1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_bmap_btree.h" 28 #include "xfs_dinode.h" 29 #include "xfs_inode.h" 30 #include "xfs_inode_item.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 35 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 36 37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 38 { 39 return container_of(lip, struct xfs_inode_log_item, ili_item); 40 } 41 42 43 /* 44 * This returns the number of iovecs needed to log the given inode item. 45 * 46 * We need one iovec for the inode log format structure, one for the 47 * inode core, and possibly one for the inode data/extents/b-tree root 48 * and one for the inode attribute data/extents/b-tree root. 49 */ 50 STATIC void 51 xfs_inode_item_size( 52 struct xfs_log_item *lip, 53 int *nvecs, 54 int *nbytes) 55 { 56 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 57 struct xfs_inode *ip = iip->ili_inode; 58 59 *nvecs += 2; 60 *nbytes += sizeof(struct xfs_inode_log_format) + 61 xfs_icdinode_size(ip->i_d.di_version); 62 63 switch (ip->i_d.di_format) { 64 case XFS_DINODE_FMT_EXTENTS: 65 if ((iip->ili_fields & XFS_ILOG_DEXT) && 66 ip->i_d.di_nextents > 0 && 67 ip->i_df.if_bytes > 0) { 68 /* worst case, doesn't subtract delalloc extents */ 69 *nbytes += XFS_IFORK_DSIZE(ip); 70 *nvecs += 1; 71 } 72 break; 73 74 case XFS_DINODE_FMT_BTREE: 75 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 76 ip->i_df.if_broot_bytes > 0) { 77 *nbytes += ip->i_df.if_broot_bytes; 78 *nvecs += 1; 79 } 80 break; 81 82 case XFS_DINODE_FMT_LOCAL: 83 if ((iip->ili_fields & XFS_ILOG_DDATA) && 84 ip->i_df.if_bytes > 0) { 85 *nbytes += roundup(ip->i_df.if_bytes, 4); 86 *nvecs += 1; 87 } 88 break; 89 90 case XFS_DINODE_FMT_DEV: 91 case XFS_DINODE_FMT_UUID: 92 break; 93 94 default: 95 ASSERT(0); 96 break; 97 } 98 99 if (!XFS_IFORK_Q(ip)) 100 return; 101 102 103 /* 104 * Log any necessary attribute data. 105 */ 106 switch (ip->i_d.di_aformat) { 107 case XFS_DINODE_FMT_EXTENTS: 108 if ((iip->ili_fields & XFS_ILOG_AEXT) && 109 ip->i_d.di_anextents > 0 && 110 ip->i_afp->if_bytes > 0) { 111 /* worst case, doesn't subtract unused space */ 112 *nbytes += XFS_IFORK_ASIZE(ip); 113 *nvecs += 1; 114 } 115 break; 116 117 case XFS_DINODE_FMT_BTREE: 118 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 119 ip->i_afp->if_broot_bytes > 0) { 120 *nbytes += ip->i_afp->if_broot_bytes; 121 *nvecs += 1; 122 } 123 break; 124 125 case XFS_DINODE_FMT_LOCAL: 126 if ((iip->ili_fields & XFS_ILOG_ADATA) && 127 ip->i_afp->if_bytes > 0) { 128 *nbytes += roundup(ip->i_afp->if_bytes, 4); 129 *nvecs += 1; 130 } 131 break; 132 133 default: 134 ASSERT(0); 135 break; 136 } 137 } 138 139 /* 140 * xfs_inode_item_format_extents - convert in-core extents to on-disk form 141 * 142 * For either the data or attr fork in extent format, we need to endian convert 143 * the in-core extent as we place them into the on-disk inode. In this case, we 144 * need to do this conversion before we write the extents into the log. Because 145 * we don't have the disk inode to write into here, we allocate a buffer and 146 * format the extents into it via xfs_iextents_copy(). We free the buffer in 147 * the unlock routine after the copy for the log has been made. 148 * 149 * In the case of the data fork, the in-core and on-disk fork sizes can be 150 * different due to delayed allocation extents. We only log on-disk extents 151 * here, so always use the physical fork size to determine the size of the 152 * buffer we need to allocate. 