1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_error.h" 28 #include "xfs_trace.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_log.h" 32 33 34 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 35 36 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 37 { 38 return container_of(lip, struct xfs_inode_log_item, ili_item); 39 } 40 41 STATIC void 42 xfs_inode_item_data_fork_size( 43 struct xfs_inode_log_item *iip, 44 int *nvecs, 45 int *nbytes) 46 { 47 struct xfs_inode *ip = iip->ili_inode; 48 49 switch (ip->i_d.di_format) { 50 case XFS_DINODE_FMT_EXTENTS: 51 if ((iip->ili_fields & XFS_ILOG_DEXT) && 52 ip->i_d.di_nextents > 0 && 53 ip->i_df.if_bytes > 0) { 54 /* worst case, doesn't subtract delalloc extents */ 55 *nbytes += XFS_IFORK_DSIZE(ip); 56 *nvecs += 1; 57 } 58 break; 59 case XFS_DINODE_FMT_BTREE: 60 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 61 ip->i_df.if_broot_bytes > 0) { 62 *nbytes += ip->i_df.if_broot_bytes; 63 *nvecs += 1; 64 } 65 break; 66 case XFS_DINODE_FMT_LOCAL: 67 if ((iip->ili_fields & XFS_ILOG_DDATA) && 68 ip->i_df.if_bytes > 0) { 69 *nbytes += roundup(ip->i_df.if_bytes, 4); 70 *nvecs += 1; 71 } 72 break; 73 74 case XFS_DINODE_FMT_DEV: 75 break; 76 default: 77 ASSERT(0); 78 break; 79 } 80 } 81 82 STATIC void 83 xfs_inode_item_attr_fork_size( 84 struct xfs_inode_log_item *iip, 85 int *nvecs, 86 int *nbytes) 87 { 88 struct xfs_inode *ip = iip->ili_inode; 89 90 switch (ip->i_d.di_aformat) { 91 case XFS_DINODE_FMT_EXTENTS: 92 if ((iip->ili_fields & XFS_ILOG_AEXT) && 93 ip->i_d.di_anextents > 0 && 94 ip->i_afp->if_bytes > 0) { 95 /* worst case, doesn't subtract unused space */ 96 *nbytes += XFS_IFORK_ASIZE(ip); 97 *nvecs += 1; 98 } 99 break; 100 case XFS_DINODE_FMT_BTREE: 101 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 102 ip->i_afp->if_broot_bytes > 0) { 103 *nbytes += ip->i_afp->if_broot_bytes; 104 *nvecs += 1; 105 } 106 break; 107 case XFS_DINODE_FMT_LOCAL: 108 if ((iip->ili_fields & XFS_ILOG_ADATA) && 109 ip->i_afp->if_bytes > 0) { 110 *nbytes += roundup(ip->i_afp->if_bytes, 4); 111 *nvecs += 1; 112 } 113 break; 114 default: 115 ASSERT(0); 116 break; 117 } 118 } 119 120 /* 121 * This returns the number of iovecs needed to log the given inode item. 122 * 123 * We need one iovec for the inode log format structure, one for the 124 * inode core, and possibly one for the inode data/extents/b-tree root 125 * and one for the inode attribute data/extents/b-tree root. 126 */ 127 STATIC void 128 xfs_inode_item_size( 129 struct xfs_log_item *lip, 130 int *nvecs, 131 int *nbytes) 132 { 133 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 134 struct xfs_inode *ip = iip->ili_inode; 135 136 *nvecs += 2; 137 *nbytes += sizeof(struct xfs_inode_log_format) + 138 xfs_log_dinode_size(ip->i_d.di_version); 139 140 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 141 if (XFS_IFORK_Q(ip)) 142 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 143 } 144 145 STATIC void 146 xfs_inode_item_format_data_fork( 147 struct xfs_inode_log_item *iip, 148 struct xfs_inode_log_format *ilf, 149 struct xfs_log_vec *lv, 150 struct xfs_log_iovec **vecp) 151 { 152 struct xfs_inode *ip = iip->ili_inode; 153 size_t data_bytes; 154 155 switch (ip->i_d.di_format) { 156 case XFS_DINODE_FMT_EXTENTS: 157 iip->ili_fields &= 158 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 159 160 if ((iip->ili_fields & XFS_ILOG_DEXT) && 161 ip->i_d.di_nextents > 0 && 162 ip->i_df.if_bytes > 0) { 163 struct xfs_bmbt_rec *p; 164 165 ASSERT(xfs_iext_count(&ip->i_df) > 0); 166 167 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 168 