xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision fd589a8f)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_filestream.h"
53 #include "xfs_vnodeops.h"
54 
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
57 
58 /*
59  * Used in xfs_itruncate().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	xfs_exntfmt_t		fmt)
79 {
80 	xfs_bmbt_irec_t		irec;
81 	xfs_bmbt_rec_host_t	rec;
82 	int			i;
83 
84 	for (i = 0; i < nrecs; i++) {
85 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 		rec.l0 = get_unaligned(&ep->l0);
87 		rec.l1 = get_unaligned(&ep->l1);
88 		xfs_bmbt_get_all(&rec, &irec);
89 		if (fmt == XFS_EXTFMT_NOSTATE)
90 			ASSERT(irec.br_state == XFS_EXT_NORM);
91 	}
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96 
97 /*
98  * Check that none of the inode's in the buffer have a next
99  * unlinked field of 0.
100  */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 	xfs_mount_t	*mp,
105 	xfs_buf_t	*bp)
106 {
107 	int		i;
108 	int		j;
109 	xfs_dinode_t	*dip;
110 
111 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 
113 	for (i = 0; i < j; i++) {
114 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 					i * mp->m_sb.sb_inodesize);
116 		if (!dip->di_next_unlinked)  {
117 			xfs_fs_cmn_err(CE_ALERT, mp,
118 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
119 				bp);
120 			ASSERT(dip->di_next_unlinked);
121 		}
122 	}
123 }
124 #endif
125 
126 /*
127  * Find the buffer associated with the given inode map
128  * We do basic validation checks on the buffer once it has been
129  * retrieved from disk.
130  */
131 STATIC int
132 xfs_imap_to_bp(
133 	xfs_mount_t	*mp,
134 	xfs_trans_t	*tp,
135 	struct xfs_imap	*imap,
136 	xfs_buf_t	**bpp,
137 	uint		buf_flags,
138 	uint		iget_flags)
139 {
140 	int		error;
141 	int		i;
142 	int		ni;
143 	xfs_buf_t	*bp;
144 
145 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 				   (int)imap->im_len, buf_flags, &bp);
147 	if (error) {
148 		if (error != EAGAIN) {
149 			cmn_err(CE_WARN,
150 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 				"an error %d on %s.  Returning error.",
152 				error, mp->m_fsname);
153 		} else {
154 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
155 		}
156 		return error;
157 	}
158 
159 	/*
160 	 * Validate the magic number and version of every inode in the buffer
161 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
162 	 */
163 #ifdef DEBUG
164 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else	/* usual case */
166 	ni = 1;
167 #endif
168 
169 	for (i = 0; i < ni; i++) {
170 		int		di_ok;
171 		xfs_dinode_t	*dip;
172 
173 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 					(i << mp->m_sb.sb_inodelog));
175 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
177 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 						XFS_ERRTAG_ITOBP_INOTOBP,
179 						XFS_RANDOM_ITOBP_INOTOBP))) {
180 			if (iget_flags & XFS_IGET_BULKSTAT) {
181 				xfs_trans_brelse(tp, bp);
182 				return XFS_ERROR(EINVAL);
183 			}
184 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 						XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 			cmn_err(CE_PANIC,
188 					"Device %s - bad inode magic/vsn "
189 					"daddr %lld #%d (magic=%x)",
190 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 				(unsigned long long)imap->im_blkno, i,
192 				be16_to_cpu(dip->di_magic));
193 #endif
194 			xfs_trans_brelse(tp, bp);
195 			return XFS_ERROR(EFSCORRUPTED);
196 		}
197 	}
198 
199 	xfs_inobp_check(mp, bp);
200 
201 	/*
202 	 * Mark the buffer as an inode buffer now that it looks good
203 	 */
204 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
205 
206 	*bpp = bp;
207 	return 0;
208 }
209 
210 /*
211  * This routine is called to map an inode number within a file
212  * system to the buffer containing the on-disk version of the
213  * inode.  It returns a pointer to the buffer containing the
214  * on-disk inode in the bpp parameter, and in the dip parameter
215  * it returns a pointer to the on-disk inode within that buffer.
216  *
217  * If a non-zero error is returned, then the contents of bpp and
218  * dipp are undefined.
219  *
220  * Use xfs_imap() to determine the size and location of the
221  * buffer to read from disk.
222  */
223 int
224 xfs_inotobp(
225 	xfs_mount_t	*mp,
226 	xfs_trans_t	*tp,
227 	xfs_ino_t	ino,
228 	xfs_dinode_t	**dipp,
229 	xfs_buf_t	**bpp,
230 	int		*offset,
231 	uint		imap_flags)
232 {
233 	struct xfs_imap	imap;
234 	xfs_buf_t	*bp;
235 	int		error;
236 
237 	imap.im_blkno = 0;
238 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 	if (error)
240 		return error;
241 
242 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
243 	if (error)
244 		return error;
245 
246 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 	*bpp = bp;
248 	*offset = imap.im_boffset;
249 	return 0;
250 }
251 
252 
253 /*
254  * This routine is called to map an inode to the buffer containing
255  * the on-disk version of the inode.  It returns a pointer to the
256  * buffer containing the on-disk inode in the bpp parameter, and in
257  * the dip parameter it returns a pointer to the on-disk inode within
258  * that buffer.
259  *
260  * If a non-zero error is returned, then the contents of bpp and
261  * dipp are undefined.
262  *
263  * The inode is expected to already been mapped to its buffer and read
264  * in once, thus we can use the mapping information stored in the inode
265  * rather than calling xfs_imap().  This allows us to avoid the overhead
266  * of looking at the inode btree for small block file systems
267  * (see xfs_imap()).
268  */
269 int
270 xfs_itobp(
271 	xfs_mount_t	*mp,
272 	xfs_trans_t	*tp,
273 	xfs_inode_t	*ip,
274 	xfs_dinode_t	**dipp,
275 	xfs_buf_t	**bpp,
276 	uint		buf_flags)
277 {
278 	xfs_buf_t	*bp;
279 	int		error;
280 
281 	ASSERT(ip->i_imap.im_blkno != 0);
282 
283 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 	if (error)
285 		return error;
286 
287 	if (!bp) {
288 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
289 		ASSERT(tp == NULL);
290 		*bpp = NULL;
291 		return EAGAIN;
292 	}
293 
294 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 	*bpp = bp;
296 	return 0;
297 }
298 
299 /*
300  * Move inode type and inode format specific information from the
301  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
302  * this means set if_rdev to the proper value.  For files, directories,
303  * and symlinks this means to bring in the in-line data or extent
304  * pointers.  For a file in B-tree format, only the root is immediately
305  * brought in-core.  The rest will be in-lined in if_extents when it
306  * is first referenced (see xfs_iread_extents()).
307  */
308 STATIC int
309 xfs_iformat(
310 	xfs_inode_t		*ip,
311 	xfs_dinode_t		*dip)
312 {
313 	xfs_attr_shortform_t	*atp;
314 	int			size;
315 	int			error;
316 	xfs_fsize_t             di_size;
317 	ip->i_df.if_ext_max =
318 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 	error = 0;
320 
321 	if (unlikely(be32_to_cpu(dip->di_nextents) +
322 		     be16_to_cpu(dip->di_anextents) >
323 		     be64_to_cpu(dip->di_nblocks))) {
324 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 			(unsigned long long)ip->i_ino,
327 			(int)(be32_to_cpu(dip->di_nextents) +
328 			      be16_to_cpu(dip->di_anextents)),
329 			(unsigned long long)
330 				be64_to_cpu(dip->di_nblocks));
331 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 				     ip->i_mount, dip);
333 		return XFS_ERROR(EFSCORRUPTED);
334 	}
335 
336 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 			"corrupt dinode %Lu, forkoff = 0x%x.",
339 			(unsigned long long)ip->i_ino,
340 			dip->di_forkoff);
341 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 				     ip->i_mount, dip);
343 		return XFS_ERROR(EFSCORRUPTED);
344 	}
345 
346 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
347 		     !ip->i_mount->m_rtdev_targp)) {
348 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
349 			"corrupt dinode %Lu, has realtime flag set.",
350 			ip->i_ino);
351 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
353 		return XFS_ERROR(EFSCORRUPTED);
354 	}
355 
356 	switch (ip->i_d.di_mode & S_IFMT) {
357 	case S_IFIFO:
358 	case S_IFCHR:
359 	case S_IFBLK:
360 	case S_IFSOCK:
361 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
362 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
363 					      ip->i_mount, dip);
364 			return XFS_ERROR(EFSCORRUPTED);
365 		}
366 		ip->i_d.di_size = 0;
367 		ip->i_size = 0;
368 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
369 		break;
370 
371 	case S_IFREG:
372 	case S_IFLNK:
373 	case S_IFDIR:
374 		switch (dip->di_format) {
375 		case XFS_DINODE_FMT_LOCAL:
376 			/*
377 			 * no local regular files yet
378 			 */
379 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
380 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
381 					"corrupt inode %Lu "
382 					"(local format for regular file).",
383 					(unsigned long long) ip->i_ino);
384 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
385 						     XFS_ERRLEVEL_LOW,
386 						     ip->i_mount, dip);
387 				return XFS_ERROR(EFSCORRUPTED);
388 			}
389 
390 			di_size = be64_to_cpu(dip->di_size);
391 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
392 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
393 					"corrupt inode %Lu "
394 					"(bad size %Ld for local inode).",
395 					(unsigned long long) ip->i_ino,
396 					(long long) di_size);
397 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
398 						     XFS_ERRLEVEL_LOW,
399 						     ip->i_mount, dip);
400 				return XFS_ERROR(EFSCORRUPTED);
401 			}
402 
403 			size = (int)di_size;
404 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
405 			break;
406 		case XFS_DINODE_FMT_EXTENTS:
407 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
408 			break;
409 		case XFS_DINODE_FMT_BTREE:
410 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
411 			break;
412 		default:
413 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
414 					 ip->i_mount);
415 			return XFS_ERROR(EFSCORRUPTED);
416 		}
417 		break;
418 
419 	default:
420 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 	if (error) {
424 		return error;
425 	}
426 	if (!XFS_DFORK_Q(dip))
427 		return 0;
428 	ASSERT(ip->i_afp == NULL);
429 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
430 	ip->i_afp->if_ext_max =
431 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
432 	switch (dip->di_aformat) {
433 	case XFS_DINODE_FMT_LOCAL:
434 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
435 		size = be16_to_cpu(atp->hdr.totsize);
436 
437 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
438 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
439 				"corrupt inode %Lu "
440 				"(bad attr fork size %Ld).",
441 				(unsigned long long) ip->i_ino,
442 				(long long) size);
443 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
444 					     XFS_ERRLEVEL_LOW,
445 					     ip->i_mount, dip);
446 			return XFS_ERROR(EFSCORRUPTED);
447 		}
448 
449 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
450 		break;
451 	case XFS_DINODE_FMT_EXTENTS:
452 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
453 		break;
454 	case XFS_DINODE_FMT_BTREE:
455 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
456 		break;
457 	default:
458 		error = XFS_ERROR(EFSCORRUPTED);
459 		break;
460 	}
461 	if (error) {
462 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
463 		ip->i_afp = NULL;
464 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
465 	}
466 	return error;
467 }
468 
469 /*
470  * The file is in-lined in the on-disk inode.
471  * If it fits into if_inline_data, then copy
472  * it there, otherwise allocate a buffer for it
473  * and copy the data there.  Either way, set
474  * if_data to point at the data.
475  * If we allocate a buffer for the data, make
476  * sure that its size is a multiple of 4 and
477  * record the real size in i_real_bytes.
478  */
479 STATIC int
480 xfs_iformat_local(
481 	xfs_inode_t	*ip,
482 	xfs_dinode_t	*dip,
483 	int		whichfork,
484 	int		size)
485 {
486 	xfs_ifork_t	*ifp;
487 	int		real_size;
488 
489 	/*
490 	 * If the size is unreasonable, then something
491 	 * is wrong and we just bail out rather than crash in
492 	 * kmem_alloc() or memcpy() below.
493 	 */
494 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
495 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
496 			"corrupt inode %Lu "
497 			"(bad size %d for local fork, size = %d).",
498 			(unsigned long long) ip->i_ino, size,
499 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
500 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
501 				     ip->i_mount, dip);
502 		return XFS_ERROR(EFSCORRUPTED);
503 	}
504 	ifp = XFS_IFORK_PTR(ip, whichfork);
505 	real_size = 0;
506 	if (size == 0)
507 		ifp->if_u1.if_data = NULL;
508 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
509 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
510 	else {
511 		real_size = roundup(size, 4);
512 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
513 	}
514 	ifp->if_bytes = size;
515 	ifp->if_real_bytes = real_size;
516 	if (size)
517 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
518 	ifp->if_flags &= ~XFS_IFEXTENTS;
519 	ifp->if_flags |= XFS_IFINLINE;
520 	return 0;
521 }
522 
523 /*
524  * The file consists of a set of extents all
525  * of which fit into the on-disk inode.
526  * If there are few enough extents to fit into
527  * the if_inline_ext, then copy them there.
528  * Otherwise allocate a buffer for them and copy
529  * them into it.  Either way, set if_extents
530  * to point at the extents.
531  */
532 STATIC int
533 xfs_iformat_extents(
534 	xfs_inode_t	*ip,
535 	xfs_dinode_t	*dip,
536 	int		whichfork)
537 {
538 	xfs_bmbt_rec_t	*dp;
539 	xfs_ifork_t	*ifp;
540 	int		nex;
541 	int		size;
542 	int		i;
543 
544 	ifp = XFS_IFORK_PTR(ip, whichfork);
545 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
546 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
547 
548 	/*
549 	 * If the number of extents is unreasonable, then something
550 	 * is wrong and we just bail out rather than crash in
551 	 * kmem_alloc() or memcpy() below.
552 	 */
553 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 			"corrupt inode %Lu ((a)extents = %d).",
556 			(unsigned long long) ip->i_ino, nex);
557 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
558 				     ip->i_mount, dip);
559 		return XFS_ERROR(EFSCORRUPTED);
560 	}
561 
562 	ifp->if_real_bytes = 0;
563 	if (nex == 0)
564 		ifp->if_u1.if_extents = NULL;
565 	else if (nex <= XFS_INLINE_EXTS)
566 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
567 	else
568 		xfs_iext_add(ifp, 0, nex);
569 
570 	ifp->if_bytes = size;
571 	if (size) {
572 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
573 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
574 		for (i = 0; i < nex; i++, dp++) {
575 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
576 			ep->l0 = get_unaligned_be64(&dp->l0);
577 			ep->l1 = get_unaligned_be64(&dp->l1);
578 		}
579 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
580 		if (whichfork != XFS_DATA_FORK ||
581 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
582 				if (unlikely(xfs_check_nostate_extents(
583 				    ifp, 0, nex))) {
584 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
585 							 XFS_ERRLEVEL_LOW,
586 							 ip->i_mount);
587 					return XFS_ERROR(EFSCORRUPTED);
588 				}
589 	}
590 	ifp->if_flags |= XFS_IFEXTENTS;
591 	return 0;
592 }
593 
594 /*
595  * The file has too many extents to fit into
596  * the inode, so they are in B-tree format.
597  * Allocate a buffer for the root of the B-tree
598  * and copy the root into it.  The i_extents
599  * field will remain NULL until all of the
600  * extents are read in (when they are needed).
601  */
602 STATIC int
603 xfs_iformat_btree(
604 	xfs_inode_t		*ip,
605 	xfs_dinode_t		*dip,
606 	int			whichfork)
607 {
608 	xfs_bmdr_block_t	*dfp;
609 	xfs_ifork_t		*ifp;
610 	/* REFERENCED */
611 	int			nrecs;
612 	int			size;
613 
614 	ifp = XFS_IFORK_PTR(ip, whichfork);
615 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
616 	size = XFS_BMAP_BROOT_SPACE(dfp);
617 	nrecs = be16_to_cpu(dfp->bb_numrecs);
618 
619 	/*
620 	 * blow out if -- fork has less extents than can fit in
621 	 * fork (fork shouldn't be a btree format), root btree
622 	 * block has more records than can fit into the fork,
623 	 * or the number of extents is greater than the number of
624 	 * blocks.
625 	 */
626 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
627 	    || XFS_BMDR_SPACE_CALC(nrecs) >
628 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
629 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
630 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
631 			"corrupt inode %Lu (btree).",
632 			(unsigned long long) ip->i_ino);
633 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
634 				 ip->i_mount);
635 		return XFS_ERROR(EFSCORRUPTED);
636 	}
637 
638 	ifp->if_broot_bytes = size;
639 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
640 	ASSERT(ifp->if_broot != NULL);
641 	/*
642 	 * Copy and convert from the on-disk structure
643 	 * to the in-memory structure.