153 */ 154 STATIC void 155 xfs_inode_item_format_extents( 156 struct xfs_inode *ip, 157 struct xfs_log_iovec *vecp, 158 int whichfork, 159 int type) 160 { 161 xfs_bmbt_rec_t *ext_buffer; 162 163 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); 164 if (whichfork == XFS_DATA_FORK) 165 ip->i_itemp->ili_extents_buf = ext_buffer; 166 else 167 ip->i_itemp->ili_aextents_buf = ext_buffer; 168 169 vecp->i_addr = ext_buffer; 170 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); 171 vecp->i_type = type; 172 } 173 174 /* 175 * This is called to fill in the vector of log iovecs for the 176 * given inode log item. It fills the first item with an inode 177 * log format structure, the second with the on-disk inode structure, 178 * and a possible third and/or fourth with the inode data/extents/b-tree 179 * root and inode attributes data/extents/b-tree root. 180 */ 181 STATIC void 182 xfs_inode_item_format( 183 struct xfs_log_item *lip, 184 struct xfs_log_iovec *vecp) 185 { 186 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 187 struct xfs_inode *ip = iip->ili_inode; 188 uint nvecs; 189 size_t data_bytes; 190 xfs_mount_t *mp; 191 192 vecp->i_addr = &iip->ili_format; 193 vecp->i_len = sizeof(xfs_inode_log_format_t); 194 vecp->i_type = XLOG_REG_TYPE_IFORMAT; 195 vecp++; 196 nvecs = 1; 197 198 vecp->i_addr = &ip->i_d; 199 vecp->i_len = xfs_icdinode_size(ip->i_d.di_version); 200 vecp->i_type = XLOG_REG_TYPE_ICORE; 201 vecp++; 202 nvecs++; 203 204 /* 205 * If this is really an old format inode, then we need to 206 * log it as such. This means that we have to copy the link 207 * count from the new field to the old. We don't have to worry 208 * about the new fields, because nothing trusts them as long as 209 * the old inode version number is there. If the superblock already 210 * has a new version number, then we don't bother converting back. 211 */ 212 mp = ip->i_mount; 213 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 214 if (ip->i_d.di_version == 1) { 215 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 216 /* 217 * Convert it back. 218 */ 219 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 220 ip->i_d.di_onlink = ip->i_d.di_nlink; 221 } else { 222 /* 223 * The superblock version has already been bumped, 224 * so just make the conversion to the new inode 225 * format permanent. 226 */ 227 ip->i_d.di_version = 2; 228 ip->i_d.di_onlink = 0; 229 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 230 } 231 } 232 233 switch (ip->i_d.di_format) { 234 case XFS_DINODE_FMT_EXTENTS: 235 iip->ili_fields &= 236 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 237 XFS_ILOG_DEV | XFS_ILOG_UUID); 238 239 if ((iip->ili_fields & XFS_ILOG_DEXT) && 240 ip->i_d.di_nextents > 0 && 241 ip->i_df.if_bytes > 0) { 242 ASSERT(ip->i_df.if_u1.if_extents != NULL); 243 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); 244 ASSERT(iip->ili_extents_buf == NULL); 245 246 #ifdef XFS_NATIVE_HOST 247 if (ip->i_d.di_nextents == ip->i_df.if_bytes / 248 (uint)sizeof(xfs_bmbt_rec_t)) { 249 /* 250 * There are no delayed allocation 251 * extents, so just point to the 252 * real extents array. 253 */ 254 vecp->i_addr = ip->i_df.if_u1.if_extents; 255 vecp->i_len = ip->i_df.if_bytes; 256 vecp->i_type = XLOG_REG_TYPE_IEXT; 257 } else 258 #endif 259 { 260 xfs_inode_item_format_extents(ip, vecp, 261 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); 262 } 263 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 264 iip->ili_format.ilf_dsize = vecp->i_len; 265 vecp++; 266 nvecs++; 267 } else { 268 iip->ili_fields &= ~XFS_ILOG_DEXT; 269 } 270 break; 271 272 case XFS_DINODE_FMT_BTREE: 273 iip->ili_fields &= 274 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 275 XFS_ILOG_DEV | XFS_ILOG_UUID); 276 277 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 278 ip->i_df.if_broot_bytes > 0) { 279 ASSERT(ip->i_df.if_broot != NULL); 280 vecp->i_addr = ip->i_df.if_broot; 281 vecp->i_len = ip->i_df.if_broot_bytes; 282 vecp->i_type = XLOG_REG_TYPE_IBROOT; 283 vecp++; 284 nvecs++; 285 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 286 } else { 287 ASSERT(!