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 169 xlog_finish_iovec(lv, *vecp, data_bytes); 170 171 ASSERT(data_bytes <= ip->i_df.if_bytes); 172 173 ilf->ilf_dsize = data_bytes; 174 ilf->ilf_size++; 175 } else { 176 iip->ili_fields &= ~XFS_ILOG_DEXT; 177 } 178 break; 179 case XFS_DINODE_FMT_BTREE: 180 iip->ili_fields &= 181 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 182 183 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 184 ip->i_df.if_broot_bytes > 0) { 185 ASSERT(ip->i_df.if_broot != NULL); 186 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 187 ip->i_df.if_broot, 188 ip->i_df.if_broot_bytes); 189 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 190 ilf->ilf_size++; 191 } else { 192 ASSERT(!(iip->ili_fields & 193 XFS_ILOG_DBROOT)); 194 iip->ili_fields &= ~XFS_ILOG_DBROOT; 195 } 196 break; 197 case XFS_DINODE_FMT_LOCAL: 198 iip->ili_fields &= 199 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 200 if ((iip->ili_fields & XFS_ILOG_DDATA) && 201 ip->i_df.if_bytes > 0) { 202 /* 203 * Round i_bytes up to a word boundary. 204 * The underlying memory is guaranteed to 205 * to be there by xfs_idata_realloc(). 206 */ 207 data_bytes = roundup(ip->i_df.if_bytes, 4); 208 ASSERT(ip->i_df.if_real_bytes == 0 || 209 ip->i_df.if_real_bytes >= data_bytes); 210 ASSERT(ip->i_df.if_u1.if_data != NULL); 211 ASSERT(ip->i_d.di_size > 0); 212 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 213 ip->i_df.if_u1.if_data, data_bytes); 214 ilf->ilf_dsize = (unsigned)data_bytes; 215 ilf->ilf_size++; 216 } else { 217 iip->ili_fields &= ~XFS_ILOG_DDATA; 218 } 219 break; 220 case XFS_DINODE_FMT_DEV: 221 iip->ili_fields &= 222 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 223 if (iip->ili_fields & XFS_ILOG_DEV) 224 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 225 break; 226 default: 227 ASSERT(0); 228 break; 229 } 230 } 231 232 STATIC void 233 xfs_inode_item_format_attr_fork( 234 struct xfs_inode_log_item *iip, 235 struct xfs_inode_log_format *ilf, 236 struct xfs_log_vec *lv, 237 struct xfs_log_iovec **vecp) 238 { 239 struct xfs_inode *ip = iip->ili_inode; 240 size_t data_bytes; 241 242 switch (ip->i_d.di_aformat) { 243 case XFS_DINODE_FMT_EXTENTS: 244 iip->ili_fields &= 245 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 246 247 if ((iip->ili_fields & XFS_ILOG_AEXT) && 248 ip->i_d.di_anextents > 0 && 249 ip->i_afp->if_bytes > 0) { 250 struct xfs_bmbt_rec *p; 251 252 ASSERT(xfs_iext_count(ip->i_afp) == 253 ip->i_d.di_anextents); 254 255 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 256 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 257 xlog_finish_iovec(lv, *vecp, data_bytes); 258 259 ilf->ilf_asize = data_bytes; 260 ilf->ilf_size++; 261 } else { 262 iip->ili_fields &= ~XFS_ILOG_AEXT; 263 } 264 break; 265 case XFS_DINODE_FMT_BTREE: 266 iip->ili_fields &= 267 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 268 269 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 270 ip->i_afp->if_broot_bytes > 0) { 271 ASSERT(ip->i_afp->if_broot != NULL); 272 273 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 274 ip->i_afp->if_broot, 275 ip->i_afp->if_broot_bytes); 276 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 277 ilf->ilf_size++; 278 } else { 279 iip->ili_fields &= ~XFS_ILOG_ABROOT; 280 } 281 break; 282 case XFS_DINODE_FMT_LOCAL: 283 iip->ili_fields &= 284 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 285 286 if ((iip->ili_fields & XFS_ILOG_ADATA) && 287 ip->i_afp->if_bytes > 0) { 288 /* 289 * Round i_bytes up to a word boundary. 290 * The underlying memory is guaranteed to 291 * to be there by xfs_idata_realloc(). 