644 	 */
645 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
646 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
647 			 ifp->if_broot, size);
648 	ifp->if_flags &= ~XFS_IFEXTENTS;
649 	ifp->if_flags |= XFS_IFBROOT;
650 
651 	return 0;
652 }
653 
654 STATIC void
655 xfs_dinode_from_disk(
656 	xfs_icdinode_t		*to,
657 	xfs_dinode_t		*from)
658 {
659 	to->di_magic = be16_to_cpu(from->di_magic);
660 	to->di_mode = be16_to_cpu(from->di_mode);
661 	to->di_version = from ->di_version;
662 	to->di_format = from->di_format;
663 	to->di_onlink = be16_to_cpu(from->di_onlink);
664 	to->di_uid = be32_to_cpu(from->di_uid);
665 	to->di_gid = be32_to_cpu(from->di_gid);
666 	to->di_nlink = be32_to_cpu(from->di_nlink);
667 	to->di_projid = be16_to_cpu(from->di_projid);
668 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
669 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
670 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
671 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
672 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
673 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
674 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
675 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
676 	to->di_size = be64_to_cpu(from->di_size);
677 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
678 	to->di_extsize = be32_to_cpu(from->di_extsize);
679 	to->di_nextents = be32_to_cpu(from->di_nextents);
680 	to->di_anextents = be16_to_cpu(from->di_anextents);
681 	to->di_forkoff = from->di_forkoff;
682 	to->di_aformat	= from->di_aformat;
683 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
684 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
685 	to->di_flags	= be16_to_cpu(from->di_flags);
686 	to->di_gen	= be32_to_cpu(from->di_gen);
687 }
688 
689 void
690 xfs_dinode_to_disk(
691 	xfs_dinode_t		*to,
692 	xfs_icdinode_t		*from)
693 {
694 	to->di_magic = cpu_to_be16(from->di_magic);
695 	to->di_mode = cpu_to_be16(from->di_mode);
696 	to->di_version = from ->di_version;
697 	to->di_format = from->di_format;
698 	to->di_onlink = cpu_to_be16(from->di_onlink);
699 	to->di_uid = cpu_to_be32(from->di_uid);
700 	to->di_gid = cpu_to_be32(from->di_gid);
701 	to->di_nlink = cpu_to_be32(from->di_nlink);
702 	to->di_projid = cpu_to_be16(from->di_projid);
703 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
704 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
705 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
706 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
707 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
708 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
709 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
710 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
711 	to->di_size = cpu_to_be64(from->di_size);
712 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
713 	to->di_extsize = cpu_to_be32(from->di_extsize);
714 	to->di_nextents = cpu_to_be32(from->di_nextents);
715 	to->di_anextents = cpu_to_be16(from->di_anextents);
716 	to->di_forkoff = from->di_forkoff;
717 	to->di_aformat = from->di_aformat;
718 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
719 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
720 	to->di_flags = cpu_to_be16(from->di_flags);
721 	to->di_gen = cpu_to_be32(from->di_gen);
722 }
723 
724 STATIC uint
725 _xfs_dic2xflags(
726 	__uint16_t		di_flags)
727 {
728 	uint			flags = 0;
729 
730 	if (di_flags & XFS_DIFLAG_ANY) {
731 		if (di_flags & XFS_DIFLAG_REALTIME)
732 			flags |= XFS_XFLAG_REALTIME;
733 		if (di_flags & XFS_DIFLAG_PREALLOC)
734 			flags |= XFS_XFLAG_PREALLOC;
735 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
736 			flags |= XFS_XFLAG_IMMUTABLE;
737 		if (di_flags & XFS_DIFLAG_APPEND)
738 			flags |= XFS_XFLAG_APPEND;
739 		if (di_flags & XFS_DIFLAG_SYNC)
740 			flags |= XFS_XFLAG_SYNC;
741 		if (di_flags & XFS_DIFLAG_NOATIME)
742 			flags |= XFS_XFLAG_NOATIME;
743 		if (di_flags & XFS_DIFLAG_NODUMP)
744 			flags |= XFS_XFLAG_NODUMP;
745 		if (di_flags & XFS_DIFLAG_RTINHERIT)
746 			flags |= XFS_XFLAG_RTINHERIT;
747 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
748 			flags |= XFS_XFLAG_PROJINHERIT;
749 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
750 			flags |= XFS_XFLAG_NOSYMLINKS;
751 		if (di_flags & XFS_DIFLAG_EXTSIZE)
752 			flags |= XFS_XFLAG_EXTSIZE;
753 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
754 			flags |= XFS_XFLAG_EXTSZINHERIT;
755 		if (di_flags & XFS_DIFLAG_NODEFRAG)
756 			flags |= XFS_XFLAG_NODEFRAG;
757 		if (di_flags & XFS_DIFLAG_FILESTREAM)
758 			flags |= XFS_XFLAG_FILESTREAM;
759 	}
760 
761 	return flags;
762 }
763 
764 uint
765 xfs_ip2xflags(
766 	xfs_inode_t		*ip)
767 {
768 	xfs_icdinode_t		*dic = &ip->i_d;
769 
770 	return _xfs_dic2xflags(dic->di_flags) |
771 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
772 }
773 
774 uint
775 xfs_dic2xflags(
776 	xfs_dinode_t		*dip)
777 {
778 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
779 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
780 }
781 
782 /*
783  * Read the disk inode attributes into the in-core inode structure.
784  */
785 int
786 xfs_iread(
787 	xfs_mount_t	*mp,
788 	xfs_trans_t	*tp,
789 	xfs_inode_t	*ip,
790 	xfs_daddr_t	bno,
791 	uint		iget_flags)
792 {
793 	xfs_buf_t	*bp;
794 	xfs_dinode_t	*dip;
795 	int		error;
796 
797 	/*
798 	 * Fill in the location information in the in-core inode.
799 	 */
800 	ip->i_imap.im_blkno = bno;
801 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
802 	if (error)
803 		return error;
804 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
805 
806 	/*
807 	 * Get pointers to the on-disk inode and the buffer containing it.
808 	 */
809 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
810 			       XFS_BUF_LOCK, iget_flags);
811 	if (error)
812 		return error;
813 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
814 
815 	/*
816 	 * If we got something that isn't an inode it means someone
817 	 * (nfs or dmi) has a stale handle.
818 	 */
819 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
820 #ifdef DEBUG
821 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
822 				"dip->di_magic (0x%x) != "
823 				"XFS_DINODE_MAGIC (0x%x)",
824 				be16_to_cpu(dip->di_magic),
825 				XFS_DINODE_MAGIC);
826 #endif /* DEBUG */
827 		error = XFS_ERROR(EINVAL);
828 		goto out_brelse;
829 	}
830 
831 	/*
832 	 * If the on-disk inode is already linked to a directory
833 	 * entry, copy all of the inode into the in-core inode.
834 	 * xfs_iformat() handles copying in the inode format
835 	 * specific information.
836 	 * Otherwise, just get the truly permanent information.
837 	 */
838 	if (dip->di_mode) {
839 		xfs_dinode_from_disk(&ip->i_d, dip);
840 		error = xfs_iformat(ip, dip);
841 		if (error)  {
842 #ifdef DEBUG
843 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
844 					"xfs_iformat() returned error %d",
845 					error);
846 #endif /* DEBUG */
847 			goto out_brelse;
848 		}
849 	} else {
850 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
851 		ip->i_d.di_version = dip->di_version;
852 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
853 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
854 		/*
855 		 * Make sure to pull in the mode here as well in
856 		 * case the inode is released without being used.
857 		 * This ensures that xfs_inactive() will see that
858 		 * the inode is already free and not try to mess
859 		 * with the uninitialized part of it.
860 		 */
861 		ip->i_d.di_mode = 0;
862 		/*
863 		 * Initialize the per-fork minima and maxima for a new
864 		 * inode here.  xfs_iformat will do it for old inodes.
865 		 */
866 		ip->i_df.if_ext_max =
867 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
868 	}
869 
870 	/*
871 	 * The inode format changed when we moved the link count and
872 	 * made it 32 bits long.  If this is an old format inode,
873 	 * convert it in memory to look like a new one.  If it gets
874 	 * flushed to disk we will convert back before flushing or
875 	 * logging it.  We zero out the new projid field and the old link
876 	 * count field.  We'll handle clearing the pad field (the remains
877 	 * of the old uuid field) when we actually convert the inode to
878 	 * the new format. We don't change the version number so that we
879 	 * can distinguish this from a real new format inode.
880 	 */
881 	if (ip->i_d.di_version == 1) {
882 		ip->i_d.di_nlink = ip->i_d.di_onlink;
883 		ip->i_d.di_onlink = 0;
884 		ip->i_d.di_projid = 0;
885 	}
886 
887 	ip->i_delayed_blks = 0;
888 	ip->i_size = ip->i_d.di_size;
889 
890 	/*
891 	 * Mark the buffer containing the inode as something to keep
892 	 * around for a while.  This helps to keep recently accessed
893 	 * meta-data in-core longer.
894 	 */
895 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
896 
897 	/*
898 	 * Use xfs_trans_brelse() to release the buffer containing the
899 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
900 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
901 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
902 	 * will only release the buffer if it is not dirty within the
903 	 * transaction.  It will be OK to release the buffer in this case,
904 	 * because inodes on disk are never destroyed and we will be
905 	 * locking the new in-core inode before putting it in the hash
906 	 * table where other processes can find it.  Thus we don't have
907 	 * to worry about the inode being changed just because we released
908 	 * the buffer.
909 	 */
910  out_brelse:
911 	xfs_trans_brelse(tp, bp);
912 	return error;
913 }
914 
915 /*
916  * Read in extents from a btree-format inode.
917  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
918  */
919 int
920 xfs_iread_extents(
921 	xfs_trans_t	*tp,
922 	xfs_inode_t	*ip,
923 	int		whichfork)
924 {
925 	int		error;
926 	xfs_ifork_t	*ifp;
927 	xfs_extnum_t	nextents;
928 	size_t		size;
929 
930 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
931 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
932 				 ip->i_mount);
933 		return XFS_ERROR(EFSCORRUPTED);
934 	}
935 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
936 	size = nextents * sizeof(xfs_bmbt_rec_t);
937 	ifp = XFS_IFORK_PTR(ip, whichfork);
938 
939 	/*
940 	 * We know that the size is valid (it's checked in iformat_btree)
941 	 */
942 	ifp->if_lastex = NULLEXTNUM;
943 	ifp->if_bytes = ifp->if_real_bytes = 0;
944 	ifp->if_flags |= XFS_IFEXTENTS;
945 	xfs_iext_add(ifp, 0, nextents);
946 	error = xfs_bmap_read_extents(tp, ip, whichfork);
947 	if (error) {
948 		xfs_iext_destroy(ifp);
949 		ifp->if_flags &= ~XFS_IFEXTENTS;
950 		return error;
951 	}
952 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
953 	return 0;
954 }
955 
956 /*
957  * Allocate an inode on disk and return a copy of its in-core version.
958  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
959  * appropriately within the inode.  The uid and gid for the inode are
960  * set according to the contents of the given cred structure.
961  *
962  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
963  * has a free inode available, call xfs_iget()
964  * to obtain the in-core version of the allocated inode.  Finally,
965  * fill in the inode and log its initial contents.  In this case,
966  * ialloc_context would be set to NULL and call_again set to false.
967  *
968  * If xfs_dialloc() does not have an available inode,
969  * it will replenish its supply by doing an allocation. Since we can
970  * only do one allocation within a transaction without deadlocks, we
971  * must commit the current transaction before returning the inode itself.
972  * In this case, therefore, we will set call_again to true and return.
973  * The caller should then commit the current transaction, start a new
974  * transaction, and call xfs_ialloc() again to actually get the inode.
975  *
976  * To ensure that some other process does not grab the inode that
977  * was allocated during the first call to xfs_ialloc(), this routine
978  * also returns the [locked] bp pointing to the head of the freelist
979  * as ialloc_context.  The caller should hold this buffer across
980  * the commit and pass it back into this routine on the second call.
981  *
982  * If we are allocating quota inodes, we do not have a parent inode
983  * to attach to or associate with (i.e. pip == NULL) because they
984  * are not linked into the directory structure - they are attached
985  * directly to the superblock - and so have no parent.
986  */
987 int
988 xfs_ialloc(
989 	xfs_trans_t	*tp,
990 	xfs_inode_t	*pip,
991 	mode_t		mode,
992 	xfs_nlink_t	nlink,
993 	xfs_dev_t	rdev,
994 	cred_t		*cr,
995 	xfs_prid_t	prid,
996 	int		okalloc,
997 	xfs_buf_t	**ialloc_context,
998 	boolean_t	*call_again,
999 	xfs_inode_t	**ipp)
1000 {
1001 	xfs_ino_t	ino;
1002 	xfs_inode_t	*ip;
1003 	uint		flags;
1004 	int		error;
1005 	timespec_t	tv;
1006 	int		filestreams = 0;
1007 
1008 	/*
1009 	 * Call the space management code to pick
1010 	 * the on-disk inode to be allocated.
1011 	 */
1012 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1013 			    ialloc_context, call_again, &ino);
1014 	if (error)
1015 		return error;
1016 	if (*call_again || ino == NULLFSINO) {
1017 		*ipp = NULL;
1018 		return 0;
1019 	}
1020 	ASSERT(*ialloc_context == NULL);
1021 
1022 	/*
1023 	 * Get the in-core inode with the lock held exclusively.
1024 	 * This is because we're setting fields here we need
1025 	 * to prevent others from looking at until we're done.
1026 	 */
1027 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1028 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1029 	if (error)
1030 		return error;
1031 	ASSERT(ip != NULL);
1032 
1033 	ip->i_d.di_mode = (__uint16_t)mode;
1034 	ip->i_d.di_onlink = 0;
1035 	ip->i_d.di_nlink = nlink;
1036 	ASSERT(ip->i_d.di_nlink == nlink);
1037 	ip->i_d.di_uid = current_fsuid();
1038 	ip->i_d.di_gid = current_fsgid();
1039 	ip->i_d.di_projid = prid;
1040 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1041 
1042 	/*
1043 	 * If the superblock version is up to where we support new format
1044 	 * inodes and this is currently an old format inode, then change
1045 	 * the inode version number now.  This way we only do the conversion
1046 	 * here rather than here and in the flush/logging code.
1047 	 */
1048 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1049 	    ip->i_d.di_version == 1) {
1050 		ip->i_d.di_version = 2;
1051 		/*
1052 		 * We've already zeroed the old link count, the projid field,
1053 		 * and the pad field.
1054 		 */
1055 	}
1056 
1057 	/*
1058 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1059 	 */
1060 	if ((prid != 0) && (ip->i_d.di_version == 1))
1061 		xfs_bump_ino_vers2(tp, ip);
1062 
1063 	if (pip && XFS_INHERIT_GID(pip)) {
1064 		ip->i_d.di_gid = pip->i_d.di_gid;
1065 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1066 			ip->i_d.di_mode |= S_ISGID;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * If the group ID of the new file does not match the effective group
1072 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1073 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1074 	 */
1075 	if ((irix_sgid_inherit) &&
1076 	    (ip->i_d.di_mode & S_ISGID) &&
1077 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1078 		ip->i_d.di_mode &= ~S_ISGID;
1079 	}
1080 
1081 	ip->i_d.di_size = 0;
1082 	ip->i_size = 0;
1083 	ip->i_d.di_nextents = 0;
1084 	ASSERT(ip->i_d.di_nblocks == 0);
1085 
1086 	nanotime(&tv);
1087 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1088 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1089 	ip->i_d.di_atime = ip->i_d.di_mtime;
1090 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1091 
1092 	/*
1093 	 * di_gen will have been taken care of in xfs_iread.
1094 	 */
1095 	ip->i_d.di_extsize = 0;
1096 	ip->i_d.di_dmevmask = 0;
1097 	ip->i_d.di_dmstate = 0;
1098 	ip->i_d.di_flags = 0;
1099 	flags = XFS_ILOG_CORE;
1100 	switch (mode & S_IFMT) {
1101 	case S_IFIFO:
1102 	case S_IFCHR:
1103 	case S_IFBLK:
1104 	case S_IFSOCK:
1105 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1106 		ip->i_df.if_u2.if_rdev = rdev;
1107 		ip->i_df.if_flags = 0;
1108 		flags |= XFS_ILOG_DEV;
1109 		break;
1110 	case S_IFREG:
1111 		/*
1112 		 * we can't set up filestreams until after the VFS inode
1113 		 * is set up properly.
1114 		 */
1115 		if (pip && xfs_inode_is_filestream(pip))
1116 			filestreams = 1;
1117 		/* fall through */
1118 	case S_IFDIR:
1119 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1120 			uint	di_flags = 0;
1121 
1122 			if ((mode & S_IFMT) == S_IFDIR) {
1123 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1124 					di_flags |= XFS_DIFLAG_RTINHERIT;
1125 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1126 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1127 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1128 				}
1129 			} else if ((mode & S_IFMT) == S_IFREG) {
1130 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1131 					di_flags |= XFS_DIFLAG_REALTIME;
1132 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1133 					di_flags |= XFS_DIFLAG_EXTSIZE;
1134 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1135 				}
1136 			}
1137 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1138 			    xfs_inherit_noatime)
1139 				di_flags |= XFS_DIFLAG_NOATIME;
1140 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1141 			    xfs_inherit_nodump)
1142 				di_flags |= XFS_DIFLAG_NODUMP;
1143 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1144 			    xfs_inherit_sync)
1145 				di_flags |= XFS_DIFLAG_SYNC;
1146 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1147 			    xfs_inherit_nosymlinks)
1148 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1149 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1150 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1151 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1152 			    xfs_inherit_nodefrag)
1153 				di_flags |= XFS_DIFLAG_NODEFRAG;
1154 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1155 				di_flags |= XFS_DIFLAG_FILESTREAM;
1156 			ip->i_d.di_flags |= di_flags;
1157 		}
1158 		/* FALLTHROUGH */
1159 	case S_IFLNK:
1160 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1161 		ip->i_df.if_flags = XFS_IFEXTENTS;
1162 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1163 		ip->i_df.if_u1.if_extents = NULL;
1164 		break;
1165 	default:
1166 		ASSERT(0);
1167 	}
1168 	/*
1169 	 * Attribute fork settings for new inode.