(iip->ili_fields & 288 XFS_ILOG_DBROOT)); 289 iip->ili_fields &= ~XFS_ILOG_DBROOT; 290 } 291 break; 292 293 case XFS_DINODE_FMT_LOCAL: 294 iip->ili_fields &= 295 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 296 XFS_ILOG_DEV | XFS_ILOG_UUID); 297 if ((iip->ili_fields & XFS_ILOG_DDATA) && 298 ip->i_df.if_bytes > 0) { 299 ASSERT(ip->i_df.if_u1.if_data != NULL); 300 ASSERT(ip->i_d.di_size > 0); 301 302 vecp->i_addr = ip->i_df.if_u1.if_data; 303 /* 304 * Round i_bytes up to a word boundary. 305 * The underlying memory is guaranteed to 306 * to be there by xfs_idata_realloc(). 307 */ 308 data_bytes = roundup(ip->i_df.if_bytes, 4); 309 ASSERT((ip->i_df.if_real_bytes == 0) || 310 (ip->i_df.if_real_bytes == data_bytes)); 311 vecp->i_len = (int)data_bytes; 312 vecp->i_type = XLOG_REG_TYPE_ILOCAL; 313 vecp++; 314 nvecs++; 315 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 316 } else { 317 iip->ili_fields &= ~XFS_ILOG_DDATA; 318 } 319 break; 320 321 case XFS_DINODE_FMT_DEV: 322 iip->ili_fields &= 323 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 324 XFS_ILOG_DEXT | XFS_ILOG_UUID); 325 if (iip->ili_fields & XFS_ILOG_DEV) { 326 iip->ili_format.ilf_u.ilfu_rdev = 327 ip->i_df.if_u2.if_rdev; 328 } 329 break; 330 331 case XFS_DINODE_FMT_UUID: 332 iip->ili_fields &= 333 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 334 XFS_ILOG_DEXT | XFS_ILOG_DEV); 335 if (iip->ili_fields & XFS_ILOG_UUID) { 336 iip->ili_format.ilf_u.ilfu_uuid = 337 ip->i_df.if_u2.if_uuid; 338 } 339 break; 340 341 default: 342 ASSERT(0); 343 break; 344 } 345 346 /* 347 * If there are no attributes associated with the file, then we're done. 348 */ 349 if (!XFS_IFORK_Q(ip)) { 350 iip->ili_fields &= 351 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 352 goto out; 353 } 354 355 switch (ip->i_d.di_aformat) { 356 case XFS_DINODE_FMT_EXTENTS: 357 iip->ili_fields &= 358 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 359 360 if ((iip->ili_fields & XFS_ILOG_AEXT) && 361 ip->i_d.di_anextents > 0 && 362 ip->i_afp->if_bytes > 0) { 363 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == 364 ip->i_d.di_anextents); 365 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 366 #ifdef XFS_NATIVE_HOST 367 /* 368 * There are not delayed allocation extents 369 * for attributes, so just point at the array. 370 */ 371 vecp->i_addr = ip->i_afp->if_u1.if_extents; 372 vecp->i_len = ip->i_afp->if_bytes; 373 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; 374 #else 375 ASSERT(iip->ili_aextents_buf == NULL); 376 xfs_inode_item_format_extents(ip, vecp, 377 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); 378 #endif 379 iip->ili_format.ilf_asize = vecp->i_len; 380 vecp++; 381 nvecs++; 382 } else { 383 iip->ili_fields &= ~XFS_ILOG_AEXT; 384 } 385 break; 386 387 case XFS_DINODE_FMT_BTREE: 388 iip->ili_fields &= 389 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 390 391 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 392 ip->i_afp->if_broot_bytes > 0) { 393 ASSERT(ip->i_afp->if_broot != NULL); 394 395 vecp->i_addr = ip->i_afp->if_broot; 396 vecp->i_len = ip->i_afp->if_broot_bytes; 397 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; 398 vecp++; 399 nvecs++; 400 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 401 } else { 402 iip->ili_fields &= ~XFS_ILOG_ABROOT; 403 } 404 break; 405 406 case XFS_DINODE_FMT_LOCAL: 407 iip->ili_fields &= 408 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 409 410 if ((iip->ili_fields & XFS_ILOG_ADATA) && 411 ip->i_afp->if_bytes > 0) { 412 ASSERT(ip->i_afp->if_u1.if_data != NULL); 413 414 vecp->i_addr = ip->i_afp->if_u1.if_data; 415 /* 416 * Round i_bytes up to a word boundary. 