292 */ 293 data_bytes = roundup(ip->i_afp->if_bytes, 4); 294 ASSERT(ip->i_afp->if_real_bytes == 0 || 295 ip->i_afp->if_real_bytes >= data_bytes); 296 ASSERT(ip->i_afp->if_u1.if_data != NULL); 297 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 298 ip->i_afp->if_u1.if_data, 299 data_bytes); 300 ilf->ilf_asize = (unsigned)data_bytes; 301 ilf->ilf_size++; 302 } else { 303 iip->ili_fields &= ~XFS_ILOG_ADATA; 304 } 305 break; 306 default: 307 ASSERT(0); 308 break; 309 } 310 } 311 312 static void 313 xfs_inode_to_log_dinode( 314 struct xfs_inode *ip, 315 struct xfs_log_dinode *to, 316 xfs_lsn_t lsn) 317 { 318 struct xfs_icdinode *from = &ip->i_d; 319 struct inode *inode = VFS_I(ip); 320 321 to->di_magic = XFS_DINODE_MAGIC; 322 323 to->di_version = from->di_version; 324 to->di_format = from->di_format; 325 to->di_uid = from->di_uid; 326 to->di_gid = from->di_gid; 327 to->di_projid_lo = from->di_projid_lo; 328 to->di_projid_hi = from->di_projid_hi; 329 330 memset(to->di_pad, 0, sizeof(to->di_pad)); 331 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 332 to->di_atime.t_sec = inode->i_atime.tv_sec; 333 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 334 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 335 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 336 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 337 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 338 to->di_nlink = inode->i_nlink; 339 to->di_gen = inode->i_generation; 340 to->di_mode = inode->i_mode; 341 342 to->di_size = from->di_size; 343 to->di_nblocks = from->di_nblocks; 344 to->di_extsize = from->di_extsize; 345 to->di_nextents = from->di_nextents; 346 to->di_anextents = from->di_anextents; 347 to->di_forkoff = from->di_forkoff; 348 to->di_aformat = from->di_aformat; 349 to->di_dmevmask = from->di_dmevmask; 350 to->di_dmstate = from->di_dmstate; 351 to->di_flags = from->di_flags; 352 353 /* log a dummy value to ensure log structure is fully initialised */ 354 to->di_next_unlinked = NULLAGINO; 355 356 if (from->di_version == 3) { 357 to->di_changecount = inode->i_version; 358 to->di_crtime.t_sec = from->di_crtime.t_sec; 359 to->di_crtime.t_nsec = from->di_crtime.t_nsec; 360 to->di_flags2 = from->di_flags2; 361 to->di_cowextsize = from->di_cowextsize; 362 to->di_ino = ip->i_ino; 363 to->di_lsn = lsn; 364 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 365 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 366 to->di_flushiter = 0; 367 } else { 368 to->di_flushiter = from->di_flushiter; 369 } 370 } 371 372 /* 373 * Format the inode core. Current timestamp data is only in the VFS inode 374 * fields, so we need to grab them from there. Hence rather than just copying 375 * the XFS inode core structure, format the fields directly into the iovec. 376 */ 377 static void 378 xfs_inode_item_format_core( 379 struct xfs_inode *ip, 380 struct xfs_log_vec *lv, 381 struct xfs_log_iovec **vecp) 382 { 383 struct xfs_log_dinode *dic; 384 385 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 386 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 387 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); 388 } 389 390 /* 391 * This is called to fill in the vector of log iovecs for the given inode 392 * log item. It fills the first item with an inode log format structure, 393 * the second with the on-disk inode structure, and a possible third and/or 394 * fourth with the inode data/extents/b-tree root and inode attributes 395 * data/extents/b-tree root. 396 * 397 * Note: Always use the 64 bit inode log format structure so we don't 398 * leave an