1170 	 */
1171 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1172 	ip->i_d.di_anextents = 0;
1173 
1174 	/*
1175 	 * Log the new values stuffed into the inode.
1176 	 */
1177 	xfs_trans_log_inode(tp, ip, flags);
1178 
1179 	/* now that we have an i_mode we can setup inode ops and unlock */
1180 	xfs_setup_inode(ip);
1181 
1182 	/* now we have set up the vfs inode we can associate the filestream */
1183 	if (filestreams) {
1184 		error = xfs_filestream_associate(pip, ip);
1185 		if (error < 0)
1186 			return -error;
1187 		if (!error)
1188 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1189 	}
1190 
1191 	*ipp = ip;
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Check to make sure that there are no blocks allocated to the
1197  * file beyond the size of the file.  We don't check this for
1198  * files with fixed size extents or real time extents, but we
1199  * at least do it for regular files.
1200  */
1201 #ifdef DEBUG
1202 void
1203 xfs_isize_check(
1204 	xfs_mount_t	*mp,
1205 	xfs_inode_t	*ip,
1206 	xfs_fsize_t	isize)
1207 {
1208 	xfs_fileoff_t	map_first;
1209 	int		nimaps;
1210 	xfs_bmbt_irec_t	imaps[2];
1211 
1212 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1213 		return;
1214 
1215 	if (XFS_IS_REALTIME_INODE(ip))
1216 		return;
1217 
1218 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1219 		return;
1220 
1221 	nimaps = 2;
1222 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1223 	/*
1224 	 * The filesystem could be shutting down, so bmapi may return
1225 	 * an error.
1226 	 */
1227 	if (xfs_bmapi(NULL, ip, map_first,
1228 			 (XFS_B_TO_FSB(mp,
1229 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1230 			  map_first),
1231 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1232 			 NULL, NULL))
1233 	    return;
1234 	ASSERT(nimaps == 1);
1235 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1236 }
1237 #endif	/* DEBUG */
1238 
1239 /*
1240  * Calculate the last possible buffered byte in a file.  This must
1241  * include data that was buffered beyond the EOF by the write code.
1242  * This also needs to deal with overflowing the xfs_fsize_t type
1243  * which can happen for sizes near the limit.
1244  *
1245  * We also need to take into account any blocks beyond the EOF.  It
1246  * may be the case that they were buffered by a write which failed.
1247  * In that case the pages will still be in memory, but the inode size
1248  * will never have been updated.
1249  */
1250 STATIC xfs_fsize_t
1251 xfs_file_last_byte(
1252 	xfs_inode_t	*ip)
1253 {
1254 	xfs_mount_t	*mp;
1255 	xfs_fsize_t	last_byte;
1256 	xfs_fileoff_t	last_block;
1257 	xfs_fileoff_t	size_last_block;
1258 	int		error;
1259 
1260 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1261 
1262 	mp = ip->i_mount;
1263 	/*
1264 	 * Only check for blocks beyond the EOF if the extents have
1265 	 * been read in.  This eliminates the need for the inode lock,
1266 	 * and it also saves us from looking when it really isn't
1267 	 * necessary.
1268 	 */
1269 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1270 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1271 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1272 			XFS_DATA_FORK);
1273 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1274 		if (error) {
1275 			last_block = 0;
1276 		}
1277 	} else {
1278 		last_block = 0;
1279 	}
1280 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1281 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1282 
1283 	last_byte = XFS_FSB_TO_B(mp, last_block);
1284 	if (last_byte < 0) {
1285 		return XFS_MAXIOFFSET(mp);
1286 	}
1287 	last_byte += (1 << mp->m_writeio_log);
1288 	if (last_byte < 0) {
1289 		return XFS_MAXIOFFSET(mp);
1290 	}
1291 	return last_byte;
1292 }
1293 
1294 #if defined(XFS_RW_TRACE)
1295 STATIC void
1296 xfs_itrunc_trace(
1297 	int		tag,
1298 	xfs_inode_t	*ip,
1299 	int		flag,
1300 	xfs_fsize_t	new_size,
1301 	xfs_off_t	toss_start,
1302 	xfs_off_t	toss_finish)
1303 {
1304 	if (ip->i_rwtrace == NULL) {
1305 		return;
1306 	}
1307 
1308 	ktrace_enter(ip->i_rwtrace,
1309 		     (void*)((long)tag),
1310 		     (void*)ip,
1311 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1312 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1313 		     (void*)((long)flag),
1314 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1315 		     (void*)(unsigned long)(new_size & 0xffffffff),
1316 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1317 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1318 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1319 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1320 		     (void*)(unsigned long)current_cpu(),
1321 		     (void*)(unsigned long)current_pid(),
1322 		     (void*)NULL,
1323 		     (void*)NULL,
1324 		     (void*)NULL);
1325 }
1326 #else
1327 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1328 #endif
1329 
1330 /*
1331  * Start the truncation of the file to new_size.  The new size
1332  * must be smaller than the current size.  This routine will
1333  * clear the buffer and page caches of file data in the removed
1334  * range, and xfs_itruncate_finish() will remove the underlying
1335  * disk blocks.
1336  *
1337  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1338  * must NOT have the inode lock held at all.  This is because we're
1339  * calling into the buffer/page cache code and we can't hold the
1340  * inode lock when we do so.
1341  *
1342  * We need to wait for any direct I/Os in flight to complete before we
1343  * proceed with the truncate. This is needed to prevent the extents
1344  * being read or written by the direct I/Os from being removed while the
1345  * I/O is in flight as there is no other method of synchronising
1346  * direct I/O with the truncate operation.  Also, because we hold
1347  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1348  * started until the truncate completes and drops the lock. Essentially,
1349  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1350  * ordering between direct I/Os and the truncate operation.
1351  *
1352  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1353  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1354  * in the case that the caller is locking things out of order and
1355  * may not be able to call xfs_itruncate_finish() with the inode lock
1356  * held without dropping the I/O lock.  If the caller must drop the
1357  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1358  * must be called again with all the same restrictions as the initial
1359  * call.
1360  */
1361 int
1362 xfs_itruncate_start(
1363 	xfs_inode_t	*ip,
1364 	uint		flags,
1365 	xfs_fsize_t	new_size)
1366 {
1367 	xfs_fsize_t	last_byte;
1368 	xfs_off_t	toss_start;
1369 	xfs_mount_t	*mp;
1370 	int		error = 0;
1371 
1372 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1373 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1374 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1375 	       (flags == XFS_ITRUNC_MAYBE));
1376 
1377 	mp = ip->i_mount;
1378 
1379 	/* wait for the completion of any pending DIOs */
1380 	if (new_size == 0 || new_size < ip->i_size)
1381 		xfs_ioend_wait(ip);
1382 
1383 	/*
1384 	 * Call toss_pages or flushinval_pages to get rid of pages
1385 	 * overlapping the region being removed.  We have to use
1386 	 * the less efficient flushinval_pages in the case that the
1387 	 * caller may not be able to finish the truncate without
1388 	 * dropping the inode's I/O lock.  Make sure
1389 	 * to catch any pages brought in by buffers overlapping
1390 	 * the EOF by searching out beyond the isize by our
1391 	 * block size. We round new_size up to a block boundary
1392 	 * so that we don't toss things on the same block as
1393 	 * new_size but before it.
1394 	 *
1395 	 * Before calling toss_page or flushinval_pages, make sure to
1396 	 * call remapf() over the same region if the file is mapped.
1397 	 * This frees up mapped file references to the pages in the
1398 	 * given range and for the flushinval_pages case it ensures
1399 	 * that we get the latest mapped changes flushed out.
1400 	 */
1401 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1402 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1403 	if (toss_start < 0) {
1404 		/*
1405 		 * The place to start tossing is beyond our maximum
1406 		 * file size, so there is no way that the data extended
1407 		 * out there.
1408 		 */
1409 		return 0;
1410 	}
1411 	last_byte = xfs_file_last_byte(ip);
1412 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1413 			 last_byte);
1414 	if (last_byte > toss_start) {
1415 		if (flags & XFS_ITRUNC_DEFINITE) {
1416 			xfs_tosspages(ip, toss_start,
1417 					-1, FI_REMAPF_LOCKED);
1418 		} else {
1419 			error = xfs_flushinval_pages(ip, toss_start,
1420 					-1, FI_REMAPF_LOCKED);
1421 		}
1422 	}
1423 
1424 #ifdef DEBUG
1425 	if (new_size == 0) {
1426 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1427 	}
1428 #endif
1429 	return error;
1430 }
1431 
1432 /*
1433  * Shrink the file to the given new_size.  The new size must be smaller than
1434  * the current size.  This will free up the underlying blocks in the removed
1435  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1436  *
1437  * The transaction passed to this routine must have made a permanent log
1438  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1439  * given transaction and start new ones, so make sure everything involved in
1440  * the transaction is tidy before calling here.  Some transaction will be
1441  * returned to the caller to be committed.  The incoming transaction must
1442  * already include the inode, and both inode locks must be held exclusively.
1443  * The inode must also be "held" within the transaction.  On return the inode
1444  * will be "held" within the returned transaction.  This routine does NOT
1445  * require any disk space to be reserved for it within the transaction.
1446  *
1447  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1448  * indicates the fork which is to be truncated.  For the attribute fork we only
1449  * support truncation to size 0.
1450  *
1451  * We use the sync parameter to indicate whether or not the first transaction
1452  * we perform might have to be synchronous.  For the attr fork, it needs to be
1453  * so if the unlink of the inode is not yet known to be permanent in the log.
1454  * This keeps us from freeing and reusing the blocks of the attribute fork
1455  * before the unlink of the inode becomes permanent.
1456  *
1457  * For the data fork, we normally have to run synchronously if we're being
1458  * called out of the inactive path or we're being called out of the create path
1459  * where we're truncating an existing file.  Either way, the truncate needs to
1460  * be sync so blocks don't reappear in the file with altered data in case of a
1461  * crash.  wsync filesystems can run the first case async because anything that
1462  * shrinks the inode has to run sync so by the time we're called here from
1463  * inactive, the inode size is permanently set to 0.
1464  *
1465  * Calls from the truncate path always need to be sync unless we're in a wsync
1466  * filesystem and the file has already been unlinked.
1467  *
1468  * The caller is responsible for correctly setting the sync parameter.  It gets
1469  * too hard for us to guess here which path we're being called out of just
1470  * based on inode state.
1471  *
1472  * If we get an error, we must return with the inode locked and linked into the
1473  * current transaction. This keeps things simple for the higher level code,
1474  * because it always knows that the inode is locked and held in the transaction
1475  * that returns to it whether errors occur or not.  We don't mark the inode
1476  * dirty on error so that transactions can be easily aborted if possible.
1477  */
1478 int
1479 xfs_itruncate_finish(
1480 	xfs_trans_t	**tp,
1481 	xfs_inode_t	*ip,
1482 	xfs_fsize_t	new_size,
1483 	int		fork,
1484 	int		sync)
1485 {
1486 	xfs_fsblock_t	first_block;
1487 	xfs_fileoff_t	first_unmap_block;
1488 	xfs_fileoff_t	last_block;
1489 	xfs_filblks_t	unmap_len=0;
1490 	xfs_mount_t	*mp;
1491 	xfs_trans_t	*ntp;
1492 	int		done;
1493 	int		committed;
1494 	xfs_bmap_free_t	free_list;
1495 	int		error;
1496 
1497 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1498 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1499 	ASSERT(*tp != NULL);
1500 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1501 	ASSERT(ip->i_transp == *tp);
1502 	ASSERT(ip->i_itemp != NULL);
1503 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1504 
1505 
1506 	ntp = *tp;
1507 	mp = (ntp)->t_mountp;
1508 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1509 
1510 	/*
1511 	 * We only support truncating the entire attribute fork.
1512 	 */
1513 	if (fork == XFS_ATTR_FORK) {
1514 		new_size = 0LL;
1515 	}
1516 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1517 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1518 	/*
1519 	 * The first thing we do is set the size to new_size permanently
1520 	 * on disk.  This way we don't have to worry about anyone ever
1521 	 * being able to look at the data being freed even in the face
1522 	 * of a crash.  What we're getting around here is the case where
1523 	 * we free a block, it is allocated to another file, it is written
1524 	 * to, and then we crash.  If the new data gets written to the
1525 	 * file but the log buffers containing the free and reallocation
1526 	 * don't, then we'd end up with garbage in the blocks being freed.
1527 	 * As long as we make the new_size permanent before actually
1528 	 * freeing any blocks it doesn't matter if they get writtten to.
1529 	 *
1530 	 * The callers must signal into us whether or not the size
1531 	 * setting here must be synchronous.  There are a few cases
1532 	 * where it doesn't have to be synchronous.  Those cases
1533 	 * occur if the file is unlinked and we know the unlink is
1534 	 * permanent or if the blocks being truncated are guaranteed
1535 	 * to be beyond the inode eof (regardless of the link count)
1536 	 * and the eof value is permanent.  Both of these cases occur
1537 	 * only on wsync-mounted filesystems.  In those cases, we're
1538 	 * guaranteed that no user will ever see the data in the blocks
1539 	 * that are being truncated so the truncate can run async.
1540 	 * In the free beyond eof case, the file may wind up with
1541 	 * more blocks allocated to it than it needs if we crash
1542 	 * and that won't get fixed until the next time the file
1543 	 * is re-opened and closed but that's ok as that shouldn't
1544 	 * be too many blocks.
1545 	 *
1546 	 * However, we can't just make all wsync xactions run async
1547 	 * because there's one call out of the create path that needs
1548 	 * to run sync where it's truncating an existing file to size
1549 	 * 0 whose size is > 0.
1550 	 *
1551 	 * It's probably possible to come up with a test in this
1552 	 * routine that would correctly distinguish all the above
1553 	 * cases from the values of the function parameters and the
1554 	 * inode state but for sanity's sake, I've decided to let the
1555 	 * layers above just tell us.  It's simpler to correctly figure
1556 	 * out in the layer above exactly under what conditions we
1557 	 * can run async and I think it's easier for others read and
1558 	 * follow the logic in case something has to be changed.
1559 	 * cscope is your friend -- rcc.
1560 	 *
1561 	 * The attribute fork is much simpler.
1562 	 *
1563 	 * For the attribute fork we allow the caller to tell us whether
1564 	 * the unlink of the inode that led to this call is yet permanent
1565 	 * in the on disk log.  If it is not and we will be freeing extents
1566 	 * in this inode then we make the first transaction synchronous
1567 	 * to make sure that the unlink is permanent by the time we free
1568 	 * the blocks.
1569 	 */
1570 	if (fork == XFS_DATA_FORK) {
1571 		if (ip->i_d.di_nextents > 0) {
1572 			/*
1573 			 * If we are not changing the file size then do
1574 			 * not update the on-disk file size - we may be
1575 			 * called from xfs_inactive_free_eofblocks().  If we
1576 			 * update the on-disk file size and then the system
1577 			 * crashes before the contents of the file are
1578 			 * flushed to disk then the files may be full of
1579 			 * holes (ie NULL files bug).
1580 			 */
1581 			if (ip->i_size != new_size) {
1582 				ip->i_d.di_size = new_size;
1583 				ip->i_size = new_size;
1584 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1585 			}
1586 		}
1587 	} else if (sync) {
1588 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1589 		if (ip->i_d.di_anextents > 0)
1590 			xfs_trans_set_sync(ntp);
1591 	}
1592 	ASSERT(fork == XFS_DATA_FORK ||
1593 		(fork == XFS_ATTR_FORK &&
1594 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1595 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1596 
1597 	/*
1598 	 * Since it is possible for space to become allocated beyond
1599 	 * the end of the file (in a crash where the space is allocated
1600 	 * but the inode size is not yet updated), simply remove any
1601 	 * blocks which show up between the new EOF and the maximum
1602 	 * possible file size.  If the first block to be removed is
1603 	 * beyond the maximum file size (ie it is the same as last_block),
1604 	 * then there is nothing to do.
1605 	 */
1606 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1607 	ASSERT(first_unmap_block <= last_block);
1608 	done = 0;
1609 	if (last_block == first_unmap_block) {
1610 		done = 1;
1611 	} else {
1612 		unmap_len = last_block - first_unmap_block + 1;
1613 	}
1614 	while (!done) {
1615 		/*
1616 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1617 		 * will tell us whether it freed the entire range or
1618 		 * not.  If this is a synchronous mount (wsync),
1619 		 * then we can tell bunmapi to keep all the
1620 		 * transactions asynchronous since the unlink
1621 		 * transaction that made this inode inactive has
1622 		 * already hit the disk.  There's no danger of
1623 		 * the freed blocks being reused, there being a
1624 		 * crash, and the reused blocks suddenly reappearing
1625 		 * in this file with garbage in them once recovery
1626 		 * runs.