417 * The underlying memory is guaranteed to 418 * to be there by xfs_idata_realloc(). 419 */ 420 data_bytes = roundup(ip->i_afp->if_bytes, 4); 421 ASSERT((ip->i_afp->if_real_bytes == 0) || 422 (ip->i_afp->if_real_bytes == data_bytes)); 423 vecp->i_len = (int)data_bytes; 424 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; 425 vecp++; 426 nvecs++; 427 iip->ili_format.ilf_asize = (unsigned)data_bytes; 428 } else { 429 iip->ili_fields &= ~XFS_ILOG_ADATA; 430 } 431 break; 432 433 default: 434 ASSERT(0); 435 break; 436 } 437 438 out: 439 /* 440 * Now update the log format that goes out to disk from the in-core 441 * values. We always write the inode core to make the arithmetic 442 * games in recovery easier, which isn't a big deal as just about any 443 * transaction would dirty it anyway. 444 */ 445 iip->ili_format.ilf_fields = XFS_ILOG_CORE | 446 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 447 iip->ili_format.ilf_size = nvecs; 448 } 449 450 451 /* 452 * This is called to pin the inode associated with the inode log 453 * item in memory so it cannot be written out. 454 */ 455 STATIC void 456 xfs_inode_item_pin( 457 struct xfs_log_item *lip) 458 { 459 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 460 461 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 462 463 trace_xfs_inode_pin(ip, _RET_IP_); 464 atomic_inc(&ip->i_pincount); 465 } 466 467 468 /* 469 * This is called to unpin the inode associated with the inode log 470 * item which was previously pinned with a call to xfs_inode_item_pin(). 471 * 472 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 473 */ 474 STATIC void 475 xfs_inode_item_unpin( 476 struct xfs_log_item *lip, 477 int remove) 478 { 479 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 480 481 trace_xfs_inode_unpin(ip, _RET_IP_); 482 ASSERT(atomic_read(&ip->i_pincount) > 0); 483 if (atomic_dec_and_test(&ip->i_pincount)) 484 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 485 } 486 487 STATIC uint 488 xfs_inode_item_push( 489 struct xfs_log_item *lip, 490 struct list_head *buffer_list) 491 { 492 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 493 struct xfs_inode *ip = iip->ili_inode; 494 struct xfs_buf *bp = NULL; 495 uint rval = XFS_ITEM_SUCCESS; 496 int error; 497 498 if (xfs_ipincount(ip) > 0) 499 return XFS_ITEM_PINNED; 500 501 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 502 return XFS_ITEM_LOCKED; 503 504 /* 505 * Re-check the pincount now that we stabilized the value by 506 * taking the ilock. 507 */ 508 if (xfs_ipincount(ip) > 0) { 509 rval = XFS_ITEM_PINNED; 510 goto out_unlock; 511 } 512 513 /* 514 * Stale inode items should force out the iclog. 515 */ 516 if (ip->i_flags & XFS_ISTALE) { 517 rval = XFS_ITEM_PINNED; 518 goto out_unlock; 519 } 520 521 /* 522 * Someone else is already flushing the inode. Nothing we can do 523 * here but wait for the flush to finish and remove the item from 524 * the AIL. 525 */ 526 if (!xfs_iflock_nowait(ip)) { 527 rval = XFS_ITEM_FLUSHING; 528 goto out_unlock; 529 } 530 531 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 532 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 533 534 spin_unlock(&lip->li_ailp->xa_lock); 535 536 error = xfs_iflush(ip, &bp); 537 if (!error) { 538 if (!xfs_buf_delwri_queue(bp, buffer_list)) 539 rval = XFS_ITEM_FLUSHING; 540 xfs_buf_relse(bp); 541 } 542 543 spin_lock(&lip->li_ailp->xa_lock); 544 out_unlock: 545 xfs_iunlock(ip, XFS_ILOCK_SHARED); 546 return rval; 547 } 548 549 /* 550 * Unlock the inode associated with the inode log item. 551 * Clear the fields of the inode and inode log item that 552 * are specific to the current transaction. If the 553 * hold flags is set, do not unlock the inode. 