1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_sb.h" 29 #include "xfs_ag.h" 30 #include "xfs_dir2.h" 31 #include "xfs_dmapi.h" 32 #include "xfs_mount.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_alloc_btree.h" 35 #include "xfs_ialloc_btree.h" 36 #include "xfs_dir2_sf.h" 37 #include "xfs_attr_sf.h" 38 #include "xfs_dinode.h" 39 #include "xfs_inode.h" 40 #include "xfs_buf_item.h" 41 #include "xfs_inode_item.h" 42 #include "xfs_btree.h" 43 #include "xfs_btree_trace.h" 44 #include "xfs_alloc.h" 45 #include "xfs_ialloc.h" 46 #include "xfs_bmap.h" 47 #include "xfs_rw.h" 48 #include "xfs_error.h" 49 #include "xfs_utils.h" 50 #include "xfs_dir2_trace.h" 51 #include "xfs_quota.h" 52 #include "xfs_filestream.h" 53 #include "xfs_vnodeops.h" 54 55 kmem_zone_t *xfs_ifork_zone; 56 kmem_zone_t *xfs_inode_zone; 57 58 /* 59 * Used in xfs_itruncate(). This is the maximum number of extents 60 * freed from a file in a single transaction. 61 */ 62 #define XFS_ITRUNC_MAX_EXTENTS 2 63 64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 68 69 #ifdef DEBUG 70 /* 71 * Make sure that the extents in the given memory buffer 72 * are valid. 73 */ 74 STATIC void 75 xfs_validate_extents( 76 xfs_ifork_t *ifp, 77 int nrecs, 78 xfs_exntfmt_t fmt) 79 { 80 xfs_bmbt_irec_t irec; 81 xfs_bmbt_rec_host_t rec; 82 int i; 83 84 for (i = 0; i < nrecs; i++) { 85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 86 rec.l0 = get_unaligned(&ep->l0); 87 rec.l1 = get_unaligned(&ep->l1); 88 xfs_bmbt_get_all(&rec, &irec); 89 if (fmt == XFS_EXTFMT_NOSTATE) 90 ASSERT(irec.br_state == XFS_EXT_NORM); 91 } 92 } 93 #else /* DEBUG */ 94 #define xfs_validate_extents(ifp, nrecs, fmt) 95 #endif /* DEBUG */ 96 97 /* 98 * Check that none of the inode's in the buffer have a next 99 * unlinked field of 0. 100 */ 101 #if defined(DEBUG) 102 void 103 xfs_inobp_check( 104 xfs_mount_t *mp, 105 xfs_buf_t *bp) 106 { 107 int i; 108 int j; 109 xfs_dinode_t *dip; 110 111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 112 113 for (i = 0; i < j; i++) { 114 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 115 i * mp->m_sb.sb_inodesize); 116 if (!dip->di_next_unlinked) { 117 xfs_fs_cmn_err(CE_ALERT, mp, 118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 119 bp); 120 ASSERT(dip->di_next_unlinked); 121 } 122 } 123 } 124 #endif 125 126 /* 127 * Find the buffer associated with the given inode map 128 * We do basic validation checks on the buffer once it has been 129 * retrieved from disk. 130 */ 131 STATIC int 132 xfs_imap_to_bp( 133 xfs_mount_t *mp, 134 xfs_trans_t *tp, 135 struct xfs_imap *imap, 136 xfs_buf_t **bpp, 137 uint buf_flags, 138 uint iget_flags) 139 { 140 int error; 141 int i; 142 int ni; 143 xfs_buf_t *bp; 144 145 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 146 (int)imap->im_len, buf_flags, &bp); 147 if (error) { 148 if (error != EAGAIN) { 149 cmn_err(CE_WARN, 150 "xfs_imap_to_bp: xfs_trans_read_buf()returned " 151 "an error %d on %s. Returning error.", 152 error, mp->m_fsname); 153 } else { 154 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 155 } 156 return error; 157 } 158 159 /* 160 * Validate the magic number and version of every inode in the buffer 161 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 162 */ 163 #ifdef DEBUG 164 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 165 #else /* usual case */ 166 ni = 1; 167 #endif 168 169 for (i = 0; i < ni; i++) { 170 int di_ok; 171 xfs_dinode_t *dip; 172 173 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 174 (i << mp->m_sb.sb_inodelog)); 175 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC && 176 XFS_DINODE_GOOD_VERSION(dip->di_version); 177 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 178 XFS_ERRTAG_ITOBP_INOTOBP, 179 XFS_RANDOM_ITOBP_INOTOBP))) { 180 if (iget_flags & XFS_IGET_BULKSTAT) { 181 xfs_trans_brelse(tp, bp); 182 return XFS_ERROR(EINVAL); 183 } 184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 185 XFS_ERRLEVEL_HIGH, mp, dip); 186 #ifdef DEBUG 187 cmn_err(CE_PANIC, 188 "Device %s - bad inode magic/vsn " 189 "daddr %lld #%d (magic=%x)", 190 XFS_BUFTARG_NAME(mp->m_ddev_targp), 191 (unsigned long long)imap->im_blkno, i, 192 be16_to_cpu(dip->di_magic)); 193 #endif 194 xfs_trans_brelse(tp, bp); 195 return XFS_ERROR(EFSCORRUPTED); 196 } 197 } 198 199 xfs_inobp_check(mp, bp); 200 201 /* 202 * Mark the buffer as an inode buffer now that it looks good 203 */ 204 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 205 206 *bpp = bp; 207 return 0; 208 } 209 210 /* 211 * This routine is called to map an inode number within a file 212 * system to the buffer containing the on-disk version of the 213 * inode. It returns a pointer to the buffer containing the 214 * on-disk inode in the bpp parameter, and in the dip parameter 215 * it returns a pointer to the on-disk inode within that buffer. 216 * 217 * If a non-zero error is returned, then the contents of bpp and 218 * dipp are undefined. 219 * 220 * Use xfs_imap() to determine the size and location of the 221 * buffer to read from disk. 222 */ 223 int 224 xfs_inotobp( 225 xfs_mount_t *mp, 226 xfs_trans_t *tp, 227 xfs_ino_t ino, 228 xfs_dinode_t **dipp, 229 xfs_buf_t **bpp, 230 int *offset, 231 uint imap_flags) 232 { 233 struct xfs_imap imap; 234 xfs_buf_t *bp; 235 int error; 236 237 imap.im_blkno = 0; 238 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 239 if (error) 240 return error; 241 242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags); 243 if (error) 244 return error; 245 246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 247 *bpp = bp; 248 *offset = imap.im_boffset; 249 return 0; 250 } 251 252 253 /* 254 * This routine is called to map an inode to the buffer containing 255 * the on-disk version of the inode. It returns a pointer to the 256 * buffer containing the on-disk inode in the bpp parameter, and in 257 * the dip parameter it returns a pointer to the on-disk inode within 258 * that buffer. 259 * 260 * If a non-zero error is returned, then the contents of bpp and 261 * dipp are undefined. 262 * 263 * The inode is expected to already been mapped to its buffer and read 264 * in once, thus we can use the mapping information stored in the inode 265 * rather than calling xfs_imap(). This allows us to avoid the overhead 266 * of looking at the inode btree for small block file systems 267 * (see xfs_imap()). 268 */ 269 int 270 xfs_itobp( 271 xfs_mount_t *mp, 272 xfs_trans_t *tp, 273 xfs_inode_t *ip, 274 xfs_dinode_t **dipp, 275 xfs_buf_t **bpp, 276 uint buf_flags) 277 { 278 xfs_buf_t *bp; 279 int error; 280 281 ASSERT(ip->i_imap.im_blkno != 0); 282 283 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); 284 if (error) 285 return error; 286 287 if (!bp) { 288 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 289 ASSERT(tp == NULL); 290 *bpp = NULL; 291 return EAGAIN; 292 } 293 294 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 295 *bpp = bp; 296 return 0; 297 } 298 299 /* 300 * Move inode type and inode format specific information from the 301 * on-disk inode to the in-core inode. For fifos, devs, and sockets 302 * this means set if_rdev to the proper value. For files, directories, 303 * and symlinks this means to bring in the in-line data or extent 304 * pointers. For a file in B-tree format, only the root is immediately 305 * brought in-core. The rest will be in-lined in if_extents when it 306 * is first referenced (see xfs_iread_extents()). 307 */ 308 STATIC int 309 xfs_iformat( 310 xfs_inode_t *ip, 311 xfs_dinode_t *dip) 312 { 313 xfs_attr_shortform_t *atp; 314 int size; 315 int error; 316 xfs_fsize_t di_size; 317 ip->i_df.if_ext_max = 318 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 319 error = 0; 320 321 if (unlikely(be32_to_cpu(dip->di_nextents) + 322 be16_to_cpu(dip->di_anextents) > 323 be64_to_cpu(dip->di_nblocks))) { 324 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 326 (unsigned long long)ip->i_ino, 327 (int)(be32_to_cpu(dip->di_nextents) + 328 be16_to_cpu(dip->di_anextents)), 329 (unsigned long long) 330 be64_to_cpu(dip->di_nblocks)); 331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 332 ip->i_mount, dip); 333 return XFS_ERROR(EFSCORRUPTED); 334 } 335 336 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 337 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 338 "corrupt dinode %Lu, forkoff = 0x%x.", 339 (unsigned long long)ip->i_ino, 340 dip->di_forkoff); 341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 342 ip->i_mount, dip); 343 return XFS_ERROR(EFSCORRUPTED); 344 } 345 346 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 347 !ip->i_mount->m_rtdev_targp)) { 348 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 349 "corrupt dinode %Lu, has realtime flag set.", 350 ip->i_ino); 351 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 352 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 353 return XFS_ERROR(EFSCORRUPTED); 354 } 355 356 switch (ip->i_d.di_mode & S_IFMT) { 357 case S_IFIFO: 358 case S_IFCHR: 359 case S_IFBLK: 360 case S_IFSOCK: 361 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 362 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 363 ip->i_mount, dip); 364 return XFS_ERROR(EFSCORRUPTED); 365 } 366 ip->i_d.di_size = 0; 367 ip->i_size = 0; 368 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 369 break; 370 371 case S_IFREG: 372 case S_IFLNK: 373 case S_IFDIR: 374 switch (dip->di_format) { 375 case XFS_DINODE_FMT_LOCAL: 376 /* 377 * no local regular files yet 378 */ 379 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) { 380 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 381 "corrupt inode %Lu " 382 "(local format for regular file).", 383 (unsigned long long) ip->i_ino); 384 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 385 XFS_ERRLEVEL_LOW, 386 ip->i_mount, dip); 387 return XFS_ERROR(EFSCORRUPTED); 388 } 389 390 di_size = be64_to_cpu(dip->di_size); 391 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 392 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 393 "corrupt inode %Lu " 394 "(bad size %Ld for local inode).", 395 (unsigned long long) ip->i_ino, 396 (long long) di_size); 397 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 398 XFS_ERRLEVEL_LOW, 399 ip->i_mount, dip); 400 return XFS_ERROR(EFSCORRUPTED); 401 } 402 403 size = (int)di_size; 404 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 405 break; 406 case XFS_DINODE_FMT_EXTENTS: 407 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 408 break; 409 case XFS_DINODE_FMT_BTREE: 410 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 411 break; 412 default: 413 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 414 ip->i_mount); 415 return XFS_ERROR(EFSCORRUPTED); 416 } 417 break; 418 419 default: 420 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 421 return XFS_ERROR(EFSCORRUPTED); 422 } 423 if (error) { 424 return error; 425 } 426 if (!XFS_DFORK_Q(dip)) 427 return 0; 428 ASSERT(ip->i_afp == NULL); 429 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 430 ip->i_afp->if_ext_max = 431 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 432 switch (dip->di_aformat) { 433 case XFS_DINODE_FMT_LOCAL: 434 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 435 size = be16_to_cpu(atp->hdr.totsize); 436 437 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 438 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 439 "corrupt inode %Lu " 440 "(bad attr fork size %Ld).", 441 (unsigned long long) ip->i_ino, 442 (long long) size); 443 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 444 XFS_ERRLEVEL_LOW, 445 ip->i_mount, dip); 446 return XFS_ERROR(EFSCORRUPTED); 447 } 448 449 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 450 break; 451 case XFS_DINODE_FMT_EXTENTS: 452 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 453 break; 454 case XFS_DINODE_FMT_BTREE: 455 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 456 break; 457 default: 458 error = XFS_ERROR(EFSCORRUPTED); 459 break; 460 } 461 if (error) { 462 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 463 ip->i_afp = NULL; 464 xfs_idestroy_fork(ip, XFS_DATA_FORK); 465 } 466 return error; 467 } 468 469 /* 470 * The file is in-lined in the on-disk inode. 471 * If it fits into if_inline_data, then copy 472 * it there, otherwise allocate a buffer for it 473 * and copy the data there. Either way, set 474 * if_data to point at the data. 475 * If we allocate a buffer for the data, make 476 * sure that its size is a multiple of 4 and 477 * record the real size in i_real_bytes. 478 */ 479 STATIC int 480 xfs_iformat_local( 481 xfs_inode_t *ip, 482 xfs_dinode_t *dip, 483 int whichfork, 484 int size) 485 { 486 xfs_ifork_t *ifp; 487 int real_size; 488 489 /* 490 * If the size is unreasonable, then something 491 * is wrong and we just bail out rather than crash in 492 * kmem_alloc() or memcpy() below. 493 */ 494 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 495 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 496 "corrupt inode %Lu " 497 "(bad size %d for local fork, size = %d).", 498 (unsigned long long) ip->i_ino, size, 499 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 500 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 501 ip->i_mount, dip); 502 return XFS_ERROR(EFSCORRUPTED); 503 } 504 ifp = XFS_IFORK_PTR(ip, whichfork); 505 real_size = 0; 506 if (size == 0) 507 ifp->if_u1.if_data = NULL; 508 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 509 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 510 else { 511 real_size = roundup(size, 4); 512 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 513 } 514 ifp->if_bytes = size; 515 ifp->if_real_bytes = real_size; 516 if (size) 517 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 518 ifp->if_flags &= ~XFS_IFEXTENTS; 519 ifp->if_flags |= XFS_IFINLINE; 520 return 0; 521 } 522 523 /* 524 * The file consists of a set of extents all 525 * of which fit into the on-disk inode. 526 * If there are few enough extents to fit into 527 * the if_inline_ext, then copy them there. 528 * Otherwise allocate a buffer for them and copy 529 * them into it. Either way, set if_extents 530 * to point at the extents. 531 */ 532 STATIC int 533 xfs_iformat_extents( 534 xfs_inode_t *ip, 535 xfs_dinode_t *dip, 536 int whichfork) 537 { 538 xfs_bmbt_rec_t *dp; 539 xfs_ifork_t *ifp; 540 int nex; 541 int size; 542 int i; 543 544 ifp = XFS_IFORK_PTR(ip, whichfork); 545 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 546 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 547 548 /* 549 * If the number of extents is unreasonable, then something 550 * is wrong and we just bail out rather than crash in 551 * kmem_alloc() or memcpy() below. 552 */ 553 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 555 "corrupt inode %Lu ((a)extents = %d).", 556 (unsigned long long) ip->i_ino, nex); 557 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 558 ip->i_mount, dip); 559 return XFS_ERROR(EFSCORRUPTED); 560 } 561 562 ifp->if_real_bytes = 0; 563 if (nex == 0) 564 ifp->if_u1.if_extents = NULL; 565 else if (nex <= XFS_INLINE_EXTS) 566 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 567 else 568 xfs_iext_add(ifp, 0, nex); 569 570 ifp->if_bytes = size; 571 if (size) { 572 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 573 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 574 for (i = 0; i < nex; i++, dp++) { 575 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 576 ep->l0 = get_unaligned_be64(&dp->l0); 577 ep->l1 = get_unaligned_be64(&dp->l1); 578 } 579 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 580 if (whichfork != XFS_DATA_FORK || 581 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 582 if (unlikely(xfs_check_nostate_extents( 583 ifp, 0, nex))) { 584 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 585 XFS_ERRLEVEL_LOW, 586 ip->i_mount); 587 return XFS_ERROR(EFSCORRUPTED); 588 } 589 } 590 ifp->if_flags |= XFS_IFEXTENTS; 591 return 0; 592 } 593 594 /* 595 * The file has too many extents to fit into 596 * the inode, so they are in B-tree format. 597 * Allocate a buffer for the root of the B-tree 598 * and copy the root into it. The i_extents 599 * field will remain NULL until all of the 600 * extents are read in (when they are needed). 601 */ 602 STATIC int 603 xfs_iformat_btree( 604 xfs_inode_t *ip, 605 xfs_dinode_t *dip, 606 int whichfork) 607 { 608 xfs_bmdr_block_t *dfp; 609 xfs_ifork_t *ifp; 610 /* REFERENCED */ 611 int nrecs; 612 int size; 613 614 ifp = XFS_IFORK_PTR(ip, whichfork); 615 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 616 size = XFS_BMAP_BROOT_SPACE(dfp); 617 nrecs = be16_to_cpu(dfp->bb_numrecs); 618 619 /* 620 * blow out if -- fork has less extents than can fit in 621 * fork (fork shouldn't be a btree format), root btree 622 * block has more records than can fit into the fork, 623 * or the number of extents is greater than the number of 624 * blocks. 625 */ 626 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 627 || XFS_BMDR_SPACE_CALC(nrecs) > 628 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 629 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 630 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 631 "corrupt inode %Lu (btree).", 632 (unsigned long long) ip->i_ino); 633 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 634 ip->i_mount); 635 return XFS_ERROR(EFSCORRUPTED); 636 } 637 638 ifp->if_broot_bytes = size; 639 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 640 ASSERT(ifp->if_broot != NULL); 641 /* 642 * Copy and convert from the on-disk structure 643 * to the in-memory structure. 