xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision fcaf99d2)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_filestream.h"
53 #include "xfs_vnodeops.h"
54 
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
57 
58 /*
59  * Used in xfs_itruncate().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	xfs_exntfmt_t		fmt)
79 {
80 	xfs_bmbt_irec_t		irec;
81 	xfs_bmbt_rec_host_t	rec;
82 	int			i;
83 
84 	for (i = 0; i < nrecs; i++) {
85 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 		rec.l0 = get_unaligned(&ep->l0);
87 		rec.l1 = get_unaligned(&ep->l1);
88 		xfs_bmbt_get_all(&rec, &irec);
89 		if (fmt == XFS_EXTFMT_NOSTATE)
90 			ASSERT(irec.br_state == XFS_EXT_NORM);
91 	}
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96 
97 /*
98  * Check that none of the inode's in the buffer have a next
99  * unlinked field of 0.
100  */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 	xfs_mount_t	*mp,
105 	xfs_buf_t	*bp)
106 {
107 	int		i;
108 	int		j;
109 	xfs_dinode_t	*dip;
110 
111 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 
113 	for (i = 0; i < j; i++) {
114 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 					i * mp->m_sb.sb_inodesize);
116 		if (!dip->di_next_unlinked)  {
117 			xfs_fs_cmn_err(CE_ALERT, mp,
118 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
119 				bp);
120 			ASSERT(dip->di_next_unlinked);
121 		}
122 	}
123 }
124 #endif
125 
126 /*
127  * Find the buffer associated with the given inode map
128  * We do basic validation checks on the buffer once it has been
129  * retrieved from disk.
130  */
131 STATIC int
132 xfs_imap_to_bp(
133 	xfs_mount_t	*mp,
134 	xfs_trans_t	*tp,
135 	struct xfs_imap	*imap,
136 	xfs_buf_t	**bpp,
137 	uint		buf_flags,
138 	uint		iget_flags)
139 {
140 	int		error;
141 	int		i;
142 	int		ni;
143 	xfs_buf_t	*bp;
144 
145 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 				   (int)imap->im_len, buf_flags, &bp);
147 	if (error) {
148 		if (error != EAGAIN) {
149 			cmn_err(CE_WARN,
150 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 				"an error %d on %s.  Returning error.",
152 				error, mp->m_fsname);
153 		} else {
154 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
155 		}
156 		return error;
157 	}
158 
159 	/*
160 	 * Validate the magic number and version of every inode in the buffer
161 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
162 	 */
163 #ifdef DEBUG
164 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else	/* usual case */
166 	ni = 1;
167 #endif
168 
169 	for (i = 0; i < ni; i++) {
170 		int		di_ok;
171 		xfs_dinode_t	*dip;
172 
173 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 					(i << mp->m_sb.sb_inodelog));
175 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
177 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 						XFS_ERRTAG_ITOBP_INOTOBP,
179 						XFS_RANDOM_ITOBP_INOTOBP))) {
180 			if (iget_flags & XFS_IGET_BULKSTAT) {
181 				xfs_trans_brelse(tp, bp);
182 				return XFS_ERROR(EINVAL);
183 			}
184 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 						XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 			cmn_err(CE_PANIC,
188 					"Device %s - bad inode magic/vsn "
189 					"daddr %lld #%d (magic=%x)",
190 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 				(unsigned long long)imap->im_blkno, i,
192 				be16_to_cpu(dip->di_magic));
193 #endif
194 			xfs_trans_brelse(tp, bp);
195 			return XFS_ERROR(EFSCORRUPTED);
196 		}
197 	}
198 
199 	xfs_inobp_check(mp, bp);
200 
201 	/*
202 	 * Mark the buffer as an inode buffer now that it looks good
203 	 */
204 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
205 
206 	*bpp = bp;
207 	return 0;
208 }
209 
210 /*
211  * This routine is called to map an inode number within a file
212  * system to the buffer containing the on-disk version of the
213  * inode.  It returns a pointer to the buffer containing the
214  * on-disk inode in the bpp parameter, and in the dip parameter
215  * it returns a pointer to the on-disk inode within that buffer.
216  *
217  * If a non-zero error is returned, then the contents of bpp and
218  * dipp are undefined.
219  *
220  * Use xfs_imap() to determine the size and location of the
221  * buffer to read from disk.
222  */
223 int
224 xfs_inotobp(
225 	xfs_mount_t	*mp,
226 	xfs_trans_t	*tp,
227 	xfs_ino_t	ino,
228 	xfs_dinode_t	**dipp,
229 	xfs_buf_t	**bpp,
230 	int		*offset,
231 	uint		imap_flags)
232 {
233 	struct xfs_imap	imap;
234 	xfs_buf_t	*bp;
235 	int		error;
236 
237 	imap.im_blkno = 0;
238 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 	if (error)
240 		return error;
241 
242 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
243 	if (error)
244 		return error;
245 
246 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 	*bpp = bp;
248 	*offset = imap.im_boffset;
249 	return 0;
250 }
251 
252 
253 /*
254  * This routine is called to map an inode to the buffer containing
255  * the on-disk version of the inode.  It returns a pointer to the
256  * buffer containing the on-disk inode in the bpp parameter, and in
257  * the dip parameter it returns a pointer to the on-disk inode within
258  * that buffer.
259  *
260  * If a non-zero error is returned, then the contents of bpp and
261  * dipp are undefined.
262  *
263  * The inode is expected to already been mapped to its buffer and read
264  * in once, thus we can use the mapping information stored in the inode
265  * rather than calling xfs_imap().  This allows us to avoid the overhead
266  * of looking at the inode btree for small block file systems
267  * (see xfs_imap()).
268  */
269 int
270 xfs_itobp(
271 	xfs_mount_t	*mp,
272 	xfs_trans_t	*tp,
273 	xfs_inode_t	*ip,
274 	xfs_dinode_t	**dipp,
275 	xfs_buf_t	**bpp,
276 	uint		buf_flags)
277 {
278 	xfs_buf_t	*bp;
279 	int		error;
280 
281 	ASSERT(ip->i_imap.im_blkno != 0);
282 
283 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 	if (error)
285 		return error;
286 
287 	if (!bp) {
288 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
289 		ASSERT(tp == NULL);
290 		*bpp = NULL;
291 		return EAGAIN;
292 	}
293 
294 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 	*bpp = bp;
296 	return 0;
297 }
298 
299 /*
300  * Move inode type and inode format specific information from the
301  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
302  * this means set if_rdev to the proper value.  For files, directories,
303  * and symlinks this means to bring in the in-line data or extent
304  * pointers.  For a file in B-tree format, only the root is immediately
305  * brought in-core.  The rest will be in-lined in if_extents when it
306  * is first referenced (see xfs_iread_extents()).
307  */
308 STATIC int
309 xfs_iformat(
310 	xfs_inode_t		*ip,
311 	xfs_dinode_t		*dip)
312 {
313 	xfs_attr_shortform_t	*atp;
314 	int			size;
315 	int			error;
316 	xfs_fsize_t             di_size;
317 	ip->i_df.if_ext_max =
318 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 	error = 0;
320 
321 	if (unlikely(be32_to_cpu(dip->di_nextents) +
322 		     be16_to_cpu(dip->di_anextents) >
323 		     be64_to_cpu(dip->di_nblocks))) {
324 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 			(unsigned long long)ip->i_ino,
327 			(int)(be32_to_cpu(dip->di_nextents) +
328 			      be16_to_cpu(dip->di_anextents)),
329 			(unsigned long long)
330 				be64_to_cpu(dip->di_nblocks));
331 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 				     ip->i_mount, dip);
333 		return XFS_ERROR(EFSCORRUPTED);
334 	}
335 
336 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 			"corrupt dinode %Lu, forkoff = 0x%x.",
339 			(unsigned long long)ip->i_ino,
340 			dip->di_forkoff);
341 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 				     ip->i_mount, dip);
343 		return XFS_ERROR(EFSCORRUPTED);
344 	}
345 
346 	switch (ip->i_d.di_mode & S_IFMT) {
347 	case S_IFIFO:
348 	case S_IFCHR:
349 	case S_IFBLK:
350 	case S_IFSOCK:
351 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
352 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
353 					      ip->i_mount, dip);
354 			return XFS_ERROR(EFSCORRUPTED);
355 		}
356 		ip->i_d.di_size = 0;
357 		ip->i_size = 0;
358 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
359 		break;
360 
361 	case S_IFREG:
362 	case S_IFLNK:
363 	case S_IFDIR:
364 		switch (dip->di_format) {
365 		case XFS_DINODE_FMT_LOCAL:
366 			/*
367 			 * no local regular files yet
368 			 */
369 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
370 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
371 					"corrupt inode %Lu "
372 					"(local format for regular file).",
373 					(unsigned long long) ip->i_ino);
374 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
375 						     XFS_ERRLEVEL_LOW,
376 						     ip->i_mount, dip);
377 				return XFS_ERROR(EFSCORRUPTED);
378 			}
379 
380 			di_size = be64_to_cpu(dip->di_size);
381 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
382 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
383 					"corrupt inode %Lu "
384 					"(bad size %Ld for local inode).",
385 					(unsigned long long) ip->i_ino,
386 					(long long) di_size);
387 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
388 						     XFS_ERRLEVEL_LOW,
389 						     ip->i_mount, dip);
390 				return XFS_ERROR(EFSCORRUPTED);
391 			}
392 
393 			size = (int)di_size;
394 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
395 			break;
396 		case XFS_DINODE_FMT_EXTENTS:
397 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
398 			break;
399 		case XFS_DINODE_FMT_BTREE:
400 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
401 			break;
402 		default:
403 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
404 					 ip->i_mount);
405 			return XFS_ERROR(EFSCORRUPTED);
406 		}
407 		break;
408 
409 	default:
410 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
411 		return XFS_ERROR(EFSCORRUPTED);
412 	}
413 	if (error) {
414 		return error;
415 	}
416 	if (!XFS_DFORK_Q(dip))
417 		return 0;
418 	ASSERT(ip->i_afp == NULL);
419 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
420 	ip->i_afp->if_ext_max =
421 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
422 	switch (dip->di_aformat) {
423 	case XFS_DINODE_FMT_LOCAL:
424 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
425 		size = be16_to_cpu(atp->hdr.totsize);
426 
427 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
428 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
429 				"corrupt inode %Lu "
430 				"(bad attr fork size %Ld).",
431 				(unsigned long long) ip->i_ino,
432 				(long long) size);
433 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
434 					     XFS_ERRLEVEL_LOW,
435 					     ip->i_mount, dip);
436 			return XFS_ERROR(EFSCORRUPTED);
437 		}
438 
439 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
440 		break;
441 	case XFS_DINODE_FMT_EXTENTS:
442 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
443 		break;
444 	case XFS_DINODE_FMT_BTREE:
445 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
446 		break;
447 	default:
448 		error = XFS_ERROR(EFSCORRUPTED);
449 		break;
450 	}
451 	if (error) {
452 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
453 		ip->i_afp = NULL;
454 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
455 	}
456 	return error;
457 }
458 
459 /*
460  * The file is in-lined in the on-disk inode.