554 */ 555 STATIC void 556 xfs_inode_item_unlock( 557 struct xfs_log_item *lip) 558 { 559 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 560 struct xfs_inode *ip = iip->ili_inode; 561 unsigned short lock_flags; 562 563 ASSERT(ip->i_itemp != NULL); 564 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 565 566 /* 567 * If the inode needed a separate buffer with which to log 568 * its extents, then free it now. 569 */ 570 if (iip->ili_extents_buf != NULL) { 571 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 572 ASSERT(ip->i_d.di_nextents > 0); 573 ASSERT(iip->ili_fields & XFS_ILOG_DEXT); 574 ASSERT(ip->i_df.if_bytes > 0); 575 kmem_free(iip->ili_extents_buf); 576 iip->ili_extents_buf = NULL; 577 } 578 if (iip->ili_aextents_buf != NULL) { 579 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 580 ASSERT(ip->i_d.di_anextents > 0); 581 ASSERT(iip->ili_fields & XFS_ILOG_AEXT); 582 ASSERT(ip->i_afp->if_bytes > 0); 583 kmem_free(iip->ili_aextents_buf); 584 iip->ili_aextents_buf = NULL; 585 } 586 587 lock_flags = iip->ili_lock_flags; 588 iip->ili_lock_flags = 0; 589 if (lock_flags) 590 xfs_iunlock(ip, lock_flags); 591 } 592 593 /* 594 * This is called to find out where the oldest active copy of the inode log 595 * item in the on disk log resides now that the last log write of it completed 596 * at the given lsn. Since we always re-log all dirty data in an inode, the 597 * latest copy in the on disk log is the only one that matters. Therefore, 598 * simply return the given lsn. 599 * 600 * If the inode has been marked stale because the cluster is being freed, we 601 * don't want to (re-)insert this inode into the AIL. There is a race condition 602 * where the cluster buffer may be unpinned before the inode is inserted into 603 * the AIL during transaction committed processing. If the buffer is unpinned 604 * before the inode item has been committed and inserted, then it is possible 605 * for the buffer to be written and IO completes before the inode is inserted 606 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 607 * AIL which will never get removed. It will, however, get reclaimed which 608 * triggers an assert in xfs_inode_free() complaining about freein an inode 609 * still in the AIL. 610 * 611 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 612 * transaction committed code knows that it does not need to do any further 613 * processing on the item. 614 */ 615 STATIC xfs_lsn_t 616 xfs_inode_item_committed( 617 struct xfs_log_item *lip, 618 xfs_lsn_t lsn) 619 { 620 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 621 struct xfs_inode *ip = iip->ili_inode; 622 623 if (xfs_iflags_test(ip, XFS_ISTALE)) { 624 xfs_inode_item_unpin(lip, 0); 625 return -1; 626 } 627 return lsn; 628 } 629 630 /* 631 * XXX rcc - this one really has to do something. Probably needs 632 * to stamp in a new field in the incore inode. 633 */ 634 STATIC void 635 xfs_inode_item_committing( 636 struct xfs_log_item *lip, 637 xfs_lsn_t lsn) 638 { 639 INODE_ITEM(lip)->ili_last_lsn = lsn; 640 } 641 642 /* 643 * This is the ops vector shared by all buf log items. 