644 */ 645 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 646 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 647 ifp->if_broot, size); 648 ifp->if_flags &= ~XFS_IFEXTENTS; 649 ifp->if_flags |= XFS_IFBROOT; 650 651 return 0; 652 } 653 654 STATIC void 655 xfs_dinode_from_disk( 656 xfs_icdinode_t *to, 657 xfs_dinode_t *from) 658 { 659 to->di_magic = be16_to_cpu(from->di_magic); 660 to->di_mode = be16_to_cpu(from->di_mode); 661 to->di_version = from ->di_version; 662 to->di_format = from->di_format; 663 to->di_onlink = be16_to_cpu(from->di_onlink); 664 to->di_uid = be32_to_cpu(from->di_uid); 665 to->di_gid = be32_to_cpu(from->di_gid); 666 to->di_nlink = be32_to_cpu(from->di_nlink); 667 to->di_projid = be16_to_cpu(from->di_projid); 668 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 669 to->di_flushiter = be16_to_cpu(from->di_flushiter); 670 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 671 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 672 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 673 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 674 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 675 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 676 to->di_size = be64_to_cpu(from->di_size); 677 to->di_nblocks = be64_to_cpu(from->di_nblocks); 678 to->di_extsize = be32_to_cpu(from->di_extsize); 679 to->di_nextents = be32_to_cpu(from->di_nextents); 680 to->di_anextents = be16_to_cpu(from->di_anextents); 681 to->di_forkoff = from->di_forkoff; 682 to->di_aformat = from->di_aformat; 683 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 684 to->di_dmstate = be16_to_cpu(from->di_dmstate); 685 to->di_flags = be16_to_cpu(from->di_flags); 686 to->di_gen = be32_to_cpu(from->di_gen); 687 } 688 689 void 690 xfs_dinode_to_disk( 691 xfs_dinode_t *to, 692 xfs_icdinode_t *from) 693 { 694 to->di_magic = cpu_to_be16(from->di_magic); 695 to->di_mode = cpu_to_be16(from->di_mode); 696 to->di_version = from ->di_version; 697 to->di_format = from->di_format; 698 to->di_onlink = cpu_to_be16(from->di_onlink); 699 to->di_uid = cpu_to_be32(from->di_uid); 700 to->di_gid = cpu_to_be32(from->di_gid); 701 to->di_nlink = cpu_to_be32(from->di_nlink); 702 to->di_projid = cpu_to_be16(from->di_projid); 703 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 704 to->di_flushiter = cpu_to_be16(from->di_flushiter); 705 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 706 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 707 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 708 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 709 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 710 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 711 to->di_size = cpu_to_be64(from->di_size); 712 to->di_nblocks = cpu_to_be64(from->di_nblocks); 713 to->di_extsize = cpu_to_be32(from->di_extsize); 714 to->di_nextents = cpu_to_be32(from->di_nextents); 715 to->di_anextents = cpu_to_be16(from->di_anextents); 716 to->di_forkoff = from->di_forkoff; 717 to->di_aformat = from->di_aformat; 718 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 719 to->di_dmstate = cpu_to_be16(from->di_dmstate); 720 to->di_flags = cpu_to_be16(from->di_flags); 721 to->di_gen = cpu_to_be32(from->di_gen); 722 } 723 724 STATIC uint 725 _xfs_dic2xflags( 726 __uint16_t di_flags) 727 { 728 uint flags = 0; 729 730 if (di_flags & XFS_DIFLAG_ANY) { 731 if (di_flags & XFS_DIFLAG_REALTIME) 732 flags |= XFS_XFLAG_REALTIME; 733 if (di_flags & XFS_DIFLAG_PREALLOC) 734 flags |= XFS_XFLAG_PREALLOC; 735 if (di_flags & XFS_DIFLAG_IMMUTABLE) 736 flags |= XFS_XFLAG_IMMUTABLE; 737 if (di_flags & XFS_DIFLAG_APPEND) 738 flags |= XFS_XFLAG_APPEND; 739 if (di_flags & XFS_DIFLAG_SYNC) 740 flags |= XFS_XFLAG_SYNC; 741 if (di_flags & XFS_DIFLAG_NOATIME) 742 flags |= XFS_XFLAG_NOATIME; 743 if (di_flags & XFS_DIFLAG_NODUMP) 744 flags |= XFS_XFLAG_NODUMP; 745 if (di_flags & XFS_DIFLAG_RTINHERIT) 746 flags |= XFS_XFLAG_RTINHERIT; 747 if (di_flags & XFS_DIFLAG_PROJINHERIT) 748 flags |= XFS_XFLAG_PROJINHERIT; 749 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 750 flags |= XFS_XFLAG_NOSYMLINKS; 751 if (di_flags & XFS_DIFLAG_EXTSIZE) 752 flags |= XFS_XFLAG_EXTSIZE; 753 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 754 flags |= XFS_XFLAG_EXTSZINHERIT; 755 if (di_flags & XFS_DIFLAG_NODEFRAG) 756 flags |= XFS_XFLAG_NODEFRAG; 757 if (di_flags & XFS_DIFLAG_FILESTREAM) 758 flags |= XFS_XFLAG_FILESTREAM; 759 } 760 761 return flags; 762 } 763 764 uint 765 xfs_ip2xflags( 766 xfs_inode_t *ip) 767 { 768 xfs_icdinode_t *dic = &ip->i_d; 769 770 return _xfs_dic2xflags(dic->di_flags) | 771 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 772 } 773 774 uint 775 xfs_dic2xflags( 776 xfs_dinode_t *dip) 777 { 778 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 779 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 780 } 781 782 /* 783 * Read the disk inode attributes into the in-core inode structure. 784 */ 785 int 786 xfs_iread( 787 xfs_mount_t *mp, 788 xfs_trans_t *tp, 789 xfs_inode_t *ip, 790 xfs_daddr_t bno, 791 uint iget_flags) 792 { 793 xfs_buf_t *bp; 794 xfs_dinode_t *dip; 795 int error; 796 797 /* 798 * Fill in the location information in the in-core inode. 799 */ 800 ip->i_imap.im_blkno = bno; 801 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 802 if (error) 803 return error; 804 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno); 805 806 /* 807 * Get pointers to the on-disk inode and the buffer containing it. 808 */ 809 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 810 XFS_BUF_LOCK, iget_flags); 811 if (error) 812 return error; 813 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 814 815 /* 816 * If we got something that isn't an inode it means someone 817 * (nfs or dmi) has a stale handle. 818 */ 819 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) { 820 #ifdef DEBUG 821 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 822 "dip->di_magic (0x%x) != " 823 "XFS_DINODE_MAGIC (0x%x)", 824 be16_to_cpu(dip->di_magic), 825 XFS_DINODE_MAGIC); 826 #endif /* DEBUG */ 827 error = XFS_ERROR(EINVAL); 828 goto out_brelse; 829 } 830 831 /* 832 * If the on-disk inode is already linked to a directory 833 * entry, copy all of the inode into the in-core inode. 834 * xfs_iformat() handles copying in the inode format 835 * specific information. 836 * Otherwise, just get the truly permanent information. 837 */ 838 if (dip->di_mode) { 839 xfs_dinode_from_disk(&ip->i_d, dip); 840 error = xfs_iformat(ip, dip); 841 if (error) { 842 #ifdef DEBUG 843 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 844 "xfs_iformat() returned error %d", 845 error); 846 #endif /* DEBUG */ 847 goto out_brelse; 848 } 849 } else { 850 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 851 ip->i_d.di_version = dip->di_version; 852 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 853 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 854 /* 855 * Make sure to pull in the mode here as well in 856 * case the inode is released without being used. 857 * This ensures that xfs_inactive() will see that 858 * the inode is already free and not try to mess 859 * with the uninitialized part of it. 860 */ 861 ip->i_d.di_mode = 0; 862 /* 863 * Initialize the per-fork minima and maxima for a new 864 * inode here. xfs_iformat will do it for old inodes. 865 */ 866 ip->i_df.if_ext_max = 867 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 868 } 869 870 /* 871 * The inode format changed when we moved the link count and 872 * made it 32 bits long. If this is an old format inode, 873 * convert it in memory to look like a new one. If it gets 874 * flushed to disk we will convert back before flushing or 875 * logging it. We zero out the new projid field and the old link 876 * count field. We'll handle clearing the pad field (the remains 877 * of the old uuid field) when we actually convert the inode to 878 * the new format. We don't change the version number so that we 879 * can distinguish this from a real new format inode. 880 */ 881 if (ip->i_d.di_version == 1) { 882 ip->i_d.di_nlink = ip->i_d.di_onlink; 883 ip->i_d.di_onlink = 0; 884 ip->i_d.di_projid = 0; 885 } 886 887 ip->i_delayed_blks = 0; 888 ip->i_size = ip->i_d.di_size; 889 890 /* 891 * Mark the buffer containing the inode as something to keep 892 * around for a while. This helps to keep recently accessed 893 * meta-data in-core longer. 894 */ 895 XFS_BUF_SET_REF(bp, XFS_INO_REF); 896 897 /* 898 * Use xfs_trans_brelse() to release the buffer containing the 899 * on-disk inode, because it was acquired with xfs_trans_read_buf() 900 * in xfs_itobp() above. If tp is NULL, this is just a normal 901 * brelse(). If we're within a transaction, then xfs_trans_brelse() 902 * will only release the buffer if it is not dirty within the 903 * transaction. It will be OK to release the buffer in this case, 904 * because inodes on disk are never destroyed and we will be 905 * locking the new in-core inode before putting it in the hash 906 * table where other processes can find it. Thus we don't have 907 * to worry about the inode being changed just because we released 908 * the buffer. 909 */ 910 out_brelse: 911 xfs_trans_brelse(tp, bp); 912 return error; 913 } 914 915 /* 916 * Read in extents from a btree-format inode. 917 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 918 */ 919 int 920 xfs_iread_extents( 921 xfs_trans_t *tp, 922 xfs_inode_t *ip, 923 int whichfork) 924 { 925 int error; 926 xfs_ifork_t *ifp; 927 xfs_extnum_t nextents; 928 size_t size; 929 930 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 931 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 932 ip->i_mount); 933 return XFS_ERROR(EFSCORRUPTED); 934 } 935 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 936 size = nextents * sizeof(xfs_bmbt_rec_t); 937 ifp = XFS_IFORK_PTR(ip, whichfork); 938 939 /* 940 * We know that the size is valid (it's checked in iformat_btree) 941 */ 942 ifp->if_lastex = NULLEXTNUM; 943 ifp->if_bytes = ifp->if_real_bytes = 0; 944 ifp->if_flags |= XFS_IFEXTENTS; 945 xfs_iext_add(ifp, 0, nextents); 946 error = xfs_bmap_read_extents(tp, ip, whichfork); 947 if (error) { 948 xfs_iext_destroy(ifp); 949 ifp->if_flags &= ~XFS_IFEXTENTS; 950 return error; 951 } 952 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 953 return 0; 954 } 955 956 /* 957 * Allocate an inode on disk and return a copy of its in-core version. 958 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 959 * appropriately within the inode. The uid and gid for the inode are 960 * set according to the contents of the given cred structure. 961 * 962 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 963 * has a free inode available, call xfs_iget() 964 * to obtain the in-core version of the allocated inode. Finally, 965 * fill in the inode and log its initial contents. In this case, 966 * ialloc_context would be set to NULL and call_again set to false. 967 * 968 * If xfs_dialloc() does not have an available inode, 969 * it will replenish its supply by doing an allocation. Since we can 970 * only do one allocation within a transaction without deadlocks, we 971 * must commit the current transaction before returning the inode itself. 972 * In this case, therefore, we will set call_again to true and return. 973 * The caller should then commit the current transaction, start a new 974 * transaction, and call xfs_ialloc() again to actually get the inode. 975 * 976 * To ensure that some other process does not grab the inode that 977 * was allocated during the first call to xfs_ialloc(), this routine 978 * also returns the [locked] bp pointing to the head of the freelist 979 * as ialloc_context. The caller should hold this buffer across 980 * the commit and pass it back into this routine on the second call. 981 * 982 * If we are allocating quota inodes, we do not have a parent inode 983 * to attach to or associate with (i.e. pip == NULL) because they 984 * are not linked into the directory structure - they are attached 985 * directly to the superblock - and so have no parent. 986 */ 987 int 988 xfs_ialloc( 989 xfs_trans_t *tp, 990 xfs_inode_t *pip, 991 mode_t mode, 992 xfs_nlink_t nlink, 993 xfs_dev_t rdev, 994 cred_t *cr, 995 xfs_prid_t prid, 996 int okalloc, 997 xfs_buf_t **ialloc_context, 998 boolean_t *call_again, 999 xfs_inode_t **ipp) 1000 { 1001 xfs_ino_t ino; 1002 xfs_inode_t *ip; 1003 uint flags; 1004 int error; 1005 timespec_t tv; 1006 int filestreams = 0; 1007 1008 /* 1009 * Call the space management code to pick 1010 * the on-disk inode to be allocated. 1011 */ 1012 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1013 ialloc_context, call_again, &ino); 1014 if (error) 1015 return error; 1016 if (*call_again || ino == NULLFSINO) { 1017 *ipp = NULL; 1018 return 0; 1019 } 1020 ASSERT(*ialloc_context == NULL); 1021 1022 /* 1023 * Get the in-core inode with the lock held exclusively. 1024 * This is because we're setting fields here we need 1025 * to prevent others from looking at until we're done. 1026 */ 1027 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1028 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1029 if (error) 1030 return error; 1031 ASSERT(ip != NULL); 1032 1033 ip->i_d.di_mode = (__uint16_t)mode; 1034 ip->i_d.di_onlink = 0; 1035 ip->i_d.di_nlink = nlink; 1036 ASSERT(ip->i_d.di_nlink == nlink); 1037 ip->i_d.di_uid = current_fsuid(); 1038 ip->i_d.di_gid = current_fsgid(); 1039 ip->i_d.di_projid = prid; 1040 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1041 1042 /* 1043 * If the superblock version is up to where we support new format 1044 * inodes and this is currently an old format inode, then change 1045 * the inode version number now. This way we only do the conversion 1046 * here rather than here and in the flush/logging code. 1047 */ 1048 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1049 ip->i_d.di_version == 1) { 1050 ip->i_d.di_version = 2; 1051 /* 1052 * We've already zeroed the old link count, the projid field, 1053 * and the pad field. 1054 */ 1055 } 1056 1057 /* 1058 * Project ids won't be stored on disk if we are using a version 1 inode. 1059 */ 1060 if ((prid != 0) && (ip->i_d.di_version == 1)) 1061 xfs_bump_ino_vers2(tp, ip); 1062 1063 if (pip && XFS_INHERIT_GID(pip)) { 1064 ip->i_d.di_gid = pip->i_d.di_gid; 1065 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1066 ip->i_d.di_mode |= S_ISGID; 1067 } 1068 } 1069 1070 /* 1071 * If the group ID of the new file does not match the effective group 1072 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1073 * (and only if the irix_sgid_inherit compatibility variable is set). 1074 */ 1075 if ((irix_sgid_inherit) && 1076 (ip->i_d.di_mode & S_ISGID) && 1077 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1078 ip->i_d.di_mode &= ~S_ISGID; 1079 } 1080 1081 ip->i_d.di_size = 0; 1082 ip->i_size = 0; 1083 ip->i_d.di_nextents = 0; 1084 ASSERT(ip->i_d.di_nblocks == 0); 1085 1086 nanotime(&tv); 1087 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1088 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1089 ip->i_d.di_atime = ip->i_d.di_mtime; 1090 ip->i_d.di_ctime = ip->i_d.di_mtime; 1091 1092 /* 1093 * di_gen will have been taken care of in xfs_iread. 1094 */ 1095 ip->i_d.di_extsize = 0; 1096 ip->i_d.di_dmevmask = 0; 1097 ip->i_d.di_dmstate = 0; 1098 ip->i_d.di_flags = 0; 1099 flags = XFS_ILOG_CORE; 1100 switch (mode & S_IFMT) { 1101 case S_IFIFO: 1102 case S_IFCHR: 1103 case S_IFBLK: 1104 case S_IFSOCK: 1105 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1106 ip->i_df.if_u2.if_rdev = rdev; 1107 ip->i_df.if_flags = 0; 1108 flags |= XFS_ILOG_DEV; 1109 break; 1110 case S_IFREG: 1111 /* 1112 * we can't set up filestreams until after the VFS inode 1113 * is set up properly. 1114 */ 1115 if (pip && xfs_inode_is_filestream(pip)) 1116 filestreams = 1; 1117 /* fall through */ 1118 case S_IFDIR: 1119 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1120 uint di_flags = 0; 1121 1122 if ((mode & S_IFMT) == S_IFDIR) { 1123 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1124 di_flags |= XFS_DIFLAG_RTINHERIT; 1125 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1126 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1127 ip->i_d.di_extsize = pip->i_d.di_extsize; 1128 } 1129 } else if ((mode & S_IFMT) == S_IFREG) { 1130 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1131 di_flags |= XFS_DIFLAG_REALTIME; 1132 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1133 di_flags |= XFS_DIFLAG_EXTSIZE; 1134 ip->i_d.di_extsize = pip->i_d.di_extsize; 1135 } 1136 } 1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1138 xfs_inherit_noatime) 1139 di_flags |= XFS_DIFLAG_NOATIME; 1140 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1141 xfs_inherit_nodump) 1142 di_flags |= XFS_DIFLAG_NODUMP; 1143 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1144 xfs_inherit_sync) 1145 di_flags |= XFS_DIFLAG_SYNC; 1146 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1147 xfs_inherit_nosymlinks) 1148 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1149 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1150 di_flags |= XFS_DIFLAG_PROJINHERIT; 1151 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1152 xfs_inherit_nodefrag) 1153 di_flags |= XFS_DIFLAG_NODEFRAG; 1154 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1155 di_flags |= XFS_DIFLAG_FILESTREAM; 1156 ip->i_d.di_flags |= di_flags; 1157 } 1158 /* FALLTHROUGH */ 1159 case S_IFLNK: 1160 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1161 ip->i_df.if_flags = XFS_IFEXTENTS; 1162 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1163 ip->i_df.if_u1.if_extents = NULL; 1164 break; 1165 default: 1166 ASSERT(0); 1167 } 1168 /* 1169 * Attribute fork settings for new inode. 