461  * If it fits into if_inline_data, then copy
462  * it there, otherwise allocate a buffer for it
463  * and copy the data there.  Either way, set
464  * if_data to point at the data.
465  * If we allocate a buffer for the data, make
466  * sure that its size is a multiple of 4 and
467  * record the real size in i_real_bytes.
468  */
469 STATIC int
470 xfs_iformat_local(
471 	xfs_inode_t	*ip,
472 	xfs_dinode_t	*dip,
473 	int		whichfork,
474 	int		size)
475 {
476 	xfs_ifork_t	*ifp;
477 	int		real_size;
478 
479 	/*
480 	 * If the size is unreasonable, then something
481 	 * is wrong and we just bail out rather than crash in
482 	 * kmem_alloc() or memcpy() below.
483 	 */
484 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
485 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
486 			"corrupt inode %Lu "
487 			"(bad size %d for local fork, size = %d).",
488 			(unsigned long long) ip->i_ino, size,
489 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
490 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
491 				     ip->i_mount, dip);
492 		return XFS_ERROR(EFSCORRUPTED);
493 	}
494 	ifp = XFS_IFORK_PTR(ip, whichfork);
495 	real_size = 0;
496 	if (size == 0)
497 		ifp->if_u1.if_data = NULL;
498 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
499 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
500 	else {
501 		real_size = roundup(size, 4);
502 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
503 	}
504 	ifp->if_bytes = size;
505 	ifp->if_real_bytes = real_size;
506 	if (size)
507 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
508 	ifp->if_flags &= ~XFS_IFEXTENTS;
509 	ifp->if_flags |= XFS_IFINLINE;
510 	return 0;
511 }
512 
513 /*
514  * The file consists of a set of extents all
515  * of which fit into the on-disk inode.
516  * If there are few enough extents to fit into
517  * the if_inline_ext, then copy them there.
518  * Otherwise allocate a buffer for them and copy
519  * them into it.  Either way, set if_extents
520  * to point at the extents.
521  */
522 STATIC int
523 xfs_iformat_extents(
524 	xfs_inode_t	*ip,
525 	xfs_dinode_t	*dip,
526 	int		whichfork)
527 {
528 	xfs_bmbt_rec_t	*dp;
529 	xfs_ifork_t	*ifp;
530 	int		nex;
531 	int		size;
532 	int		i;
533 
534 	ifp = XFS_IFORK_PTR(ip, whichfork);
535 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
536 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
537 
538 	/*
539 	 * If the number of extents is unreasonable, then something
540 	 * is wrong and we just bail out rather than crash in
541 	 * kmem_alloc() or memcpy() below.
542 	 */
543 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
544 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
545 			"corrupt inode %Lu ((a)extents = %d).",
546 			(unsigned long long) ip->i_ino, nex);
547 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
548 				     ip->i_mount, dip);
549 		return XFS_ERROR(EFSCORRUPTED);
550 	}
551 
552 	ifp->if_real_bytes = 0;
553 	if (nex == 0)
554 		ifp->if_u1.if_extents = NULL;
555 	else if (nex <= XFS_INLINE_EXTS)
556 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
557 	else
558 		xfs_iext_add(ifp, 0, nex);
559 
560 	ifp->if_bytes = size;
561 	if (size) {
562 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
563 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
564 		for (i = 0; i < nex; i++, dp++) {
565 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
566 			ep->l0 = get_unaligned_be64(&dp->l0);
567 			ep->l1 = get_unaligned_be64(&dp->l1);
568 		}
569 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
570 		if (whichfork != XFS_DATA_FORK ||
571 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
572 				if (unlikely(xfs_check_nostate_extents(
573 				    ifp, 0, nex))) {
574 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
575 							 XFS_ERRLEVEL_LOW,
576 							 ip->i_mount);
577 					return XFS_ERROR(EFSCORRUPTED);
578 				}
579 	}
580 	ifp->if_flags |= XFS_IFEXTENTS;
581 	return 0;
582 }
583 
584 /*
585  * The file has too many extents to fit into
586  * the inode, so they are in B-tree format.
587  * Allocate a buffer for the root of the B-tree
588  * and copy the root into it.  The i_extents
589  * field will remain NULL until all of the
590  * extents are read in (when they are needed).
591  */
592 STATIC int
593 xfs_iformat_btree(
594 	xfs_inode_t		*ip,
595 	xfs_dinode_t		*dip,
596 	int			whichfork)
597 {
598 	xfs_bmdr_block_t	*dfp;
599 	xfs_ifork_t		*ifp;
600 	/* REFERENCED */
601 	int			nrecs;
602 	int			size;
603 
604 	ifp = XFS_IFORK_PTR(ip, whichfork);
605 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
606 	size = XFS_BMAP_BROOT_SPACE(dfp);
607 	nrecs = be16_to_cpu(dfp->bb_numrecs);
608 
609 	/*
610 	 * blow out if -- fork has less extents than can fit in
611 	 * fork (fork shouldn't be a btree format), root btree
612 	 * block has more records than can fit into the fork,
613 	 * or the number of extents is greater than the number of
614 	 * blocks.
615 	 */
616 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
617 	    || XFS_BMDR_SPACE_CALC(nrecs) >
618 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
619 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
620 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
621 			"corrupt inode %Lu (btree).",
622 			(unsigned long long) ip->i_ino);
623 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
624 				 ip->i_mount);
625 		return XFS_ERROR(EFSCORRUPTED);
626 	}
627 
628 	ifp->if_broot_bytes = size;
629 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
630 	ASSERT(ifp->if_broot != NULL);
631 	/*
632 	 * Copy and convert from the on-disk structure
633 	 * to the in-memory structure.
634 	 */
635 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
636 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
637 			 ifp->if_broot, size);
638 	ifp->if_flags &= ~XFS_IFEXTENTS;
639 	ifp->if_flags |= XFS_IFBROOT;
640 
641 	return 0;
642 }
643 
644 void
645 xfs_dinode_from_disk(
646 	xfs_icdinode_t		*to,
647 	xfs_dinode_t		*from)
648 {
649 	to->di_magic = be16_to_cpu(from->di_magic);
650 	to->di_mode = be16_to_cpu(from->di_mode);
651 	to->di_version = from ->di_version;
652 	to->di_format = from->di_format;
653 	to->di_onlink = be16_to_cpu(from->di_onlink);
654 	to->di_uid = be32_to_cpu(from->di_uid);
655 	to->di_gid = be32_to_cpu(from->di_gid);
656 	to->di_nlink = be32_to_cpu(from->di_nlink);
657 	to->di_projid = be16_to_cpu(from->di_projid);
658 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
659 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
660 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
661 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
662 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
663 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
664 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
665 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
666 	to->di_size = be64_to_cpu(from->di_size);
667 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
668 	to->di_extsize = be32_to_cpu(from->di_extsize);
669 	to->di_nextents = be32_to_cpu(from->di_nextents);
670 	to->di_anextents = be16_to_cpu(from->di_anextents);
671 	to->di_forkoff = from->di_forkoff;
672 	to->di_aformat	= from->di_aformat;
673 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
674 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
675 	to->di_flags	= be16_to_cpu(from->di_flags);
676 	to->di_gen	= be32_to_cpu(from->di_gen);
677 }
678 
679 void
680 xfs_dinode_to_disk(
681 	xfs_dinode_t		*to,
682 	xfs_icdinode_t		*from)
683 {
684 	to->di_magic = cpu_to_be16(from->di_magic);
685 	to->di_mode = cpu_to_be16(from->di_mode);
686 	to->di_version = from ->di_version;
687 	to->di_format = from->di_format;
688 	to->di_onlink = cpu_to_be16(from->di_onlink);
689 	to->di_uid = cpu_to_be32(from->di_uid);
690 	to->di_gid = cpu_to_be32(from->di_gid);
691 	to->di_nlink = cpu_to_be32(from->di_nlink);
692 	to->di_projid = cpu_to_be16(from->di_projid);
693 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
694 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
695 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
696 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
697 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
698 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
699 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
700 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
701 	to->di_size = cpu_to_be64(from->di_size);
702 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
703 	to->di_extsize = cpu_to_be32(from->di_extsize);
704 	to->di_nextents = cpu_to_be32(from->di_nextents);
705 	to->di_anextents = cpu_to_be16(from->di_anextents);
706 	to->di_forkoff = from->di_forkoff;
707 	to->di_aformat = from->di_aformat;
708 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
709 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
710 	to->di_flags = cpu_to_be16(from->di_flags);
711 	to->di_gen = cpu_to_be32(from->di_gen);
712 }
713 
714 STATIC uint
715 _xfs_dic2xflags(
716 	__uint16_t		di_flags)
717 {
718 	uint			flags = 0;
719 
720 	if (di_flags & XFS_DIFLAG_ANY) {
721 		if (di_flags & XFS_DIFLAG_REALTIME)
722 			flags |= XFS_XFLAG_REALTIME;
723 		if (di_flags & XFS_DIFLAG_PREALLOC)
724 			flags |= XFS_XFLAG_PREALLOC;
725 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
726 			flags |= XFS_XFLAG_IMMUTABLE;
727 		if (di_flags & XFS_DIFLAG_APPEND)
728 			flags |= XFS_XFLAG_APPEND;
729 		if (di_flags & XFS_DIFLAG_SYNC)
730 			flags |= XFS_XFLAG_SYNC;
731 		if (di_flags & XFS_DIFLAG_NOATIME)
732 			flags |= XFS_XFLAG_NOATIME;
733 		if (di_flags & XFS_DIFLAG_NODUMP)
734 			flags |= XFS_XFLAG_NODUMP;
735 		if (di_flags & XFS_DIFLAG_RTINHERIT)
736 			flags |= XFS_XFLAG_RTINHERIT;
737 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
738 			flags |= XFS_XFLAG_PROJINHERIT;
739 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
740 			flags |= XFS_XFLAG_NOSYMLINKS;
741 		if (di_flags & XFS_DIFLAG_EXTSIZE)
742 			flags |= XFS_XFLAG_EXTSIZE;
743 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
744 			flags |= XFS_XFLAG_EXTSZINHERIT;
745 		if (di_flags & XFS_DIFLAG_NODEFRAG)
746 			flags |= XFS_XFLAG_NODEFRAG;
747 		if (di_flags & XFS_DIFLAG_FILESTREAM)
748 			flags |= XFS_XFLAG_FILESTREAM;
749 	}
750 
751 	return flags;
752 }
753 
754 uint
755 xfs_ip2xflags(
756 	xfs_inode_t		*ip)
757 {
758 	xfs_icdinode_t		*dic = &ip->i_d;
759 
760 	return _xfs_dic2xflags(dic->di_flags) |
761 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
762 }
763 
764 uint
765 xfs_dic2xflags(
766 	xfs_dinode_t		*dip)
767 {
768 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
769 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
770 }
771 
772 /*
773  * Read the disk inode attributes into the in-core inode structure.