644 */ 645 static const struct xfs_item_ops xfs_inode_item_ops = { 646 .iop_size = xfs_inode_item_size, 647 .iop_format = xfs_inode_item_format, 648 .iop_pin = xfs_inode_item_pin, 649 .iop_unpin = xfs_inode_item_unpin, 650 .iop_unlock = xfs_inode_item_unlock, 651 .iop_committed = xfs_inode_item_committed, 652 .iop_push = xfs_inode_item_push, 653 .iop_committing = xfs_inode_item_committing 654 }; 655 656 657 /* 658 * Initialize the inode log item for a newly allocated (in-core) inode. 659 */ 660 void 661 xfs_inode_item_init( 662 struct xfs_inode *ip, 663 struct xfs_mount *mp) 664 { 665 struct xfs_inode_log_item *iip; 666 667 ASSERT(ip->i_itemp == NULL); 668 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 669 670 iip->ili_inode = ip; 671 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 672 &xfs_inode_item_ops); 673 iip->ili_format.ilf_type = XFS_LI_INODE; 674 iip->ili_format.ilf_ino = ip->i_ino; 675 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; 676 iip->ili_format.ilf_len = ip->i_imap.im_len; 677 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; 678 } 679 680 /* 681 * Free the inode log item and any memory hanging off of it. 682 */ 683 void 684 xfs_inode_item_destroy( 685 xfs_inode_t *ip) 686 { 687 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 688 } 689 690 691 /* 692 * This is the inode flushing I/O completion routine. It is called 693 * from interrupt level when the buffer containing the inode is 694 * flushed to disk. It is responsible for removing the inode item 695 * from the AIL if it has not been re-logged, and unlocking the inode's 696 * flush lock. 697 * 698 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 699 * list for other inodes that will run this function. We remove them from the 700 * buffer list so we can process all the inode IO completions in one AIL lock 701 * traversal. 702 */ 703 void 704 xfs_iflush_done( 705 struct xfs_buf *bp, 706 struct xfs_log_item *lip) 707 { 708 struct xfs_inode_log_item *iip; 709 struct xfs_log_item *blip; 710 struct xfs_log_item *next; 711 struct xfs_log_item *prev; 712 struct xfs_ail *ailp = lip->li_ailp; 713 int need_ail = 0; 714 715 /* 716 * Scan the buffer IO completions for other inodes being completed and 717 * attach them to the current inode log item. 718 */ 719 blip = bp->b_fspriv; 720 prev = NULL; 721 while (blip != NULL) { 722 if (lip->li_cb != xfs_iflush_done) { 723 prev = blip; 724 blip = blip->li_bio_list; 725 continue; 726 } 727 728 /* remove from list */ 729 next = blip->li_bio_list; 730 if (!prev) { 731 bp->b_fspriv = next; 732 } else { 733 prev->li_bio_list = next; 734 } 735 736 /* add to current list */ 737 blip->li_bio_list = lip->li_bio_list; 738 lip->li_bio_list = blip; 739 740 /* 741 * while we have the item, do the unlocked check for needing 742 * the AIL lock. 743 */ 744 iip = INODE_ITEM(blip); 745 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 746 need_ail++; 747 748 blip = next; 749 } 750 751 /* make sure we capture the state of the initial inode. */ 752 iip = INODE_ITEM(lip); 753 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 754 need_ail++; 755 756 /* 757 * We only want to pull the item from the AIL if it is 758 * actually there and its location in the log has not 759 * changed since we started the flush. Thus, we only bother 760 * if the ili_logged flag is set and the inode's lsn has not 761 * changed. First we check the lsn outside 762 * the lock since it's cheaper, and then we recheck while 763 * holding the lock before removing the inode from the AIL. 764 */ 765 if (need_ail) { 766 struct xfs_log_item *log_items[need_ail]; 767 int i = 0; 768 spin_lock(&ailp->xa_lock); 769 for (blip = lip; blip; blip = blip->li_bio_list) { 770 iip = INODE_ITEM(blip); 771 if (iip->ili_logged && 772 blip->li_lsn == iip->ili_flush_lsn) { 773 log_items[i++] = blip; 