1170 */ 1171 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1172 ip->i_d.di_anextents = 0; 1173 1174 /* 1175 * Log the new values stuffed into the inode. 1176 */ 1177 xfs_trans_log_inode(tp, ip, flags); 1178 1179 /* now that we have an i_mode we can setup inode ops and unlock */ 1180 xfs_setup_inode(ip); 1181 1182 /* now we have set up the vfs inode we can associate the filestream */ 1183 if (filestreams) { 1184 error = xfs_filestream_associate(pip, ip); 1185 if (error < 0) 1186 return -error; 1187 if (!error) 1188 xfs_iflags_set(ip, XFS_IFILESTREAM); 1189 } 1190 1191 *ipp = ip; 1192 return 0; 1193 } 1194 1195 /* 1196 * Check to make sure that there are no blocks allocated to the 1197 * file beyond the size of the file. We don't check this for 1198 * files with fixed size extents or real time extents, but we 1199 * at least do it for regular files. 1200 */ 1201 #ifdef DEBUG 1202 void 1203 xfs_isize_check( 1204 xfs_mount_t *mp, 1205 xfs_inode_t *ip, 1206 xfs_fsize_t isize) 1207 { 1208 xfs_fileoff_t map_first; 1209 int nimaps; 1210 xfs_bmbt_irec_t imaps[2]; 1211 1212 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1213 return; 1214 1215 if (XFS_IS_REALTIME_INODE(ip)) 1216 return; 1217 1218 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) 1219 return; 1220 1221 nimaps = 2; 1222 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1223 /* 1224 * The filesystem could be shutting down, so bmapi may return 1225 * an error. 1226 */ 1227 if (xfs_bmapi(NULL, ip, map_first, 1228 (XFS_B_TO_FSB(mp, 1229 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1230 map_first), 1231 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1232 NULL, NULL)) 1233 return; 1234 ASSERT(nimaps == 1); 1235 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1236 } 1237 #endif /* DEBUG */ 1238 1239 /* 1240 * Calculate the last possible buffered byte in a file. This must 1241 * include data that was buffered beyond the EOF by the write code. 1242 * This also needs to deal with overflowing the xfs_fsize_t type 1243 * which can happen for sizes near the limit. 1244 * 1245 * We also need to take into account any blocks beyond the EOF. It 1246 * may be the case that they were buffered by a write which failed. 1247 * In that case the pages will still be in memory, but the inode size 1248 * will never have been updated. 1249 */ 1250 STATIC xfs_fsize_t 1251 xfs_file_last_byte( 1252 xfs_inode_t *ip) 1253 { 1254 xfs_mount_t *mp; 1255 xfs_fsize_t last_byte; 1256 xfs_fileoff_t last_block; 1257 xfs_fileoff_t size_last_block; 1258 int error; 1259 1260 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); 1261 1262 mp = ip->i_mount; 1263 /* 1264 * Only check for blocks beyond the EOF if the extents have 1265 * been read in. This eliminates the need for the inode lock, 1266 * and it also saves us from looking when it really isn't 1267 * necessary. 1268 */ 1269 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1270 xfs_ilock(ip, XFS_ILOCK_SHARED); 1271 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1272 XFS_DATA_FORK); 1273 xfs_iunlock(ip, XFS_ILOCK_SHARED); 1274 if (error) { 1275 last_block = 0; 1276 } 1277 } else { 1278 last_block = 0; 1279 } 1280 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1281 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1282 1283 last_byte = XFS_FSB_TO_B(mp, last_block); 1284 if (last_byte < 0) { 1285 return XFS_MAXIOFFSET(mp); 1286 } 1287 last_byte += (1 << mp->m_writeio_log); 1288 if (last_byte < 0) { 1289 return XFS_MAXIOFFSET(mp); 1290 } 1291 return last_byte; 1292 } 1293 1294 #if defined(XFS_RW_TRACE) 1295 STATIC void 1296 xfs_itrunc_trace( 1297 int tag, 1298 xfs_inode_t *ip, 1299 int flag, 1300 xfs_fsize_t new_size, 1301 xfs_off_t toss_start, 1302 xfs_off_t toss_finish) 1303 { 1304 if (ip->i_rwtrace == NULL) { 1305 return; 1306 } 1307 1308 ktrace_enter(ip->i_rwtrace, 1309 (void*)((long)tag), 1310 (void*)ip, 1311 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1312 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1313 (void*)((long)flag), 1314 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1315 (void*)(unsigned long)(new_size & 0xffffffff), 1316 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1317 (void*)(unsigned long)(toss_start & 0xffffffff), 1318 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1319 (void*)(unsigned long)(toss_finish & 0xffffffff), 1320 (void*)(unsigned long)current_cpu(), 1321 (void*)(unsigned long)current_pid(), 1322 (void*)NULL, 1323 (void*)NULL, 1324 (void*)NULL); 1325 } 1326 #else 1327 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1328 #endif 1329 1330 /* 1331 * Start the truncation of the file to new_size. The new size 1332 * must be smaller than the current size. This routine will 1333 * clear the buffer and page caches of file data in the removed 1334 * range, and xfs_itruncate_finish() will remove the underlying 1335 * disk blocks. 1336 * 1337 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1338 * must NOT have the inode lock held at all. This is because we're 1339 * calling into the buffer/page cache code and we can't hold the 1340 * inode lock when we do so. 1341 * 1342 * We need to wait for any direct I/Os in flight to complete before we 1343 * proceed with the truncate. This is needed to prevent the extents 1344 * being read or written by the direct I/Os from being removed while the 1345 * I/O is in flight as there is no other method of synchronising 1346 * direct I/O with the truncate operation. Also, because we hold 1347 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1348 * started until the truncate completes and drops the lock. Essentially, 1349 * the xfs_ioend_wait() call forms an I/O barrier that provides strict 1350 * ordering between direct I/Os and the truncate operation. 1351 * 1352 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1353 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1354 * in the case that the caller is locking things out of order and 1355 * may not be able to call xfs_itruncate_finish() with the inode lock 1356 * held without dropping the I/O lock. If the caller must drop the 1357 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1358 * must be called again with all the same restrictions as the initial 1359 * call. 1360 */ 1361 int 1362 xfs_itruncate_start( 1363 xfs_inode_t *ip, 1364 uint flags, 1365 xfs_fsize_t new_size) 1366 { 1367 xfs_fsize_t last_byte; 1368 xfs_off_t toss_start; 1369 xfs_mount_t *mp; 1370 int error = 0; 1371 1372 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1373 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1374 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1375 (flags == XFS_ITRUNC_MAYBE)); 1376 1377 mp = ip->i_mount; 1378 1379 /* wait for the completion of any pending DIOs */ 1380 if (new_size == 0 || new_size < ip->i_size) 1381 xfs_ioend_wait(ip); 1382 1383 /* 1384 * Call toss_pages or flushinval_pages to get rid of pages 1385 * overlapping the region being removed. We have to use 1386 * the less efficient flushinval_pages in the case that the 1387 * caller may not be able to finish the truncate without 1388 * dropping the inode's I/O lock. Make sure 1389 * to catch any pages brought in by buffers overlapping 1390 * the EOF by searching out beyond the isize by our 1391 * block size. We round new_size up to a block boundary 1392 * so that we don't toss things on the same block as 1393 * new_size but before it. 1394 * 1395 * Before calling toss_page or flushinval_pages, make sure to 1396 * call remapf() over the same region if the file is mapped. 1397 * This frees up mapped file references to the pages in the 1398 * given range and for the flushinval_pages case it ensures 1399 * that we get the latest mapped changes flushed out. 1400 */ 1401 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1402 toss_start = XFS_FSB_TO_B(mp, toss_start); 1403 if (toss_start < 0) { 1404 /* 1405 * The place to start tossing is beyond our maximum 1406 * file size, so there is no way that the data extended 1407 * out there. 1408 */ 1409 return 0; 1410 } 1411 last_byte = xfs_file_last_byte(ip); 1412 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1413 last_byte); 1414 if (last_byte > toss_start) { 1415 if (flags & XFS_ITRUNC_DEFINITE) { 1416 xfs_tosspages(ip, toss_start, 1417 -1, FI_REMAPF_LOCKED); 1418 } else { 1419 error = xfs_flushinval_pages(ip, toss_start, 1420 -1, FI_REMAPF_LOCKED); 1421 } 1422 } 1423 1424 #ifdef DEBUG 1425 if (new_size == 0) { 1426 ASSERT(VN_CACHED(VFS_I(ip)) == 0); 1427 } 1428 #endif 1429 return error; 1430 } 1431 1432 /* 1433 * Shrink the file to the given new_size. The new size must be smaller than 1434 * the current size. This will free up the underlying blocks in the removed 1435 * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). 1436 * 1437 * The transaction passed to this routine must have made a permanent log 1438 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1439 * given transaction and start new ones, so make sure everything involved in 1440 * the transaction is tidy before calling here. Some transaction will be 1441 * returned to the caller to be committed. The incoming transaction must 1442 * already include the inode, and both inode locks must be held exclusively. 1443 * The inode must also be "held" within the transaction. On return the inode 1444 * will be "held" within the returned transaction. This routine does NOT 1445 * require any disk space to be reserved for it within the transaction. 1446 * 1447 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it 1448 * indicates the fork which is to be truncated. For the attribute fork we only 1449 * support truncation to size 0. 1450 * 1451 * We use the sync parameter to indicate whether or not the first transaction 1452 * we perform might have to be synchronous. For the attr fork, it needs to be 1453 * so if the unlink of the inode is not yet known to be permanent in the log. 1454 * This keeps us from freeing and reusing the blocks of the attribute fork 1455 * before the unlink of the inode becomes permanent. 1456 * 1457 * For the data fork, we normally have to run synchronously if we're being 1458 * called out of the inactive path or we're being called out of the create path 1459 * where we're truncating an existing file. Either way, the truncate needs to 1460 * be sync so blocks don't reappear in the file with altered data in case of a 1461 * crash. wsync filesystems can run the first case async because anything that 1462 * shrinks the inode has to run sync so by the time we're called here from 1463 * inactive, the inode size is permanently set to 0. 1464 * 1465 * Calls from the truncate path always need to be sync unless we're in a wsync 1466 * filesystem and the file has already been unlinked. 1467 * 1468 * The caller is responsible for correctly setting the sync parameter. It gets 1469 * too hard for us to guess here which path we're being called out of just 1470 * based on inode state. 1471 * 1472 * If we get an error, we must return with the inode locked and linked into the 1473 * current transaction. This keeps things simple for the higher level code, 1474 * because it always knows that the inode is locked and held in the transaction 1475 * that returns to it whether errors occur or not. We don't mark the inode 1476 * dirty on error so that transactions can be easily aborted if possible. 1477 */ 1478 int 1479 xfs_itruncate_finish( 1480 xfs_trans_t **tp, 1481 xfs_inode_t *ip, 1482 xfs_fsize_t new_size, 1483 int fork, 1484 int sync) 1485 { 1486 xfs_fsblock_t first_block; 1487 xfs_fileoff_t first_unmap_block; 1488 xfs_fileoff_t last_block; 1489 xfs_filblks_t unmap_len=0; 1490 xfs_mount_t *mp; 1491 xfs_trans_t *ntp; 1492 int done; 1493 int committed; 1494 xfs_bmap_free_t free_list; 1495 int error; 1496 1497 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1498 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1499 ASSERT(*tp != NULL); 1500 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1501 ASSERT(ip->i_transp == *tp); 1502 ASSERT(ip->i_itemp != NULL); 1503 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1504 1505 1506 ntp = *tp; 1507 mp = (ntp)->t_mountp; 1508 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1509 1510 /* 1511 * We only support truncating the entire attribute fork. 1512 */ 1513 if (fork == XFS_ATTR_FORK) { 1514 new_size = 0LL; 1515 } 1516 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1517 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1518 /* 1519 * The first thing we do is set the size to new_size permanently 1520 * on disk. This way we don't have to worry about anyone ever 1521 * being able to look at the data being freed even in the face 1522 * of a crash. What we're getting around here is the case where 1523 * we free a block, it is allocated to another file, it is written 1524 * to, and then we crash. If the new data gets written to the 1525 * file but the log buffers containing the free and reallocation 1526 * don't, then we'd end up with garbage in the blocks being freed. 1527 * As long as we make the new_size permanent before actually 1528 * freeing any blocks it doesn't matter if they get writtten to. 1529 * 1530 * The callers must signal into us whether or not the size 1531 * setting here must be synchronous. There are a few cases 1532 * where it doesn't have to be synchronous. Those cases 1533 * occur if the file is unlinked and we know the unlink is 1534 * permanent or if the blocks being truncated are guaranteed 1535 * to be beyond the inode eof (regardless of the link count) 1536 * and the eof value is permanent. Both of these cases occur 1537 * only on wsync-mounted filesystems. In those cases, we're 1538 * guaranteed that no user will ever see the data in the blocks 1539 * that are being truncated so the truncate can run async. 1540 * In the free beyond eof case, the file may wind up with 1541 * more blocks allocated to it than it needs if we crash 1542 * and that won't get fixed until the next time the file 1543 * is re-opened and closed but that's ok as that shouldn't 1544 * be too many blocks. 1545 * 1546 * However, we can't just make all wsync xactions run async 1547 * because there's one call out of the create path that needs 1548 * to run sync where it's truncating an existing file to size 1549 * 0 whose size is > 0. 1550 * 1551 * It's probably possible to come up with a test in this 1552 * routine that would correctly distinguish all the above 1553 * cases from the values of the function parameters and the 1554 * inode state but for sanity's sake, I've decided to let the 1555 * layers above just tell us. It's simpler to correctly figure 1556 * out in the layer above exactly under what conditions we 1557 * can run async and I think it's easier for others read and 1558 * follow the logic in case something has to be changed. 1559 * cscope is your friend -- rcc. 1560 * 1561 * The attribute fork is much simpler. 1562 * 1563 * For the attribute fork we allow the caller to tell us whether 1564 * the unlink of the inode that led to this call is yet permanent 1565 * in the on disk log. If it is not and we will be freeing extents 1566 * in this inode then we make the first transaction synchronous 1567 * to make sure that the unlink is permanent by the time we free 1568 * the blocks. 1569 */ 1570 if (fork == XFS_DATA_FORK) { 1571 if (ip->i_d.di_nextents > 0) { 1572 /* 1573 * If we are not changing the file size then do 1574 * not update the on-disk file size - we may be 1575 * called from xfs_inactive_free_eofblocks(). If we 1576 * update the on-disk file size and then the system 1577 * crashes before the contents of the file are 1578 * flushed to disk then the files may be full of 1579 * holes (ie NULL files bug). 1580 */ 1581 if (ip->i_size != new_size) { 1582 ip->i_d.di_size = new_size; 1583 ip->i_size = new_size; 1584 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1585 } 1586 } 1587 } else if (sync) { 1588 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1589 if (ip->i_d.di_anextents > 0) 1590 xfs_trans_set_sync(ntp); 1591 } 1592 ASSERT(fork == XFS_DATA_FORK || 1593 (fork == XFS_ATTR_FORK && 1594 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1595 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1596 1597 /* 1598 * Since it is possible for space to become allocated beyond 1599 * the end of the file (in a crash where the space is allocated 1600 * but the inode size is not yet updated), simply remove any 1601 * blocks which show up between the new EOF and the maximum 1602 * possible file size. If the first block to be removed is 1603 * beyond the maximum file size (ie it is the same as last_block), 1604 * then there is nothing to do. 1605 */ 1606 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1607 ASSERT(first_unmap_block <= last_block); 1608 done = 0; 1609 if (last_block == first_unmap_block) { 1610 done = 1; 1611 } else { 1612 unmap_len = last_block - first_unmap_block + 1; 1613 } 1614 while (!done) { 1615 /* 1616 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1617 * will tell us whether it freed the entire range or 1618 * not. If this is a synchronous mount (wsync), 1619 * then we can tell bunmapi to keep all the 1620 * transactions asynchronous since the unlink 1621 * transaction that made this inode inactive has 1622 * already hit the disk. There's no danger of 1623 * the freed blocks being reused, there being a 1624 * crash, and the reused blocks suddenly reappearing 1625 * in this file with garbage in them once recovery 1626 * runs. 1627 */ 1628 xfs_bmap_init(&free_list, &first_block); 1629 error = xfs_bunmapi(ntp, ip, 1630 first_unmap_block, unmap_len, 1631 xfs_bmapi_aflag(fork) | 1632 (sync ? 