774  */
775 int
776 xfs_iread(
777 	xfs_mount_t	*mp,
778 	xfs_trans_t	*tp,
779 	xfs_inode_t	*ip,
780 	xfs_daddr_t	bno,
781 	uint		iget_flags)
782 {
783 	xfs_buf_t	*bp;
784 	xfs_dinode_t	*dip;
785 	int		error;
786 
787 	/*
788 	 * Fill in the location information in the in-core inode.
789 	 */
790 	ip->i_imap.im_blkno = bno;
791 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
792 	if (error)
793 		return error;
794 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
795 
796 	/*
797 	 * Get pointers to the on-disk inode and the buffer containing it.
798 	 */
799 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
800 			       XFS_BUF_LOCK, iget_flags);
801 	if (error)
802 		return error;
803 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
804 
805 	/*
806 	 * If we got something that isn't an inode it means someone
807 	 * (nfs or dmi) has a stale handle.
808 	 */
809 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
810 #ifdef DEBUG
811 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
812 				"dip->di_magic (0x%x) != "
813 				"XFS_DINODE_MAGIC (0x%x)",
814 				be16_to_cpu(dip->di_magic),
815 				XFS_DINODE_MAGIC);
816 #endif /* DEBUG */
817 		error = XFS_ERROR(EINVAL);
818 		goto out_brelse;
819 	}
820 
821 	/*
822 	 * If the on-disk inode is already linked to a directory
823 	 * entry, copy all of the inode into the in-core inode.
824 	 * xfs_iformat() handles copying in the inode format
825 	 * specific information.
826 	 * Otherwise, just get the truly permanent information.
827 	 */
828 	if (dip->di_mode) {
829 		xfs_dinode_from_disk(&ip->i_d, dip);
830 		error = xfs_iformat(ip, dip);
831 		if (error)  {
832 #ifdef DEBUG
833 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
834 					"xfs_iformat() returned error %d",
835 					error);
836 #endif /* DEBUG */
837 			goto out_brelse;
838 		}
839 	} else {
840 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
841 		ip->i_d.di_version = dip->di_version;
842 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
843 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
844 		/*
845 		 * Make sure to pull in the mode here as well in
846 		 * case the inode is released without being used.
847 		 * This ensures that xfs_inactive() will see that
848 		 * the inode is already free and not try to mess
849 		 * with the uninitialized part of it.
850 		 */
851 		ip->i_d.di_mode = 0;
852 		/*
853 		 * Initialize the per-fork minima and maxima for a new
854 		 * inode here.  xfs_iformat will do it for old inodes.
855 		 */
856 		ip->i_df.if_ext_max =
857 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
858 	}
859 
860 	/*
861 	 * The inode format changed when we moved the link count and
862 	 * made it 32 bits long.  If this is an old format inode,
863 	 * convert it in memory to look like a new one.  If it gets
864 	 * flushed to disk we will convert back before flushing or
865 	 * logging it.  We zero out the new projid field and the old link
866 	 * count field.  We'll handle clearing the pad field (the remains
867 	 * of the old uuid field) when we actually convert the inode to
868 	 * the new format. We don't change the version number so that we
869 	 * can distinguish this from a real new format inode.
870 	 */
871 	if (ip->i_d.di_version == 1) {
872 		ip->i_d.di_nlink = ip->i_d.di_onlink;
873 		ip->i_d.di_onlink = 0;
874 		ip->i_d.di_projid = 0;
875 	}
876 
877 	ip->i_delayed_blks = 0;
878 	ip->i_size = ip->i_d.di_size;
879 
880 	/*
881 	 * Mark the buffer containing the inode as something to keep
882 	 * around for a while.  This helps to keep recently accessed
883 	 * meta-data in-core longer.
884 	 */
885 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
886 
887 	/*
888 	 * Use xfs_trans_brelse() to release the buffer containing the
889 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
890 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
891 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
892 	 * will only release the buffer if it is not dirty within the
893 	 * transaction.  It will be OK to release the buffer in this case,
894 	 * because inodes on disk are never destroyed and we will be
895 	 * locking the new in-core inode before putting it in the hash
896 	 * table where other processes can find it.  Thus we don't have
897 	 * to worry about the inode being changed just because we released
898 	 * the buffer.
899 	 */
900  out_brelse:
901 	xfs_trans_brelse(tp, bp);
902 	return error;
903 }
904 
905 /*
906  * Read in extents from a btree-format inode.
907  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
908  */
909 int
910 xfs_iread_extents(
911 	xfs_trans_t	*tp,
912 	xfs_inode_t	*ip,
913 	int		whichfork)
914 {
915 	int		error;
916 	xfs_ifork_t	*ifp;
917 	xfs_extnum_t	nextents;
918 	size_t		size;
919 
920 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
921 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
922 				 ip->i_mount);
923 		return XFS_ERROR(EFSCORRUPTED);
924 	}
925 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
926 	size = nextents * sizeof(xfs_bmbt_rec_t);
927 	ifp = XFS_IFORK_PTR(ip, whichfork);
928 
929 	/*
930 	 * We know that the size is valid (it's checked in iformat_btree)
931 	 */
932 	ifp->if_lastex = NULLEXTNUM;
933 	ifp->if_bytes = ifp->if_real_bytes = 0;
934 	ifp->if_flags |= XFS_IFEXTENTS;
935 	xfs_iext_add(ifp, 0, nextents);
936 	error = xfs_bmap_read_extents(tp, ip, whichfork);
937 	if (error) {
938 		xfs_iext_destroy(ifp);
939 		ifp->if_flags &= ~XFS_IFEXTENTS;
940 		return error;
941 	}
942 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
943 	return 0;
944 }
945 
946 /*
947  * Allocate an inode on disk and return a copy of its in-core version.
948  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
949  * appropriately within the inode.  The uid and gid for the inode are
950  * set according to the contents of the given cred structure.
951  *
952  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
953  * has a free inode available, call xfs_iget()
954  * to obtain the in-core version of the allocated inode.  Finally,
955  * fill in the inode and log its initial contents.  In this case,
956  * ialloc_context would be set to NULL and call_again set to false.
957  *
958  * If xfs_dialloc() does not have an available inode,
959  * it will replenish its supply by doing an allocation. Since we can
960  * only do one allocation within a transaction without deadlocks, we
961  * must commit the current transaction before returning the inode itself.
962  * In this case, therefore, we will set call_again to true and return.
963  * The caller should then commit the current transaction, start a new
964  * transaction, and call xfs_ialloc() again to actually get the inode.
965  *
966  * To ensure that some other process does not grab the inode that
967  * was allocated during the first call to xfs_ialloc(), this routine
968  * also returns the [locked] bp pointing to the head of the freelist
969  * as ialloc_context.  The caller should hold this buffer across
970  * the commit and pass it back into this routine on the second call.
971  *
972  * If we are allocating quota inodes, we do not have a parent inode
973  * to attach to or associate with (i.e. pip == NULL) because they
974  * are not linked into the directory structure - they are attached
975  * directly to the superblock - and so have no parent.
976  */
977 int
978 xfs_ialloc(
979 	xfs_trans_t	*tp,
980 	xfs_inode_t	*pip,
981 	mode_t		mode,
982 	xfs_nlink_t	nlink,
983 	xfs_dev_t	rdev,
984 	cred_t		*cr,
985 	xfs_prid_t	prid,
986 	int		okalloc,
987 	xfs_buf_t	**ialloc_context,
988 	boolean_t	*call_again,
989 	xfs_inode_t	**ipp)
990 {
991 	xfs_ino_t	ino;
992 	xfs_inode_t	*ip;
993 	uint		flags;
994 	int		error;
995 	timespec_t	tv;
996 	int		filestreams = 0;
997 
998 	/*
999 	 * Call the space management code to pick
1000 	 * the on-disk inode to be allocated.
1001 	 */
1002 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1003 			    ialloc_context, call_again, &ino);
1004 	if (error)
1005 		return error;
1006 	if (*call_again || ino == NULLFSINO) {
1007 		*ipp = NULL;
1008 		return 0;
1009 	}
1010 	ASSERT(*ialloc_context == NULL);
1011 
1012 	/*
1013 	 * Get the in-core inode with the lock held exclusively.
1014 	 * This is because we're setting fields here we need
1015 	 * to prevent others from looking at until we're done.
1016 	 */
1017 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1018 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1019 	if (error)
1020 		return error;
1021 	ASSERT(ip != NULL);
1022 
1023 	ip->i_d.di_mode = (__uint16_t)mode;
1024 	ip->i_d.di_onlink = 0;
1025 	ip->i_d.di_nlink = nlink;
1026 	ASSERT(ip->i_d.di_nlink == nlink);
1027 	ip->i_d.di_uid = current_fsuid();
1028 	ip->i_d.di_gid = current_fsgid();
1029 	ip->i_d.di_projid = prid;
1030 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1031 
1032 	/*
1033 	 * If the superblock version is up to where we support new format
1034 	 * inodes and this is currently an old format inode, then change
1035 	 * the inode version number now.  This way we only do the conversion
1036 	 * here rather than here and in the flush/logging code.
1037 	 */
1038 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1039 	    ip->i_d.di_version == 1) {
1040 		ip->i_d.di_version = 2;
1041 		/*
1042 		 * We've already zeroed the old link count, the projid field,
1043 		 * and the pad field.
1044 		 */
1045 	}
1046 
1047 	/*
1048 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1049 	 */
1050 	if ((prid != 0) && (ip->i_d.di_version == 1))
1051 		xfs_bump_ino_vers2(tp, ip);
1052 
1053 	if (pip && XFS_INHERIT_GID(pip)) {
1054 		ip->i_d.di_gid = pip->i_d.di_gid;
1055 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1056 			ip->i_d.di_mode |= S_ISGID;
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * If the group ID of the new file does not match the effective group
1062 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1063 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1064 	 */
1065 	if ((irix_sgid_inherit) &&
1066 	    (ip->i_d.di_mode & S_ISGID) &&
1067 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1068 		ip->i_d.di_mode &= ~S_ISGID;
1069 	}
1070 
1071 	ip->i_d.di_size = 0;
1072 	ip->i_size = 0;
1073 	ip->i_d.di_nextents = 0;
1074 	ASSERT(ip->i_d.di_nblocks == 0);
1075 
1076 	nanotime(&tv);
1077 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1078 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1079 	ip->i_d.di_atime = ip->i_d.di_mtime;
1080 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1081 
1082 	/*
1083 	 * di_gen will have been taken care of in xfs_iread.