774 } 775 ASSERT(i <= need_ail); 776 } 777 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 778 xfs_trans_ail_delete_bulk(ailp, log_items, i, 779 SHUTDOWN_CORRUPT_INCORE); 780 } 781 782 783 /* 784 * clean up and unlock the flush lock now we are done. We can clear the 785 * ili_last_fields bits now that we know that the data corresponding to 786 * them is safely on disk. 787 */ 788 for (blip = lip; blip; blip = next) { 789 next = blip->li_bio_list; 790 blip->li_bio_list = NULL; 791 792 iip = INODE_ITEM(blip); 793 iip->ili_logged = 0; 794 iip->ili_last_fields = 0; 795 xfs_ifunlock(iip->ili_inode); 796 } 797 } 798 799 /* 800 * This is the inode flushing abort routine. It is called from xfs_iflush when 801 * the filesystem is shutting down to clean up the inode state. It is 802 * responsible for removing the inode item from the AIL if it has not been 803 * re-logged, and unlocking the inode's flush lock. 804 */ 805 void 806 xfs_iflush_abort( 807 xfs_inode_t *ip, 808 bool stale) 809 { 810 xfs_inode_log_item_t *iip = ip->i_itemp; 811 812 if (iip) { 813 struct xfs_ail *ailp = iip->ili_item.li_ailp; 814 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 815 spin_lock(&ailp->xa_lock); 816 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 817 /* xfs_trans_ail_delete() drops the AIL lock. */ 818 xfs_trans_ail_delete(ailp, &iip->ili_item, 819 stale ? 820 SHUTDOWN_LOG_IO_ERROR : 821 SHUTDOWN_CORRUPT_INCORE); 822 } else 823 spin_unlock(&ailp->xa_lock); 824 } 825 iip->ili_logged = 0; 826 /* 827 * Clear the ili_last_fields bits now that we know that the 828 * data corresponding to them is safely on disk. 829 */ 830 iip->ili_last_fields = 0; 831 /* 832 * Clear the inode logging fields so no more flushes are 833 * attempted. 834 */ 835 iip->ili_fields = 0; 836 } 837 /* 838 * Release the inode's flush lock since we're done with it. 839 */ 840 xfs_ifunlock(ip); 841 } 842 843 void 844 xfs_istale_done( 845 struct xfs_buf *bp, 846 struct xfs_log_item *lip) 847 { 848 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 849 } 850 851 /* 852 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 853 * (which can have different field alignments) to the native version 854 */ 855 int 856 xfs_inode_item_format_convert( 857 xfs_log_iovec_t *buf, 858 xfs_inode_log_format_t *in_f) 859 { 860 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 861 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 862 863 in_f->ilf_type = in_f32->ilf_type; 864 in_f->ilf_size = in_f32->ilf_size; 865 in_f->ilf_fields = in_f32->ilf_fields; 866 in_f->ilf_asize = in_f32->ilf_asize; 867 in_f->ilf_dsize = in_f32->ilf_dsize; 868 in_f->ilf_ino = in_f32->ilf_ino; 869 /* copy biggest field of ilf_u */ 870 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 871 in_f32->ilf_u.ilfu_uuid.__u_bits, 872 sizeof(uuid_t)); 873 in_f->ilf_blkno = in_f32->ilf_blkno; 874 in_f->ilf_len = in_f32->ilf_len; 875 in_f->ilf_boffset = in_f32->ilf_boffset; 876 return 0; 877 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 878 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 879 880 in_f->ilf_type = in_f64->ilf_type; 881 in_f->ilf_size = in_f64->ilf_size; 882 in_f->ilf_fields = in_f64->ilf_fields; 883 in_f->ilf_asize = in_f64->ilf_asize; 884 in_f->ilf_dsize = in_f64->ilf_dsize; 885 in_f->ilf_ino = in_f64->ilf_ino; 886 /* copy biggest field of ilf_u */ 887 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 888 in_f64->ilf_u.ilfu_uuid.__u_bits, 889 sizeof(uuid_t)); 890 in_f->ilf_blkno = in_f64->ilf_blkno; 891 in_f->ilf_len = in_f64->ilf_len; 892 in_f->ilf_boffset = in_f64->ilf_boffset; 893 return 0; 894 } 895 return EFSCORRUPTED; 896 } 897