0 : XFS_BMAPI_ASYNC), 1633 XFS_ITRUNC_MAX_EXTENTS, 1634 &first_block, &free_list, 1635 NULL, &done); 1636 if (error) { 1637 /* 1638 * If the bunmapi call encounters an error, 1639 * return to the caller where the transaction 1640 * can be properly aborted. We just need to 1641 * make sure we're not holding any resources 1642 * that we were not when we came in. 1643 */ 1644 xfs_bmap_cancel(&free_list); 1645 return error; 1646 } 1647 1648 /* 1649 * Duplicate the transaction that has the permanent 1650 * reservation and commit the old transaction. 1651 */ 1652 error = xfs_bmap_finish(tp, &free_list, &committed); 1653 ntp = *tp; 1654 if (committed) { 1655 /* link the inode into the next xact in the chain */ 1656 xfs_trans_ijoin(ntp, ip, 1657 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1658 xfs_trans_ihold(ntp, ip); 1659 } 1660 1661 if (error) { 1662 /* 1663 * If the bmap finish call encounters an error, return 1664 * to the caller where the transaction can be properly 1665 * aborted. We just need to make sure we're not 1666 * holding any resources that we were not when we came 1667 * in. 1668 * 1669 * Aborting from this point might lose some blocks in 1670 * the file system, but oh well. 1671 */ 1672 xfs_bmap_cancel(&free_list); 1673 return error; 1674 } 1675 1676 if (committed) { 1677 /* 1678 * Mark the inode dirty so it will be logged and 1679 * moved forward in the log as part of every commit. 1680 */ 1681 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1682 } 1683 1684 ntp = xfs_trans_dup(ntp); 1685 error = xfs_trans_commit(*tp, 0); 1686 *tp = ntp; 1687 1688 /* link the inode into the next transaction in the chain */ 1689 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1690 xfs_trans_ihold(ntp, ip); 1691 1692 if (error) 1693 return error; 1694 /* 1695 * transaction commit worked ok so we can drop the extra ticket 1696 * reference that we gained in xfs_trans_dup() 1697 */ 1698 xfs_log_ticket_put(ntp->t_ticket); 1699 error = xfs_trans_reserve(ntp, 0, 1700 XFS_ITRUNCATE_LOG_RES(mp), 0, 1701 XFS_TRANS_PERM_LOG_RES, 1702 XFS_ITRUNCATE_LOG_COUNT); 1703 if (error) 1704 return error; 1705 } 1706 /* 1707 * Only update the size in the case of the data fork, but 1708 * always re-log the inode so that our permanent transaction 1709 * can keep on rolling it forward in the log. 1710 */ 1711 if (fork == XFS_DATA_FORK) { 1712 xfs_isize_check(mp, ip, new_size); 1713 /* 1714 * If we are not changing the file size then do 1715 * not update the on-disk file size - we may be 1716 * called from xfs_inactive_free_eofblocks(). If we 1717 * update the on-disk file size and then the system 1718 * crashes before the contents of the file are 1719 * flushed to disk then the files may be full of 1720 * holes (ie NULL files bug). 1721 */ 1722 if (ip->i_size != new_size) { 1723 ip->i_d.di_size = new_size; 1724 ip->i_size = new_size; 1725 } 1726 } 1727 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1728 ASSERT((new_size != 0) || 1729 (fork == XFS_ATTR_FORK) || 1730 (ip->i_delayed_blks == 0)); 1731 ASSERT((new_size != 0) || 1732 (fork == XFS_ATTR_FORK) || 1733 (ip->i_d.di_nextents == 0)); 1734 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1735 return 0; 1736 } 1737 1738 /* 1739 * This is called when the inode's link count goes to 0. 1740 * We place the on-disk inode on a list in the AGI. It 1741 * will be pulled from this list when the inode is freed. 1742 */ 1743 int 1744 xfs_iunlink( 1745 xfs_trans_t *tp, 1746 xfs_inode_t *ip) 1747 { 1748 xfs_mount_t *mp; 1749 xfs_agi_t *agi; 1750 xfs_dinode_t *dip; 1751 xfs_buf_t *agibp; 1752 xfs_buf_t *ibp; 1753 xfs_agino_t agino; 1754 short bucket_index; 1755 int offset; 1756 int error; 1757 1758 ASSERT(ip->i_d.di_nlink == 0); 1759 ASSERT(ip->i_d.di_mode != 0); 1760 ASSERT(ip->i_transp == tp); 1761 1762 mp = tp->t_mountp; 1763 1764 /* 1765 * Get the agi buffer first. It ensures lock ordering 1766 * on the list. 1767 */ 1768 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1769 if (error) 1770 return error; 1771 agi = XFS_BUF_TO_AGI(agibp); 1772 1773 /* 1774 * Get the index into the agi hash table for the 1775 * list this inode will go on. 1776 */ 1777 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1778 ASSERT(agino != 0); 1779 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1780 ASSERT(agi->agi_unlinked[bucket_index]); 1781 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1782 1783 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1784 /* 1785 * There is already another inode in the bucket we need 1786 * to add ourselves to. Add us at the front of the list. 1787 * Here we put the head pointer into our next pointer, 1788 * and then we fall through to point the head at us. 1789 */ 1790 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1791 if (error) 1792 return error; 1793 1794 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1795 /* both on-disk, don't endian flip twice */ 1796 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1797 offset = ip->i_imap.im_boffset + 1798 offsetof(xfs_dinode_t, di_next_unlinked); 1799 xfs_trans_inode_buf(tp, ibp); 1800 xfs_trans_log_buf(tp, ibp, offset, 1801 (offset + sizeof(xfs_agino_t) - 1)); 1802 xfs_inobp_check(mp, ibp); 1803 } 1804 1805 /* 1806 * Point the bucket head pointer at the inode being inserted. 1807 */ 1808 ASSERT(agino != 0); 1809 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1810 offset = offsetof(xfs_agi_t, agi_unlinked) + 1811 (sizeof(xfs_agino_t) * bucket_index); 1812 xfs_trans_log_buf(tp, agibp, offset, 1813 (offset + sizeof(xfs_agino_t) - 1)); 1814 return 0; 1815 } 1816 1817 /* 1818 * Pull the on-disk inode from the AGI unlinked list. 1819 */ 1820 STATIC int 1821 xfs_iunlink_remove( 1822 xfs_trans_t *tp, 1823 xfs_inode_t *ip) 1824 { 1825 xfs_ino_t next_ino; 1826 xfs_mount_t *mp; 1827 xfs_agi_t *agi; 1828 xfs_dinode_t *dip; 1829 xfs_buf_t *agibp; 1830 xfs_buf_t *ibp; 1831 xfs_agnumber_t agno; 1832 xfs_agino_t agino; 1833 xfs_agino_t next_agino; 1834 xfs_buf_t *last_ibp; 1835 xfs_dinode_t *last_dip = NULL; 1836 short bucket_index; 1837 int offset, last_offset = 0; 1838 int error; 1839 1840 mp = tp->t_mountp; 1841 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1842 1843 /* 1844 * Get the agi buffer first. It ensures lock ordering 1845 * on the list. 1846 */ 1847 error = xfs_read_agi(mp, tp, agno, &agibp); 1848 if (error) 1849 return error; 1850 1851 agi = XFS_BUF_TO_AGI(agibp); 1852 1853 /* 1854 * Get the index into the agi hash table for the 1855 * list this inode will go on. 1856 */ 1857 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1858 ASSERT(agino != 0); 1859 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1860 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 1861 ASSERT(agi->agi_unlinked[bucket_index]); 1862 1863 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1864 /* 1865 * We're at the head of the list. Get the inode's 1866 * on-disk buffer to see if there is anyone after us 1867 * on the list. Only modify our next pointer if it 1868 * is not already NULLAGINO. This saves us the overhead 1869 * of dealing with the buffer when there is no need to 1870 * change it. 1871 */ 1872 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1873 if (error) { 1874 cmn_err(CE_WARN, 1875 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1876 error, mp->m_fsname); 1877 return error; 1878 } 1879 next_agino = be32_to_cpu(dip->di_next_unlinked); 1880 ASSERT(next_agino != 0); 1881 if (next_agino != NULLAGINO) { 1882 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1883 offset = ip->i_imap.im_boffset + 1884 offsetof(xfs_dinode_t, di_next_unlinked); 1885 xfs_trans_inode_buf(tp, ibp); 1886 xfs_trans_log_buf(tp, ibp, offset, 1887 (offset + sizeof(xfs_agino_t) - 1)); 1888 xfs_inobp_check(mp, ibp); 1889 } else { 1890 xfs_trans_brelse(tp, ibp); 1891 } 1892 /* 1893 * Point the bucket head pointer at the next inode. 1894 */ 1895 ASSERT(next_agino != 0); 1896 ASSERT(next_agino != agino); 1897 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1898 offset = offsetof(xfs_agi_t, agi_unlinked) + 1899 (sizeof(xfs_agino_t) * bucket_index); 1900 xfs_trans_log_buf(tp, agibp, offset, 1901 (offset + sizeof(xfs_agino_t) - 1)); 1902 } else { 1903 /* 1904 * We need to search the list for the inode being freed. 1905 */ 1906 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1907 last_ibp = NULL; 1908 while (next_agino != agino) { 1909 /* 1910 * If the last inode wasn't the one pointing to 1911 * us, then release its buffer since we're not 1912 * going to do anything with it. 1913 */ 1914 if (last_ibp != NULL) { 1915 xfs_trans_brelse(tp, last_ibp); 1916 } 1917 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1918 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1919 &last_ibp, &last_offset, 0); 1920 if (error) { 1921 cmn_err(CE_WARN, 1922 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 1923 error, mp->m_fsname); 1924 return error; 1925 } 1926 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1927 ASSERT(next_agino != NULLAGINO); 1928 ASSERT(next_agino != 0); 1929 } 1930 /* 1931 * Now last_ibp points to the buffer previous to us on 1932 * the unlinked list. Pull us from the list. 1933 */ 1934 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1935 if (error) { 1936 cmn_err(CE_WARN, 1937 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1938 error, mp->m_fsname); 1939 return error; 1940 } 1941 next_agino = be32_to_cpu(dip->di_next_unlinked); 1942 ASSERT(next_agino != 0); 1943 ASSERT(next_agino != agino); 1944 if (next_agino != NULLAGINO) { 1945 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1946 offset = ip->i_imap.im_boffset + 1947 offsetof(xfs_dinode_t, di_next_unlinked); 1948 xfs_trans_inode_buf(tp, ibp); 1949 xfs_trans_log_buf(tp, ibp, offset, 1950 (offset + sizeof(xfs_agino_t) - 1)); 1951 xfs_inobp_check(mp, ibp); 1952 } else { 1953 xfs_trans_brelse(tp, ibp); 1954 } 1955 /* 1956 * Point the previous inode on the list to the next inode. 1957 */ 1958 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1959 ASSERT(next_agino != 0); 1960 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1961 xfs_trans_inode_buf(tp, last_ibp); 1962 xfs_trans_log_buf(tp, last_ibp, offset, 1963 (offset + sizeof(xfs_agino_t) - 1)); 1964 xfs_inobp_check(mp, last_ibp); 1965 } 1966 return 0; 1967 } 1968 1969 STATIC void 1970 xfs_ifree_cluster( 1971 xfs_inode_t *free_ip, 1972 xfs_trans_t *tp, 1973 xfs_ino_t inum) 1974 { 1975 xfs_mount_t *mp = free_ip->i_mount; 1976 int blks_per_cluster; 1977 int nbufs; 1978 int ninodes; 1979 int i, j, found, pre_flushed; 1980 xfs_daddr_t blkno; 1981 xfs_buf_t *bp; 1982 xfs_inode_t *ip, **ip_found; 1983 xfs_inode_log_item_t *iip; 1984 xfs_log_item_t *lip; 1985 xfs_perag_t *pag = xfs_get_perag(mp, inum); 1986 1987 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1988 blks_per_cluster = 1; 1989 ninodes = mp->m_sb.sb_inopblock; 1990 nbufs = XFS_IALLOC_BLOCKS(mp); 1991 } else { 1992 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1993 mp->m_sb.sb_blocksize; 1994 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1995 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1996 } 1997 1998 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 1999 2000 for (j = 0; j < nbufs; j++, inum += ninodes) { 2001 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2002 XFS_INO_TO_AGBNO(mp, inum)); 2003 2004 2005 /* 2006 * Look for each inode in memory and attempt to lock it, 2007 * we can be racing with flush and tail pushing here. 2008 * any inode we get the locks on, add to an array of 2009 * inode items to process later. 2010 * 2011 * The get the buffer lock, we could beat a flush 2012 * or tail pushing thread to the lock here, in which 2013 * case they will go looking for the inode buffer 2014 * and fail, we need some other form of interlock 2015 * here. 2016 */ 2017 found = 0; 2018 for (i = 0; i < ninodes; i++) { 2019 read_lock(&pag->pag_ici_lock); 2020 ip = radix_tree_lookup(&pag->pag_ici_root, 2021 XFS_INO_TO_AGINO(mp, (inum + i))); 2022 2023 /* Inode not in memory or we found it already, 2024 * nothing to do 2025 */ 2026 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2027 read_unlock(&pag->pag_ici_lock); 2028 continue; 2029 } 2030 2031 if (xfs_inode_clean(ip)) { 2032 read_unlock(&pag->pag_ici_lock); 2033 continue; 2034 } 2035 2036 /* If we can get the locks then add it to the 2037 * list, otherwise by the time we get the bp lock 2038 * below it will already be attached to the 2039 * inode buffer. 2040 */ 2041 2042 /* This inode will already be locked - by us, lets 2043 * keep it that way. 2044 */ 2045 2046 if (ip == free_ip) { 2047 if (xfs_iflock_nowait(ip)) { 2048 xfs_iflags_set(ip, XFS_ISTALE); 2049 if (xfs_inode_clean(ip)) { 2050 xfs_ifunlock(ip); 2051 } else { 2052 ip_found[found++] = ip; 2053 } 2054 } 2055 read_unlock(&pag->pag_ici_lock); 2056 continue; 2057 } 2058 2059 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2060 if (xfs_iflock_nowait(ip)) { 2061 xfs_iflags_set(ip, XFS_ISTALE); 2062 2063 if (xfs_inode_clean(ip)) { 2064 xfs_ifunlock(ip); 2065 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2066 } else { 2067 ip_found[found++] = ip; 2068 } 2069 } else { 2070 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2071 } 2072 } 2073 read_unlock(&pag->pag_ici_lock); 2074 } 2075 2076 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2077 mp->m_bsize * blks_per_cluster, 2078 XFS_BUF_LOCK); 2079 2080 pre_flushed = 0; 2081 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2082 while (lip) { 2083 if (lip->li_type == XFS_LI_INODE) { 2084 iip = (xfs_inode_log_item_t *)lip; 2085 ASSERT(iip->ili_logged == 1); 2086 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2087 xfs_trans_ail_copy_lsn(mp->m_ail, 2088 &iip->ili_flush_lsn, 2089 &iip->ili_item.li_lsn); 2090 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2091 pre_flushed++; 2092 } 2093 lip = lip->li_bio_list; 2094 } 2095 2096 for (i = 0; i < found; i++) { 2097 ip = ip_found[i]; 2098 iip = ip->i_itemp; 2099 2100 if (!iip) { 2101 ip->i_update_core = 0; 2102 xfs_ifunlock(ip); 2103 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2104 continue; 2105 } 2106 2107 iip->ili_last_fields = iip->ili_format.ilf_fields; 2108 iip->ili_format.ilf_fields = 0; 2109 iip->ili_logged = 1; 2110 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2111 &iip->ili_item.li_lsn); 2112 2113 xfs_buf_attach_iodone(bp, 2114 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2115 xfs_istale_done, (xfs_log_item_t *)iip); 2116 if (ip != free_ip) { 2117 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2118 } 2119 } 2120 2121 if (found || pre_flushed) 2122 xfs_trans_stale_inode_buf(tp, bp); 2123 xfs_trans_binval(tp, bp); 2124 } 2125 2126 kmem_free(ip_found); 2127 xfs_put_perag(mp, pag); 2128 } 2129 2130 /* 2131 * This is called to return an inode to the inode free list. 2132 * The inode should already be truncated to 0 length and have 2133 * no pages associated with it. This routine also assumes that 2134 * the inode is already a part of the transaction. 2135 * 2136 * The on-disk copy of the inode will have been added to the list 2137 * of unlinked inodes in the AGI. We need to remove the inode from 2138 * that list atomically with respect to freeing it here. 2139 */ 2140 int 2141 xfs_ifree( 2142 xfs_trans_t *tp, 2143 xfs_inode_t *ip, 2144 xfs_bmap_free_t *flist) 2145 { 2146 int error; 2147 int delete; 2148 xfs_ino_t first_ino; 2149 xfs_dinode_t *dip; 2150 xfs_buf_t *ibp; 2151 2152 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2153 ASSERT(ip->i_transp == tp); 2154 ASSERT(ip->i_d.di_nlink == 0); 2155 ASSERT(ip->i_d.di_nextents == 0); 2156 ASSERT(ip->i_d.di_anextents == 0); 2157 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2158 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2159 ASSERT(ip->i_d.di_nblocks == 0); 2160 2161 /* 2162 * Pull the on-disk inode from the AGI unlinked list. 2163 */ 2164 error = xfs_iunlink_remove(tp, ip); 2165 if (error != 0) { 2166 return error; 2167 } 2168 2169 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2170 if (error != 0) { 2171 return error; 2172 } 2173 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2174 ip->i_d.di_flags = 0; 2175 ip->i_d.di_dmevmask = 0; 2176 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2177 ip->i_df.if_ext_max = 2178 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2179 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2180 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2181 /* 2182 * Bump the generation count so no one will be confused 2183 * by reincarnations of this inode. 