1627 		 */
1628 		xfs_bmap_init(&free_list, &first_block);
1629 		error = xfs_bunmapi(ntp, ip,
1630 				    first_unmap_block, unmap_len,
1631 				    xfs_bmapi_aflag(fork) |
1632 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1633 				    XFS_ITRUNC_MAX_EXTENTS,
1634 				    &first_block, &free_list,
1635 				    NULL, &done);
1636 		if (error) {
1637 			/*
1638 			 * If the bunmapi call encounters an error,
1639 			 * return to the caller where the transaction
1640 			 * can be properly aborted.  We just need to
1641 			 * make sure we're not holding any resources
1642 			 * that we were not when we came in.
1643 			 */
1644 			xfs_bmap_cancel(&free_list);
1645 			return error;
1646 		}
1647 
1648 		/*
1649 		 * Duplicate the transaction that has the permanent
1650 		 * reservation and commit the old transaction.
1651 		 */
1652 		error = xfs_bmap_finish(tp, &free_list, &committed);
1653 		ntp = *tp;
1654 		if (committed) {
1655 			/* link the inode into the next xact in the chain */
1656 			xfs_trans_ijoin(ntp, ip,
1657 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1658 			xfs_trans_ihold(ntp, ip);
1659 		}
1660 
1661 		if (error) {
1662 			/*
1663 			 * If the bmap finish call encounters an error, return
1664 			 * to the caller where the transaction can be properly
1665 			 * aborted.  We just need to make sure we're not
1666 			 * holding any resources that we were not when we came
1667 			 * in.
1668 			 *
1669 			 * Aborting from this point might lose some blocks in
1670 			 * the file system, but oh well.
1671 			 */
1672 			xfs_bmap_cancel(&free_list);
1673 			return error;
1674 		}
1675 
1676 		if (committed) {
1677 			/*
1678 			 * Mark the inode dirty so it will be logged and
1679 			 * moved forward in the log as part of every commit.
1680 			 */
1681 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1682 		}
1683 
1684 		ntp = xfs_trans_dup(ntp);
1685 		error = xfs_trans_commit(*tp, 0);
1686 		*tp = ntp;
1687 
1688 		/* link the inode into the next transaction in the chain */
1689 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1690 		xfs_trans_ihold(ntp, ip);
1691 
1692 		if (error)
1693 			return error;
1694 		/*
1695 		 * transaction commit worked ok so we can drop the extra ticket
1696 		 * reference that we gained in xfs_trans_dup()
1697 		 */
1698 		xfs_log_ticket_put(ntp->t_ticket);
1699 		error = xfs_trans_reserve(ntp, 0,
1700 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1701 					XFS_TRANS_PERM_LOG_RES,
1702 					XFS_ITRUNCATE_LOG_COUNT);
1703 		if (error)
1704 			return error;
1705 	}
1706 	/*
1707 	 * Only update the size in the case of the data fork, but
1708 	 * always re-log the inode so that our permanent transaction
1709 	 * can keep on rolling it forward in the log.
1710 	 */
1711 	if (fork == XFS_DATA_FORK) {
1712 		xfs_isize_check(mp, ip, new_size);
1713 		/*
1714 		 * If we are not changing the file size then do
1715 		 * not update the on-disk file size - we may be
1716 		 * called from xfs_inactive_free_eofblocks().  If we
1717 		 * update the on-disk file size and then the system
1718 		 * crashes before the contents of the file are
1719 		 * flushed to disk then the files may be full of
1720 		 * holes (ie NULL files bug).
1721 		 */
1722 		if (ip->i_size != new_size) {
1723 			ip->i_d.di_size = new_size;
1724 			ip->i_size = new_size;
1725 		}
1726 	}
1727 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1728 	ASSERT((new_size != 0) ||
1729 	       (fork == XFS_ATTR_FORK) ||
1730 	       (ip->i_delayed_blks == 0));
1731 	ASSERT((new_size != 0) ||
1732 	       (fork == XFS_ATTR_FORK) ||
1733 	       (ip->i_d.di_nextents == 0));
1734 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1735 	return 0;
1736 }
1737 
1738 /*
1739  * This is called when the inode's link count goes to 0.
1740  * We place the on-disk inode on a list in the AGI.  It
1741  * will be pulled from this list when the inode is freed.
1742  */
1743 int
1744 xfs_iunlink(
1745 	xfs_trans_t	*tp,
1746 	xfs_inode_t	*ip)
1747 {
1748 	xfs_mount_t	*mp;
1749 	xfs_agi_t	*agi;
1750 	xfs_dinode_t	*dip;
1751 	xfs_buf_t	*agibp;
1752 	xfs_buf_t	*ibp;
1753 	xfs_agino_t	agino;
1754 	short		bucket_index;
1755 	int		offset;
1756 	int		error;
1757 
1758 	ASSERT(ip->i_d.di_nlink == 0);
1759 	ASSERT(ip->i_d.di_mode != 0);
1760 	ASSERT(ip->i_transp == tp);
1761 
1762 	mp = tp->t_mountp;
1763 
1764 	/*
1765 	 * Get the agi buffer first.  It ensures lock ordering
1766 	 * on the list.
1767 	 */
1768 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1769 	if (error)
1770 		return error;
1771 	agi = XFS_BUF_TO_AGI(agibp);
1772 
1773 	/*
1774 	 * Get the index into the agi hash table for the
1775 	 * list this inode will go on.
1776 	 */
1777 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1778 	ASSERT(agino != 0);
1779 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1780 	ASSERT(agi->agi_unlinked[bucket_index]);
1781 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1782 
1783 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1784 		/*
1785 		 * There is already another inode in the bucket we need
1786 		 * to add ourselves to.  Add us at the front of the list.
1787 		 * Here we put the head pointer into our next pointer,
1788 		 * and then we fall through to point the head at us.
1789 		 */
1790 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1791 		if (error)
1792 			return error;
1793 
1794 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1795 		/* both on-disk, don't endian flip twice */
1796 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1797 		offset = ip->i_imap.im_boffset +
1798 			offsetof(xfs_dinode_t, di_next_unlinked);
1799 		xfs_trans_inode_buf(tp, ibp);
1800 		xfs_trans_log_buf(tp, ibp, offset,
1801 				  (offset + sizeof(xfs_agino_t) - 1));
1802 		xfs_inobp_check(mp, ibp);
1803 	}
1804 
1805 	/*
1806 	 * Point the bucket head pointer at the inode being inserted.
1807 	 */
1808 	ASSERT(agino != 0);
1809 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1810 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1811 		(sizeof(xfs_agino_t) * bucket_index);
1812 	xfs_trans_log_buf(tp, agibp, offset,
1813 			  (offset + sizeof(xfs_agino_t) - 1));
1814 	return 0;
1815 }
1816 
1817 /*
1818  * Pull the on-disk inode from the AGI unlinked list.
1819  */
1820 STATIC int
1821 xfs_iunlink_remove(
1822 	xfs_trans_t	*tp,
1823 	xfs_inode_t	*ip)
1824 {
1825 	xfs_ino_t	next_ino;
1826 	xfs_mount_t	*mp;
1827 	xfs_agi_t	*agi;
1828 	xfs_dinode_t	*dip;
1829 	xfs_buf_t	*agibp;
1830 	xfs_buf_t	*ibp;
1831 	xfs_agnumber_t	agno;
1832 	xfs_agino_t	agino;
1833 	xfs_agino_t	next_agino;
1834 	xfs_buf_t	*last_ibp;
1835 	xfs_dinode_t	*last_dip = NULL;
1836 	short		bucket_index;
1837 	int		offset, last_offset = 0;
1838 	int		error;
1839 
1840 	mp = tp->t_mountp;
1841 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1842 
1843 	/*
1844 	 * Get the agi buffer first.  It ensures lock ordering
1845 	 * on the list.
1846 	 */
1847 	error = xfs_read_agi(mp, tp, agno, &agibp);
1848 	if (error)
1849 		return error;
1850 
1851 	agi = XFS_BUF_TO_AGI(agibp);
1852 
1853 	/*
1854 	 * Get the index into the agi hash table for the
1855 	 * list this inode will go on.
1856 	 */
1857 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1858 	ASSERT(agino != 0);
1859 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1860 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1861 	ASSERT(agi->agi_unlinked[bucket_index]);
1862 
1863 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1864 		/*
1865 		 * We're at the head of the list.  Get the inode's
1866 		 * on-disk buffer to see if there is anyone after us
1867 		 * on the list.  Only modify our next pointer if it
1868 		 * is not already NULLAGINO.  This saves us the overhead
1869 		 * of dealing with the buffer when there is no need to
1870 		 * change it.
1871 		 */
1872 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1873 		if (error) {
1874 			cmn_err(CE_WARN,
1875 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1876 				error, mp->m_fsname);
1877 			return error;
1878 		}
1879 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1880 		ASSERT(next_agino != 0);
1881 		if (next_agino != NULLAGINO) {
1882 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1883 			offset = ip->i_imap.im_boffset +
1884 				offsetof(xfs_dinode_t, di_next_unlinked);
1885 			xfs_trans_inode_buf(tp, ibp);
1886 			xfs_trans_log_buf(tp, ibp, offset,
1887 					  (offset + sizeof(xfs_agino_t) - 1));
1888 			xfs_inobp_check(mp, ibp);
1889 		} else {
1890 			xfs_trans_brelse(tp, ibp);
1891 		}
1892 		/*
1893 		 * Point the bucket head pointer at the next inode.
1894 		 */
1895 		ASSERT(next_agino != 0);
1896 		ASSERT(next_agino != agino);
1897 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1898 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1899 			(sizeof(xfs_agino_t) * bucket_index);
1900 		xfs_trans_log_buf(tp, agibp, offset,
1901 				  (offset + sizeof(xfs_agino_t) - 1));
1902 	} else {
1903 		/*
1904 		 * We need to search the list for the inode being freed.
1905 		 */
1906 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1907 		last_ibp = NULL;
1908 		while (next_agino != agino) {
1909 			/*
1910 			 * If the last inode wasn't the one pointing to
1911 			 * us, then release its buffer since we're not
1912 			 * going to do anything with it.
1913 			 */
1914 			if (last_ibp != NULL) {
1915 				xfs_trans_brelse(tp, last_ibp);
1916 			}
1917 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1918 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1919 					    &last_ibp, &last_offset, 0);
1920 			if (error) {
1921 				cmn_err(CE_WARN,
1922 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1923 					error, mp->m_fsname);
1924 				return error;
1925 			}
1926 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1927 			ASSERT(next_agino != NULLAGINO);
1928 			ASSERT(next_agino != 0);
1929 		}
1930 		/*
1931 		 * Now last_ibp points to the buffer previous to us on
1932 		 * the unlinked list.  Pull us from the list.
1933 		 */
1934 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1935 		if (error) {
1936 			cmn_err(CE_WARN,
1937 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1938 				error, mp->m_fsname);
1939 			return error;
1940 		}
1941 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1942 		ASSERT(next_agino != 0);
1943 		ASSERT(next_agino != agino);
1944 		if (next_agino != NULLAGINO) {
1945 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1946 			offset = ip->i_imap.im_boffset +
1947 				offsetof(xfs_dinode_t, di_next_unlinked);
1948 			xfs_trans_inode_buf(tp, ibp);
1949 			xfs_trans_log_buf(tp, ibp, offset,
1950 					  (offset + sizeof(xfs_agino_t) - 1));
1951 			xfs_inobp_check(mp, ibp);
1952 		} else {
1953 			xfs_trans_brelse(tp, ibp);
1954 		}
1955 		/*
1956 		 * Point the previous inode on the list to the next inode.
1957 		 */
1958 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1959 		ASSERT(next_agino != 0);
1960 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1961 		xfs_trans_inode_buf(tp, last_ibp);
1962 		xfs_trans_log_buf(tp, last_ibp, offset,
1963 				  (offset + sizeof(xfs_agino_t) - 1));
1964 		xfs_inobp_check(mp, last_ibp);
1965 	}
1966 	return 0;
1967 }
1968 
1969 STATIC void
1970 xfs_ifree_cluster(
1971 	xfs_inode_t	*free_ip,
1972 	xfs_trans_t	*tp,
1973 	xfs_ino_t	inum)
1974 {
1975 	xfs_mount_t		*mp = free_ip->i_mount;
1976 	int			blks_per_cluster;
1977 	int			nbufs;
1978 	int			ninodes;
1979 	int			i, j, found, pre_flushed;
1980 	xfs_daddr_t		blkno;
1981 	xfs_buf_t		*bp;
1982 	xfs_inode_t		*ip, **ip_found;
1983 	xfs_inode_log_item_t	*iip;
1984 	xfs_log_item_t		*lip;
1985 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
1986 
1987 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1988 		blks_per_cluster = 1;
1989 		ninodes = mp->m_sb.sb_inopblock;
1990 		nbufs = XFS_IALLOC_BLOCKS(mp);
1991 	} else {
1992 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1993 					mp->m_sb.sb_blocksize;
1994 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1995 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1996 	}
1997 
1998 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1999 
2000 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2001 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2002 					 XFS_INO_TO_AGBNO(mp, inum));
2003 
2004 
2005 		/*
2006 		 * Look for each inode in memory and attempt to lock it,
2007 		 * we can be racing with flush and tail pushing here.
2008 		 * any inode we get the locks on, add to an array of
2009 		 * inode items to process later.
2010 		 *
2011 		 * The get the buffer lock, we could beat a flush
2012 		 * or tail pushing thread to the lock here, in which
2013 		 * case they will go looking for the inode buffer
2014 		 * and fail, we need some other form of interlock
2015 		 * here.
2016 		 */
2017 		found = 0;
2018 		for (i = 0; i < ninodes; i++) {
2019 			read_lock(&pag->pag_ici_lock);
2020 			ip = radix_tree_lookup(&pag->pag_ici_root,
2021 					XFS_INO_TO_AGINO(mp, (inum + i)));
2022 
2023 			/* Inode not in memory or we found it already,
2024 			 * nothing to do
2025 			 */
2026 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2027 				read_unlock(&pag->pag_ici_lock);
2028 				continue;
2029 			}
2030 
2031 			if (xfs_inode_clean(ip)) {
2032 				read_unlock(&pag->pag_ici_lock);
2033 				continue;
2034 			}
2035 
2036 			/* If we can get the locks then add it to the
2037 			 * list, otherwise by the time we get the bp lock
2038 			 * below it will already be attached to the
2039 			 * inode buffer.
2040 			 */
2041 
2042 			/* This inode will already be locked - by us, lets
2043 			 * keep it that way.
2044 			 */
2045 
2046 			if (ip == free_ip) {
2047 				if (xfs_iflock_nowait(ip)) {
2048 					xfs_iflags_set(ip, XFS_ISTALE);
2049 					if (xfs_inode_clean(ip)) {
2050 						xfs_ifunlock(ip);
2051 					} else {
2052 						ip_found[found++] = ip;
2053 					}
2054 				}
2055 				read_unlock(&pag->pag_ici_lock);
2056 				continue;
2057 			}
2058 
2059 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2060 				if (xfs_iflock_nowait(ip)) {
2061 					xfs_iflags_set(ip, XFS_ISTALE);
2062 
2063 					if (xfs_inode_clean(ip)) {
2064 						xfs_ifunlock(ip);
2065 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2066 					} else {
2067 						ip_found[found++] = ip;
2068 					}
2069 				} else {
2070 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2071 				}
2072 			}
2073 			read_unlock(&pag->pag_ici_lock);
2074 		}
2075 
2076 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2077 					mp->m_bsize * blks_per_cluster,
2078 					XFS_BUF_LOCK);
2079 
2080 		pre_flushed = 0;
2081 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2082 		while (lip) {
2083 			if (lip->li_type == XFS_LI_INODE) {
2084 				iip = (xfs_inode_log_item_t *)lip;
2085 				ASSERT(iip->ili_logged == 1);
2086 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2087 				xfs_trans_ail_copy_lsn(mp->m_ail,
2088 							&iip->ili_flush_lsn,
2089 							&iip->ili_item.li_lsn);
2090 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2091 				pre_flushed++;
2092 			}
2093 			lip = lip->li_bio_list;
2094 		}
2095 
2096 		for (i = 0; i < found; i++) {
2097 			ip = ip_found[i];
2098 			iip = ip->i_itemp;
2099 
2100 			if (!iip) {
2101 				ip->i_update_core = 0;
2102 				xfs_ifunlock(ip);
2103 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2104 				continue;
2105 			}
2106 
2107 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2108 			iip->ili_format.ilf_fields = 0;
2109 			iip->ili_logged = 1;
2110 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2111 						&iip->ili_item.li_lsn);
2112 
2113 			xfs_buf_attach_iodone(bp,
2114 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2115 				xfs_istale_done, (xfs_log_item_t *)iip);
2116 			if (ip != free_ip) {
2117 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2118 			}
2119 		}
2120 
2121 		if (found || pre_flushed)
2122 			xfs_trans_stale_inode_buf(tp, bp);
2123 		xfs_trans_binval(tp, bp);
2124 	}
2125 
2126 	kmem_free(ip_found);
2127 	xfs_put_perag(mp, pag);
2128 }
2129 
2130 /*
2131  * This is called to return an inode to the inode free list.