1084 	 */
1085 	ip->i_d.di_extsize = 0;
1086 	ip->i_d.di_dmevmask = 0;
1087 	ip->i_d.di_dmstate = 0;
1088 	ip->i_d.di_flags = 0;
1089 	flags = XFS_ILOG_CORE;
1090 	switch (mode & S_IFMT) {
1091 	case S_IFIFO:
1092 	case S_IFCHR:
1093 	case S_IFBLK:
1094 	case S_IFSOCK:
1095 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1096 		ip->i_df.if_u2.if_rdev = rdev;
1097 		ip->i_df.if_flags = 0;
1098 		flags |= XFS_ILOG_DEV;
1099 		break;
1100 	case S_IFREG:
1101 		/*
1102 		 * we can't set up filestreams until after the VFS inode
1103 		 * is set up properly.
1104 		 */
1105 		if (pip && xfs_inode_is_filestream(pip))
1106 			filestreams = 1;
1107 		/* fall through */
1108 	case S_IFDIR:
1109 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1110 			uint	di_flags = 0;
1111 
1112 			if ((mode & S_IFMT) == S_IFDIR) {
1113 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1114 					di_flags |= XFS_DIFLAG_RTINHERIT;
1115 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1116 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1117 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1118 				}
1119 			} else if ((mode & S_IFMT) == S_IFREG) {
1120 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1121 					di_flags |= XFS_DIFLAG_REALTIME;
1122 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1123 					di_flags |= XFS_DIFLAG_EXTSIZE;
1124 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1125 				}
1126 			}
1127 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1128 			    xfs_inherit_noatime)
1129 				di_flags |= XFS_DIFLAG_NOATIME;
1130 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1131 			    xfs_inherit_nodump)
1132 				di_flags |= XFS_DIFLAG_NODUMP;
1133 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1134 			    xfs_inherit_sync)
1135 				di_flags |= XFS_DIFLAG_SYNC;
1136 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1137 			    xfs_inherit_nosymlinks)
1138 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1139 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1140 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1141 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1142 			    xfs_inherit_nodefrag)
1143 				di_flags |= XFS_DIFLAG_NODEFRAG;
1144 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1145 				di_flags |= XFS_DIFLAG_FILESTREAM;
1146 			ip->i_d.di_flags |= di_flags;
1147 		}
1148 		/* FALLTHROUGH */
1149 	case S_IFLNK:
1150 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1151 		ip->i_df.if_flags = XFS_IFEXTENTS;
1152 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1153 		ip->i_df.if_u1.if_extents = NULL;
1154 		break;
1155 	default:
1156 		ASSERT(0);
1157 	}
1158 	/*
1159 	 * Attribute fork settings for new inode.
1160 	 */
1161 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1162 	ip->i_d.di_anextents = 0;
1163 
1164 	/*
1165 	 * Log the new values stuffed into the inode.
1166 	 */
1167 	xfs_trans_log_inode(tp, ip, flags);
1168 
1169 	/* now that we have an i_mode we can setup inode ops and unlock */
1170 	xfs_setup_inode(ip);
1171 
1172 	/* now we have set up the vfs inode we can associate the filestream */
1173 	if (filestreams) {
1174 		error = xfs_filestream_associate(pip, ip);
1175 		if (error < 0)
1176 			return -error;
1177 		if (!error)
1178 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1179 	}
1180 
1181 	*ipp = ip;
1182 	return 0;
1183 }
1184 
1185 /*
1186  * Check to make sure that there are no blocks allocated to the
1187  * file beyond the size of the file.  We don't check this for
1188  * files with fixed size extents or real time extents, but we
1189  * at least do it for regular files.
1190  */
1191 #ifdef DEBUG
1192 void
1193 xfs_isize_check(
1194 	xfs_mount_t	*mp,
1195 	xfs_inode_t	*ip,
1196 	xfs_fsize_t	isize)
1197 {
1198 	xfs_fileoff_t	map_first;
1199 	int		nimaps;
1200 	xfs_bmbt_irec_t	imaps[2];
1201 
1202 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1203 		return;
1204 
1205 	if (XFS_IS_REALTIME_INODE(ip))
1206 		return;
1207 
1208 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1209 		return;
1210 
1211 	nimaps = 2;
1212 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1213 	/*
1214 	 * The filesystem could be shutting down, so bmapi may return
1215 	 * an error.
1216 	 */
1217 	if (xfs_bmapi(NULL, ip, map_first,
1218 			 (XFS_B_TO_FSB(mp,
1219 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1220 			  map_first),
1221 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1222 			 NULL, NULL))
1223 	    return;
1224 	ASSERT(nimaps == 1);
1225 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1226 }
1227 #endif	/* DEBUG */
1228 
1229 /*
1230  * Calculate the last possible buffered byte in a file.  This must
1231  * include data that was buffered beyond the EOF by the write code.
1232  * This also needs to deal with overflowing the xfs_fsize_t type
1233  * which can happen for sizes near the limit.
1234  *
1235  * We also need to take into account any blocks beyond the EOF.  It
1236  * may be the case that they were buffered by a write which failed.
1237  * In that case the pages will still be in memory, but the inode size
1238  * will never have been updated.
1239  */
1240 xfs_fsize_t
1241 xfs_file_last_byte(
1242 	xfs_inode_t	*ip)
1243 {
1244 	xfs_mount_t	*mp;
1245 	xfs_fsize_t	last_byte;
1246 	xfs_fileoff_t	last_block;
1247 	xfs_fileoff_t	size_last_block;
1248 	int		error;
1249 
1250 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1251 
1252 	mp = ip->i_mount;
1253 	/*
1254 	 * Only check for blocks beyond the EOF if the extents have
1255 	 * been read in.  This eliminates the need for the inode lock,
1256 	 * and it also saves us from looking when it really isn't
1257 	 * necessary.
1258 	 */
1259 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1260 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1261 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1262 			XFS_DATA_FORK);
1263 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1264 		if (error) {
1265 			last_block = 0;
1266 		}
1267 	} else {
1268 		last_block = 0;
1269 	}
1270 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1271 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1272 
1273 	last_byte = XFS_FSB_TO_B(mp, last_block);
1274 	if (last_byte < 0) {
1275 		return XFS_MAXIOFFSET(mp);
1276 	}
1277 	last_byte += (1 << mp->m_writeio_log);
1278 	if (last_byte < 0) {
1279 		return XFS_MAXIOFFSET(mp);
1280 	}
1281 	return last_byte;
1282 }
1283 
1284 #if defined(XFS_RW_TRACE)
1285 STATIC void
1286 xfs_itrunc_trace(
1287 	int		tag,
1288 	xfs_inode_t	*ip,
1289 	int		flag,
1290 	xfs_fsize_t	new_size,
1291 	xfs_off_t	toss_start,
1292 	xfs_off_t	toss_finish)
1293 {
1294 	if (ip->i_rwtrace == NULL) {
1295 		return;
1296 	}
1297 
1298 	ktrace_enter(ip->i_rwtrace,
1299 		     (void*)((long)tag),
1300 		     (void*)ip,
1301 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1302 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1303 		     (void*)((long)flag),
1304 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1305 		     (void*)(unsigned long)(new_size & 0xffffffff),
1306 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1307 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1308 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1309 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1310 		     (void*)(unsigned long)current_cpu(),
1311 		     (void*)(unsigned long)current_pid(),
1312 		     (void*)NULL,
1313 		     (void*)NULL,
1314 		     (void*)NULL);
1315 }
1316 #else
1317 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1318 #endif
1319 
1320 /*
1321  * Start the truncation of the file to new_size.  The new size
1322  * must be smaller than the current size.  This routine will
1323  * clear the buffer and page caches of file data in the removed
1324  * range, and xfs_itruncate_finish() will remove the underlying
1325  * disk blocks.
1326  *
1327  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1328  * must NOT have the inode lock held at all.  This is because we're
1329  * calling into the buffer/page cache code and we can't hold the
1330  * inode lock when we do so.
1331  *
1332  * We need to wait for any direct I/Os in flight to complete before we
1333  * proceed with the truncate. This is needed to prevent the extents
1334  * being read or written by the direct I/Os from being removed while the
1335  * I/O is in flight as there is no other method of synchronising
1336  * direct I/O with the truncate operation.  Also, because we hold
1337  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1338  * started until the truncate completes and drops the lock. Essentially,
1339  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1340  * ordering between direct I/Os and the truncate operation.
1341  *
1342  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1343  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1344  * in the case that the caller is locking things out of order and
1345  * may not be able to call xfs_itruncate_finish() with the inode lock
1346  * held without dropping the I/O lock.  If the caller must drop the
1347  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1348  * must be called again with all the same restrictions as the initial
1349  * call.
1350  */
1351 int
1352 xfs_itruncate_start(
1353 	xfs_inode_t	*ip,
1354 	uint		flags,
1355 	xfs_fsize_t	new_size)
1356 {
1357 	xfs_fsize_t	last_byte;
1358 	xfs_off_t	toss_start;
1359 	xfs_mount_t	*mp;
1360 	int		error = 0;
1361 
1362 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1363 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1364 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1365 	       (flags == XFS_ITRUNC_MAYBE));
1366 
1367 	mp = ip->i_mount;
1368 
1369 	/* wait for the completion of any pending DIOs */
1370 	if (new_size == 0 || new_size < ip->i_size)
1371 		xfs_ioend_wait(ip);
1372 
1373 	/*
1374 	 * Call toss_pages or flushinval_pages to get rid of pages
1375 	 * overlapping the region being removed.  We have to use
1376 	 * the less efficient flushinval_pages in the case that the
1377 	 * caller may not be able to finish the truncate without
1378 	 * dropping the inode's I/O lock.  Make sure
1379 	 * to catch any pages brought in by buffers overlapping
1380 	 * the EOF by searching out beyond the isize by our
1381 	 * block size. We round new_size up to a block boundary
1382 	 * so that we don't toss things on the same block as
1383 	 * new_size but before it.
1384 	 *
1385 	 * Before calling toss_page or flushinval_pages, make sure to
1386 	 * call remapf() over the same region if the file is mapped.
1387 	 * This frees up mapped file references to the pages in the
1388 	 * given range and for the flushinval_pages case it ensures
1389 	 * that we get the latest mapped changes flushed out.
1390 	 */
1391 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1392 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1393 	if (toss_start < 0) {
1394 		/*
1395 		 * The place to start tossing is beyond our maximum
1396 		 * file size, so there is no way that the data extended
1397 		 * out there.