2184 */ 2185 ip->i_d.di_gen++; 2186 2187 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2188 2189 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 2190 if (error) 2191 return error; 2192 2193 /* 2194 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2195 * from picking up this inode when it is reclaimed (its incore state 2196 * initialzed but not flushed to disk yet). The in-core di_mode is 2197 * already cleared and a corresponding transaction logged. 2198 * The hack here just synchronizes the in-core to on-disk 2199 * di_mode value in advance before the actual inode sync to disk. 2200 * This is OK because the inode is already unlinked and would never 2201 * change its di_mode again for this inode generation. 2202 * This is a temporary hack that would require a proper fix 2203 * in the future. 2204 */ 2205 dip->di_mode = 0; 2206 2207 if (delete) { 2208 xfs_ifree_cluster(ip, tp, first_ino); 2209 } 2210 2211 return 0; 2212 } 2213 2214 /* 2215 * Reallocate the space for if_broot based on the number of records 2216 * being added or deleted as indicated in rec_diff. Move the records 2217 * and pointers in if_broot to fit the new size. When shrinking this 2218 * will eliminate holes between the records and pointers created by 2219 * the caller. When growing this will create holes to be filled in 2220 * by the caller. 2221 * 2222 * The caller must not request to add more records than would fit in 2223 * the on-disk inode root. If the if_broot is currently NULL, then 2224 * if we adding records one will be allocated. The caller must also 2225 * not request that the number of records go below zero, although 2226 * it can go to zero. 2227 * 2228 * ip -- the inode whose if_broot area is changing 2229 * ext_diff -- the change in the number of records, positive or negative, 2230 * requested for the if_broot array. 2231 */ 2232 void 2233 xfs_iroot_realloc( 2234 xfs_inode_t *ip, 2235 int rec_diff, 2236 int whichfork) 2237 { 2238 struct xfs_mount *mp = ip->i_mount; 2239 int cur_max; 2240 xfs_ifork_t *ifp; 2241 struct xfs_btree_block *new_broot; 2242 int new_max; 2243 size_t new_size; 2244 char *np; 2245 char *op; 2246 2247 /* 2248 * Handle the degenerate case quietly. 2249 */ 2250 if (rec_diff == 0) { 2251 return; 2252 } 2253 2254 ifp = XFS_IFORK_PTR(ip, whichfork); 2255 if (rec_diff > 0) { 2256 /* 2257 * If there wasn't any memory allocated before, just 2258 * allocate it now and get out. 2259 */ 2260 if (ifp->if_broot_bytes == 0) { 2261 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2262 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP); 2263 ifp->if_broot_bytes = (int)new_size; 2264 return; 2265 } 2266 2267 /* 2268 * If there is already an existing if_broot, then we need 2269 * to realloc() it and shift the pointers to their new 2270 * location. The records don't change location because 2271 * they are kept butted up against the btree block header. 2272 */ 2273 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2274 new_max = cur_max + rec_diff; 2275 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2276 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2277 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2278 KM_SLEEP); 2279 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2280 ifp->if_broot_bytes); 2281 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2282 (int)new_size); 2283 ifp->if_broot_bytes = (int)new_size; 2284 ASSERT(ifp->if_broot_bytes <= 2285 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2286 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2287 return; 2288 } 2289 2290 /* 2291 * rec_diff is less than 0. In this case, we are shrinking the 2292 * if_broot buffer. It must already exist. If we go to zero 2293 * records, just get rid of the root and clear the status bit. 2294 */ 2295 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2296 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2297 new_max = cur_max + rec_diff; 2298 ASSERT(new_max >= 0); 2299 if (new_max > 0) 2300 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2301 else 2302 new_size = 0; 2303 if (new_size > 0) { 2304 new_broot = kmem_alloc(new_size, KM_SLEEP); 2305 /* 2306 * First copy over the btree block header. 2307 */ 2308 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 2309 } else { 2310 new_broot = NULL; 2311 ifp->if_flags &= ~XFS_IFBROOT; 2312 } 2313 2314 /* 2315 * Only copy the records and pointers if there are any. 2316 */ 2317 if (new_max > 0) { 2318 /* 2319 * First copy the records. 2320 */ 2321 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2322 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2323 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2324 2325 /* 2326 * Then copy the pointers. 2327 */ 2328 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2329 ifp->if_broot_bytes); 2330 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2331 (int)new_size); 2332 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2333 } 2334 kmem_free(ifp->if_broot); 2335 ifp->if_broot = new_broot; 2336 ifp->if_broot_bytes = (int)new_size; 2337 ASSERT(ifp->if_broot_bytes <= 2338 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2339 return; 2340 } 2341 2342 2343 /* 2344 * This is called when the amount of space needed for if_data 2345 * is increased or decreased. The change in size is indicated by 2346 * the number of bytes that need to be added or deleted in the 2347 * byte_diff parameter. 2348 * 2349 * If the amount of space needed has decreased below the size of the 2350 * inline buffer, then switch to using the inline buffer. Otherwise, 2351 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2352 * to what is needed. 2353 * 2354 * ip -- the inode whose if_data area is changing 2355 * byte_diff -- the change in the number of bytes, positive or negative, 2356 * requested for the if_data array. 2357 */ 2358 void 2359 xfs_idata_realloc( 2360 xfs_inode_t *ip, 2361 int byte_diff, 2362 int whichfork) 2363 { 2364 xfs_ifork_t *ifp; 2365 int new_size; 2366 int real_size; 2367 2368 if (byte_diff == 0) { 2369 return; 2370 } 2371 2372 ifp = XFS_IFORK_PTR(ip, whichfork); 2373 new_size = (int)ifp->if_bytes + byte_diff; 2374 ASSERT(new_size >= 0); 2375 2376 if (new_size == 0) { 2377 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2378 kmem_free(ifp->if_u1.if_data); 2379 } 2380 ifp->if_u1.if_data = NULL; 2381 real_size = 0; 2382 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2383 /* 2384 * If the valid extents/data can fit in if_inline_ext/data, 2385 * copy them from the malloc'd vector and free it. 2386 */ 2387 if (ifp->if_u1.if_data == NULL) { 2388 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2389 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2390 ASSERT(ifp->if_real_bytes != 0); 2391 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2392 new_size); 2393 kmem_free(ifp->if_u1.if_data); 2394 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2395 } 2396 real_size = 0; 2397 } else { 2398 /* 2399 * Stuck with malloc/realloc. 2400 * For inline data, the underlying buffer must be 2401 * a multiple of 4 bytes in size so that it can be 2402 * logged and stay on word boundaries. We enforce 2403 * that here. 2404 */ 2405 real_size = roundup(new_size, 4); 2406 if (ifp->if_u1.if_data == NULL) { 2407 ASSERT(ifp->if_real_bytes == 0); 2408 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2409 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2410 /* 2411 * Only do the realloc if the underlying size 2412 * is really changing. 2413 */ 2414 if (ifp->if_real_bytes != real_size) { 2415 ifp->if_u1.if_data = 2416 kmem_realloc(ifp->if_u1.if_data, 2417 real_size, 2418 ifp->if_real_bytes, 2419 KM_SLEEP); 2420 } 2421 } else { 2422 ASSERT(ifp->if_real_bytes == 0); 2423 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2424 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2425 ifp->if_bytes); 2426 } 2427 } 2428 ifp->if_real_bytes = real_size; 2429 ifp->if_bytes = new_size; 2430 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2431 } 2432 2433 void 2434 xfs_idestroy_fork( 2435 xfs_inode_t *ip, 2436 int whichfork) 2437 { 2438 xfs_ifork_t *ifp; 2439 2440 ifp = XFS_IFORK_PTR(ip, whichfork); 2441 if (ifp->if_broot != NULL) { 2442 kmem_free(ifp->if_broot); 2443 ifp->if_broot = NULL; 2444 } 2445 2446 /* 2447 * If the format is local, then we can't have an extents 2448 * array so just look for an inline data array. If we're 2449 * not local then we may or may not have an extents list, 2450 * so check and free it up if we do. 2451 */ 2452 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2453 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2454 (ifp->if_u1.if_data != NULL)) { 2455 ASSERT(ifp->if_real_bytes != 0); 2456 kmem_free(ifp->if_u1.if_data); 2457 ifp->if_u1.if_data = NULL; 2458 ifp->if_real_bytes = 0; 2459 } 2460 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2461 ((ifp->if_flags & XFS_IFEXTIREC) || 2462 ((ifp->if_u1.if_extents != NULL) && 2463 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2464 ASSERT(ifp->if_real_bytes != 0); 2465 xfs_iext_destroy(ifp); 2466 } 2467 ASSERT(ifp->if_u1.if_extents == NULL || 2468 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2469 ASSERT(ifp->if_real_bytes == 0); 2470 if (whichfork == XFS_ATTR_FORK) { 2471 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2472 ip->i_afp = NULL; 2473 } 2474 } 2475 2476 /* 2477 * Increment the pin count of the given buffer. 2478 * This value is protected by ipinlock spinlock in the mount structure. 2479 */ 2480 void 2481 xfs_ipin( 2482 xfs_inode_t *ip) 2483 { 2484 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2485 2486 atomic_inc(&ip->i_pincount); 2487 } 2488 2489 /* 2490 * Decrement the pin count of the given inode, and wake up 2491 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2492 * inode must have been previously pinned with a call to xfs_ipin(). 2493 */ 2494 void 2495 xfs_iunpin( 2496 xfs_inode_t *ip) 2497 { 2498 ASSERT(atomic_read(&ip->i_pincount) > 0); 2499 2500 if (atomic_dec_and_test(&ip->i_pincount)) 2501 wake_up(&ip->i_ipin_wait); 2502 } 2503 2504 /* 2505 * This is called to unpin an inode. It can be directed to wait or to return 2506 * immediately without waiting for the inode to be unpinned. The caller must 2507 * have the inode locked in at least shared mode so that the buffer cannot be 2508 * subsequently pinned once someone is waiting for it to be unpinned. 2509 */ 2510 STATIC void 2511 __xfs_iunpin_wait( 2512 xfs_inode_t *ip, 2513 int wait) 2514 { 2515 xfs_inode_log_item_t *iip = ip->i_itemp; 2516 2517 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2518 if (atomic_read(&ip->i_pincount) == 0) 2519 return; 2520 2521 /* Give the log a push to start the unpinning I/O */ 2522 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ? 2523 iip->ili_last_lsn : 0, XFS_LOG_FORCE); 2524 if (wait) 2525 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2526 } 2527 2528 static inline void 2529 xfs_iunpin_wait( 2530 xfs_inode_t *ip) 2531 { 2532 __xfs_iunpin_wait(ip, 1); 2533 } 2534 2535 static inline void 2536 xfs_iunpin_nowait( 2537 xfs_inode_t *ip) 2538 { 2539 __xfs_iunpin_wait(ip, 0); 2540 } 2541 2542 2543 /* 2544 * xfs_iextents_copy() 2545 * 2546 * This is called to copy the REAL extents (as opposed to the delayed 2547 * allocation extents) from the inode into the given buffer. It 2548 * returns the number of bytes copied into the buffer. 2549 * 2550 * If there are no delayed allocation extents, then we can just 2551 * memcpy() the extents into the buffer. Otherwise, we need to 2552 * examine each extent in turn and skip those which are delayed. 2553 */ 2554 int 2555 xfs_iextents_copy( 2556 xfs_inode_t *ip, 2557 xfs_bmbt_rec_t *dp, 2558 int whichfork) 2559 { 2560 int copied; 2561 int i; 2562 xfs_ifork_t *ifp; 2563 int nrecs; 2564 xfs_fsblock_t start_block; 2565 2566 ifp = XFS_IFORK_PTR(ip, whichfork); 2567 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2568 ASSERT(ifp->if_bytes > 0); 2569 2570 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2571 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2572 ASSERT(nrecs > 0); 2573 2574 /* 2575 * There are some delayed allocation extents in the 2576 * inode, so copy the extents one at a time and skip 2577 * the delayed ones. There must be at least one 2578 * non-delayed extent. 2579 */ 2580 copied = 0; 2581 for (i = 0; i < nrecs; i++) { 2582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2583 start_block = xfs_bmbt_get_startblock(ep); 2584 if (isnullstartblock(start_block)) { 2585 /* 2586 * It's a delayed allocation extent, so skip it. 2587 */ 2588 continue; 2589 } 2590 2591 /* Translate to on disk format */ 2592 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2593 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2594 dp++; 2595 copied++; 2596 } 2597 ASSERT(copied != 0); 2598 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2599 2600 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2601 } 2602 2603 /* 2604 * Each of the following cases stores data into the same region 2605 * of the on-disk inode, so only one of them can be valid at 2606 * any given time. While it is possible to have conflicting formats 2607 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2608 * in EXTENTS format, this can only happen when the fork has 2609 * changed formats after being modified but before being flushed. 2610 * In these cases, the format always takes precedence, because the 2611 * format indicates the current state of the fork. 2612 */ 2613 /*ARGSUSED*/ 2614 STATIC void 2615 xfs_iflush_fork( 2616 xfs_inode_t *ip, 2617 xfs_dinode_t *dip, 2618 xfs_inode_log_item_t *iip, 2619 int whichfork, 2620 xfs_buf_t *bp) 2621 { 2622 char *cp; 2623 xfs_ifork_t *ifp; 2624 xfs_mount_t *mp; 2625 #ifdef XFS_TRANS_DEBUG 2626 int first; 2627 #endif 2628 static const short brootflag[2] = 2629 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2630 static const short dataflag[2] = 2631 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2632 static const short extflag[2] = 2633 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2634 2635 if (!iip) 2636 return; 2637 ifp = XFS_IFORK_PTR(ip, whichfork); 2638 /* 2639 * This can happen if we gave up in iformat in an error path, 2640 * for the attribute fork. 2641 */ 2642 if (!ifp) { 2643 ASSERT(whichfork == XFS_ATTR_FORK); 2644 return; 2645 } 2646 cp = XFS_DFORK_PTR(dip, whichfork); 2647 mp = ip->i_mount; 2648 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2649 case XFS_DINODE_FMT_LOCAL: 2650 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2651 (ifp->if_bytes > 0)) { 2652 ASSERT(ifp->if_u1.if_data != NULL); 2653 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2654 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2655 } 2656 break; 2657 2658 case XFS_DINODE_FMT_EXTENTS: 2659 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2660 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2661 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2662 (ifp->if_bytes == 0)); 2663 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2664 (ifp->if_bytes > 0)); 2665 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2666 (ifp->if_bytes > 0)) { 2667 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2668 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2669 whichfork); 2670 } 2671 break; 2672 2673 case XFS_DINODE_FMT_BTREE: 2674 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2675 (ifp->if_broot_bytes > 0)) { 2676 ASSERT(ifp->if_broot != NULL); 2677 ASSERT(ifp->if_broot_bytes <= 2678 (XFS_IFORK_SIZE(ip, whichfork) + 2679 XFS_BROOT_SIZE_ADJ)); 2680 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2681 (xfs_bmdr_block_t *)cp, 2682 XFS_DFORK_SIZE(dip, mp, whichfork)); 2683 } 2684 break; 2685 2686 case XFS_DINODE_FMT_DEV: 2687 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2688 ASSERT(whichfork == XFS_DATA_FORK); 2689 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2690 } 2691 break; 2692 2693 case XFS_DINODE_FMT_UUID: 2694 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2695 ASSERT(whichfork == XFS_DATA_FORK); 2696 memcpy(XFS_DFORK_DPTR(dip), 2697 &ip->i_df.if_u2.if_uuid, 2698 sizeof(uuid_t)); 2699 } 2700 break; 2701 2702 default: 2703 ASSERT(0); 2704 break; 2705 } 2706 } 2707 2708 STATIC int 2709 xfs_iflush_cluster( 2710 xfs_inode_t *ip, 2711 xfs_buf_t *bp) 2712 { 2713 xfs_mount_t *mp = ip->i_mount; 2714 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); 2715 unsigned long first_index, mask; 2716 unsigned long inodes_per_cluster; 2717 int ilist_size; 2718 xfs_inode_t **ilist; 2719 xfs_inode_t *iq; 2720 int nr_found; 2721 int clcount = 0; 2722 int bufwasdelwri; 2723 int i; 2724 2725 ASSERT(pag->pagi_inodeok); 2726 ASSERT(pag->pag_ici_init); 2727 2728 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2729 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2730 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2731 if (!ilist) 2732 return 0; 2733 2734 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2735 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2736 read_lock(&pag->pag_ici_lock); 2737 /* really need a gang lookup range call here */ 2738 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2739 first_index, inodes_per_cluster); 2740 if (nr_found == 0) 2741 goto out_free; 2742 2743 for (i = 0; i < nr_found; i++) { 2744 iq = ilist[i]; 2745 if (iq == ip) 2746 continue; 2747 /* if the inode lies outside this cluster, we're done. */ 2748 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) 2749 break; 2750 /* 2751 * Do an un-protected check to see if the inode is dirty and 2752 * is a candidate for flushing. These checks will be repeated 2753 * later after the appropriate locks are acquired. 