2132  * The inode should already be truncated to 0 length and have
2133  * no pages associated with it.  This routine also assumes that
2134  * the inode is already a part of the transaction.
2135  *
2136  * The on-disk copy of the inode will have been added to the list
2137  * of unlinked inodes in the AGI. We need to remove the inode from
2138  * that list atomically with respect to freeing it here.
2139  */
2140 int
2141 xfs_ifree(
2142 	xfs_trans_t	*tp,
2143 	xfs_inode_t	*ip,
2144 	xfs_bmap_free_t	*flist)
2145 {
2146 	int			error;
2147 	int			delete;
2148 	xfs_ino_t		first_ino;
2149 	xfs_dinode_t    	*dip;
2150 	xfs_buf_t       	*ibp;
2151 
2152 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2153 	ASSERT(ip->i_transp == tp);
2154 	ASSERT(ip->i_d.di_nlink == 0);
2155 	ASSERT(ip->i_d.di_nextents == 0);
2156 	ASSERT(ip->i_d.di_anextents == 0);
2157 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2158 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2159 	ASSERT(ip->i_d.di_nblocks == 0);
2160 
2161 	/*
2162 	 * Pull the on-disk inode from the AGI unlinked list.
2163 	 */
2164 	error = xfs_iunlink_remove(tp, ip);
2165 	if (error != 0) {
2166 		return error;
2167 	}
2168 
2169 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2170 	if (error != 0) {
2171 		return error;
2172 	}
2173 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2174 	ip->i_d.di_flags = 0;
2175 	ip->i_d.di_dmevmask = 0;
2176 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2177 	ip->i_df.if_ext_max =
2178 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2179 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2180 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2181 	/*
2182 	 * Bump the generation count so no one will be confused
2183 	 * by reincarnations of this inode.
2184 	 */
2185 	ip->i_d.di_gen++;
2186 
2187 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2188 
2189 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2190 	if (error)
2191 		return error;
2192 
2193         /*
2194 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2195 	* from picking up this inode when it is reclaimed (its incore state
2196 	* initialzed but not flushed to disk yet). The in-core di_mode is
2197 	* already cleared  and a corresponding transaction logged.
2198 	* The hack here just synchronizes the in-core to on-disk
2199 	* di_mode value in advance before the actual inode sync to disk.
2200 	* This is OK because the inode is already unlinked and would never
2201 	* change its di_mode again for this inode generation.
2202 	* This is a temporary hack that would require a proper fix
2203 	* in the future.
2204 	*/
2205 	dip->di_mode = 0;
2206 
2207 	if (delete) {
2208 		xfs_ifree_cluster(ip, tp, first_ino);
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 /*
2215  * Reallocate the space for if_broot based on the number of records
2216  * being added or deleted as indicated in rec_diff.  Move the records
2217  * and pointers in if_broot to fit the new size.  When shrinking this
2218  * will eliminate holes between the records and pointers created by
2219  * the caller.  When growing this will create holes to be filled in
2220  * by the caller.
2221  *
2222  * The caller must not request to add more records than would fit in
2223  * the on-disk inode root.  If the if_broot is currently NULL, then
2224  * if we adding records one will be allocated.  The caller must also
2225  * not request that the number of records go below zero, although
2226  * it can go to zero.
2227  *
2228  * ip -- the inode whose if_broot area is changing
2229  * ext_diff -- the change in the number of records, positive or negative,
2230  *	 requested for the if_broot array.
2231  */
2232 void
2233 xfs_iroot_realloc(
2234 	xfs_inode_t		*ip,
2235 	int			rec_diff,
2236 	int			whichfork)
2237 {
2238 	struct xfs_mount	*mp = ip->i_mount;
2239 	int			cur_max;
2240 	xfs_ifork_t		*ifp;
2241 	struct xfs_btree_block	*new_broot;
2242 	int			new_max;
2243 	size_t			new_size;
2244 	char			*np;
2245 	char			*op;
2246 
2247 	/*
2248 	 * Handle the degenerate case quietly.
2249 	 */
2250 	if (rec_diff == 0) {
2251 		return;
2252 	}
2253 
2254 	ifp = XFS_IFORK_PTR(ip, whichfork);
2255 	if (rec_diff > 0) {
2256 		/*
2257 		 * If there wasn't any memory allocated before, just
2258 		 * allocate it now and get out.
2259 		 */
2260 		if (ifp->if_broot_bytes == 0) {
2261 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2262 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2263 			ifp->if_broot_bytes = (int)new_size;
2264 			return;
2265 		}
2266 
2267 		/*
2268 		 * If there is already an existing if_broot, then we need
2269 		 * to realloc() it and shift the pointers to their new
2270 		 * location.  The records don't change location because
2271 		 * they are kept butted up against the btree block header.
2272 		 */
2273 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2274 		new_max = cur_max + rec_diff;
2275 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2276 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2277 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2278 				KM_SLEEP);
2279 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2280 						     ifp->if_broot_bytes);
2281 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2282 						     (int)new_size);
2283 		ifp->if_broot_bytes = (int)new_size;
2284 		ASSERT(ifp->if_broot_bytes <=
2285 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2286 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2287 		return;
2288 	}
2289 
2290 	/*
2291 	 * rec_diff is less than 0.  In this case, we are shrinking the
2292 	 * if_broot buffer.  It must already exist.  If we go to zero
2293 	 * records, just get rid of the root and clear the status bit.
2294 	 */
2295 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2296 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2297 	new_max = cur_max + rec_diff;
2298 	ASSERT(new_max >= 0);
2299 	if (new_max > 0)
2300 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2301 	else
2302 		new_size = 0;
2303 	if (new_size > 0) {
2304 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2305 		/*
2306 		 * First copy over the btree block header.
2307 		 */
2308 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2309 	} else {
2310 		new_broot = NULL;
2311 		ifp->if_flags &= ~XFS_IFBROOT;
2312 	}
2313 
2314 	/*
2315 	 * Only copy the records and pointers if there are any.
2316 	 */
2317 	if (new_max > 0) {
2318 		/*
2319 		 * First copy the records.
2320 		 */
2321 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2322 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2323 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2324 
2325 		/*
2326 		 * Then copy the pointers.
2327 		 */
2328 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2329 						     ifp->if_broot_bytes);
2330 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2331 						     (int)new_size);
2332 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2333 	}
2334 	kmem_free(ifp->if_broot);
2335 	ifp->if_broot = new_broot;
2336 	ifp->if_broot_bytes = (int)new_size;
2337 	ASSERT(ifp->if_broot_bytes <=
2338 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2339 	return;
2340 }
2341 
2342 
2343 /*
2344  * This is called when the amount of space needed for if_data
2345  * is increased or decreased.  The change in size is indicated by
2346  * the number of bytes that need to be added or deleted in the
2347  * byte_diff parameter.
2348  *
2349  * If the amount of space needed has decreased below the size of the
2350  * inline buffer, then switch to using the inline buffer.  Otherwise,
2351  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2352  * to what is needed.
2353  *
2354  * ip -- the inode whose if_data area is changing
2355  * byte_diff -- the change in the number of bytes, positive or negative,
2356  *	 requested for the if_data array.
2357  */
2358 void
2359 xfs_idata_realloc(
2360 	xfs_inode_t	*ip,
2361 	int		byte_diff,
2362 	int		whichfork)
2363 {
2364 	xfs_ifork_t	*ifp;
2365 	int		new_size;
2366 	int		real_size;
2367 
2368 	if (byte_diff == 0) {
2369 		return;
2370 	}
2371 
2372 	ifp = XFS_IFORK_PTR(ip, whichfork);
2373 	new_size = (int)ifp->if_bytes + byte_diff;
2374 	ASSERT(new_size >= 0);
2375 
2376 	if (new_size == 0) {
2377 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2378 			kmem_free(ifp->if_u1.if_data);
2379 		}
2380 		ifp->if_u1.if_data = NULL;
2381 		real_size = 0;
2382 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2383 		/*
2384 		 * If the valid extents/data can fit in if_inline_ext/data,
2385 		 * copy them from the malloc'd vector and free it.
2386 		 */
2387 		if (ifp->if_u1.if_data == NULL) {
2388 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2389 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2390 			ASSERT(ifp->if_real_bytes != 0);
2391 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2392 			      new_size);
2393 			kmem_free(ifp->if_u1.if_data);
2394 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2395 		}
2396 		real_size = 0;
2397 	} else {
2398 		/*
2399 		 * Stuck with malloc/realloc.
2400 		 * For inline data, the underlying buffer must be
2401 		 * a multiple of 4 bytes in size so that it can be
2402 		 * logged and stay on word boundaries.  We enforce
2403 		 * that here.
2404 		 */
2405 		real_size = roundup(new_size, 4);
2406 		if (ifp->if_u1.if_data == NULL) {
2407 			ASSERT(ifp->if_real_bytes == 0);
2408 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2409 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2410 			/*
2411 			 * Only do the realloc if the underlying size
2412 			 * is really changing.
2413 			 */
2414 			if (ifp->if_real_bytes != real_size) {
2415 				ifp->if_u1.if_data =
2416 					kmem_realloc(ifp->if_u1.if_data,
2417 							real_size,
2418 							ifp->if_real_bytes,
2419 							KM_SLEEP);
2420 			}
2421 		} else {
2422 			ASSERT(ifp->if_real_bytes == 0);
2423 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2424 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2425 				ifp->if_bytes);
2426 		}
2427 	}
2428 	ifp->if_real_bytes = real_size;
2429 	ifp->if_bytes = new_size;
2430 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2431 }
2432 
2433 void
2434 xfs_idestroy_fork(
2435 	xfs_inode_t	*ip,
2436 	int		whichfork)
2437 {
2438 	xfs_ifork_t	*ifp;
2439 
2440 	ifp = XFS_IFORK_PTR(ip, whichfork);
2441 	if (ifp->if_broot != NULL) {
2442 		kmem_free(ifp->if_broot);
2443 		ifp->if_broot = NULL;
2444 	}
2445 
2446 	/*
2447 	 * If the format is local, then we can't have an extents
2448 	 * array so just look for an inline data array.  If we're
2449 	 * not local then we may or may not have an extents list,
2450 	 * so check and free it up if we do.
2451 	 */
2452 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2453 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2454 		    (ifp->if_u1.if_data != NULL)) {
2455 			ASSERT(ifp->if_real_bytes != 0);
2456 			kmem_free(ifp->if_u1.if_data);
2457 			ifp->if_u1.if_data = NULL;
2458 			ifp->if_real_bytes = 0;
2459 		}
2460 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2461 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2462 		    ((ifp->if_u1.if_extents != NULL) &&
2463 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2464 		ASSERT(ifp->if_real_bytes != 0);
2465 		xfs_iext_destroy(ifp);
2466 	}
2467 	ASSERT(ifp->if_u1.if_extents == NULL ||
2468 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2469 	ASSERT(ifp->if_real_bytes == 0);
2470 	if (whichfork == XFS_ATTR_FORK) {
2471 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2472 		ip->i_afp = NULL;
2473 	}
2474 }
2475 
2476 /*
2477  * Increment the pin count of the given buffer.
2478  * This value is protected by ipinlock spinlock in the mount structure.
2479  */
2480 void
2481 xfs_ipin(
2482 	xfs_inode_t	*ip)
2483 {
2484 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2485 
2486 	atomic_inc(&ip->i_pincount);
2487 }
2488 
2489 /*
2490  * Decrement the pin count of the given inode, and wake up
2491  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2492  * inode must have been previously pinned with a call to xfs_ipin().
2493  */
2494 void
2495 xfs_iunpin(
2496 	xfs_inode_t	*ip)
2497 {
2498 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2499 
2500 	if (atomic_dec_and_test(&ip->i_pincount))
2501 		wake_up(&ip->i_ipin_wait);
2502 }
2503 
2504 /*
2505  * This is called to unpin an inode. It can be directed to wait or to return
2506  * immediately without waiting for the inode to be unpinned.  The caller must
2507  * have the inode locked in at least shared mode so that the buffer cannot be
2508  * subsequently pinned once someone is waiting for it to be unpinned.
2509  */
2510 STATIC void
2511 __xfs_iunpin_wait(
2512 	xfs_inode_t	*ip,
2513 	int		wait)
2514 {
2515 	xfs_inode_log_item_t	*iip = ip->i_itemp;
2516 
2517 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2518 	if (atomic_read(&ip->i_pincount) == 0)
2519 		return;
2520 
2521 	/* Give the log a push to start the unpinning I/O */
2522 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2523 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2524 	if (wait)
2525 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2526 }
2527 
2528 static inline void
2529 xfs_iunpin_wait(
2530 	xfs_inode_t	*ip)
2531 {
2532 	__xfs_iunpin_wait(ip, 1);
2533 }
2534 
2535 static inline void
2536 xfs_iunpin_nowait(
2537 	xfs_inode_t	*ip)
2538 {
2539 	__xfs_iunpin_wait(ip, 0);
2540 }
2541 
2542 
2543 /*
2544  * xfs_iextents_copy()
2545  *
2546  * This is called to copy the REAL extents (as opposed to the delayed
2547  * allocation extents) from the inode into the given buffer.  It
2548  * returns the number of bytes copied into the buffer.
2549  *
2550  * If there are no delayed allocation extents, then we can just
2551  * memcpy() the extents into the buffer.  Otherwise, we need to
2552  * examine each extent in turn and skip those which are delayed.
2553  */
2554 int
2555 xfs_iextents_copy(
2556 	xfs_inode_t		*ip,
2557 	xfs_bmbt_rec_t		*dp,
2558 	int			whichfork)
2559 {
2560 	int			copied;
2561 	int			i;
2562 	xfs_ifork_t		*ifp;
2563 	int			nrecs;
2564 	xfs_fsblock_t		start_block;
2565 
2566 	ifp = XFS_IFORK_PTR(ip, whichfork);
2567 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2568 	ASSERT(ifp->if_bytes > 0);
2569 
2570 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2571 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2572 	ASSERT(nrecs > 0);
2573 
2574 	/*
2575 	 * There are some delayed allocation extents in the
2576 	 * inode, so copy the extents one at a time and skip
2577 	 * the delayed ones.  There must be at least one
2578 	 * non-delayed extent.
2579 	 */
2580 	copied = 0;
2581 	for (i = 0; i < nrecs; i++) {
2582 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2583 		start_block = xfs_bmbt_get_startblock(ep);
2584 		if (isnullstartblock(start_block)) {
2585 			/*
2586 			 * It's a delayed allocation extent, so skip it.
2587 			 */
2588 			continue;
2589 		}
2590 
2591 		/* Translate to on disk format */
2592 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2593 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2594 		dp++;
2595 		copied++;
2596 	}
2597 	ASSERT(copied != 0);
2598 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2599 
2600 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2601 }
2602 
2603 /*
2604  * Each of the following cases stores data into the same region
2605  * of the on-disk inode, so only one of them can be valid at
2606  * any given time. While it is possible to have conflicting formats
2607  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2608  * in EXTENTS format, this can only happen when the fork has
2609  * changed formats after being modified but before being flushed.
2610  * In these cases, the format always takes precedence, because the
2611  * format indicates the current state of the fork.
2612  */
2613 /*ARGSUSED*/
2614 STATIC void
2615 xfs_iflush_fork(
2616 	xfs_inode_t		*ip,
2617 	xfs_dinode_t		*dip,
2618 	xfs_inode_log_item_t	*iip,
2619 	int			whichfork,
2620 	xfs_buf_t		*bp)
2621 {
2622 	char			*cp;
2623 	xfs_ifork_t		*ifp;
2624 	xfs_mount_t		*mp;
2625 #ifdef XFS_TRANS_DEBUG
2626 	int			first;
2627 #endif
2628 	static const short	brootflag[2] =
2629 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2630 	static const short	dataflag[2] =
2631 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2632 	static const short	extflag[2] =
2633 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2634 
2635 	if (!iip)
2636 		return;
2637 	ifp = XFS_IFORK_PTR(ip, whichfork);
2638 	/*
2639 	 * This can happen if we gave up in iformat in an error path,
2640 	 * for the attribute fork.