uninitialised hole in the format item on 64 bit systems. Log 399 * recovery on 32 bit systems handles this just fine, so there's no reason 400 * for not using an initialising the properly padded structure all the time. 401 */ 402 STATIC void 403 xfs_inode_item_format( 404 struct xfs_log_item *lip, 405 struct xfs_log_vec *lv) 406 { 407 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 408 struct xfs_inode *ip = iip->ili_inode; 409 struct xfs_log_iovec *vecp = NULL; 410 struct xfs_inode_log_format *ilf; 411 412 ASSERT(ip->i_d.di_version > 1); 413 414 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 415 ilf->ilf_type = XFS_LI_INODE; 416 ilf->ilf_ino = ip->i_ino; 417 ilf->ilf_blkno = ip->i_imap.im_blkno; 418 ilf->ilf_len = ip->i_imap.im_len; 419 ilf->ilf_boffset = ip->i_imap.im_boffset; 420 ilf->ilf_fields = XFS_ILOG_CORE; 421 ilf->ilf_size = 2; /* format + core */ 422 423 /* 424 * make sure we don't leak uninitialised data into the log in the case 425 * when we don't log every field in the inode. 426 */ 427 ilf->ilf_dsize = 0; 428 ilf->ilf_asize = 0; 429 ilf->ilf_pad = 0; 430 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 431 432 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 433 434 xfs_inode_item_format_core(ip, lv, &vecp); 435 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 436 if (XFS_IFORK_Q(ip)) { 437 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 438 } else { 439 iip->ili_fields &= 440 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 441 } 442 443 /* update the format with the exact fields we actually logged */ 444 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 445 } 446 447 /* 448 * This is called to pin the inode associated with the inode log 449 * item in memory so it cannot be written out. 450 */ 451 STATIC void 452 xfs_inode_item_pin( 453 struct xfs_log_item *lip) 454 { 455 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 456 457 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 458 459 trace_xfs_inode_pin(ip, _RET_IP_); 460 atomic_inc(&ip->i_pincount); 461 } 462 463 464 /* 465 * This is called to unpin the inode associated with the inode log 466 * item which was previously pinned with a call to xfs_inode_item_pin(). 467 * 468 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 469 */ 470 STATIC void 471 xfs_inode_item_unpin( 472 struct xfs_log_item *lip, 473 int remove) 474 { 475 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 476 477 trace_xfs_inode_unpin(ip, _RET_IP_); 478 ASSERT(atomic_read(&ip->i_pincount) > 0); 479 if (atomic_dec_and_test(&ip->i_pincount)) 480 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 481 } 482 483 /* 484 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer 485 * have been failed during writeback 486 * 487 * This informs the AIL that the inode is already flush locked on the next push, 488 * and acquires a hold on the buffer to ensure that it isn't reclaimed before 489 * dirty data makes it to disk. 490 */ 491 STATIC void 492 xfs_inode_item_error( 493 struct xfs_log_item *lip, 494 struct xfs_buf *bp) 495 { 496 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); 497 xfs_set_li_failed(lip, bp); 498 } 499 500 STATIC uint 501 xfs_inode_item_push( 502 struct xfs_log_item *lip, 503 struct list_head *buffer_list) 504 __releases(&lip->li_ailp->xa_lock) 505 __acquires(&lip->li_ailp->xa_lock) 506 { 507 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 508 struct xfs_inode *ip = iip->ili_inode; 509 struct xfs_buf *bp = lip->li_buf; 510 uint rval = XFS_ITEM_SUCCESS; 511 int error; 512 513 if (xfs_ipincount(ip) > 0) 514 return XFS_ITEM_PINNED; 515 516 /* 