2754 */ 2755 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2756 continue; 2757 2758 /* 2759 * Try to get locks. If any are unavailable or it is pinned, 2760 * then this inode cannot be flushed and is skipped. 2761 */ 2762 2763 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2764 continue; 2765 if (!xfs_iflock_nowait(iq)) { 2766 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2767 continue; 2768 } 2769 if (xfs_ipincount(iq)) { 2770 xfs_ifunlock(iq); 2771 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2772 continue; 2773 } 2774 2775 /* 2776 * arriving here means that this inode can be flushed. First 2777 * re-check that it's dirty before flushing. 2778 */ 2779 if (!xfs_inode_clean(iq)) { 2780 int error; 2781 error = xfs_iflush_int(iq, bp); 2782 if (error) { 2783 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2784 goto cluster_corrupt_out; 2785 } 2786 clcount++; 2787 } else { 2788 xfs_ifunlock(iq); 2789 } 2790 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2791 } 2792 2793 if (clcount) { 2794 XFS_STATS_INC(xs_icluster_flushcnt); 2795 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2796 } 2797 2798 out_free: 2799 read_unlock(&pag->pag_ici_lock); 2800 kmem_free(ilist); 2801 return 0; 2802 2803 2804 cluster_corrupt_out: 2805 /* 2806 * Corruption detected in the clustering loop. Invalidate the 2807 * inode buffer and shut down the filesystem. 2808 */ 2809 read_unlock(&pag->pag_ici_lock); 2810 /* 2811 * Clean up the buffer. If it was B_DELWRI, just release it -- 2812 * brelse can handle it with no problems. If not, shut down the 2813 * filesystem before releasing the buffer. 2814 */ 2815 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2816 if (bufwasdelwri) 2817 xfs_buf_relse(bp); 2818 2819 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2820 2821 if (!bufwasdelwri) { 2822 /* 2823 * Just like incore_relse: if we have b_iodone functions, 2824 * mark the buffer as an error and call them. Otherwise 2825 * mark it as stale and brelse. 2826 */ 2827 if (XFS_BUF_IODONE_FUNC(bp)) { 2828 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 2829 XFS_BUF_UNDONE(bp); 2830 XFS_BUF_STALE(bp); 2831 XFS_BUF_ERROR(bp,EIO); 2832 xfs_biodone(bp); 2833 } else { 2834 XFS_BUF_STALE(bp); 2835 xfs_buf_relse(bp); 2836 } 2837 } 2838 2839 /* 2840 * Unlocks the flush lock 2841 */ 2842 xfs_iflush_abort(iq); 2843 kmem_free(ilist); 2844 return XFS_ERROR(EFSCORRUPTED); 2845 } 2846 2847 /* 2848 * xfs_iflush() will write a modified inode's changes out to the 2849 * inode's on disk home. The caller must have the inode lock held 2850 * in at least shared mode and the inode flush completion must be 2851 * active as well. The inode lock will still be held upon return from 2852 * the call and the caller is free to unlock it. 2853 * The inode flush will be completed when the inode reaches the disk. 2854 * The flags indicate how the inode's buffer should be written out. 2855 */ 2856 int 2857 xfs_iflush( 2858 xfs_inode_t *ip, 2859 uint flags) 2860 { 2861 xfs_inode_log_item_t *iip; 2862 xfs_buf_t *bp; 2863 xfs_dinode_t *dip; 2864 xfs_mount_t *mp; 2865 int error; 2866 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK); 2867 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 2868 2869 XFS_STATS_INC(xs_iflush_count); 2870 2871 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2872 ASSERT(!completion_done(&ip->i_flush)); 2873 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2874 ip->i_d.di_nextents > ip->i_df.if_ext_max); 2875 2876 iip = ip->i_itemp; 2877 mp = ip->i_mount; 2878 2879 /* 2880 * If the inode isn't dirty, then just release the inode 2881 * flush lock and do nothing. 2882 */ 2883 if (xfs_inode_clean(ip)) { 2884 xfs_ifunlock(ip); 2885 return 0; 2886 } 2887 2888 /* 2889 * We can't flush the inode until it is unpinned, so wait for it if we 2890 * are allowed to block. We know noone new can pin it, because we are 2891 * holding the inode lock shared and you need to hold it exclusively to 2892 * pin the inode. 2893 * 2894 * If we are not allowed to block, force the log out asynchronously so 2895 * that when we come back the inode will be unpinned. If other inodes 2896 * in the same cluster are dirty, they will probably write the inode 2897 * out for us if they occur after the log force completes. 2898 */ 2899 if (noblock && xfs_ipincount(ip)) { 2900 xfs_iunpin_nowait(ip); 2901 xfs_ifunlock(ip); 2902 return EAGAIN; 2903 } 2904 xfs_iunpin_wait(ip); 2905 2906 /* 2907 * This may have been unpinned because the filesystem is shutting 2908 * down forcibly. If that's the case we must not write this inode 2909 * to disk, because the log record didn't make it to disk! 2910 */ 2911 if (XFS_FORCED_SHUTDOWN(mp)) { 2912 ip->i_update_core = 0; 2913 if (iip) 2914 iip->ili_format.ilf_fields = 0; 2915 xfs_ifunlock(ip); 2916 return XFS_ERROR(EIO); 2917 } 2918 2919 /* 2920 * Decide how buffer will be flushed out. This is done before 2921 * the call to xfs_iflush_int because this field is zeroed by it. 2922 */ 2923 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 2924 /* 2925 * Flush out the inode buffer according to the directions 2926 * of the caller. In the cases where the caller has given 2927 * us a choice choose the non-delwri case. This is because 2928 * the inode is in the AIL and we need to get it out soon. 2929 */ 2930 switch (flags) { 2931 case XFS_IFLUSH_SYNC: 2932 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 2933 flags = 0; 2934 break; 2935 case XFS_IFLUSH_ASYNC_NOBLOCK: 2936 case XFS_IFLUSH_ASYNC: 2937 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 2938 flags = INT_ASYNC; 2939 break; 2940 case XFS_IFLUSH_DELWRI: 2941 flags = INT_DELWRI; 2942 break; 2943 default: 2944 ASSERT(0); 2945 flags = 0; 2946 break; 2947 } 2948 } else { 2949 switch (flags) { 2950 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 2951 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 2952 case XFS_IFLUSH_DELWRI: 2953 flags = INT_DELWRI; 2954 break; 2955 case XFS_IFLUSH_ASYNC_NOBLOCK: 2956 case XFS_IFLUSH_ASYNC: 2957 flags = INT_ASYNC; 2958 break; 2959 case XFS_IFLUSH_SYNC: 2960 flags = 0; 2961 break; 2962 default: 2963 ASSERT(0); 2964 flags = 0; 2965 break; 2966 } 2967 } 2968 2969 /* 2970 * Get the buffer containing the on-disk inode. 2971 */ 2972 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 2973 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK); 2974 if (error || !bp) { 2975 xfs_ifunlock(ip); 2976 return error; 2977 } 2978 2979 /* 2980 * First flush out the inode that xfs_iflush was called with. 2981 */ 2982 error = xfs_iflush_int(ip, bp); 2983 if (error) 2984 goto corrupt_out; 2985 2986 /* 2987 * If the buffer is pinned then push on the log now so we won't 2988 * get stuck waiting in the write for too long. 2989 */ 2990 if (XFS_BUF_ISPINNED(bp)) 2991 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 2992 2993 /* 2994 * inode clustering: 2995 * see if other inodes can be gathered into this write 2996 */ 2997 error = xfs_iflush_cluster(ip, bp); 2998 if (error) 2999 goto cluster_corrupt_out; 3000 3001 if (flags & INT_DELWRI) { 3002 xfs_bdwrite(mp, bp); 3003 } else if (flags & INT_ASYNC) { 3004 error = xfs_bawrite(mp, bp); 3005 } else { 3006 error = xfs_bwrite(mp, bp); 3007 } 3008 return error; 3009 3010 corrupt_out: 3011 xfs_buf_relse(bp); 3012 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3013 cluster_corrupt_out: 3014 /* 3015 * Unlocks the flush lock 3016 */ 3017 xfs_iflush_abort(ip); 3018 return XFS_ERROR(EFSCORRUPTED); 3019 } 3020 3021 3022 STATIC int 3023 xfs_iflush_int( 3024 xfs_inode_t *ip, 3025 xfs_buf_t *bp) 3026 { 3027 xfs_inode_log_item_t *iip; 3028 xfs_dinode_t *dip; 3029 xfs_mount_t *mp; 3030 #ifdef XFS_TRANS_DEBUG 3031 int first; 3032 #endif 3033 3034 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3035 ASSERT(!completion_done(&ip->i_flush)); 3036 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3037 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3038 3039 iip = ip->i_itemp; 3040 mp = ip->i_mount; 3041 3042 3043 /* 3044 * If the inode isn't dirty, then just release the inode 3045 * flush lock and do nothing. 3046 */ 3047 if (xfs_inode_clean(ip)) { 3048 xfs_ifunlock(ip); 3049 return 0; 3050 } 3051 3052 /* set *dip = inode's place in the buffer */ 3053 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3054 3055 /* 3056 * Clear i_update_core before copying out the data. 3057 * This is for coordination with our timestamp updates 3058 * that don't hold the inode lock. They will always 3059 * update the timestamps BEFORE setting i_update_core, 3060 * so if we clear i_update_core after they set it we 3061 * are guaranteed to see their updates to the timestamps. 3062 * I believe that this depends on strongly ordered memory 3063 * semantics, but we have that. We use the SYNCHRONIZE 3064 * macro to make sure that the compiler does not reorder 3065 * the i_update_core access below the data copy below. 3066 */ 3067 ip->i_update_core = 0; 3068 SYNCHRONIZE(); 3069 3070 /* 3071 * Make sure to get the latest atime from the Linux inode. 3072 */ 3073 xfs_synchronize_atime(ip); 3074 3075 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC, 3076 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3077 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3078 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3079 ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3080 goto corrupt_out; 3081 } 3082 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3083 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3084 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3085 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3086 ip->i_ino, ip, ip->i_d.di_magic); 3087 goto corrupt_out; 3088 } 3089 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3090 if (XFS_TEST_ERROR( 3091 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3092 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3093 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3094 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3095 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3096 ip->i_ino, ip); 3097 goto corrupt_out; 3098 } 3099 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3100 if (XFS_TEST_ERROR( 3101 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3102 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3103 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3104 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3105 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3106 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3107 ip->i_ino, ip); 3108 goto corrupt_out; 3109 } 3110 } 3111 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3112 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3113 XFS_RANDOM_IFLUSH_5)) { 3114 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3115 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3116 ip->i_ino, 3117 ip->i_d.di_nextents + ip->i_d.di_anextents, 3118 ip->i_d.di_nblocks, 3119 ip); 3120 goto corrupt_out; 3121 } 3122 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3123 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3124 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3125 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3126 ip->i_ino, ip->i_d.di_forkoff, ip); 3127 goto corrupt_out; 3128 } 3129 /* 3130 * bump the flush iteration count, used to detect flushes which 3131 * postdate a log record during recovery. 3132 */ 3133 3134 ip->i_d.di_flushiter++; 3135 3136 /* 3137 * Copy the dirty parts of the inode into the on-disk 3138 * inode. We always copy out the core of the inode, 3139 * because if the inode is dirty at all the core must 3140 * be. 3141 */ 3142 xfs_dinode_to_disk(dip, &ip->i_d); 3143 3144 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3145 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3146 ip->i_d.di_flushiter = 0; 3147 3148 /* 3149 * If this is really an old format inode and the superblock version 3150 * has not been updated to support only new format inodes, then 3151 * convert back to the old inode format. If the superblock version 3152 * has been updated, then make the conversion permanent. 3153 */ 3154 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3155 if (ip->i_d.di_version == 1) { 3156 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3157 /* 3158 * Convert it back. 3159 */ 3160 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3161 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3162 } else { 3163 /* 3164 * The superblock version has already been bumped, 3165 * so just make the conversion to the new inode 3166 * format permanent. 3167 */ 3168 ip->i_d.di_version = 2; 3169 dip->di_version = 2; 3170 ip->i_d.di_onlink = 0; 3171 dip->di_onlink = 0; 3172 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3173 memset(&(dip->di_pad[0]), 0, 3174 sizeof(dip->di_pad)); 3175 ASSERT(ip->i_d.di_projid == 0); 3176 } 3177 } 3178 3179 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3180 if (XFS_IFORK_Q(ip)) 3181 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3182 xfs_inobp_check(mp, bp); 3183 3184 /* 3185 * We've recorded everything logged in the inode, so we'd 3186 * like to clear the ilf_fields bits so we don't log and 3187 * flush things unnecessarily. However, we can't stop 3188 * logging all this information until the data we've copied 3189 * into the disk buffer is written to disk. If we did we might 3190 * overwrite the copy of the inode in the log with all the 3191 * data after re-logging only part of it, and in the face of 3192 * a crash we wouldn't have all the data we need to recover. 3193 * 3194 * What we do is move the bits to the ili_last_fields field. 3195 * When logging the inode, these bits are moved back to the 3196 * ilf_fields field. In the xfs_iflush_done() routine we 3197 * clear ili_last_fields, since we know that the information 3198 * those bits represent is permanently on disk. As long as 3199 * the flush completes before the inode is logged again, then 3200 * both ilf_fields and ili_last_fields will be cleared. 3201 * 3202 * We can play with the ilf_fields bits here, because the inode 3203 * lock must be held exclusively in order to set bits there 3204 * and the flush lock protects the ili_last_fields bits. 3205 * Set ili_logged so the flush done 3206 * routine can tell whether or not to look in the AIL. 3207 * Also, store the current LSN of the inode so that we can tell 3208 * whether the item has moved in the AIL from xfs_iflush_done(). 3209 * In order to read the lsn we need the AIL lock, because 3210 * it is a 64 bit value that cannot be read atomically. 3211 */ 3212 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3213 iip->ili_last_fields = iip->ili_format.ilf_fields; 3214 iip->ili_format.ilf_fields = 0; 3215 iip->ili_logged = 1; 3216 3217 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3218 &iip->ili_item.li_lsn); 3219 3220 /* 3221 * Attach the function xfs_iflush_done to the inode's 3222 * buffer. This will remove the inode from the AIL 3223 * and unlock the inode's flush lock when the inode is 3224 * completely written to disk. 3225 */ 3226 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3227 xfs_iflush_done, (xfs_log_item_t *)iip); 3228 3229 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3230 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3231 } else { 3232 /* 3233 * We're flushing an inode which is not in the AIL and has 3234 * not been logged but has i_update_core set. For this 3235 * case we can use a B_DELWRI flush and immediately drop 3236 * the inode flush lock because we can avoid the whole 3237 * AIL state thing. It's OK to drop the flush lock now, 3238 * because we've already locked the buffer and to do anything 3239 * you really need both. 3240 */ 3241 if (iip != NULL) { 3242 ASSERT(iip->ili_logged == 0); 3243 ASSERT(iip->ili_last_fields == 0); 3244 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3245 } 3246 xfs_ifunlock(ip); 3247 } 3248 3249 return 0; 3250 3251 corrupt_out: 3252 return XFS_ERROR(EFSCORRUPTED); 3253 } 3254 3255 3256 3257 #ifdef XFS_ILOCK_TRACE 3258 void 3259 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3260 { 3261 ktrace_enter(ip->i_lock_trace, 3262 (void *)ip, 3263 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3264 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3265 (void *)ra, /* caller of ilock */ 3266 (void *)(unsigned long)current_cpu(), 3267 (void *)(unsigned long)current_pid(), 3268 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3269 } 3270 #endif 3271 3272 /* 3273 * Return a pointer to the extent record at file index idx. 3274 */ 3275 xfs_bmbt_rec_host_t * 3276 xfs_iext_get_ext( 3277 xfs_ifork_t *ifp, /* inode fork pointer */ 3278 xfs_extnum_t idx) /* index of target extent */ 3279 { 3280 ASSERT(idx >= 0); 3281 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3282 return ifp->if_u1.if_ext_irec->er_extbuf; 3283 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3284 xfs_ext_irec_t *erp; /* irec pointer */ 3285 int erp_idx = 0; /* irec index */ 3286 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3287 3288 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3289 return &erp->er_extbuf[page_idx]; 3290 } else if (ifp->if_bytes) { 3291 return &ifp->if_u1.if_extents[idx]; 3292 } else { 3293 return NULL; 3294 } 3295 } 3296 3297 /* 3298 * Insert new item(s) into the extent records for incore inode 3299 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3300 */ 3301 void 3302 xfs_iext_insert( 3303 xfs_ifork_t *ifp, /* inode fork pointer */ 3304 xfs_extnum_t idx, /* starting index of new items */ 3305 xfs_extnum_t count, /* number of inserted items */ 3306 xfs_bmbt_irec_t *new) /* items to insert */ 3307 { 3308 xfs_extnum_t i; /* extent record index */ 3309 3310 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3311 xfs_iext_add(ifp, idx, count); 3312 for (i = idx; i < idx + count; i++, new++) 3313 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3314 } 3315 3316 /* 3317 * This is called when the amount of space required for incore file 3318 * extents needs to be increased. The ext_diff parameter stores the 3319 * number of new extents being added and the idx parameter contains 3320 * the extent index where the new extents will be added. If the new 3321 * extents are being appended, then we just need to (re)allocate and 3322 * initialize the space. Otherwise, if the new extents are being 3323 * inserted into the middle of the existing entries, a bit more work 3324 * is required to make room for the new extents to be inserted. The 3325 * caller is responsible for filling in the new extent entries upon 3326 * return. 