1398 		 */
1399 		return 0;
1400 	}
1401 	last_byte = xfs_file_last_byte(ip);
1402 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1403 			 last_byte);
1404 	if (last_byte > toss_start) {
1405 		if (flags & XFS_ITRUNC_DEFINITE) {
1406 			xfs_tosspages(ip, toss_start,
1407 					-1, FI_REMAPF_LOCKED);
1408 		} else {
1409 			error = xfs_flushinval_pages(ip, toss_start,
1410 					-1, FI_REMAPF_LOCKED);
1411 		}
1412 	}
1413 
1414 #ifdef DEBUG
1415 	if (new_size == 0) {
1416 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1417 	}
1418 #endif
1419 	return error;
1420 }
1421 
1422 /*
1423  * Shrink the file to the given new_size.  The new size must be smaller than
1424  * the current size.  This will free up the underlying blocks in the removed
1425  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1426  *
1427  * The transaction passed to this routine must have made a permanent log
1428  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1429  * given transaction and start new ones, so make sure everything involved in
1430  * the transaction is tidy before calling here.  Some transaction will be
1431  * returned to the caller to be committed.  The incoming transaction must
1432  * already include the inode, and both inode locks must be held exclusively.
1433  * The inode must also be "held" within the transaction.  On return the inode
1434  * will be "held" within the returned transaction.  This routine does NOT
1435  * require any disk space to be reserved for it within the transaction.
1436  *
1437  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1438  * indicates the fork which is to be truncated.  For the attribute fork we only
1439  * support truncation to size 0.
1440  *
1441  * We use the sync parameter to indicate whether or not the first transaction
1442  * we perform might have to be synchronous.  For the attr fork, it needs to be
1443  * so if the unlink of the inode is not yet known to be permanent in the log.
1444  * This keeps us from freeing and reusing the blocks of the attribute fork
1445  * before the unlink of the inode becomes permanent.
1446  *
1447  * For the data fork, we normally have to run synchronously if we're being
1448  * called out of the inactive path or we're being called out of the create path
1449  * where we're truncating an existing file.  Either way, the truncate needs to
1450  * be sync so blocks don't reappear in the file with altered data in case of a
1451  * crash.  wsync filesystems can run the first case async because anything that
1452  * shrinks the inode has to run sync so by the time we're called here from
1453  * inactive, the inode size is permanently set to 0.
1454  *
1455  * Calls from the truncate path always need to be sync unless we're in a wsync
1456  * filesystem and the file has already been unlinked.
1457  *
1458  * The caller is responsible for correctly setting the sync parameter.  It gets
1459  * too hard for us to guess here which path we're being called out of just
1460  * based on inode state.
1461  *
1462  * If we get an error, we must return with the inode locked and linked into the
1463  * current transaction. This keeps things simple for the higher level code,
1464  * because it always knows that the inode is locked and held in the transaction
1465  * that returns to it whether errors occur or not.  We don't mark the inode
1466  * dirty on error so that transactions can be easily aborted if possible.
1467  */
1468 int
1469 xfs_itruncate_finish(
1470 	xfs_trans_t	**tp,
1471 	xfs_inode_t	*ip,
1472 	xfs_fsize_t	new_size,
1473 	int		fork,
1474 	int		sync)
1475 {
1476 	xfs_fsblock_t	first_block;
1477 	xfs_fileoff_t	first_unmap_block;
1478 	xfs_fileoff_t	last_block;
1479 	xfs_filblks_t	unmap_len=0;
1480 	xfs_mount_t	*mp;
1481 	xfs_trans_t	*ntp;
1482 	int		done;
1483 	int		committed;
1484 	xfs_bmap_free_t	free_list;
1485 	int		error;
1486 
1487 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1488 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1489 	ASSERT(*tp != NULL);
1490 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1491 	ASSERT(ip->i_transp == *tp);
1492 	ASSERT(ip->i_itemp != NULL);
1493 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1494 
1495 
1496 	ntp = *tp;
1497 	mp = (ntp)->t_mountp;
1498 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1499 
1500 	/*
1501 	 * We only support truncating the entire attribute fork.
1502 	 */
1503 	if (fork == XFS_ATTR_FORK) {
1504 		new_size = 0LL;
1505 	}
1506 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1507 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1508 	/*
1509 	 * The first thing we do is set the size to new_size permanently
1510 	 * on disk.  This way we don't have to worry about anyone ever
1511 	 * being able to look at the data being freed even in the face
1512 	 * of a crash.  What we're getting around here is the case where
1513 	 * we free a block, it is allocated to another file, it is written
1514 	 * to, and then we crash.  If the new data gets written to the
1515 	 * file but the log buffers containing the free and reallocation
1516 	 * don't, then we'd end up with garbage in the blocks being freed.
1517 	 * As long as we make the new_size permanent before actually
1518 	 * freeing any blocks it doesn't matter if they get writtten to.
1519 	 *
1520 	 * The callers must signal into us whether or not the size
1521 	 * setting here must be synchronous.  There are a few cases
1522 	 * where it doesn't have to be synchronous.  Those cases
1523 	 * occur if the file is unlinked and we know the unlink is
1524 	 * permanent or if the blocks being truncated are guaranteed
1525 	 * to be beyond the inode eof (regardless of the link count)
1526 	 * and the eof value is permanent.  Both of these cases occur
1527 	 * only on wsync-mounted filesystems.  In those cases, we're
1528 	 * guaranteed that no user will ever see the data in the blocks
1529 	 * that are being truncated so the truncate can run async.
1530 	 * In the free beyond eof case, the file may wind up with
1531 	 * more blocks allocated to it than it needs if we crash
1532 	 * and that won't get fixed until the next time the file
1533 	 * is re-opened and closed but that's ok as that shouldn't
1534 	 * be too many blocks.
1535 	 *
1536 	 * However, we can't just make all wsync xactions run async
1537 	 * because there's one call out of the create path that needs
1538 	 * to run sync where it's truncating an existing file to size
1539 	 * 0 whose size is > 0.
1540 	 *
1541 	 * It's probably possible to come up with a test in this
1542 	 * routine that would correctly distinguish all the above
1543 	 * cases from the values of the function parameters and the
1544 	 * inode state but for sanity's sake, I've decided to let the
1545 	 * layers above just tell us.  It's simpler to correctly figure
1546 	 * out in the layer above exactly under what conditions we
1547 	 * can run async and I think it's easier for others read and
1548 	 * follow the logic in case something has to be changed.
1549 	 * cscope is your friend -- rcc.
1550 	 *
1551 	 * The attribute fork is much simpler.
1552 	 *
1553 	 * For the attribute fork we allow the caller to tell us whether
1554 	 * the unlink of the inode that led to this call is yet permanent
1555 	 * in the on disk log.  If it is not and we will be freeing extents
1556 	 * in this inode then we make the first transaction synchronous
1557 	 * to make sure that the unlink is permanent by the time we free
1558 	 * the blocks.
1559 	 */
1560 	if (fork == XFS_DATA_FORK) {
1561 		if (ip->i_d.di_nextents > 0) {
1562 			/*
1563 			 * If we are not changing the file size then do
1564 			 * not update the on-disk file size - we may be
1565 			 * called from xfs_inactive_free_eofblocks().  If we
1566 			 * update the on-disk file size and then the system
1567 			 * crashes before the contents of the file are
1568 			 * flushed to disk then the files may be full of
1569 			 * holes (ie NULL files bug).
1570 			 */
1571 			if (ip->i_size != new_size) {
1572 				ip->i_d.di_size = new_size;
1573 				ip->i_size = new_size;
1574 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1575 			}
1576 		}
1577 	} else if (sync) {
1578 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1579 		if (ip->i_d.di_anextents > 0)
1580 			xfs_trans_set_sync(ntp);
1581 	}
1582 	ASSERT(fork == XFS_DATA_FORK ||
1583 		(fork == XFS_ATTR_FORK &&
1584 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1585 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1586 
1587 	/*
1588 	 * Since it is possible for space to become allocated beyond
1589 	 * the end of the file (in a crash where the space is allocated
1590 	 * but the inode size is not yet updated), simply remove any
1591 	 * blocks which show up between the new EOF and the maximum
1592 	 * possible file size.  If the first block to be removed is
1593 	 * beyond the maximum file size (ie it is the same as last_block),
1594 	 * then there is nothing to do.
1595 	 */
1596 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1597 	ASSERT(first_unmap_block <= last_block);
1598 	done = 0;
1599 	if (last_block == first_unmap_block) {
1600 		done = 1;
1601 	} else {
1602 		unmap_len = last_block - first_unmap_block + 1;
1603 	}
1604 	while (!done) {
1605 		/*
1606 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1607 		 * will tell us whether it freed the entire range or
1608 		 * not.  If this is a synchronous mount (wsync),
1609 		 * then we can tell bunmapi to keep all the
1610 		 * transactions asynchronous since the unlink
1611 		 * transaction that made this inode inactive has
1612 		 * already hit the disk.  There's no danger of
1613 		 * the freed blocks being reused, there being a
1614 		 * crash, and the reused blocks suddenly reappearing
1615 		 * in this file with garbage in them once recovery
1616 		 * runs.
1617 		 */
1618 		xfs_bmap_init(&free_list, &first_block);
1619 		error = xfs_bunmapi(ntp, ip,
1620 				    first_unmap_block, unmap_len,
1621 				    xfs_bmapi_aflag(fork) |
1622 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1623 				    XFS_ITRUNC_MAX_EXTENTS,
1624 				    &first_block, &free_list,
1625 				    NULL, &done);
1626 		if (error) {
1627 			/*
1628 			 * If the bunmapi call encounters an error,
1629 			 * return to the caller where the transaction
1630 			 * can be properly aborted.  We just need to
1631 			 * make sure we're not holding any resources
1632 			 * that we were not when we came in.
1633 			 */
1634 			xfs_bmap_cancel(&free_list);
1635 			return error;
1636 		}
1637 
1638 		/*
1639 		 * Duplicate the transaction that has the permanent
1640 		 * reservation and commit the old transaction.
1641 		 */
1642 		error = xfs_bmap_finish(tp, &free_list, &committed);
1643 		ntp = *tp;
1644 		if (committed) {
1645 			/* link the inode into the next xact in the chain */
1646 			xfs_trans_ijoin(ntp, ip,
1647 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1648 			xfs_trans_ihold(ntp, ip);
1649 		}
1650 
1651 		if (error) {
1652 			/*
1653 			 * If the bmap finish call encounters an error, return
1654 			 * to the caller where the transaction can be properly
1655 			 * aborted.  We just need to make sure we're not
1656 			 * holding any resources that we were not when we came
1657 			 * in.
1658 			 *
1659 			 * Aborting from this point might lose some blocks in
1660 			 * the file system, but oh well.
1661 			 */
1662 			xfs_bmap_cancel(&free_list);
1663 			return error;
1664 		}
1665 
1666 		if (committed) {
1667 			/*
1668 			 * Mark the inode dirty so it will be logged and
1669 			 * moved forward in the log as part of every commit.
