inode flush. 733 */ 734 void 735 xfs_buf_inode_iodone( 736 struct xfs_buf *bp) 737 { 738 struct xfs_log_item *lip, *n; 739 LIST_HEAD(flushed_inodes); 740 LIST_HEAD(ail_updates); 741 742 /* 743 * Pull the attached inodes from the buffer one at a time and take the 744 * appropriate action on them. 745 */ 746 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 747 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 748 749 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 750 xfs_iflush_abort(iip->ili_inode); 751 continue; 752 } 753 if (!iip->ili_last_fields) 754 continue; 755 756 /* Do an unlocked check for needing the AIL lock. */ 757 if (iip->ili_flush_lsn == lip->li_lsn || 758 test_bit(XFS_LI_FAILED, &lip->li_flags)) 759 list_move_tail(&lip->li_bio_list, &ail_updates); 760 else 761 list_move_tail(&lip->li_bio_list, &flushed_inodes); 762 } 763 764 if (!list_empty(&ail_updates)) { 765 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 766 list_splice_tail(&ail_updates, &flushed_inodes); 767 } 768 769 xfs_iflush_finish(bp, &flushed_inodes); 770 if (!list_empty(&flushed_inodes)) 771 list_splice_tail(&flushed_inodes, &bp->b_li_list); 772 } 773 774 void 775 xfs_buf_inode_io_fail( 776 struct xfs_buf *bp) 777 { 778 struct xfs_log_item *lip; 779 780 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 781 set_bit(XFS_LI_FAILED, &lip->li_flags); 782 } 783 784 /* 785 * This is the inode flushing abort routine. It is called when 786 * the filesystem is shutting down to clean up the inode state. It is 787 * responsible for removing the inode item from the AIL if it has not been 788 * re-logged and clearing the inode's flush state. 789 */ 790 void 791 xfs_iflush_abort( 792 struct xfs_inode *ip) 793 { 794 struct xfs_inode_log_item *iip = ip->i_itemp; 795 struct xfs_buf *bp = NULL; 796 797 if (iip) { 798 /* 799 * Clear the failed bit before removing the item from the AIL so 800 * xfs_trans_ail_delete() doesn't try to clear and release the 801 * buffer attached to the log item before we are done with it. 802 */ 803 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 804 xfs_trans_ail_delete(&iip->ili_item, 0); 805 806 /* 807 * Clear the inode logging fields so no more flushes are 808 * attempted. 809 */ 810 spin_lock(&iip->ili_lock); 811 iip->ili_last_fields = 0; 812 iip->ili_fields = 0; 813 iip->ili_fsync_fields = 0; 814 iip->ili_flush_lsn = 0; 815 bp = iip->ili_item.li_buf; 816 iip->ili_item.li_buf = NULL; 817 list_del_init(&iip->ili_item.li_bio_list); 818 spin_unlock(&iip->ili_lock); 819 } 820 xfs_iflags_clear(ip, XFS_IFLUSHING); 821 if (bp) 822 xfs_buf_rele(bp); 823 } 824 825 /* 826 * convert an xfs_inode_log_format struct from the old 32 bit version 827 * (which can have different field alignments) to the native 64 bit version 828 */ 829 int 830 xfs_inode_item_format_convert( 831 struct xfs_log_iovec *buf, 832 struct xfs_inode_log_format *in_f) 833 { 834 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 835 836 if (buf->i_len != sizeof(*in_f32)) { 837 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 838 return -EFSCORRUPTED; 839 } 840 841 in_f->ilf_type = in_f32->ilf_type; 842 in_f->ilf_size = in_f32->ilf_size; 843 in_f->ilf_fields = in_f32->ilf_fields; 844 in_f->ilf_asize = in_f32->ilf_asize; 845 in_f->ilf_dsize = in_f32->ilf_dsize; 846 in_f->ilf_ino = in_f32->ilf_ino; 847 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 848 in_f->ilf_blkno = in_f32->ilf_blkno; 849 in_f->ilf_len = in_f32->ilf_len; 850 in_f->ilf_boffset = in_f32->ilf_boffset; 851 return 0; 852 } 853