3327 */ 3328 void 3329 xfs_iext_add( 3330 xfs_ifork_t *ifp, /* inode fork pointer */ 3331 xfs_extnum_t idx, /* index to begin adding exts */ 3332 int ext_diff) /* number of extents to add */ 3333 { 3334 int byte_diff; /* new bytes being added */ 3335 int new_size; /* size of extents after adding */ 3336 xfs_extnum_t nextents; /* number of extents in file */ 3337 3338 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3339 ASSERT((idx >= 0) && (idx <= nextents)); 3340 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3341 new_size = ifp->if_bytes + byte_diff; 3342 /* 3343 * If the new number of extents (nextents + ext_diff) 3344 * fits inside the inode, then continue to use the inline 3345 * extent buffer. 3346 */ 3347 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3348 if (idx < nextents) { 3349 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3350 &ifp->if_u2.if_inline_ext[idx], 3351 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3352 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3353 } 3354 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3355 ifp->if_real_bytes = 0; 3356 ifp->if_lastex = nextents + ext_diff; 3357 } 3358 /* 3359 * Otherwise use a linear (direct) extent list. 3360 * If the extents are currently inside the inode, 3361 * xfs_iext_realloc_direct will switch us from 3362 * inline to direct extent allocation mode. 3363 */ 3364 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3365 xfs_iext_realloc_direct(ifp, new_size); 3366 if (idx < nextents) { 3367 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3368 &ifp->if_u1.if_extents[idx], 3369 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3370 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3371 } 3372 } 3373 /* Indirection array */ 3374 else { 3375 xfs_ext_irec_t *erp; 3376 int erp_idx = 0; 3377 int page_idx = idx; 3378 3379 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3380 if (ifp->if_flags & XFS_IFEXTIREC) { 3381 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3382 } else { 3383 xfs_iext_irec_init(ifp); 3384 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3385 erp = ifp->if_u1.if_ext_irec; 3386 } 3387 /* Extents fit in target extent page */ 3388 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3389 if (page_idx < erp->er_extcount) { 3390 memmove(&erp->er_extbuf[page_idx + ext_diff], 3391 &erp->er_extbuf[page_idx], 3392 (erp->er_extcount - page_idx) * 3393 sizeof(xfs_bmbt_rec_t)); 3394 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3395 } 3396 erp->er_extcount += ext_diff; 3397 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3398 } 3399 /* Insert a new extent page */ 3400 else if (erp) { 3401 xfs_iext_add_indirect_multi(ifp, 3402 erp_idx, page_idx, ext_diff); 3403 } 3404 /* 3405 * If extent(s) are being appended to the last page in 3406 * the indirection array and the new extent(s) don't fit 3407 * in the page, then erp is NULL and erp_idx is set to 3408 * the next index needed in the indirection array. 3409 */ 3410 else { 3411 int count = ext_diff; 3412 3413 while (count) { 3414 erp = xfs_iext_irec_new(ifp, erp_idx); 3415 erp->er_extcount = count; 3416 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3417 if (count) { 3418 erp_idx++; 3419 } 3420 } 3421 } 3422 } 3423 ifp->if_bytes = new_size; 3424 } 3425 3426 /* 3427 * This is called when incore extents are being added to the indirection 3428 * array and the new extents do not fit in the target extent list. The 3429 * erp_idx parameter contains the irec index for the target extent list 3430 * in the indirection array, and the idx parameter contains the extent 3431 * index within the list. The number of extents being added is stored 3432 * in the count parameter. 3433 * 3434 * |-------| |-------| 3435 * | | | | idx - number of extents before idx 3436 * | idx | | count | 3437 * | | | | count - number of extents being inserted at idx 3438 * |-------| |-------| 3439 * | count | | nex2 | nex2 - number of extents after idx + count 3440 * |-------| |-------| 3441 */ 3442 void 3443 xfs_iext_add_indirect_multi( 3444 xfs_ifork_t *ifp, /* inode fork pointer */ 3445 int erp_idx, /* target extent irec index */ 3446 xfs_extnum_t idx, /* index within target list */ 3447 int count) /* new extents being added */ 3448 { 3449 int byte_diff; /* new bytes being added */ 3450 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3451 xfs_extnum_t ext_diff; /* number of extents to add */ 3452 xfs_extnum_t ext_cnt; /* new extents still needed */ 3453 xfs_extnum_t nex2; /* extents after idx + count */ 3454 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3455 int nlists; /* number of irec's (lists) */ 3456 3457 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3458 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3459 nex2 = erp->er_extcount - idx; 3460 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3461 3462 /* 3463 * Save second part of target extent list 3464 * (all extents past */ 3465 if (nex2) { 3466 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3467 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3468 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3469 erp->er_extcount -= nex2; 3470 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3471 memset(&erp->er_extbuf[idx], 0, byte_diff); 3472 } 3473 3474 /* 3475 * Add the new extents to the end of the target 3476 * list, then allocate new irec record(s) and 3477 * extent buffer(s) as needed to store the rest 3478 * of the new extents. 3479 */ 3480 ext_cnt = count; 3481 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3482 if (ext_diff) { 3483 erp->er_extcount += ext_diff; 3484 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3485 ext_cnt -= ext_diff; 3486 } 3487 while (ext_cnt) { 3488 erp_idx++; 3489 erp = xfs_iext_irec_new(ifp, erp_idx); 3490 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3491 erp->er_extcount = ext_diff; 3492 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3493 ext_cnt -= ext_diff; 3494 } 3495 3496 /* Add nex2 extents back to indirection array */ 3497 if (nex2) { 3498 xfs_extnum_t ext_avail; 3499 int i; 3500 3501 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3502 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3503 i = 0; 3504 /* 3505 * If nex2 extents fit in the current page, append 3506 * nex2_ep after the new extents. 3507 */ 3508 if (nex2 <= ext_avail) { 3509 i = erp->er_extcount; 3510 } 3511 /* 3512 * Otherwise, check if space is available in the 3513 * next page. 3514 */ 3515 else if ((erp_idx < nlists - 1) && 3516 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3517 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3518 erp_idx++; 3519 erp++; 3520 /* Create a hole for nex2 extents */ 3521 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3522 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3523 } 3524 /* 3525 * Final choice, create a new extent page for 3526 * nex2 extents. 3527 */ 3528 else { 3529 erp_idx++; 3530 erp = xfs_iext_irec_new(ifp, erp_idx); 3531 } 3532 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3533 kmem_free(nex2_ep); 3534 erp->er_extcount += nex2; 3535 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3536 } 3537 } 3538 3539 /* 3540 * This is called when the amount of space required for incore file 3541 * extents needs to be decreased. The ext_diff parameter stores the 3542 * number of extents to be removed and the idx parameter contains 3543 * the extent index where the extents will be removed from. 3544 * 3545 * If the amount of space needed has decreased below the linear 3546 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3547 * extent array. Otherwise, use kmem_realloc() to adjust the 3548 * size to what is needed. 3549 */ 3550 void 3551 xfs_iext_remove( 3552 xfs_ifork_t *ifp, /* inode fork pointer */ 3553 xfs_extnum_t idx, /* index to begin removing exts */ 3554 int ext_diff) /* number of extents to remove */ 3555 { 3556 xfs_extnum_t nextents; /* number of extents in file */ 3557 int new_size; /* size of extents after removal */ 3558 3559 ASSERT(ext_diff > 0); 3560 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3561 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3562 3563 if (new_size == 0) { 3564 xfs_iext_destroy(ifp); 3565 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3566 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3567 } else if (ifp->if_real_bytes) { 3568 xfs_iext_remove_direct(ifp, idx, ext_diff); 3569 } else { 3570 xfs_iext_remove_inline(ifp, idx, ext_diff); 3571 } 3572 ifp->if_bytes = new_size; 3573 } 3574 3575 /* 3576 * This removes ext_diff extents from the inline buffer, beginning 3577 * at extent index idx. 3578 */ 3579 void 3580 xfs_iext_remove_inline( 3581 xfs_ifork_t *ifp, /* inode fork pointer */ 3582 xfs_extnum_t idx, /* index to begin removing exts */ 3583 int ext_diff) /* number of extents to remove */ 3584 { 3585 int nextents; /* number of extents in file */ 3586 3587 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3588 ASSERT(idx < XFS_INLINE_EXTS); 3589 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3590 ASSERT(((nextents - ext_diff) > 0) && 3591 (nextents - ext_diff) < XFS_INLINE_EXTS); 3592 3593 if (idx + ext_diff < nextents) { 3594 memmove(&ifp->if_u2.if_inline_ext[idx], 3595 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3596 (nextents - (idx + ext_diff)) * 3597 sizeof(xfs_bmbt_rec_t)); 3598 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3599 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3600 } else { 3601 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3602 ext_diff * sizeof(xfs_bmbt_rec_t)); 3603 } 3604 } 3605 3606 /* 3607 * This removes ext_diff extents from a linear (direct) extent list, 3608 * beginning at extent index idx. If the extents are being removed 3609 * from the end of the list (ie. truncate) then we just need to re- 3610 * allocate the list to remove the extra space. Otherwise, if the 3611 * extents are being removed from the middle of the existing extent 3612 * entries, then we first need to move the extent records beginning 3613 * at idx + ext_diff up in the list to overwrite the records being 3614 * removed, then remove the extra space via kmem_realloc. 3615 */ 3616 void 3617 xfs_iext_remove_direct( 3618 xfs_ifork_t *ifp, /* inode fork pointer */ 3619 xfs_extnum_t idx, /* index to begin removing exts */ 3620 int ext_diff) /* number of extents to remove */ 3621 { 3622 xfs_extnum_t nextents; /* number of extents in file */ 3623 int new_size; /* size of extents after removal */ 3624 3625 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3626 new_size = ifp->if_bytes - 3627 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3628 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3629 3630 if (new_size == 0) { 3631 xfs_iext_destroy(ifp); 3632 return; 3633 } 3634 /* Move extents up in the list (if needed) */ 3635 if (idx + ext_diff < nextents) { 3636 memmove(&ifp->if_u1.if_extents[idx], 3637 &ifp->if_u1.if_extents[idx + ext_diff], 3638 (nextents - (idx + ext_diff)) * 3639 sizeof(xfs_bmbt_rec_t)); 3640 } 3641 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3642 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3643 /* 3644 * Reallocate the direct extent list. If the extents 3645 * will fit inside the inode then xfs_iext_realloc_direct 3646 * will switch from direct to inline extent allocation 3647 * mode for us. 3648 */ 3649 xfs_iext_realloc_direct(ifp, new_size); 3650 ifp->if_bytes = new_size; 3651 } 3652 3653 /* 3654 * This is called when incore extents are being removed from the 3655 * indirection array and the extents being removed span multiple extent 3656 * buffers. The idx parameter contains the file extent index where we 3657 * want to begin removing extents, and the count parameter contains 3658 * how many extents need to be removed. 3659 * 3660 * |-------| |-------| 3661 * | nex1 | | | nex1 - number of extents before idx 3662 * |-------| | count | 3663 * | | | | count - number of extents being removed at idx 3664 * | count | |-------| 3665 * | | | nex2 | nex2 - number of extents after idx + count 3666 * |-------| |-------| 3667 */ 3668 void 3669 xfs_iext_remove_indirect( 3670 xfs_ifork_t *ifp, /* inode fork pointer */ 3671 xfs_extnum_t idx, /* index to begin removing extents */ 3672 int count) /* number of extents to remove */ 3673 { 3674 xfs_ext_irec_t *erp; /* indirection array pointer */ 3675 int erp_idx = 0; /* indirection array index */ 3676 xfs_extnum_t ext_cnt; /* extents left to remove */ 3677 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3678 xfs_extnum_t nex1; /* number of extents before idx */ 3679 xfs_extnum_t nex2; /* extents after idx + count */ 3680 int nlists; /* entries in indirection array */ 3681 int page_idx = idx; /* index in target extent list */ 3682 3683 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3684 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3685 ASSERT(erp != NULL); 3686 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3687 nex1 = page_idx; 3688 ext_cnt = count; 3689 while (ext_cnt) { 3690 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3691 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3692 /* 3693 * Check for deletion of entire list; 3694 * xfs_iext_irec_remove() updates extent offsets. 3695 */ 3696 if (ext_diff == erp->er_extcount) { 3697 xfs_iext_irec_remove(ifp, erp_idx); 3698 ext_cnt -= ext_diff; 3699 nex1 = 0; 3700 if (ext_cnt) { 3701 ASSERT(erp_idx < ifp->if_real_bytes / 3702 XFS_IEXT_BUFSZ); 3703 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3704 nex1 = 0; 3705 continue; 3706 } else { 3707 break; 3708 } 3709 } 3710 /* Move extents up (if needed) */ 3711 if (nex2) { 3712 memmove(&erp->er_extbuf[nex1], 3713 &erp->er_extbuf[nex1 + ext_diff], 3714 nex2 * sizeof(xfs_bmbt_rec_t)); 3715 } 3716 /* Zero out rest of page */ 3717 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3718 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3719 /* Update remaining counters */ 3720 erp->er_extcount -= ext_diff; 3721 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3722 ext_cnt -= ext_diff; 3723 nex1 = 0; 3724 erp_idx++; 3725 erp++; 3726 } 3727 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3728 xfs_iext_irec_compact(ifp); 3729 } 3730 3731 /* 3732 * Create, destroy, or resize a linear (direct) block of extents. 3733 */ 3734 void 3735 xfs_iext_realloc_direct( 3736 xfs_ifork_t *ifp, /* inode fork pointer */ 3737 int new_size) /* new size of extents */ 3738 { 3739 int rnew_size; /* real new size of extents */ 3740 3741 rnew_size = new_size; 3742 3743 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3744 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3745 (new_size != ifp->if_real_bytes))); 3746 3747 /* Free extent records */ 3748 if (new_size == 0) { 3749 xfs_iext_destroy(ifp); 3750 } 3751 /* Resize direct extent list and zero any new bytes */ 3752 else if (ifp->if_real_bytes) { 3753 /* Check if extents will fit inside the inode */ 3754 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3755 xfs_iext_direct_to_inline(ifp, new_size / 3756 (uint)sizeof(xfs_bmbt_rec_t)); 3757 ifp->if_bytes = new_size; 3758 return; 3759 } 3760 if (!is_power_of_2(new_size)){ 3761 rnew_size = roundup_pow_of_two(new_size); 3762 } 3763 if (rnew_size != ifp->if_real_bytes) { 3764 ifp->if_u1.if_extents = 3765 kmem_realloc(ifp->if_u1.if_extents, 3766 rnew_size, 3767 ifp->if_real_bytes, KM_NOFS); 3768 } 3769 if (rnew_size > ifp->if_real_bytes) { 3770 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3771 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3772 rnew_size - ifp->if_real_bytes); 3773 } 3774 } 3775 /* 3776 * Switch from the inline extent buffer to a direct 3777 * extent list. Be sure to include the inline extent 3778 * bytes in new_size. 3779 */ 3780 else { 3781 new_size += ifp->if_bytes; 3782 if (!is_power_of_2(new_size)) { 3783 rnew_size = roundup_pow_of_two(new_size); 3784 } 3785 xfs_iext_inline_to_direct(ifp, rnew_size); 3786 } 3787 ifp->if_real_bytes = rnew_size; 3788 ifp->if_bytes = new_size; 3789 } 3790 3791 /* 3792 * Switch from linear (direct) extent records to inline buffer. 