1670 			 */
1671 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1672 		}
1673 
1674 		ntp = xfs_trans_dup(ntp);
1675 		error = xfs_trans_commit(*tp, 0);
1676 		*tp = ntp;
1677 
1678 		/* link the inode into the next transaction in the chain */
1679 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1680 		xfs_trans_ihold(ntp, ip);
1681 
1682 		if (error)
1683 			return error;
1684 		/*
1685 		 * transaction commit worked ok so we can drop the extra ticket
1686 		 * reference that we gained in xfs_trans_dup()
1687 		 */
1688 		xfs_log_ticket_put(ntp->t_ticket);
1689 		error = xfs_trans_reserve(ntp, 0,
1690 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1691 					XFS_TRANS_PERM_LOG_RES,
1692 					XFS_ITRUNCATE_LOG_COUNT);
1693 		if (error)
1694 			return error;
1695 	}
1696 	/*
1697 	 * Only update the size in the case of the data fork, but
1698 	 * always re-log the inode so that our permanent transaction
1699 	 * can keep on rolling it forward in the log.
1700 	 */
1701 	if (fork == XFS_DATA_FORK) {
1702 		xfs_isize_check(mp, ip, new_size);
1703 		/*
1704 		 * If we are not changing the file size then do
1705 		 * not update the on-disk file size - we may be
1706 		 * called from xfs_inactive_free_eofblocks().  If we
1707 		 * update the on-disk file size and then the system
1708 		 * crashes before the contents of the file are
1709 		 * flushed to disk then the files may be full of
1710 		 * holes (ie NULL files bug).
1711 		 */
1712 		if (ip->i_size != new_size) {
1713 			ip->i_d.di_size = new_size;
1714 			ip->i_size = new_size;
1715 		}
1716 	}
1717 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1718 	ASSERT((new_size != 0) ||
1719 	       (fork == XFS_ATTR_FORK) ||
1720 	       (ip->i_delayed_blks == 0));
1721 	ASSERT((new_size != 0) ||
1722 	       (fork == XFS_ATTR_FORK) ||
1723 	       (ip->i_d.di_nextents == 0));
1724 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1725 	return 0;
1726 }
1727 
1728 /*
1729  * This is called when the inode's link count goes to 0.
1730  * We place the on-disk inode on a list in the AGI.  It
1731  * will be pulled from this list when the inode is freed.
1732  */
1733 int
1734 xfs_iunlink(
1735 	xfs_trans_t	*tp,
1736 	xfs_inode_t	*ip)
1737 {
1738 	xfs_mount_t	*mp;
1739 	xfs_agi_t	*agi;
1740 	xfs_dinode_t	*dip;
1741 	xfs_buf_t	*agibp;
1742 	xfs_buf_t	*ibp;
1743 	xfs_agino_t	agino;
1744 	short		bucket_index;
1745 	int		offset;
1746 	int		error;
1747 
1748 	ASSERT(ip->i_d.di_nlink == 0);
1749 	ASSERT(ip->i_d.di_mode != 0);
1750 	ASSERT(ip->i_transp == tp);
1751 
1752 	mp = tp->t_mountp;
1753 
1754 	/*
1755 	 * Get the agi buffer first.  It ensures lock ordering
1756 	 * on the list.
1757 	 */
1758 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1759 	if (error)
1760 		return error;
1761 	agi = XFS_BUF_TO_AGI(agibp);
1762 
1763 	/*
1764 	 * Get the index into the agi hash table for the
1765 	 * list this inode will go on.
1766 	 */
1767 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1768 	ASSERT(agino != 0);
1769 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1770 	ASSERT(agi->agi_unlinked[bucket_index]);
1771 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1772 
1773 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1774 		/*
1775 		 * There is already another inode in the bucket we need
1776 		 * to add ourselves to.  Add us at the front of the list.
1777 		 * Here we put the head pointer into our next pointer,
1778 		 * and then we fall through to point the head at us.
1779 		 */
1780 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1781 		if (error)
1782 			return error;
1783 
1784 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1785 		/* both on-disk, don't endian flip twice */
1786 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1787 		offset = ip->i_imap.im_boffset +
1788 			offsetof(xfs_dinode_t, di_next_unlinked);
1789 		xfs_trans_inode_buf(tp, ibp);
1790 		xfs_trans_log_buf(tp, ibp, offset,
1791 				  (offset + sizeof(xfs_agino_t) - 1));
1792 		xfs_inobp_check(mp, ibp);
1793 	}
1794 
1795 	/*
1796 	 * Point the bucket head pointer at the inode being inserted.
1797 	 */
1798 	ASSERT(agino != 0);
1799 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1800 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1801 		(sizeof(xfs_agino_t) * bucket_index);
1802 	xfs_trans_log_buf(tp, agibp, offset,
1803 			  (offset + sizeof(xfs_agino_t) - 1));
1804 	return 0;
1805 }
1806 
1807 /*
1808  * Pull the on-disk inode from the AGI unlinked list.
1809  */
1810 STATIC int
1811 xfs_iunlink_remove(
1812 	xfs_trans_t	*tp,
1813 	xfs_inode_t	*ip)
1814 {
1815 	xfs_ino_t	next_ino;
1816 	xfs_mount_t	*mp;
1817 	xfs_agi_t	*agi;
1818 	xfs_dinode_t	*dip;
1819 	xfs_buf_t	*agibp;
1820 	xfs_buf_t	*ibp;
1821 	xfs_agnumber_t	agno;
1822 	xfs_agino_t	agino;
1823 	xfs_agino_t	next_agino;
1824 	xfs_buf_t	*last_ibp;
1825 	xfs_dinode_t	*last_dip = NULL;
1826 	short		bucket_index;
1827 	int		offset, last_offset = 0;
1828 	int		error;
1829 
1830 	mp = tp->t_mountp;
1831 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1832 
1833 	/*
1834 	 * Get the agi buffer first.  It ensures lock ordering
1835 	 * on the list.
1836 	 */
1837 	error = xfs_read_agi(mp, tp, agno, &agibp);
1838 	if (error)
1839 		return error;
1840 
1841 	agi = XFS_BUF_TO_AGI(agibp);
1842 
1843 	/*
1844 	 * Get the index into the agi hash table for the
1845 	 * list this inode will go on.
1846 	 */
1847 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1848 	ASSERT(agino != 0);
1849 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1850 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1851 	ASSERT(agi->agi_unlinked[bucket_index]);
1852 
1853 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1854 		/*
1855 		 * We're at the head of the list.  Get the inode's
1856 		 * on-disk buffer to see if there is anyone after us
1857 		 * on the list.  Only modify our next pointer if it
1858 		 * is not already NULLAGINO.  This saves us the overhead
1859 		 * of dealing with the buffer when there is no need to
1860 		 * change it.
1861 		 */
1862 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1863 		if (error) {
1864 			cmn_err(CE_WARN,
1865 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1866 				error, mp->m_fsname);
1867 			return error;
1868 		}
1869 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1870 		ASSERT(next_agino != 0);
1871 		if (next_agino != NULLAGINO) {
1872 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1873 			offset = ip->i_imap.im_boffset +
1874 				offsetof(xfs_dinode_t, di_next_unlinked);
1875 			xfs_trans_inode_buf(tp, ibp);
1876 			xfs_trans_log_buf(tp, ibp, offset,
1877 					  (offset + sizeof(xfs_agino_t) - 1));
1878 			xfs_inobp_check(mp, ibp);
1879 		} else {
1880 			xfs_trans_brelse(tp, ibp);
1881 		}
1882 		/*
1883 		 * Point the bucket head pointer at the next inode.
1884 		 */
1885 		ASSERT(next_agino != 0);
1886 		ASSERT(next_agino != agino);
1887 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1888 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1889 			(sizeof(xfs_agino_t) * bucket_index);
1890 		xfs_trans_log_buf(tp, agibp, offset,
1891 				  (offset + sizeof(xfs_agino_t) - 1));
1892 	} else {
1893 		/*
1894 		 * We need to search the list for the inode being freed.
1895 		 */
1896 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1897 		last_ibp = NULL;
1898 		while (next_agino != agino) {
1899 			/*
1900 			 * If the last inode wasn't the one pointing to
1901 			 * us, then release its buffer since we're not
1902 			 * going to do anything with it.
1903 			 */
1904 			if (last_ibp != NULL) {
1905 				xfs_trans_brelse(tp, last_ibp);
1906 			}
1907 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1908 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1909 					    &last_ibp, &last_offset, 0);
1910 			if (error) {
1911 				cmn_err(CE_WARN,
1912 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1913 					error, mp->m_fsname);
1914 				return error;
1915 			}
1916 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1917 			ASSERT(next_agino != NULLAGINO);
1918 			ASSERT(next_agino != 0);
1919 		}
1920 		/*
1921 		 * Now last_ibp points to the buffer previous to us on
1922 		 * the unlinked list.  Pull us from the list.
1923 		 */
1924 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1925 		if (error) {
1926 			cmn_err(CE_WARN,
1927 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1928 				error, mp->m_fsname);
1929 			return error;
1930 		}
1931 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1932 		ASSERT(next_agino != 0);
1933 		ASSERT(next_agino != agino);
1934 		if (next_agino != NULLAGINO) {
1935 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1936 			offset = ip->i_imap.im_boffset +
1937 				offsetof(xfs_dinode_t, di_next_unlinked);
1938 			xfs_trans_inode_buf(tp, ibp);
1939 			xfs_trans_log_buf(tp, ibp, offset,
1940 					  (offset + sizeof(xfs_agino_t) - 1));
1941 			xfs_inobp_check(mp, ibp);
1942 		} else {
1943 			xfs_trans_brelse(tp, ibp);
1944 		}
1945 		/*
1946 		 * Point the previous inode on the list to the next inode.
1947 		 */
1948 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1949 		ASSERT(next_agino != 0);
1950 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1951 		xfs_trans_inode_buf(tp, last_ibp);
1952 		xfs_trans_log_buf(tp, last_ibp, offset,
1953 				  (offset + sizeof(xfs_agino_t) - 1));
1954 		xfs_inobp_check(mp, last_ibp);
1955 	}
1956 	return 0;
1957 }
1958 
1959 STATIC void
1960 xfs_ifree_cluster(
1961 	xfs_inode_t	*free_ip,
1962 	xfs_trans_t	*tp,
1963 	xfs_ino_t	inum)
1964 {
1965 	xfs_mount_t		*mp = free_ip->i_mount;
1966 	int			blks_per_cluster;
1967 	int			nbufs;
1968 	int			ninodes;
1969 	int			i, j, found, pre_flushed;
1970 	xfs_daddr_t		blkno;
1971 	xfs_buf_t		*bp;
1972 	xfs_inode_t		*ip, **ip_found;
1973 	xfs_inode_log_item_t	*iip;
1974 	xfs_log_item_t		*lip;
1975 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
1976 
1977 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1978 		blks_per_cluster = 1;
1979 		ninodes = mp->m_sb.sb_inopblock;
1980 		nbufs = XFS_IALLOC_BLOCKS(mp);
1981 	} else {
1982 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1983 					mp->m_sb.sb_blocksize;
1984 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1985 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1986 	}
1987 
1988 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1989 
1990 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1991 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1992 					 XFS_INO_TO_AGBNO(mp, inum));
1993 
1994 
1995 		/*
1996 		 * Look for each inode in memory and attempt to lock it,
1997 		 * we can be racing with flush and tail pushing here.