2641 	 */
2642 	if (!ifp) {
2643 		ASSERT(whichfork == XFS_ATTR_FORK);
2644 		return;
2645 	}
2646 	cp = XFS_DFORK_PTR(dip, whichfork);
2647 	mp = ip->i_mount;
2648 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2649 	case XFS_DINODE_FMT_LOCAL:
2650 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2651 		    (ifp->if_bytes > 0)) {
2652 			ASSERT(ifp->if_u1.if_data != NULL);
2653 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2654 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2655 		}
2656 		break;
2657 
2658 	case XFS_DINODE_FMT_EXTENTS:
2659 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2660 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2661 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2662 			(ifp->if_bytes == 0));
2663 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2664 			(ifp->if_bytes > 0));
2665 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2666 		    (ifp->if_bytes > 0)) {
2667 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2668 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2669 				whichfork);
2670 		}
2671 		break;
2672 
2673 	case XFS_DINODE_FMT_BTREE:
2674 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2675 		    (ifp->if_broot_bytes > 0)) {
2676 			ASSERT(ifp->if_broot != NULL);
2677 			ASSERT(ifp->if_broot_bytes <=
2678 			       (XFS_IFORK_SIZE(ip, whichfork) +
2679 				XFS_BROOT_SIZE_ADJ));
2680 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2681 				(xfs_bmdr_block_t *)cp,
2682 				XFS_DFORK_SIZE(dip, mp, whichfork));
2683 		}
2684 		break;
2685 
2686 	case XFS_DINODE_FMT_DEV:
2687 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2688 			ASSERT(whichfork == XFS_DATA_FORK);
2689 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2690 		}
2691 		break;
2692 
2693 	case XFS_DINODE_FMT_UUID:
2694 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2695 			ASSERT(whichfork == XFS_DATA_FORK);
2696 			memcpy(XFS_DFORK_DPTR(dip),
2697 			       &ip->i_df.if_u2.if_uuid,
2698 			       sizeof(uuid_t));
2699 		}
2700 		break;
2701 
2702 	default:
2703 		ASSERT(0);
2704 		break;
2705 	}
2706 }
2707 
2708 STATIC int
2709 xfs_iflush_cluster(
2710 	xfs_inode_t	*ip,
2711 	xfs_buf_t	*bp)
2712 {
2713 	xfs_mount_t		*mp = ip->i_mount;
2714 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
2715 	unsigned long		first_index, mask;
2716 	unsigned long		inodes_per_cluster;
2717 	int			ilist_size;
2718 	xfs_inode_t		**ilist;
2719 	xfs_inode_t		*iq;
2720 	int			nr_found;
2721 	int			clcount = 0;
2722 	int			bufwasdelwri;
2723 	int			i;
2724 
2725 	ASSERT(pag->pagi_inodeok);
2726 	ASSERT(pag->pag_ici_init);
2727 
2728 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2729 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2730 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2731 	if (!ilist)
2732 		return 0;
2733 
2734 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2735 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2736 	read_lock(&pag->pag_ici_lock);
2737 	/* really need a gang lookup range call here */
2738 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2739 					first_index, inodes_per_cluster);
2740 	if (nr_found == 0)
2741 		goto out_free;
2742 
2743 	for (i = 0; i < nr_found; i++) {
2744 		iq = ilist[i];
2745 		if (iq == ip)
2746 			continue;
2747 		/* if the inode lies outside this cluster, we're done. */
2748 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2749 			break;
2750 		/*
2751 		 * Do an un-protected check to see if the inode is dirty and
2752 		 * is a candidate for flushing.  These checks will be repeated
2753 		 * later after the appropriate locks are acquired.
2754 		 */
2755 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2756 			continue;
2757 
2758 		/*
2759 		 * Try to get locks.  If any are unavailable or it is pinned,
2760 		 * then this inode cannot be flushed and is skipped.
2761 		 */
2762 
2763 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2764 			continue;
2765 		if (!xfs_iflock_nowait(iq)) {
2766 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2767 			continue;
2768 		}
2769 		if (xfs_ipincount(iq)) {
2770 			xfs_ifunlock(iq);
2771 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2772 			continue;
2773 		}
2774 
2775 		/*
2776 		 * arriving here means that this inode can be flushed.  First
2777 		 * re-check that it's dirty before flushing.
2778 		 */
2779 		if (!xfs_inode_clean(iq)) {
2780 			int	error;
2781 			error = xfs_iflush_int(iq, bp);
2782 			if (error) {
2783 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2784 				goto cluster_corrupt_out;
2785 			}
2786 			clcount++;
2787 		} else {
2788 			xfs_ifunlock(iq);
2789 		}
2790 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2791 	}
2792 
2793 	if (clcount) {
2794 		XFS_STATS_INC(xs_icluster_flushcnt);
2795 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2796 	}
2797 
2798 out_free:
2799 	read_unlock(&pag->pag_ici_lock);
2800 	kmem_free(ilist);
2801 	return 0;
2802 
2803 
2804 cluster_corrupt_out:
2805 	/*
2806 	 * Corruption detected in the clustering loop.  Invalidate the
2807 	 * inode buffer and shut down the filesystem.
2808 	 */
2809 	read_unlock(&pag->pag_ici_lock);
2810 	/*
2811 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2812 	 * brelse can handle it with no problems.  If not, shut down the
2813 	 * filesystem before releasing the buffer.
2814 	 */
2815 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2816 	if (bufwasdelwri)
2817 		xfs_buf_relse(bp);
2818 
2819 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2820 
2821 	if (!bufwasdelwri) {
2822 		/*
2823 		 * Just like incore_relse: if we have b_iodone functions,
2824 		 * mark the buffer as an error and call them.  Otherwise
2825 		 * mark it as stale and brelse.
2826 		 */
2827 		if (XFS_BUF_IODONE_FUNC(bp)) {
2828 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2829 			XFS_BUF_UNDONE(bp);
2830 			XFS_BUF_STALE(bp);
2831 			XFS_BUF_ERROR(bp,EIO);
2832 			xfs_biodone(bp);
2833 		} else {
2834 			XFS_BUF_STALE(bp);
2835 			xfs_buf_relse(bp);
2836 		}
2837 	}
2838 
2839 	/*
2840 	 * Unlocks the flush lock
2841 	 */
2842 	xfs_iflush_abort(iq);
2843 	kmem_free(ilist);
2844 	return XFS_ERROR(EFSCORRUPTED);
2845 }
2846 
2847 /*
2848  * xfs_iflush() will write a modified inode's changes out to the
2849  * inode's on disk home.  The caller must have the inode lock held
2850  * in at least shared mode and the inode flush completion must be
2851  * active as well.  The inode lock will still be held upon return from
2852  * the call and the caller is free to unlock it.
2853  * The inode flush will be completed when the inode reaches the disk.
2854  * The flags indicate how the inode's buffer should be written out.
2855  */
2856 int
2857 xfs_iflush(
2858 	xfs_inode_t		*ip,
2859 	uint			flags)
2860 {
2861 	xfs_inode_log_item_t	*iip;
2862 	xfs_buf_t		*bp;
2863 	xfs_dinode_t		*dip;
2864 	xfs_mount_t		*mp;
2865 	int			error;
2866 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2867 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2868 
2869 	XFS_STATS_INC(xs_iflush_count);
2870 
2871 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2872 	ASSERT(!completion_done(&ip->i_flush));
2873 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2874 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2875 
2876 	iip = ip->i_itemp;
2877 	mp = ip->i_mount;
2878 
2879 	/*
2880 	 * If the inode isn't dirty, then just release the inode
2881 	 * flush lock and do nothing.
2882 	 */
2883 	if (xfs_inode_clean(ip)) {
2884 		xfs_ifunlock(ip);
2885 		return 0;
2886 	}
2887 
2888 	/*
2889 	 * We can't flush the inode until it is unpinned, so wait for it if we
2890 	 * are allowed to block.  We know noone new can pin it, because we are
2891 	 * holding the inode lock shared and you need to hold it exclusively to
2892 	 * pin the inode.
2893 	 *
2894 	 * If we are not allowed to block, force the log out asynchronously so
2895 	 * that when we come back the inode will be unpinned. If other inodes
2896 	 * in the same cluster are dirty, they will probably write the inode
2897 	 * out for us if they occur after the log force completes.
2898 	 */
2899 	if (noblock && xfs_ipincount(ip)) {
2900 		xfs_iunpin_nowait(ip);
2901 		xfs_ifunlock(ip);
2902 		return EAGAIN;
2903 	}
2904 	xfs_iunpin_wait(ip);
2905 
2906 	/*
2907 	 * This may have been unpinned because the filesystem is shutting
2908 	 * down forcibly. If that's the case we must not write this inode
2909 	 * to disk, because the log record didn't make it to disk!
2910 	 */
2911 	if (XFS_FORCED_SHUTDOWN(mp)) {
2912 		ip->i_update_core = 0;
2913 		if (iip)
2914 			iip->ili_format.ilf_fields = 0;
2915 		xfs_ifunlock(ip);
2916 		return XFS_ERROR(EIO);
2917 	}
2918 
2919 	/*
2920 	 * Decide how buffer will be flushed out.  This is done before
2921 	 * the call to xfs_iflush_int because this field is zeroed by it.
2922 	 */
2923 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2924 		/*
2925 		 * Flush out the inode buffer according to the directions
2926 		 * of the caller.  In the cases where the caller has given
2927 		 * us a choice choose the non-delwri case.  This is because
2928 		 * the inode is in the AIL and we need to get it out soon.
2929 		 */
2930 		switch (flags) {
2931 		case XFS_IFLUSH_SYNC:
2932 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2933 			flags = 0;
2934 			break;
2935 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2936 		case XFS_IFLUSH_ASYNC:
2937 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2938 			flags = INT_ASYNC;
2939 			break;
2940 		case XFS_IFLUSH_DELWRI:
2941 			flags = INT_DELWRI;
2942 			break;
2943 		default:
2944 			ASSERT(0);
2945 			flags = 0;
2946 			break;
2947 		}
2948 	} else {
2949 		switch (flags) {
2950 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2951 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2952 		case XFS_IFLUSH_DELWRI:
2953 			flags = INT_DELWRI;
2954 			break;
2955 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2956 		case XFS_IFLUSH_ASYNC:
2957 			flags = INT_ASYNC;
2958 			break;
2959 		case XFS_IFLUSH_SYNC:
2960 			flags = 0;
2961 			break;
2962 		default:
2963 			ASSERT(0);
2964 			flags = 0;
2965 			break;
2966 		}
2967 	}
2968 
2969 	/*
2970 	 * Get the buffer containing the on-disk inode.
2971 	 */
2972 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2973 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2974 	if (error || !bp) {
2975 		xfs_ifunlock(ip);
2976 		return error;
2977 	}
2978 
2979 	/*
2980 	 * First flush out the inode that xfs_iflush was called with.
2981 	 */
2982 	error = xfs_iflush_int(ip, bp);
2983 	if (error)
2984 		goto corrupt_out;
2985 
2986 	/*
2987 	 * If the buffer is pinned then push on the log now so we won't
2988 	 * get stuck waiting in the write for too long.
2989 	 */
2990 	if (XFS_BUF_ISPINNED(bp))
2991 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2992 
2993 	/*
2994 	 * inode clustering:
2995 	 * see if other inodes can be gathered into this write
2996 	 */
2997 	error = xfs_iflush_cluster(ip, bp);
2998 	if (error)
2999 		goto cluster_corrupt_out;
3000 
3001 	if (flags & INT_DELWRI) {
3002 		xfs_bdwrite(mp, bp);
3003 	} else if (flags & INT_ASYNC) {
3004 		error = xfs_bawrite(mp, bp);
3005 	} else {
3006 		error = xfs_bwrite(mp, bp);
3007 	}
3008 	return error;
3009 
3010 corrupt_out:
3011 	xfs_buf_relse(bp);
3012 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3013 cluster_corrupt_out:
3014 	/*
3015 	 * Unlocks the flush lock
3016 	 */
3017 	xfs_iflush_abort(ip);
3018 	return XFS_ERROR(EFSCORRUPTED);
3019 }
3020 
3021 
3022 STATIC int
3023 xfs_iflush_int(
3024 	xfs_inode_t		*ip,
3025 	xfs_buf_t		*bp)
3026 {
3027 	xfs_inode_log_item_t	*iip;
3028 	xfs_dinode_t		*dip;
3029 	xfs_mount_t		*mp;
3030 #ifdef XFS_TRANS_DEBUG
3031 	int			first;
3032 #endif
3033 
3034 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3035 	ASSERT(!completion_done(&ip->i_flush));
3036 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3037 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3038 
3039 	iip = ip->i_itemp;
3040 	mp = ip->i_mount;
3041 
3042 
3043 	/*
3044 	 * If the inode isn't dirty, then just release the inode
3045 	 * flush lock and do nothing.
3046 	 */
3047 	if (xfs_inode_clean(ip)) {
3048 		xfs_ifunlock(ip);
3049 		return 0;
3050 	}
3051 
3052 	/* set *dip = inode's place in the buffer */
3053 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3054 
3055 	/*
3056 	 * Clear i_update_core before copying out the data.
3057 	 * This is for coordination with our timestamp updates
3058 	 * that don't hold the inode lock. They will always
3059 	 * update the timestamps BEFORE setting i_update_core,
3060 	 * so if we clear i_update_core after they set it we
3061 	 * are guaranteed to see their updates to the timestamps.
3062 	 * I believe that this depends on strongly ordered memory
3063 	 * semantics, but we have that.  We use the SYNCHRONIZE
3064 	 * macro to make sure that the compiler does not reorder
3065 	 * the i_update_core access below the data copy below.
3066 	 */
3067 	ip->i_update_core = 0;
3068 	SYNCHRONIZE();
3069 
3070 	/*
3071 	 * Make sure to get the latest atime from the Linux inode.
3072 	 */
3073 	xfs_synchronize_atime(ip);
3074 
3075 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3076 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3077 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3078 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3079 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3080 		goto corrupt_out;
3081 	}
3082 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3083 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3084 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3085 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3086 			ip->i_ino, ip, ip->i_d.di_magic);
3087 		goto corrupt_out;
3088 	}
3089 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3090 		if (XFS_TEST_ERROR(
3091 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3092 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3093 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3094 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3095 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3096 				ip->i_ino, ip);
3097 			goto corrupt_out;
3098 		}
3099 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3100 		if (XFS_TEST_ERROR(
3101 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3102 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3103 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3104 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3105 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3106 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3107 				ip->i_ino, ip);
3108 			goto corrupt_out;
3109 		}
3110 	}
3111 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3112 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3113 				XFS_RANDOM_IFLUSH_5)) {
3114 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3115 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3116 			ip->i_ino,
3117 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3118 			ip->i_d.di_nblocks,
3119 			ip);
3120 		goto corrupt_out;
3121 	}
3122 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3123 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3124 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3125 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3126 			ip->i_ino, ip->i_d.di_forkoff, ip);
3127 		goto corrupt_out;
3128 	}
3129 	/*
3130 	 * bump the flush iteration count, used to detect flushes which
3131 	 * postdate a log record during recovery.
3132 	 */
3133 
3134 	ip->i_d.di_flushiter++;
3135 
3136 	/*
3137 	 * Copy the dirty parts of the inode into the on-disk
3138 	 * inode.  We always copy out the core of the inode,
3139 	 * because if the inode is dirty at all the core must
3140 	 * be.
3141 	 */
3142 	xfs_dinode_to_disk(dip, &ip->i_d);
3143 
3144 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3145 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3146 		ip->i_d.di_flushiter = 0;
3147 
3148 	/*
3149 	 * If this is really an old format inode and the superblock version
3150 	 * has not been updated to support only new format inodes, then
3151 	 * convert back to the old inode format.  If the superblock version
3152 	 * has been updated, then make the conversion permanent.
3153 	 */
3154 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3155 	if (ip->i_d.di_version == 1) {
3156 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3157 			/*
3158 			 * Convert it back.
3159 			 */
3160 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3161 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3162 		} else {
3163 			/*
3164 			 * The superblock version has already been bumped,
3165 			 * so just make the conversion to the new inode
3166 			 * format permanent.
3167 			 */
3168 			ip->i_d.di_version = 2;
3169 			dip->di_version = 2;
3170 			ip->i_d.di_onlink = 0;
3171 			dip->di_onlink = 0;
3172 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3173 			memset(&(dip->di_pad[0]), 0,
3174 			      sizeof(dip->di_pad));
3175 			ASSERT(ip->i_d.di_projid == 0);
3176 		}
3177 	}
3178 
3179 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3180 	if (XFS_IFORK_Q(ip))
3181 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3182 	xfs_inobp_check(mp, bp);
3183 
3184 	/*
3185 	 * We've recorded everything logged in the inode, so we'd
3186 	 * like to clear the ilf_fields bits so we don't log and
3187 	 * flush things unnecessarily.  However, we can't stop
3188 	 * logging all this information until the data we've copied
3189 	 * into the disk buffer is written to disk.  If we did we might
3190 	 * overwrite the copy of the inode in the log with all the
3191 	 * data after re-logging only part of it, and in the face of
3192 	 * a crash we wouldn't have all the data we need to recover.
3193 	 *
3194 	 * What we do is move the bits to the ili_last_fields field.
3195 	 * When logging the inode, these bits are moved back to the
3196 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3197 	 * clear ili_last_fields, since we know that the information
3198 	 * those bits represent is permanently on disk.  As long as
3199 	 * the flush completes before the inode is logged again, then
3200 	 * both ilf_fields and ili_last_fields will be cleared.
3201 	 *
3202 	 * We can play with the ilf_fields bits here, because the inode
3203 	 * lock must be held exclusively in order to set bits there
3204 	 * and the flush lock protects the ili_last_fields bits.
3205 	 * Set ili_logged so the flush done
3206 	 * routine can tell whether or not to look in the AIL.
3207 	 * Also, store the current LSN of the inode so that we can tell
3208 	 * whether the item has moved in the AIL from xfs_iflush_done().
3209 	 * In order to read the lsn we need the AIL lock, because
3210 	 * it is a 64 bit value that cannot be read atomically.