517 * The buffer containing this item failed to be written back 518 * previously. Resubmit the buffer for IO. 519 */ 520 if (lip->li_flags & XFS_LI_FAILED) { 521 if (!xfs_buf_trylock(bp)) 522 return XFS_ITEM_LOCKED; 523 524 if (!xfs_buf_resubmit_failed_buffers(bp, lip, buffer_list)) 525 rval = XFS_ITEM_FLUSHING; 526 527 xfs_buf_unlock(bp); 528 return rval; 529 } 530 531 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 532 return XFS_ITEM_LOCKED; 533 534 /* 535 * Re-check the pincount now that we stabilized the value by 536 * taking the ilock. 537 */ 538 if (xfs_ipincount(ip) > 0) { 539 rval = XFS_ITEM_PINNED; 540 goto out_unlock; 541 } 542 543 /* 544 * Stale inode items should force out the iclog. 545 */ 546 if (ip->i_flags & XFS_ISTALE) { 547 rval = XFS_ITEM_PINNED; 548 goto out_unlock; 549 } 550 551 /* 552 * Someone else is already flushing the inode. Nothing we can do 553 * here but wait for the flush to finish and remove the item from 554 * the AIL. 555 */ 556 if (!xfs_iflock_nowait(ip)) { 557 rval = XFS_ITEM_FLUSHING; 558 goto out_unlock; 559 } 560 561 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 562 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 563 564 spin_unlock(&lip->li_ailp->xa_lock); 565 566 error = xfs_iflush(ip, &bp); 567 if (!error) { 568 if (!xfs_buf_delwri_queue(bp, buffer_list)) 569 rval = XFS_ITEM_FLUSHING; 570 xfs_buf_relse(bp); 571 } 572 573 spin_lock(&lip->li_ailp->xa_lock); 574 out_unlock: 575 xfs_iunlock(ip, XFS_ILOCK_SHARED); 576 return rval; 577 } 578 579 /* 580 * Unlock the inode associated with the inode log item. 581 * Clear the fields of the inode and inode log item that 582 * are specific to the current transaction. If the 583 * hold flags is set, do not unlock the inode. 584 */ 585 STATIC void 586 xfs_inode_item_unlock( 587 struct xfs_log_item *lip) 588 { 589 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 590 struct xfs_inode *ip = iip->ili_inode; 591 unsigned short lock_flags; 592 593 ASSERT(ip->i_itemp != NULL); 594 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 595 596 lock_flags = iip->ili_lock_flags; 597 iip->ili_lock_flags = 0; 598 if (lock_flags) 599 xfs_iunlock(ip, lock_flags); 600 } 601 602 /* 603 * This is called to find out where the oldest active copy of the inode log 604 * item in the on disk log resides now that the last log write of it completed 605 * at the given lsn. Since we always re-log all dirty data in an inode, the 606 * latest copy in the on disk log is the only one that matters. Therefore, 607 * simply return the given lsn. 608 * 609 * If the inode has been marked stale because the cluster is being freed, we 610 * don't want to (re-)insert this inode into the AIL. There is a race condition 611 * where the cluster buffer may be unpinned before the inode is inserted into 612 * the AIL during transaction committed processing. If the buffer is unpinned 613 * before the inode item has been committed and inserted, then it is possible 614 * for the buffer to be written and IO completes before the inode is inserted 615 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 616 * AIL which will never get removed. It will, however, get reclaimed which 617 * triggers an assert in xfs_inode_free() complaining about freein an inode 618 * still in the AIL. 619 * 620 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 621 * transaction committed code knows that it does not need to do any further 622 * processing on the item. 623 */ 624 STATIC xfs_lsn_t 625 xfs_inode_item_committed( 626 struct xfs_log_item *lip, 627 xfs_lsn_t lsn) 628 { 629 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 630 struct xfs_inode *ip = iip->ili_inode; 631 632 if (xfs_iflags_test(ip, XFS_ISTALE)) { 633 xfs_inode_item_unpin(lip, 0); 634 return -1; 635 } 636 return lsn; 637 } 638 639 /* 640 * XXX rcc - this one really has to do something. Probably needs 641 * to stamp in a new field in the incore inode. 