1998 		 * any inode we get the locks on, add to an array of
1999 		 * inode items to process later.
2000 		 *
2001 		 * The get the buffer lock, we could beat a flush
2002 		 * or tail pushing thread to the lock here, in which
2003 		 * case they will go looking for the inode buffer
2004 		 * and fail, we need some other form of interlock
2005 		 * here.
2006 		 */
2007 		found = 0;
2008 		for (i = 0; i < ninodes; i++) {
2009 			read_lock(&pag->pag_ici_lock);
2010 			ip = radix_tree_lookup(&pag->pag_ici_root,
2011 					XFS_INO_TO_AGINO(mp, (inum + i)));
2012 
2013 			/* Inode not in memory or we found it already,
2014 			 * nothing to do
2015 			 */
2016 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2017 				read_unlock(&pag->pag_ici_lock);
2018 				continue;
2019 			}
2020 
2021 			if (xfs_inode_clean(ip)) {
2022 				read_unlock(&pag->pag_ici_lock);
2023 				continue;
2024 			}
2025 
2026 			/* If we can get the locks then add it to the
2027 			 * list, otherwise by the time we get the bp lock
2028 			 * below it will already be attached to the
2029 			 * inode buffer.
2030 			 */
2031 
2032 			/* This inode will already be locked - by us, lets
2033 			 * keep it that way.
2034 			 */
2035 
2036 			if (ip == free_ip) {
2037 				if (xfs_iflock_nowait(ip)) {
2038 					xfs_iflags_set(ip, XFS_ISTALE);
2039 					if (xfs_inode_clean(ip)) {
2040 						xfs_ifunlock(ip);
2041 					} else {
2042 						ip_found[found++] = ip;
2043 					}
2044 				}
2045 				read_unlock(&pag->pag_ici_lock);
2046 				continue;
2047 			}
2048 
2049 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2050 				if (xfs_iflock_nowait(ip)) {
2051 					xfs_iflags_set(ip, XFS_ISTALE);
2052 
2053 					if (xfs_inode_clean(ip)) {
2054 						xfs_ifunlock(ip);
2055 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2056 					} else {
2057 						ip_found[found++] = ip;
2058 					}
2059 				} else {
2060 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2061 				}
2062 			}
2063 			read_unlock(&pag->pag_ici_lock);
2064 		}
2065 
2066 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2067 					mp->m_bsize * blks_per_cluster,
2068 					XFS_BUF_LOCK);
2069 
2070 		pre_flushed = 0;
2071 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2072 		while (lip) {
2073 			if (lip->li_type == XFS_LI_INODE) {
2074 				iip = (xfs_inode_log_item_t *)lip;
2075 				ASSERT(iip->ili_logged == 1);
2076 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2077 				xfs_trans_ail_copy_lsn(mp->m_ail,
2078 							&iip->ili_flush_lsn,
2079 							&iip->ili_item.li_lsn);
2080 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2081 				pre_flushed++;
2082 			}
2083 			lip = lip->li_bio_list;
2084 		}
2085 
2086 		for (i = 0; i < found; i++) {
2087 			ip = ip_found[i];
2088 			iip = ip->i_itemp;
2089 
2090 			if (!iip) {
2091 				ip->i_update_core = 0;
2092 				xfs_ifunlock(ip);
2093 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2094 				continue;
2095 			}
2096 
2097 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2098 			iip->ili_format.ilf_fields = 0;
2099 			iip->ili_logged = 1;
2100 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2101 						&iip->ili_item.li_lsn);
2102 
2103 			xfs_buf_attach_iodone(bp,
2104 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2105 				xfs_istale_done, (xfs_log_item_t *)iip);
2106 			if (ip != free_ip) {
2107 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2108 			}
2109 		}
2110 
2111 		if (found || pre_flushed)
2112 			xfs_trans_stale_inode_buf(tp, bp);
2113 		xfs_trans_binval(tp, bp);
2114 	}
2115 
2116 	kmem_free(ip_found);
2117 	xfs_put_perag(mp, pag);
2118 }
2119 
2120 /*
2121  * This is called to return an inode to the inode free list.
2122  * The inode should already be truncated to 0 length and have
2123  * no pages associated with it.  This routine also assumes that
2124  * the inode is already a part of the transaction.
2125  *
2126  * The on-disk copy of the inode will have been added to the list
2127  * of unlinked inodes in the AGI. We need to remove the inode from
2128  * that list atomically with respect to freeing it here.
2129  */
2130 int
2131 xfs_ifree(
2132 	xfs_trans_t	*tp,
2133 	xfs_inode_t	*ip,
2134 	xfs_bmap_free_t	*flist)
2135 {
2136 	int			error;
2137 	int			delete;
2138 	xfs_ino_t		first_ino;
2139 	xfs_dinode_t    	*dip;
2140 	xfs_buf_t       	*ibp;
2141 
2142 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2143 	ASSERT(ip->i_transp == tp);
2144 	ASSERT(ip->i_d.di_nlink == 0);
2145 	ASSERT(ip->i_d.di_nextents == 0);
2146 	ASSERT(ip->i_d.di_anextents == 0);
2147 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2148 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2149 	ASSERT(ip->i_d.di_nblocks == 0);
2150 
2151 	/*
2152 	 * Pull the on-disk inode from the AGI unlinked list.
2153 	 */
2154 	error = xfs_iunlink_remove(tp, ip);
2155 	if (error != 0) {
2156 		return error;
2157 	}
2158 
2159 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2160 	if (error != 0) {
2161 		return error;
2162 	}
2163 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2164 	ip->i_d.di_flags = 0;
2165 	ip->i_d.di_dmevmask = 0;
2166 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2167 	ip->i_df.if_ext_max =
2168 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2169 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2170 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2171 	/*
2172 	 * Bump the generation count so no one will be confused
2173 	 * by reincarnations of this inode.
2174 	 */
2175 	ip->i_d.di_gen++;
2176 
2177 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2178 
2179 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2180 	if (error)
2181 		return error;
2182 
2183         /*
2184 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2185 	* from picking up this inode when it is reclaimed (its incore state
2186 	* initialzed but not flushed to disk yet). The in-core di_mode is
2187 	* already cleared  and a corresponding transaction logged.
2188 	* The hack here just synchronizes the in-core to on-disk
2189 	* di_mode value in advance before the actual inode sync to disk.
2190 	* This is OK because the inode is already unlinked and would never
2191 	* change its di_mode again for this inode generation.
2192 	* This is a temporary hack that would require a proper fix
2193 	* in the future.
2194 	*/
2195 	dip->di_mode = 0;
2196 
2197 	if (delete) {
2198 		xfs_ifree_cluster(ip, tp, first_ino);
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 /*
2205  * Reallocate the space for if_broot based on the number of records
2206  * being added or deleted as indicated in rec_diff.  Move the records
2207  * and pointers in if_broot to fit the new size.  When shrinking this
2208  * will eliminate holes between the records and pointers created by
2209  * the caller.  When growing this will create holes to be filled in
2210  * by the caller.
2211  *
2212  * The caller must not request to add more records than would fit in
2213  * the on-disk inode root.  If the if_broot is currently NULL, then
2214  * if we adding records one will be allocated.  The caller must also
2215  * not request that the number of records go below zero, although
2216  * it can go to zero.
2217  *
2218  * ip -- the inode whose if_broot area is changing
2219  * ext_diff -- the change in the number of records, positive or negative,
2220  *	 requested for the if_broot array.
2221  */
2222 void
2223 xfs_iroot_realloc(
2224 	xfs_inode_t		*ip,
2225 	int			rec_diff,
2226 	int			whichfork)
2227 {
2228 	struct xfs_mount	*mp = ip->i_mount;
2229 	int			cur_max;
2230 	xfs_ifork_t		*ifp;
2231 	struct xfs_btree_block	*new_broot;
2232 	int			new_max;
2233 	size_t			new_size;
2234 	char			*np;
2235 	char			*op;
2236 
2237 	/*
2238 	 * Handle the degenerate case quietly.
2239 	 */
2240 	if (rec_diff == 0) {
2241 		return;
2242 	}
2243 
2244 	ifp = XFS_IFORK_PTR(ip, whichfork);
2245 	if (rec_diff > 0) {
2246 		/*
2247 		 * If there wasn't any memory allocated before, just
2248 		 * allocate it now and get out.
2249 		 */
2250 		if (ifp->if_broot_bytes == 0) {
2251 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2252 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2253 			ifp->if_broot_bytes = (int)new_size;
2254 			return;
2255 		}
2256 
2257 		/*
2258 		 * If there is already an existing if_broot, then we need
2259 		 * to realloc() it and shift the pointers to their new
2260 		 * location.  The records don't change location because
2261 		 * they are kept butted up against the btree block header.
2262 		 */
2263 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2264 		new_max = cur_max + rec_diff;
2265 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2266 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2267 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2268 				KM_SLEEP);
2269 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2270 						     ifp->if_broot_bytes);
2271 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2272 						     (int)new_size);
2273 		ifp->if_broot_bytes = (int)new_size;
2274 		ASSERT(ifp->if_broot_bytes <=
2275 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2276 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2277 		return;
2278 	}
2279 
2280 	/*
2281 	 * rec_diff is less than 0.  In this case, we are shrinking the
2282 	 * if_broot buffer.  It must already exist.  If we go to zero
2283 	 * records, just get rid of the root and clear the status bit.
2284 	 */
2285 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2286 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2287 	new_max = cur_max + rec_diff;
2288 	ASSERT(new_max >= 0);
2289 	if (new_max > 0)
2290 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2291 	else
2292 		new_size = 0;
2293 	if (new_size > 0) {
2294 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2295 		/*
2296 		 * First copy over the btree block header.
2297 		 */
2298 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2299 	} else {
2300 		new_broot = NULL;
2301 		ifp->if_flags &= ~XFS_IFBROOT;
2302 	}
2303 
2304 	/*
2305 	 * Only copy the records and pointers if there are any.
2306 	 */
2307 	if (new_max > 0) {
2308 		/*
2309 		 * First copy the records.
2310 		 */
2311 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2312 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2313 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2314 
2315 		/*
2316 		 * Then copy the pointers.