3211 	 */
3212 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3213 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3214 		iip->ili_format.ilf_fields = 0;
3215 		iip->ili_logged = 1;
3216 
3217 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3218 					&iip->ili_item.li_lsn);
3219 
3220 		/*
3221 		 * Attach the function xfs_iflush_done to the inode's
3222 		 * buffer.  This will remove the inode from the AIL
3223 		 * and unlock the inode's flush lock when the inode is
3224 		 * completely written to disk.
3225 		 */
3226 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3227 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3228 
3229 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3230 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3231 	} else {
3232 		/*
3233 		 * We're flushing an inode which is not in the AIL and has
3234 		 * not been logged but has i_update_core set.  For this
3235 		 * case we can use a B_DELWRI flush and immediately drop
3236 		 * the inode flush lock because we can avoid the whole
3237 		 * AIL state thing.  It's OK to drop the flush lock now,
3238 		 * because we've already locked the buffer and to do anything
3239 		 * you really need both.
3240 		 */
3241 		if (iip != NULL) {
3242 			ASSERT(iip->ili_logged == 0);
3243 			ASSERT(iip->ili_last_fields == 0);
3244 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3245 		}
3246 		xfs_ifunlock(ip);
3247 	}
3248 
3249 	return 0;
3250 
3251 corrupt_out:
3252 	return XFS_ERROR(EFSCORRUPTED);
3253 }
3254 
3255 
3256 
3257 #ifdef XFS_ILOCK_TRACE
3258 void
3259 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3260 {
3261 	ktrace_enter(ip->i_lock_trace,
3262 		     (void *)ip,
3263 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3264 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3265 		     (void *)ra,		/* caller of ilock */
3266 		     (void *)(unsigned long)current_cpu(),
3267 		     (void *)(unsigned long)current_pid(),
3268 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3269 }
3270 #endif
3271 
3272 /*
3273  * Return a pointer to the extent record at file index idx.
3274  */
3275 xfs_bmbt_rec_host_t *
3276 xfs_iext_get_ext(
3277 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3278 	xfs_extnum_t	idx)		/* index of target extent */
3279 {
3280 	ASSERT(idx >= 0);
3281 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3282 		return ifp->if_u1.if_ext_irec->er_extbuf;
3283 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3284 		xfs_ext_irec_t	*erp;		/* irec pointer */
3285 		int		erp_idx = 0;	/* irec index */
3286 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3287 
3288 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3289 		return &erp->er_extbuf[page_idx];
3290 	} else if (ifp->if_bytes) {
3291 		return &ifp->if_u1.if_extents[idx];
3292 	} else {
3293 		return NULL;
3294 	}
3295 }
3296 
3297 /*
3298  * Insert new item(s) into the extent records for incore inode
3299  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3300  */
3301 void
3302 xfs_iext_insert(
3303 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3304 	xfs_extnum_t	idx,		/* starting index of new items */
3305 	xfs_extnum_t	count,		/* number of inserted items */
3306 	xfs_bmbt_irec_t	*new)		/* items to insert */
3307 {
3308 	xfs_extnum_t	i;		/* extent record index */
3309 
3310 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3311 	xfs_iext_add(ifp, idx, count);
3312 	for (i = idx; i < idx + count; i++, new++)
3313 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3314 }
3315 
3316 /*
3317  * This is called when the amount of space required for incore file
3318  * extents needs to be increased. The ext_diff parameter stores the
3319  * number of new extents being added and the idx parameter contains
3320  * the extent index where the new extents will be added. If the new
3321  * extents are being appended, then we just need to (re)allocate and
3322  * initialize the space. Otherwise, if the new extents are being
3323  * inserted into the middle of the existing entries, a bit more work
3324  * is required to make room for the new extents to be inserted. The
3325  * caller is responsible for filling in the new extent entries upon
3326  * return.
3327  */
3328 void
3329 xfs_iext_add(
3330 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3331 	xfs_extnum_t	idx,		/* index to begin adding exts */
3332 	int		ext_diff)	/* number of extents to add */
3333 {
3334 	int		byte_diff;	/* new bytes being added */
3335 	int		new_size;	/* size of extents after adding */
3336 	xfs_extnum_t	nextents;	/* number of extents in file */
3337 
3338 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3339 	ASSERT((idx >= 0) && (idx <= nextents));
3340 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3341 	new_size = ifp->if_bytes + byte_diff;
3342 	/*
3343 	 * If the new number of extents (nextents + ext_diff)
3344 	 * fits inside the inode, then continue to use the inline
3345 	 * extent buffer.
3346 	 */
3347 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3348 		if (idx < nextents) {
3349 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3350 				&ifp->if_u2.if_inline_ext[idx],
3351 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3352 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3353 		}
3354 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3355 		ifp->if_real_bytes = 0;
3356 		ifp->if_lastex = nextents + ext_diff;
3357 	}
3358 	/*
3359 	 * Otherwise use a linear (direct) extent list.
3360 	 * If the extents are currently inside the inode,
3361 	 * xfs_iext_realloc_direct will switch us from
3362 	 * inline to direct extent allocation mode.
3363 	 */
3364 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3365 		xfs_iext_realloc_direct(ifp, new_size);
3366 		if (idx < nextents) {
3367 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3368 				&ifp->if_u1.if_extents[idx],
3369 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3370 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3371 		}
3372 	}
3373 	/* Indirection array */
3374 	else {
3375 		xfs_ext_irec_t	*erp;
3376 		int		erp_idx = 0;
3377 		int		page_idx = idx;
3378 
3379 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3380 		if (ifp->if_flags & XFS_IFEXTIREC) {
3381 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3382 		} else {
3383 			xfs_iext_irec_init(ifp);
3384 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3385 			erp = ifp->if_u1.if_ext_irec;
3386 		}
3387 		/* Extents fit in target extent page */
3388 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3389 			if (page_idx < erp->er_extcount) {
3390 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3391 					&erp->er_extbuf[page_idx],
3392 					(erp->er_extcount - page_idx) *
3393 					sizeof(xfs_bmbt_rec_t));
3394 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3395 			}
3396 			erp->er_extcount += ext_diff;
3397 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3398 		}
3399 		/* Insert a new extent page */
3400 		else if (erp) {
3401 			xfs_iext_add_indirect_multi(ifp,
3402 				erp_idx, page_idx, ext_diff);
3403 		}
3404 		/*
3405 		 * If extent(s) are being appended to the last page in
3406 		 * the indirection array and the new extent(s) don't fit
3407 		 * in the page, then erp is NULL and erp_idx is set to
3408 		 * the next index needed in the indirection array.
3409 		 */
3410 		else {
3411 			int	count = ext_diff;
3412 
3413 			while (count) {
3414 				erp = xfs_iext_irec_new(ifp, erp_idx);
3415 				erp->er_extcount = count;
3416 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3417 				if (count) {
3418 					erp_idx++;
3419 				}
3420 			}
3421 		}
3422 	}
3423 	ifp->if_bytes = new_size;
3424 }
3425 
3426 /*
3427  * This is called when incore extents are being added to the indirection
3428  * array and the new extents do not fit in the target extent list. The
3429  * erp_idx parameter contains the irec index for the target extent list
3430  * in the indirection array, and the idx parameter contains the extent
3431  * index within the list. The number of extents being added is stored
3432  * in the count parameter.
3433  *
3434  *    |-------|   |-------|
3435  *    |       |   |       |    idx - number of extents before idx
3436  *    |  idx  |   | count |
3437  *    |       |   |       |    count - number of extents being inserted at idx
3438  *    |-------|   |-------|
3439  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3440  *    |-------|   |-------|
3441  */
3442 void
3443 xfs_iext_add_indirect_multi(
3444 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3445 	int		erp_idx,		/* target extent irec index */
3446 	xfs_extnum_t	idx,			/* index within target list */
3447 	int		count)			/* new extents being added */
3448 {
3449 	int		byte_diff;		/* new bytes being added */
3450 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3451 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3452 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3453 	xfs_extnum_t	nex2;			/* extents after idx + count */
3454 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3455 	int		nlists;			/* number of irec's (lists) */
3456 
3457 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3458 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3459 	nex2 = erp->er_extcount - idx;
3460 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3461 
3462 	/*
3463 	 * Save second part of target extent list
3464 	 * (all extents past */
3465 	if (nex2) {
3466 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3467 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3468 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3469 		erp->er_extcount -= nex2;
3470 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3471 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3472 	}
3473 
3474 	/*
3475 	 * Add the new extents to the end of the target
3476 	 * list, then allocate new irec record(s) and
3477 	 * extent buffer(s) as needed to store the rest
3478 	 * of the new extents.
3479 	 */
3480 	ext_cnt = count;
3481 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3482 	if (ext_diff) {
3483 		erp->er_extcount += ext_diff;
3484 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3485 		ext_cnt -= ext_diff;
3486 	}
3487 	while (ext_cnt) {
3488 		erp_idx++;
3489 		erp = xfs_iext_irec_new(ifp, erp_idx);
3490 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3491 		erp->er_extcount = ext_diff;
3492 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3493 		ext_cnt -= ext_diff;
3494 	}
3495 
3496 	/* Add nex2 extents back to indirection array */
3497 	if (nex2) {
3498 		xfs_extnum_t	ext_avail;
3499 		int		i;
3500 
3501 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3502 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3503 		i = 0;
3504 		/*
3505 		 * If nex2 extents fit in the current page, append
3506 		 * nex2_ep after the new extents.
3507 		 */
3508 		if (nex2 <= ext_avail) {
3509 			i = erp->er_extcount;
3510 		}
3511 		/*
3512 		 * Otherwise, check if space is available in the
3513 		 * next page.
3514 		 */
3515 		else if ((erp_idx < nlists - 1) &&
3516 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3517 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3518 			erp_idx++;
3519 			erp++;
3520 			/* Create a hole for nex2 extents */
3521 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3522 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3523 		}
3524 		/*
3525 		 * Final choice, create a new extent page for
3526 		 * nex2 extents.
3527 		 */
3528 		else {
3529 			erp_idx++;
3530 			erp = xfs_iext_irec_new(ifp, erp_idx);
3531 		}
3532 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3533 		kmem_free(nex2_ep);
3534 		erp->er_extcount += nex2;
3535 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3536 	}
3537 }
3538 
3539 /*
3540  * This is called when the amount of space required for incore file
3541  * extents needs to be decreased. The ext_diff parameter stores the
3542  * number of extents to be removed and the idx parameter contains
3543  * the extent index where the extents will be removed from.
3544  *
3545  * If the amount of space needed has decreased below the linear
3546  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3547  * extent array.  Otherwise, use kmem_realloc() to adjust the
3548  * size to what is needed.
3549  */
3550 void
3551 xfs_iext_remove(
3552 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3553 	xfs_extnum_t	idx,		/* index to begin removing exts */
3554 	int		ext_diff)	/* number of extents to remove */
3555 {
3556 	xfs_extnum_t	nextents;	/* number of extents in file */
3557 	int		new_size;	/* size of extents after removal */
3558 
3559 	ASSERT(ext_diff > 0);
3560 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3561 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3562 
3563 	if (new_size == 0) {
3564 		xfs_iext_destroy(ifp);
3565 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3566 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3567 	} else if (ifp->if_real_bytes) {
3568 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3569 	} else {
3570 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3571 	}
3572 	ifp->if_bytes = new_size;
3573 }
3574 
3575 /*
3576  * This removes ext_diff extents from the inline buffer, beginning
3577  * at extent index idx.
3578  */
3579 void
3580 xfs_iext_remove_inline(
3581 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3582 	xfs_extnum_t	idx,		/* index to begin removing exts */
3583 	int		ext_diff)	/* number of extents to remove */
3584 {
3585 	int		nextents;	/* number of extents in file */
3586 
3587 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3588 	ASSERT(idx < XFS_INLINE_EXTS);
3589 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3590 	ASSERT(((nextents - ext_diff) > 0) &&
3591 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3592 
3593 	if (idx + ext_diff < nextents) {
3594 		memmove(&ifp->if_u2.if_inline_ext[idx],
3595 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3596 			(nextents - (idx + ext_diff)) *
3597 			 sizeof(xfs_bmbt_rec_t));
3598 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3599 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3600 	} else {
3601 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3602 			ext_diff * sizeof(xfs_bmbt_rec_t));
3603 	}
3604 }
3605 
3606 /*
3607  * This removes ext_diff extents from a linear (direct) extent list,
3608  * beginning at extent index idx. If the extents are being removed
3609  * from the end of the list (ie. truncate) then we just need to re-
3610  * allocate the list to remove the extra space. Otherwise, if the
3611  * extents are being removed from the middle of the existing extent
3612  * entries, then we first need to move the extent records beginning
3613  * at idx + ext_diff up in the list to overwrite the records being
3614  * removed, then remove the extra space via kmem_realloc.
3615  */
3616 void
3617 xfs_iext_remove_direct(
3618 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3619 	xfs_extnum_t	idx,		/* index to begin removing exts */
3620 	int		ext_diff)	/* number of extents to remove */
3621 {
3622 	xfs_extnum_t	nextents;	/* number of extents in file */
3623 	int		new_size;	/* size of extents after removal */
3624 
3625 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3626 	new_size = ifp->if_bytes -
3627 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3628 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3629 
3630 	if (new_size == 0) {
3631 		xfs_iext_destroy(ifp);
3632 		return;
3633 	}
3634 	/* Move extents up in the list (if needed) */
3635 	if (idx + ext_diff < nextents) {
3636 		memmove(&ifp->if_u1.if_extents[idx],
3637 			&ifp->if_u1.if_extents[idx + ext_diff],
3638 			(nextents - (idx + ext_diff)) *
3639 			 sizeof(xfs_bmbt_rec_t));
3640 	}
3641 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3642 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3643 	/*
3644 	 * Reallocate the direct extent list. If the extents
3645 	 * will fit inside the inode then xfs_iext_realloc_direct
3646 	 * will switch from direct to inline extent allocation
3647 	 * mode for us.
3648 	 */
3649 	xfs_iext_realloc_direct(ifp, new_size);
3650 	ifp->if_bytes = new_size;
3651 }
3652 
3653 /*
3654  * This is called when incore extents are being removed from the
3655  * indirection array and the extents being removed span multiple extent
3656  * buffers. The idx parameter contains the file extent index where we
3657  * want to begin removing extents, and the count parameter contains
3658  * how many extents need to be removed.
3659  *
3660  *    |-------|   |-------|
3661  *    | nex1  |   |       |    nex1 - number of extents before idx
3662  *    |-------|   | count |
3663  *    |       |   |       |    count - number of extents being removed at idx
3664  *    | count |   |-------|
3665  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3666  *    |-------|   |-------|
3667  */
3668 void
3669 xfs_iext_remove_indirect(
3670 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3671 	xfs_extnum_t	idx,		/* index to begin removing extents */
3672 	int		count)		/* number of extents to remove */
3673 {
3674 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3675 	int		erp_idx = 0;	/* indirection array index */
3676 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3677 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3678 	xfs_extnum_t	nex1;		/* number of extents before idx */
3679 	xfs_extnum_t	nex2;		/* extents after idx + count */
3680 	int		nlists;		/* entries in indirection array */
3681 	int		page_idx = idx;	/* index in target extent list */
3682 
3683 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3684 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3685 	ASSERT(erp != NULL);
3686 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3687 	nex1 = page_idx;
3688 	ext_cnt = count;
3689 	while (ext_cnt) {
3690 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3691 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3692 		/*
3693 		 * Check for deletion of entire list;
3694 		 * xfs_iext_irec_remove() updates extent offsets.
3695 		 */
3696 		if (ext_diff == erp->er_extcount) {
3697 			xfs_iext_irec_remove(ifp, erp_idx);
3698 			ext_cnt -= ext_diff;
3699 			nex1 = 0;
3700 			if (ext_cnt) {
3701 				ASSERT(erp_idx < ifp->if_real_bytes /
3702 					XFS_IEXT_BUFSZ);
3703 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3704 				nex1 = 0;
3705 				continue;
3706 			} else {
3707 				break;
3708 			}
3709 		}
3710 		/* Move extents up (if needed) */
3711 		if (nex2) {
3712 			memmove(&erp->er_extbuf[nex1],
3713 				&erp->er_extbuf[nex1 + ext_diff],
3714 				nex2 * sizeof(xfs_bmbt_rec_t));
3715 		}
3716 		/* Zero out rest of page */
3717 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3718 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3719 		/* Update remaining counters */
3720 		erp->er_extcount -= ext_diff;
3721 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3722 		ext_cnt -= ext_diff;
3723 		nex1 = 0;
3724 		erp_idx++;
3725 		erp++;
3726 	}
3727 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3728 	xfs_iext_irec_compact(ifp);
3729 }
3730 
3731 /*
3732  * Create, destroy, or resize a linear (direct) block of extents.