642 */ 643 STATIC void 644 xfs_inode_item_committing( 645 struct xfs_log_item *lip, 646 xfs_lsn_t lsn) 647 { 648 INODE_ITEM(lip)->ili_last_lsn = lsn; 649 } 650 651 /* 652 * This is the ops vector shared by all buf log items. 653 */ 654 static const struct xfs_item_ops xfs_inode_item_ops = { 655 .iop_size = xfs_inode_item_size, 656 .iop_format = xfs_inode_item_format, 657 .iop_pin = xfs_inode_item_pin, 658 .iop_unpin = xfs_inode_item_unpin, 659 .iop_unlock = xfs_inode_item_unlock, 660 .iop_committed = xfs_inode_item_committed, 661 .iop_push = xfs_inode_item_push, 662 .iop_committing = xfs_inode_item_committing, 663 .iop_error = xfs_inode_item_error 664 }; 665 666 667 /* 668 * Initialize the inode log item for a newly allocated (in-core) inode. 669 */ 670 void 671 xfs_inode_item_init( 672 struct xfs_inode *ip, 673 struct xfs_mount *mp) 674 { 675 struct xfs_inode_log_item *iip; 676 677 ASSERT(ip->i_itemp == NULL); 678 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 679 680 iip->ili_inode = ip; 681 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 682 &xfs_inode_item_ops); 683 } 684 685 /* 686 * Free the inode log item and any memory hanging off of it. 687 */ 688 void 689 xfs_inode_item_destroy( 690 xfs_inode_t *ip) 691 { 692 kmem_free(ip->i_itemp->ili_item.li_lv_shadow); 693 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 694 } 695 696 697 /* 698 * This is the inode flushing I/O completion routine. It is called 699 * from interrupt level when the buffer containing the inode is 700 * flushed to disk. It is responsible for removing the inode item 701 * from the AIL if it has not been re-logged, and unlocking the inode's 702 * flush lock. 703 * 704 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 705 * list for other inodes that will run this function. We remove them from the 706 * buffer list so we can process all the inode IO completions in one AIL lock 707 * traversal. 708 */ 709 void 710 xfs_iflush_done( 711 struct xfs_buf *bp, 712 struct xfs_log_item *lip) 713 { 714 struct xfs_inode_log_item *iip; 715 struct xfs_log_item *blip; 716 struct xfs_log_item *next; 717 struct xfs_log_item *prev; 718 struct xfs_ail *ailp = lip->li_ailp; 719 int need_ail = 0; 720 721 /* 722 * Scan the buffer IO completions for other inodes being completed and 723 * attach them to the current inode log item. 724 */ 725 blip = bp->b_fspriv; 726 prev = NULL; 727 while (blip != NULL) { 728 if (blip->li_cb != xfs_iflush_done) { 729 prev = blip; 730 blip = blip->li_bio_list; 731 continue; 732 } 733 734 /* remove from list */ 735 next = blip->li_bio_list; 736 if (!prev) { 737 bp->b_fspriv = next; 738 } else { 739 prev->li_bio_list = next; 740 } 741 742 /* add to current list */ 743 blip->li_bio_list = lip->li_bio_list; 744 lip->li_bio_list = blip; 745 746 /* 747 * while we have the item, do the unlocked check for needing 748 * the AIL lock. 749 */ 750 iip = INODE_ITEM(blip); 751 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || 752 (blip->li_flags & XFS_LI_FAILED)) 753 need_ail++; 754 755 blip = next; 756 } 757 758 /* make sure we capture the state of the initial inode. */ 759 iip = INODE_ITEM(lip); 760 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || 761 lip->li_flags & XFS_LI_FAILED) 762 need_ail++; 763 764 /* 765 * We only want to pull the item from