3793 */ 3794 void 3795 xfs_iext_direct_to_inline( 3796 xfs_ifork_t *ifp, /* inode fork pointer */ 3797 xfs_extnum_t nextents) /* number of extents in file */ 3798 { 3799 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3800 ASSERT(nextents <= XFS_INLINE_EXTS); 3801 /* 3802 * The inline buffer was zeroed when we switched 3803 * from inline to direct extent allocation mode, 3804 * so we don't need to clear it here. 3805 */ 3806 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3807 nextents * sizeof(xfs_bmbt_rec_t)); 3808 kmem_free(ifp->if_u1.if_extents); 3809 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3810 ifp->if_real_bytes = 0; 3811 } 3812 3813 /* 3814 * Switch from inline buffer to linear (direct) extent records. 3815 * new_size should already be rounded up to the next power of 2 3816 * by the caller (when appropriate), so use new_size as it is. 3817 * However, since new_size may be rounded up, we can't update 3818 * if_bytes here. It is the caller's responsibility to update 3819 * if_bytes upon return. 3820 */ 3821 void 3822 xfs_iext_inline_to_direct( 3823 xfs_ifork_t *ifp, /* inode fork pointer */ 3824 int new_size) /* number of extents in file */ 3825 { 3826 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3827 memset(ifp->if_u1.if_extents, 0, new_size); 3828 if (ifp->if_bytes) { 3829 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3830 ifp->if_bytes); 3831 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3832 sizeof(xfs_bmbt_rec_t)); 3833 } 3834 ifp->if_real_bytes = new_size; 3835 } 3836 3837 /* 3838 * Resize an extent indirection array to new_size bytes. 3839 */ 3840 STATIC void 3841 xfs_iext_realloc_indirect( 3842 xfs_ifork_t *ifp, /* inode fork pointer */ 3843 int new_size) /* new indirection array size */ 3844 { 3845 int nlists; /* number of irec's (ex lists) */ 3846 int size; /* current indirection array size */ 3847 3848 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3849 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3850 size = nlists * sizeof(xfs_ext_irec_t); 3851 ASSERT(ifp->if_real_bytes); 3852 ASSERT((new_size >= 0) && (new_size != size)); 3853 if (new_size == 0) { 3854 xfs_iext_destroy(ifp); 3855 } else { 3856 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3857 kmem_realloc(ifp->if_u1.if_ext_irec, 3858 new_size, size, KM_NOFS); 3859 } 3860 } 3861 3862 /* 3863 * Switch from indirection array to linear (direct) extent allocations. 3864 */ 3865 STATIC void 3866 xfs_iext_indirect_to_direct( 3867 xfs_ifork_t *ifp) /* inode fork pointer */ 3868 { 3869 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3870 xfs_extnum_t nextents; /* number of extents in file */ 3871 int size; /* size of file extents */ 3872 3873 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3874 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3875 ASSERT(nextents <= XFS_LINEAR_EXTS); 3876 size = nextents * sizeof(xfs_bmbt_rec_t); 3877 3878 xfs_iext_irec_compact_pages(ifp); 3879 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3880 3881 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3882 kmem_free(ifp->if_u1.if_ext_irec); 3883 ifp->if_flags &= ~XFS_IFEXTIREC; 3884 ifp->if_u1.if_extents = ep; 3885 ifp->if_bytes = size; 3886 if (nextents < XFS_LINEAR_EXTS) { 3887 xfs_iext_realloc_direct(ifp, size); 3888 } 3889 } 3890 3891 /* 3892 * Free incore file extents. 3893 */ 3894 void 3895 xfs_iext_destroy( 3896 xfs_ifork_t *ifp) /* inode fork pointer */ 3897 { 3898 if (ifp->if_flags & XFS_IFEXTIREC) { 3899 int erp_idx; 3900 int nlists; 3901 3902 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3903 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3904 xfs_iext_irec_remove(ifp, erp_idx); 3905 } 3906 ifp->if_flags &= ~XFS_IFEXTIREC; 3907 } else if (ifp->if_real_bytes) { 3908 kmem_free(ifp->if_u1.if_extents); 3909 } else if (ifp->if_bytes) { 3910 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3911 sizeof(xfs_bmbt_rec_t)); 3912 } 3913 ifp->if_u1.if_extents = NULL; 3914 ifp->if_real_bytes = 0; 3915 ifp->if_bytes = 0; 3916 } 3917 3918 /* 3919 * Return a pointer to the extent record for file system block bno. 3920 */ 3921 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3922 xfs_iext_bno_to_ext( 3923 xfs_ifork_t *ifp, /* inode fork pointer */ 3924 xfs_fileoff_t bno, /* block number to search for */ 3925 xfs_extnum_t *idxp) /* index of target extent */ 3926 { 3927 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3928 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3929 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3930 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3931 int high; /* upper boundary in search */ 3932 xfs_extnum_t idx = 0; /* index of target extent */ 3933 int low; /* lower boundary in search */ 3934 xfs_extnum_t nextents; /* number of file extents */ 3935 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3936 3937 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3938 if (nextents == 0) { 3939 *idxp = 0; 3940 return NULL; 3941 } 3942 low = 0; 3943 if (ifp->if_flags & XFS_IFEXTIREC) { 3944 /* Find target extent list */ 3945 int erp_idx = 0; 3946 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3947 base = erp->er_extbuf; 3948 high = erp->er_extcount - 1; 3949 } else { 3950 base = ifp->if_u1.if_extents; 3951 high = nextents - 1; 3952 } 3953 /* Binary search extent records */ 3954 while (low <= high) { 3955 idx = (low + high) >> 1; 3956 ep = base + idx; 3957 startoff = xfs_bmbt_get_startoff(ep); 3958 blockcount = xfs_bmbt_get_blockcount(ep); 3959 if (bno < startoff) { 3960 high = idx - 1; 3961 } else if (bno >= startoff + blockcount) { 3962 low = idx + 1; 3963 } else { 3964 /* Convert back to file-based extent index */ 3965 if (ifp->if_flags & XFS_IFEXTIREC) { 3966 idx += erp->er_extoff; 3967 } 3968 *idxp = idx; 3969 return ep; 3970 } 3971 } 3972 /* Convert back to file-based extent index */ 3973 if (ifp->if_flags & XFS_IFEXTIREC) { 3974 idx += erp->er_extoff; 3975 } 3976 if (bno >= startoff + blockcount) { 3977 if (++idx == nextents) { 3978 ep = NULL; 3979 } else { 3980 ep = xfs_iext_get_ext(ifp, idx); 3981 } 3982 } 3983 *idxp = idx; 3984 return ep; 3985 } 3986 3987 /* 3988 * Return a pointer to the indirection array entry containing the 3989 * extent record for filesystem block bno. Store the index of the 3990 * target irec in *erp_idxp. 3991 */ 3992 xfs_ext_irec_t * /* pointer to found extent record */ 3993 xfs_iext_bno_to_irec( 3994 xfs_ifork_t *ifp, /* inode fork pointer */ 3995 xfs_fileoff_t bno, /* block number to search for */ 3996 int *erp_idxp) /* irec index of target ext list */ 3997 { 3998 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3999 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4000 int erp_idx; /* indirection array index */ 4001 int nlists; /* number of extent irec's (lists) */ 4002 int high; /* binary search upper limit */ 4003 int low; /* binary search lower limit */ 4004 4005 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4006 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4007 erp_idx = 0; 4008 low = 0; 4009 high = nlists - 1; 4010 while (low <= high) { 4011 erp_idx = (low + high) >> 1; 4012 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4013 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4014 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4015 high = erp_idx - 1; 4016 } else if (erp_next && bno >= 4017 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4018 low = erp_idx + 1; 4019 } else { 4020 break; 4021 } 4022 } 4023 *erp_idxp = erp_idx; 4024 return erp; 4025 } 4026 4027 /* 4028 * Return a pointer to the indirection array entry containing the 4029 * extent record at file extent index *idxp. Store the index of the 4030 * target irec in *erp_idxp and store the page index of the target 4031 * extent record in *idxp. 4032 */ 4033 xfs_ext_irec_t * 4034 xfs_iext_idx_to_irec( 4035 xfs_ifork_t *ifp, /* inode fork pointer */ 4036 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4037 int *erp_idxp, /* pointer to target irec */ 4038 int realloc) /* new bytes were just added */ 4039 { 4040 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4041 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4042 int erp_idx; /* indirection array index */ 4043 int nlists; /* number of irec's (ex lists) */ 4044 int high; /* binary search upper limit */ 4045 int low; /* binary search lower limit */ 4046 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4047 4048 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4049 ASSERT(page_idx >= 0 && page_idx <= 4050 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4051 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4052 erp_idx = 0; 4053 low = 0; 4054 high = nlists - 1; 4055 4056 /* Binary search extent irec's */ 4057 while (low <= high) { 4058 erp_idx = (low + high) >> 1; 4059 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4060 prev = erp_idx > 0 ? erp - 1 : NULL; 4061 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4062 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4063 high = erp_idx - 1; 4064 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4065 (page_idx == erp->er_extoff + erp->er_extcount && 4066 !realloc)) { 4067 low = erp_idx + 1; 4068 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4069 erp->er_extcount == XFS_LINEAR_EXTS) { 4070 ASSERT(realloc); 4071 page_idx = 0; 4072 erp_idx++; 4073 erp = erp_idx < nlists ? erp + 1 : NULL; 4074 break; 4075 } else { 4076 page_idx -= erp->er_extoff; 4077 break; 4078 } 4079 } 4080 *idxp = page_idx; 4081 *erp_idxp = erp_idx; 4082 return(erp); 4083 } 4084 4085 /* 4086 * Allocate and initialize an indirection array once the space needed 4087 * for incore extents increases above XFS_IEXT_BUFSZ. 4088 */ 4089 void 4090 xfs_iext_irec_init( 4091 xfs_ifork_t *ifp) /* inode fork pointer */ 4092 { 4093 xfs_ext_irec_t *erp; /* indirection array pointer */ 4094 xfs_extnum_t nextents; /* number of extents in file */ 4095 4096 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4097 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4098 ASSERT(nextents <= XFS_LINEAR_EXTS); 4099 4100 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 4101 4102 if (nextents == 0) { 4103 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4104 } else if (!ifp->if_real_bytes) { 4105 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4106 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4107 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4108 } 4109 erp->er_extbuf = ifp->if_u1.if_extents; 4110 erp->er_extcount = nextents; 4111 erp->er_extoff = 0; 4112 4113 ifp->if_flags |= XFS_IFEXTIREC; 4114 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4115 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4116 ifp->if_u1.if_ext_irec = erp; 4117 4118 return; 4119 } 4120 4121 /* 4122 * Allocate and initialize a new entry in the indirection array. 4123 */ 4124 xfs_ext_irec_t * 4125 xfs_iext_irec_new( 4126 xfs_ifork_t *ifp, /* inode fork pointer */ 4127 int erp_idx) /* index for new irec */ 4128 { 4129 xfs_ext_irec_t *erp; /* indirection array pointer */ 4130 int i; /* loop counter */ 4131 int nlists; /* number of irec's (ex lists) */ 4132 4133 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4134 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4135 4136 /* Resize indirection array */ 4137 xfs_iext_realloc_indirect(ifp, ++nlists * 4138 sizeof(xfs_ext_irec_t)); 4139 /* 4140 * Move records down in the array so the 4141 * new page can use erp_idx. 4142 */ 4143 erp = ifp->if_u1.if_ext_irec; 4144 for (i = nlists - 1; i > erp_idx; i--) { 4145 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4146 } 4147 ASSERT(i == erp_idx); 4148 4149 /* Initialize new extent record */ 4150 erp = ifp->if_u1.if_ext_irec; 4151 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4152 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4153 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4154 erp[erp_idx].er_extcount = 0; 4155 erp[erp_idx].er_extoff = erp_idx > 0 ? 4156 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4157 return (&erp[erp_idx]); 4158 } 4159 4160 /* 4161 * Remove a record from the indirection array. 4162 */ 4163 void 4164 xfs_iext_irec_remove( 4165 xfs_ifork_t *ifp, /* inode fork pointer */ 4166 int erp_idx) /* irec index to remove */ 4167 { 4168 xfs_ext_irec_t *erp; /* indirection array pointer */ 4169 int i; /* loop counter */ 4170 int nlists; /* number of irec's (ex lists) */ 4171 4172 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4173 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4174 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4175 if (erp->er_extbuf) { 4176 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4177 -erp->er_extcount); 4178 kmem_free(erp->er_extbuf); 4179 } 4180 /* Compact extent records */ 4181 erp = ifp->if_u1.if_ext_irec; 4182 for (i = erp_idx; i < nlists - 1; i++) { 4183 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4184 } 4185 /* 4186 * Manually free the last extent record from the indirection 4187 * array. A call to xfs_iext_realloc_indirect() with a size 4188 * of zero would result in a call to xfs_iext_destroy() which 4189 * would in turn call this function again, creating a nasty 4190 * infinite loop. 4191 */ 4192 if (--nlists) { 4193 xfs_iext_realloc_indirect(ifp, 4194 nlists * sizeof(xfs_ext_irec_t)); 4195 } else { 4196 kmem_free(ifp->if_u1.if_ext_irec); 4197 } 4198 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4199 } 4200 4201 /* 4202 * This is called to clean up large amounts of unused memory allocated 4203 * by the indirection array. Before compacting anything though, verify 4204 * that the indirection array is still needed and switch back to the 4205 * linear extent list (or even the inline buffer) if possible. The 4206 * compaction policy is as follows: 4207 * 4208 * Full Compaction: Extents fit into a single page (or inline buffer) 4209 * Partial Compaction: Extents occupy less than 50% of allocated space 4210 * No Compaction: Extents occupy at least 50% of allocated space 4211 */ 4212 void 4213 xfs_iext_irec_compact( 4214 xfs_ifork_t *ifp) /* inode fork pointer */ 4215 { 4216 xfs_extnum_t nextents; /* number of extents in file */ 4217 int nlists; /* number of irec's (ex lists) */ 4218 4219 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4220 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4221 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4222 4223 if (nextents == 0) { 4224 xfs_iext_destroy(ifp); 4225 } else if (nextents <= XFS_INLINE_EXTS) { 4226 xfs_iext_indirect_to_direct(ifp); 4227 xfs_iext_direct_to_inline(ifp, nextents); 4228 } else if (nextents <= XFS_LINEAR_EXTS) { 4229 xfs_iext_indirect_to_direct(ifp); 4230 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4231 xfs_iext_irec_compact_pages(ifp); 4232 } 4233 } 4234 4235 /* 4236 * Combine extents from neighboring extent pages. 4237 */ 4238 void 4239 xfs_iext_irec_compact_pages( 4240 xfs_ifork_t *ifp) /* inode fork pointer */ 4241 { 4242 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4243 int erp_idx = 0; /* indirection array index */ 4244 int nlists; /* number of irec's (ex lists) */ 4245 4246 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4247 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4248 while (erp_idx < nlists - 1) { 4249 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4250 erp_next = erp + 1; 4251 if (erp_next->er_extcount <= 4252 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4253 memcpy(&erp->er_extbuf[erp->er_extcount], 4254 erp_next->er_extbuf, erp_next->er_extcount * 4255 sizeof(xfs_bmbt_rec_t)); 4256 erp->er_extcount += erp_next->er_extcount; 4257 /* 4258 * Free page before removing extent record 4259 * so er_extoffs don't get modified in 4260 * xfs_iext_irec_remove. 4261 */ 4262 kmem_free(erp_next->er_extbuf); 4263 erp_next->er_extbuf = NULL; 4264 xfs_iext_irec_remove(ifp, erp_idx + 1); 4265 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4266 } else { 4267 erp_idx++; 4268 } 4269 } 4270 } 4271 4272 /* 4273 * This is called to update the er_extoff field in the indirection 4274 * array when extents have been added or removed from one of the 4275 * extent lists. erp_idx contains the irec index to begin updating 4276 * at and ext_diff contains the number of extents that were added 4277 * or removed. 4278 */ 4279 void 4280 xfs_iext_irec_update_extoffs( 4281 xfs_ifork_t *ifp, /* inode fork pointer */ 4282 int erp_idx, /* irec index to update */ 4283 int ext_diff) /* number of new extents */ 4284 { 4285 int i; /* loop counter */ 4286 int nlists; /* number of irec's (ex lists */ 4287 4288 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4289 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4290 for (i = erp_idx; i < nlists; i++) { 4291 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4292 } 4293 } 4294