3733  */
3734 void
3735 xfs_iext_realloc_direct(
3736 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3737 	int		new_size)	/* new size of extents */
3738 {
3739 	int		rnew_size;	/* real new size of extents */
3740 
3741 	rnew_size = new_size;
3742 
3743 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3744 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3745 		 (new_size != ifp->if_real_bytes)));
3746 
3747 	/* Free extent records */
3748 	if (new_size == 0) {
3749 		xfs_iext_destroy(ifp);
3750 	}
3751 	/* Resize direct extent list and zero any new bytes */
3752 	else if (ifp->if_real_bytes) {
3753 		/* Check if extents will fit inside the inode */
3754 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3755 			xfs_iext_direct_to_inline(ifp, new_size /
3756 				(uint)sizeof(xfs_bmbt_rec_t));
3757 			ifp->if_bytes = new_size;
3758 			return;
3759 		}
3760 		if (!is_power_of_2(new_size)){
3761 			rnew_size = roundup_pow_of_two(new_size);
3762 		}
3763 		if (rnew_size != ifp->if_real_bytes) {
3764 			ifp->if_u1.if_extents =
3765 				kmem_realloc(ifp->if_u1.if_extents,
3766 						rnew_size,
3767 						ifp->if_real_bytes, KM_NOFS);
3768 		}
3769 		if (rnew_size > ifp->if_real_bytes) {
3770 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3771 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3772 				rnew_size - ifp->if_real_bytes);
3773 		}
3774 	}
3775 	/*
3776 	 * Switch from the inline extent buffer to a direct
3777 	 * extent list. Be sure to include the inline extent
3778 	 * bytes in new_size.
3779 	 */
3780 	else {
3781 		new_size += ifp->if_bytes;
3782 		if (!is_power_of_2(new_size)) {
3783 			rnew_size = roundup_pow_of_two(new_size);
3784 		}
3785 		xfs_iext_inline_to_direct(ifp, rnew_size);
3786 	}
3787 	ifp->if_real_bytes = rnew_size;
3788 	ifp->if_bytes = new_size;
3789 }
3790 
3791 /*
3792  * Switch from linear (direct) extent records to inline buffer.
3793  */
3794 void
3795 xfs_iext_direct_to_inline(
3796 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3797 	xfs_extnum_t	nextents)	/* number of extents in file */
3798 {
3799 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3800 	ASSERT(nextents <= XFS_INLINE_EXTS);
3801 	/*
3802 	 * The inline buffer was zeroed when we switched
3803 	 * from inline to direct extent allocation mode,
3804 	 * so we don't need to clear it here.
3805 	 */
3806 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3807 		nextents * sizeof(xfs_bmbt_rec_t));
3808 	kmem_free(ifp->if_u1.if_extents);
3809 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3810 	ifp->if_real_bytes = 0;
3811 }
3812 
3813 /*
3814  * Switch from inline buffer to linear (direct) extent records.
3815  * new_size should already be rounded up to the next power of 2
3816  * by the caller (when appropriate), so use new_size as it is.
3817  * However, since new_size may be rounded up, we can't update
3818  * if_bytes here. It is the caller's responsibility to update
3819  * if_bytes upon return.
3820  */
3821 void
3822 xfs_iext_inline_to_direct(
3823 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3824 	int		new_size)	/* number of extents in file */
3825 {
3826 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3827 	memset(ifp->if_u1.if_extents, 0, new_size);
3828 	if (ifp->if_bytes) {
3829 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3830 			ifp->if_bytes);
3831 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3832 			sizeof(xfs_bmbt_rec_t));
3833 	}
3834 	ifp->if_real_bytes = new_size;
3835 }
3836 
3837 /*
3838  * Resize an extent indirection array to new_size bytes.
3839  */
3840 STATIC void
3841 xfs_iext_realloc_indirect(
3842 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3843 	int		new_size)	/* new indirection array size */
3844 {
3845 	int		nlists;		/* number of irec's (ex lists) */
3846 	int		size;		/* current indirection array size */
3847 
3848 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3849 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3850 	size = nlists * sizeof(xfs_ext_irec_t);
3851 	ASSERT(ifp->if_real_bytes);
3852 	ASSERT((new_size >= 0) && (new_size != size));
3853 	if (new_size == 0) {
3854 		xfs_iext_destroy(ifp);
3855 	} else {
3856 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3857 			kmem_realloc(ifp->if_u1.if_ext_irec,
3858 				new_size, size, KM_NOFS);
3859 	}
3860 }
3861 
3862 /*
3863  * Switch from indirection array to linear (direct) extent allocations.
3864  */
3865 STATIC void
3866 xfs_iext_indirect_to_direct(
3867 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3868 {
3869 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3870 	xfs_extnum_t	nextents;	/* number of extents in file */
3871 	int		size;		/* size of file extents */
3872 
3873 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3874 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3875 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3876 	size = nextents * sizeof(xfs_bmbt_rec_t);
3877 
3878 	xfs_iext_irec_compact_pages(ifp);
3879 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3880 
3881 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3882 	kmem_free(ifp->if_u1.if_ext_irec);
3883 	ifp->if_flags &= ~XFS_IFEXTIREC;
3884 	ifp->if_u1.if_extents = ep;
3885 	ifp->if_bytes = size;
3886 	if (nextents < XFS_LINEAR_EXTS) {
3887 		xfs_iext_realloc_direct(ifp, size);
3888 	}
3889 }
3890 
3891 /*
3892  * Free incore file extents.
3893  */
3894 void
3895 xfs_iext_destroy(
3896 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3897 {
3898 	if (ifp->if_flags & XFS_IFEXTIREC) {
3899 		int	erp_idx;
3900 		int	nlists;
3901 
3902 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3903 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3904 			xfs_iext_irec_remove(ifp, erp_idx);
3905 		}
3906 		ifp->if_flags &= ~XFS_IFEXTIREC;
3907 	} else if (ifp->if_real_bytes) {
3908 		kmem_free(ifp->if_u1.if_extents);
3909 	} else if (ifp->if_bytes) {
3910 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3911 			sizeof(xfs_bmbt_rec_t));
3912 	}
3913 	ifp->if_u1.if_extents = NULL;
3914 	ifp->if_real_bytes = 0;
3915 	ifp->if_bytes = 0;
3916 }
3917 
3918 /*
3919  * Return a pointer to the extent record for file system block bno.
3920  */
3921 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3922 xfs_iext_bno_to_ext(
3923 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3924 	xfs_fileoff_t	bno,		/* block number to search for */
3925 	xfs_extnum_t	*idxp)		/* index of target extent */
3926 {
3927 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3928 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3929 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3930 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3931 	int		high;		/* upper boundary in search */
3932 	xfs_extnum_t	idx = 0;	/* index of target extent */
3933 	int		low;		/* lower boundary in search */
3934 	xfs_extnum_t	nextents;	/* number of file extents */
3935 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3936 
3937 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3938 	if (nextents == 0) {
3939 		*idxp = 0;
3940 		return NULL;
3941 	}
3942 	low = 0;
3943 	if (ifp->if_flags & XFS_IFEXTIREC) {
3944 		/* Find target extent list */
3945 		int	erp_idx = 0;
3946 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3947 		base = erp->er_extbuf;
3948 		high = erp->er_extcount - 1;
3949 	} else {
3950 		base = ifp->if_u1.if_extents;
3951 		high = nextents - 1;
3952 	}
3953 	/* Binary search extent records */
3954 	while (low <= high) {
3955 		idx = (low + high) >> 1;
3956 		ep = base + idx;
3957 		startoff = xfs_bmbt_get_startoff(ep);
3958 		blockcount = xfs_bmbt_get_blockcount(ep);
3959 		if (bno < startoff) {
3960 			high = idx - 1;
3961 		} else if (bno >= startoff + blockcount) {
3962 			low = idx + 1;
3963 		} else {
3964 			/* Convert back to file-based extent index */
3965 			if (ifp->if_flags & XFS_IFEXTIREC) {
3966 				idx += erp->er_extoff;
3967 			}
3968 			*idxp = idx;
3969 			return ep;
3970 		}
3971 	}
3972 	/* Convert back to file-based extent index */
3973 	if (ifp->if_flags & XFS_IFEXTIREC) {
3974 		idx += erp->er_extoff;
3975 	}
3976 	if (bno >= startoff + blockcount) {
3977 		if (++idx == nextents) {
3978 			ep = NULL;
3979 		} else {
3980 			ep = xfs_iext_get_ext(ifp, idx);
3981 		}
3982 	}
3983 	*idxp = idx;
3984 	return ep;
3985 }
3986 
3987 /*
3988  * Return a pointer to the indirection array entry containing the
3989  * extent record for filesystem block bno. Store the index of the
3990  * target irec in *erp_idxp.
3991  */
3992 xfs_ext_irec_t *			/* pointer to found extent record */
3993 xfs_iext_bno_to_irec(
3994 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3995 	xfs_fileoff_t	bno,		/* block number to search for */
3996 	int		*erp_idxp)	/* irec index of target ext list */
3997 {
3998 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3999 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4000 	int		erp_idx;	/* indirection array index */
4001 	int		nlists;		/* number of extent irec's (lists) */
4002 	int		high;		/* binary search upper limit */
4003 	int		low;		/* binary search lower limit */
4004 
4005 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4006 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4007 	erp_idx = 0;
4008 	low = 0;
4009 	high = nlists - 1;
4010 	while (low <= high) {
4011 		erp_idx = (low + high) >> 1;
4012 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4013 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4014 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4015 			high = erp_idx - 1;
4016 		} else if (erp_next && bno >=
4017 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4018 			low = erp_idx + 1;
4019 		} else {
4020 			break;
4021 		}
4022 	}
4023 	*erp_idxp = erp_idx;
4024 	return erp;
4025 }
4026 
4027 /*
4028  * Return a pointer to the indirection array entry containing the
4029  * extent record at file extent index *idxp. Store the index of the
4030  * target irec in *erp_idxp and store the page index of the target
4031  * extent record in *idxp.
4032  */
4033 xfs_ext_irec_t *
4034 xfs_iext_idx_to_irec(
4035 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4036 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4037 	int		*erp_idxp,	/* pointer to target irec */
4038 	int		realloc)	/* new bytes were just added */
4039 {
4040 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4041 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4042 	int		erp_idx;	/* indirection array index */
4043 	int		nlists;		/* number of irec's (ex lists) */
4044 	int		high;		/* binary search upper limit */
4045 	int		low;		/* binary search lower limit */
4046 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4047 
4048 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4049 	ASSERT(page_idx >= 0 && page_idx <=
4050 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4051 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4052 	erp_idx = 0;
4053 	low = 0;
4054 	high = nlists - 1;
4055 
4056 	/* Binary search extent irec's */
4057 	while (low <= high) {
4058 		erp_idx = (low + high) >> 1;
4059 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4060 		prev = erp_idx > 0 ? erp - 1 : NULL;
4061 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4062 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4063 			high = erp_idx - 1;
4064 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4065 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4066 			    !realloc)) {
4067 			low = erp_idx + 1;
4068 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4069 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4070 			ASSERT(realloc);
4071 			page_idx = 0;
4072 			erp_idx++;
4073 			erp = erp_idx < nlists ? erp + 1 : NULL;
4074 			break;
4075 		} else {
4076 			page_idx -= erp->er_extoff;
4077 			break;
4078 		}
4079 	}
4080 	*idxp = page_idx;
4081 	*erp_idxp = erp_idx;
4082 	return(erp);
4083 }
4084 
4085 /*
4086  * Allocate and initialize an indirection array once the space needed
4087  * for incore extents increases above XFS_IEXT_BUFSZ.
4088  */
4089 void
4090 xfs_iext_irec_init(
4091 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4092 {
4093 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4094 	xfs_extnum_t	nextents;	/* number of extents in file */
4095 
4096 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4097 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4098 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4099 
4100 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4101 
4102 	if (nextents == 0) {
4103 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4104 	} else if (!ifp->if_real_bytes) {
4105 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4106 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4107 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4108 	}
4109 	erp->er_extbuf = ifp->if_u1.if_extents;
4110 	erp->er_extcount = nextents;
4111 	erp->er_extoff = 0;
4112 
4113 	ifp->if_flags |= XFS_IFEXTIREC;
4114 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4115 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4116 	ifp->if_u1.if_ext_irec = erp;
4117 
4118 	return;
4119 }
4120 
4121 /*
4122  * Allocate and initialize a new entry in the indirection array.
4123  */
4124 xfs_ext_irec_t *
4125 xfs_iext_irec_new(
4126 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4127 	int		erp_idx)	/* index for new irec */
4128 {
4129 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4130 	int		i;		/* loop counter */
4131 	int		nlists;		/* number of irec's (ex lists) */
4132 
4133 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4134 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4135 
4136 	/* Resize indirection array */
4137 	xfs_iext_realloc_indirect(ifp, ++nlists *
4138 				  sizeof(xfs_ext_irec_t));
4139 	/*
4140 	 * Move records down in the array so the
4141 	 * new page can use erp_idx.
4142 	 */
4143 	erp = ifp->if_u1.if_ext_irec;
4144 	for (i = nlists - 1; i > erp_idx; i--) {
4145 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4146 	}
4147 	ASSERT(i == erp_idx);
4148 
4149 	/* Initialize new extent record */
4150 	erp = ifp->if_u1.if_ext_irec;
4151 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4152 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4153 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4154 	erp[erp_idx].er_extcount = 0;
4155 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4156 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4157 	return (&erp[erp_idx]);
4158 }
4159 
4160 /*
4161  * Remove a record from the indirection array.
4162  */
4163 void
4164 xfs_iext_irec_remove(
4165 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4166 	int		erp_idx)	/* irec index to remove */
4167 {
4168 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4169 	int		i;		/* loop counter */
4170 	int		nlists;		/* number of irec's (ex lists) */
4171 
4172 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4173 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4174 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4175 	if (erp->er_extbuf) {
4176 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4177 			-erp->er_extcount);
4178 		kmem_free(erp->er_extbuf);
4179 	}
4180 	/* Compact extent records */
4181 	erp = ifp->if_u1.if_ext_irec;
4182 	for (i = erp_idx; i < nlists - 1; i++) {
4183 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4184 	}
4185 	/*
4186 	 * Manually free the last extent record from the indirection
4187 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4188 	 * of zero would result in a call to xfs_iext_destroy() which
4189 	 * would in turn call this function again, creating a nasty
4190 	 * infinite loop.
4191 	 */
4192 	if (--nlists) {
4193 		xfs_iext_realloc_indirect(ifp,
4194 			nlists * sizeof(xfs_ext_irec_t));
4195 	} else {
4196 		kmem_free(ifp->if_u1.if_ext_irec);
4197 	}
4198 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4199 }
4200 
4201 /*
4202  * This is called to clean up large amounts of unused memory allocated
4203  * by the indirection array.  Before compacting anything though, verify
4204  * that the indirection array is still needed and switch back to the
4205  * linear extent list (or even the inline buffer) if possible.  The
4206  * compaction policy is as follows:
4207  *
4208  *    Full Compaction: Extents fit into a single page (or inline buffer)
4209  * Partial Compaction: Extents occupy less than 50% of allocated space
4210  *      No Compaction: Extents occupy at least 50% of allocated space
4211  */
4212 void
4213 xfs_iext_irec_compact(
4214 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4215 {
4216 	xfs_extnum_t	nextents;	/* number of extents in file */
4217 	int		nlists;		/* number of irec's (ex lists) */
4218 
4219 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4220 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4221 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4222 
4223 	if (nextents == 0) {
4224 		xfs_iext_destroy(ifp);
4225 	} else if (nextents <= XFS_INLINE_EXTS) {
4226 		xfs_iext_indirect_to_direct(ifp);
4227 		xfs_iext_direct_to_inline(ifp, nextents);
4228 	} else if (nextents <= XFS_LINEAR_EXTS) {
4229 		xfs_iext_indirect_to_direct(ifp);
4230 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4231 		xfs_iext_irec_compact_pages(ifp);
4232 	}
4233 }
4234 
4235 /*
4236  * Combine extents from neighboring extent pages.
4237  */
4238 void
4239 xfs_iext_irec_compact_pages(
4240 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4241 {
4242 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4243 	int		erp_idx = 0;	/* indirection array index */
4244 	int		nlists;		/* number of irec's (ex lists) */
4245 
4246 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4247 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4248 	while (erp_idx < nlists - 1) {
4249 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4250 		erp_next = erp + 1;
4251 		if (erp_next->er_extcount <=
4252 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4253 			memcpy(&erp->er_extbuf[erp->er_extcount],
4254 				erp_next->er_extbuf, erp_next->er_extcount *
4255 				sizeof(xfs_bmbt_rec_t));
4256 			erp->er_extcount += erp_next->er_extcount;
4257 			/*
4258 			 * Free page before removing extent record
4259 			 * so er_extoffs don't get modified in
4260 			 * xfs_iext_irec_remove.
4261 			 */
4262 			kmem_free(erp_next->er_extbuf);
4263 			erp_next->er_extbuf = NULL;
4264 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4265 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4266 		} else {
4267 			erp_idx++;
4268 		}
4269 	}
4270 }
4271 
4272 /*
4273  * This is called to update the er_extoff field in the indirection
4274  * array when extents have been added or removed from one of the
4275  * extent lists. erp_idx contains the irec index to begin updating
4276  * at and ext_diff contains the number of extents that were added
4277  * or removed.
4278  */
4279 void
4280 xfs_iext_irec_update_extoffs(
4281 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4282 	int		erp_idx,	/* irec index to update */
4283 	int		ext_diff)	/* number of new extents */
4284 {
4285 	int		i;		/* loop counter */
4286 	int		nlists;		/* number of irec's (ex lists */
4287 
4288 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4289 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4290 	for (i = erp_idx; i < nlists; i++) {
4291 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4292 	}
4293 }
4294