the AIL if it is 766 * actually there and its location in the log has not 767 * changed since we started the flush. Thus, we only bother 768 * if the ili_logged flag is set and the inode's lsn has not 769 * changed. First we check the lsn outside 770 * the lock since it's cheaper, and then we recheck while 771 * holding the lock before removing the inode from the AIL. 772 */ 773 if (need_ail) { 774 bool mlip_changed = false; 775 776 /* this is an opencoded batch version of xfs_trans_ail_delete */ 777 spin_lock(&ailp->xa_lock); 778 for (blip = lip; blip; blip = blip->li_bio_list) { 779 if (INODE_ITEM(blip)->ili_logged && 780 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) 781 mlip_changed |= xfs_ail_delete_one(ailp, blip); 782 else { 783 xfs_clear_li_failed(blip); 784 } 785 } 786 787 if (mlip_changed) { 788 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) 789 xlog_assign_tail_lsn_locked(ailp->xa_mount); 790 if (list_empty(&ailp->xa_ail)) 791 wake_up_all(&ailp->xa_empty); 792 } 793 spin_unlock(&ailp->xa_lock); 794 795 if (mlip_changed) 796 xfs_log_space_wake(ailp->xa_mount); 797 } 798 799 /* 800 * clean up and unlock the flush lock now we are done. We can clear the 801 * ili_last_fields bits now that we know that the data corresponding to 802 * them is safely on disk. 803 */ 804 for (blip = lip; blip; blip = next) { 805 next = blip->li_bio_list; 806 blip->li_bio_list = NULL; 807 808 iip = INODE_ITEM(blip); 809 iip->ili_logged = 0; 810 iip->ili_last_fields = 0; 811 xfs_ifunlock(iip->ili_inode); 812 } 813 } 814 815 /* 816 * This is the inode flushing abort routine. It is called from xfs_iflush when 817 * the filesystem is shutting down to clean up the inode state. It is 818 * responsible for removing the inode item from the AIL if it has not been 819 * re-logged, and unlocking the inode's flush lock. 820 */ 821 void 822 xfs_iflush_abort( 823 xfs_inode_t *ip, 824 bool stale) 825 { 826 xfs_inode_log_item_t *iip = ip->i_itemp; 827 828 if (iip) { 829 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 830 xfs_trans_ail_remove(&iip->ili_item, 831 stale ? SHUTDOWN_LOG_IO_ERROR : 832 SHUTDOWN_CORRUPT_INCORE); 833 } 834 iip->ili_logged = 0; 835 /* 836 * Clear the ili_last_fields bits now that we know that the 837 * data corresponding to them is safely on disk. 838 */ 839 iip->ili_last_fields = 0; 840 /* 841 * Clear the inode logging fields so no more flushes are 842 * attempted. 843 */ 844 iip->ili_fields = 0; 845 iip->ili_fsync_fields = 0; 846 } 847 /* 848 * Release the inode's flush lock since we're done with it. 849 */ 850 xfs_ifunlock(ip); 851 } 852 853 void 854 xfs_istale_done( 855 struct xfs_buf *bp, 856 struct xfs_log_item *lip) 857 { 858 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 859 } 860 861 /* 862 * convert an xfs_inode_log_format struct from the old 32 bit version 863 * (which can have different field alignments) to the native 64 bit version 864 */ 865 int 866 xfs_inode_item_format_convert( 867 struct xfs_log_iovec *buf, 868 struct xfs_inode_log_format *in_f) 869 { 870 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 871 872 if (buf->i_len != sizeof(*in_f32)) 873 return -EFSCORRUPTED; 874 875 in_f->ilf_type = in_f32->ilf_type; 876 in_f->ilf_size = in_f32->ilf_size; 877 in_f->ilf_fields = in_f32->ilf_fields; 878 in_f->ilf_asize = in_f32->ilf_asize; 879 in_f->ilf_dsize = in_f32->ilf_dsize; 880 in_f->ilf_ino = in_f32->ilf_ino; 881 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 882 in_f->ilf_blkno = in_f32->ilf_blkno; 883 in_f->ilf_len = in_f32->ilf_len; 884 in_f->ilf_boffset = in_f32->ilf_boffset; 885 return 0; 886 } 887