2317 		 */
2318 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2319 						     ifp->if_broot_bytes);
2320 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2321 						     (int)new_size);
2322 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2323 	}
2324 	kmem_free(ifp->if_broot);
2325 	ifp->if_broot = new_broot;
2326 	ifp->if_broot_bytes = (int)new_size;
2327 	ASSERT(ifp->if_broot_bytes <=
2328 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2329 	return;
2330 }
2331 
2332 
2333 /*
2334  * This is called when the amount of space needed for if_data
2335  * is increased or decreased.  The change in size is indicated by
2336  * the number of bytes that need to be added or deleted in the
2337  * byte_diff parameter.
2338  *
2339  * If the amount of space needed has decreased below the size of the
2340  * inline buffer, then switch to using the inline buffer.  Otherwise,
2341  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2342  * to what is needed.
2343  *
2344  * ip -- the inode whose if_data area is changing
2345  * byte_diff -- the change in the number of bytes, positive or negative,
2346  *	 requested for the if_data array.
2347  */
2348 void
2349 xfs_idata_realloc(
2350 	xfs_inode_t	*ip,
2351 	int		byte_diff,
2352 	int		whichfork)
2353 {
2354 	xfs_ifork_t	*ifp;
2355 	int		new_size;
2356 	int		real_size;
2357 
2358 	if (byte_diff == 0) {
2359 		return;
2360 	}
2361 
2362 	ifp = XFS_IFORK_PTR(ip, whichfork);
2363 	new_size = (int)ifp->if_bytes + byte_diff;
2364 	ASSERT(new_size >= 0);
2365 
2366 	if (new_size == 0) {
2367 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2368 			kmem_free(ifp->if_u1.if_data);
2369 		}
2370 		ifp->if_u1.if_data = NULL;
2371 		real_size = 0;
2372 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2373 		/*
2374 		 * If the valid extents/data can fit in if_inline_ext/data,
2375 		 * copy them from the malloc'd vector and free it.
2376 		 */
2377 		if (ifp->if_u1.if_data == NULL) {
2378 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2379 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2380 			ASSERT(ifp->if_real_bytes != 0);
2381 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2382 			      new_size);
2383 			kmem_free(ifp->if_u1.if_data);
2384 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2385 		}
2386 		real_size = 0;
2387 	} else {
2388 		/*
2389 		 * Stuck with malloc/realloc.
2390 		 * For inline data, the underlying buffer must be
2391 		 * a multiple of 4 bytes in size so that it can be
2392 		 * logged and stay on word boundaries.  We enforce
2393 		 * that here.
2394 		 */
2395 		real_size = roundup(new_size, 4);
2396 		if (ifp->if_u1.if_data == NULL) {
2397 			ASSERT(ifp->if_real_bytes == 0);
2398 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2399 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2400 			/*
2401 			 * Only do the realloc if the underlying size
2402 			 * is really changing.
2403 			 */
2404 			if (ifp->if_real_bytes != real_size) {
2405 				ifp->if_u1.if_data =
2406 					kmem_realloc(ifp->if_u1.if_data,
2407 							real_size,
2408 							ifp->if_real_bytes,
2409 							KM_SLEEP);
2410 			}
2411 		} else {
2412 			ASSERT(ifp->if_real_bytes == 0);
2413 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2414 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2415 				ifp->if_bytes);
2416 		}
2417 	}
2418 	ifp->if_real_bytes = real_size;
2419 	ifp->if_bytes = new_size;
2420 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2421 }
2422 
2423 void
2424 xfs_idestroy_fork(
2425 	xfs_inode_t	*ip,
2426 	int		whichfork)
2427 {
2428 	xfs_ifork_t	*ifp;
2429 
2430 	ifp = XFS_IFORK_PTR(ip, whichfork);
2431 	if (ifp->if_broot != NULL) {
2432 		kmem_free(ifp->if_broot);
2433 		ifp->if_broot = NULL;
2434 	}
2435 
2436 	/*
2437 	 * If the format is local, then we can't have an extents
2438 	 * array so just look for an inline data array.  If we're
2439 	 * not local then we may or may not have an extents list,
2440 	 * so check and free it up if we do.
2441 	 */
2442 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2443 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2444 		    (ifp->if_u1.if_data != NULL)) {
2445 			ASSERT(ifp->if_real_bytes != 0);
2446 			kmem_free(ifp->if_u1.if_data);
2447 			ifp->if_u1.if_data = NULL;
2448 			ifp->if_real_bytes = 0;
2449 		}
2450 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2451 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2452 		    ((ifp->if_u1.if_extents != NULL) &&
2453 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2454 		ASSERT(ifp->if_real_bytes != 0);
2455 		xfs_iext_destroy(ifp);
2456 	}
2457 	ASSERT(ifp->if_u1.if_extents == NULL ||
2458 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2459 	ASSERT(ifp->if_real_bytes == 0);
2460 	if (whichfork == XFS_ATTR_FORK) {
2461 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2462 		ip->i_afp = NULL;
2463 	}
2464 }
2465 
2466 /*
2467  * Increment the pin count of the given buffer.
2468  * This value is protected by ipinlock spinlock in the mount structure.
2469  */
2470 void
2471 xfs_ipin(
2472 	xfs_inode_t	*ip)
2473 {
2474 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2475 
2476 	atomic_inc(&ip->i_pincount);
2477 }
2478 
2479 /*
2480  * Decrement the pin count of the given inode, and wake up
2481  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2482  * inode must have been previously pinned with a call to xfs_ipin().
2483  */
2484 void
2485 xfs_iunpin(
2486 	xfs_inode_t	*ip)
2487 {
2488 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2489 
2490 	if (atomic_dec_and_test(&ip->i_pincount))
2491 		wake_up(&ip->i_ipin_wait);
2492 }
2493 
2494 /*
2495  * This is called to unpin an inode. It can be directed to wait or to return
2496  * immediately without waiting for the inode to be unpinned.  The caller must
2497  * have the inode locked in at least shared mode so that the buffer cannot be
2498  * subsequently pinned once someone is waiting for it to be unpinned.
2499  */
2500 STATIC void
2501 __xfs_iunpin_wait(
2502 	xfs_inode_t	*ip,
2503 	int		wait)
2504 {
2505 	xfs_inode_log_item_t	*iip = ip->i_itemp;
2506 
2507 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2508 	if (atomic_read(&ip->i_pincount) == 0)
2509 		return;
2510 
2511 	/* Give the log a push to start the unpinning I/O */
2512 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2513 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2514 	if (wait)
2515 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2516 }
2517 
2518 static inline void
2519 xfs_iunpin_wait(
2520 	xfs_inode_t	*ip)
2521 {
2522 	__xfs_iunpin_wait(ip, 1);
2523 }
2524 
2525 static inline void
2526 xfs_iunpin_nowait(
2527 	xfs_inode_t	*ip)
2528 {
2529 	__xfs_iunpin_wait(ip, 0);
2530 }
2531 
2532 
2533 /*
2534  * xfs_iextents_copy()
2535  *
2536  * This is called to copy the REAL extents (as opposed to the delayed
2537  * allocation extents) from the inode into the given buffer.  It
2538  * returns the number of bytes copied into the buffer.
2539  *
2540  * If there are no delayed allocation extents, then we can just
2541  * memcpy() the extents into the buffer.  Otherwise, we need to
2542  * examine each extent in turn and skip those which are delayed.
2543  */
2544 int
2545 xfs_iextents_copy(
2546 	xfs_inode_t		*ip,
2547 	xfs_bmbt_rec_t		*dp,
2548 	int			whichfork)
2549 {
2550 	int			copied;
2551 	int			i;
2552 	xfs_ifork_t		*ifp;
2553 	int			nrecs;
2554 	xfs_fsblock_t		start_block;
2555 
2556 	ifp = XFS_IFORK_PTR(ip, whichfork);
2557 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2558 	ASSERT(ifp->if_bytes > 0);
2559 
2560 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2561 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2562 	ASSERT(nrecs > 0);
2563 
2564 	/*
2565 	 * There are some delayed allocation extents in the
2566 	 * inode, so copy the extents one at a time and skip
2567 	 * the delayed ones.  There must be at least one
2568 	 * non-delayed extent.
2569 	 */
2570 	copied = 0;
2571 	for (i = 0; i < nrecs; i++) {
2572 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2573 		start_block = xfs_bmbt_get_startblock(ep);
2574 		if (isnullstartblock(start_block)) {
2575 			/*
2576 			 * It's a delayed allocation extent, so skip it.
2577 			 */
2578 			continue;
2579 		}
2580 
2581 		/* Translate to on disk format */
2582 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2583 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2584 		dp++;
2585 		copied++;
2586 	}
2587 	ASSERT(copied != 0);
2588 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2589 
2590 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2591 }
2592 
2593 /*
2594  * Each of the following cases stores data into the same region
2595  * of the on-disk inode, so only one of them can be valid at
2596  * any given time. While it is possible to have conflicting formats
2597  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2598  * in EXTENTS format, this can only happen when the fork has
2599  * changed formats after being modified but before being flushed.
2600  * In these cases, the format always takes precedence, because the
2601  * format indicates the current state of the fork.
2602  */
2603 /*ARGSUSED*/
2604 STATIC void
2605 xfs_iflush_fork(
2606 	xfs_inode_t		*ip,
2607 	xfs_dinode_t		*dip,
2608 	xfs_inode_log_item_t	*iip,
2609 	int			whichfork,
2610 	xfs_buf_t		*bp)
2611 {
2612 	char			*cp;
2613 	xfs_ifork_t		*ifp;
2614 	xfs_mount_t		*mp;
2615 #ifdef XFS_TRANS_DEBUG
2616 	int			first;
2617 #endif
2618 	static const short	brootflag[2] =
2619 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2620 	static const short	dataflag[2] =
2621 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2622 	static const short	extflag[2] =
2623 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2624 
2625 	if (!iip)
2626 		return;
2627 	ifp = XFS_IFORK_PTR(ip, whichfork);
2628 	/*
2629 	 * This can happen if we gave up in iformat in an error path,
2630 	 * for the attribute fork.
2631 	 */
2632 	if (!ifp) {
2633 		ASSERT(whichfork == XFS_ATTR_FORK);
2634 		return;
2635 	}
2636 	cp = XFS_DFORK_PTR(dip, whichfork);
2637 	mp = ip->i_mount;
2638 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2639 	case XFS_DINODE_FMT_LOCAL:
2640 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2641 		    (ifp->if_bytes > 0)) {
2642 			ASSERT(ifp->if_u1.if_data != NULL);
2643 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2644 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2645 		}
2646 		break;
2647 
2648 	case XFS_DINODE_FMT_EXTENTS:
2649 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2650 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2651 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2652 			(ifp->if_bytes == 0));
2653 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2654 			(ifp->if_bytes > 0));
2655 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2656 		    (ifp->if_bytes > 0)) {
2657 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2658 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2659 				whichfork);
2660 		}
2661 		break;
2662 
2663 	case XFS_DINODE_FMT_BTREE:
2664 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2665 		    (ifp->if_broot_bytes > 0)) {
2666 			ASSERT(ifp->if_broot != NULL);
2667 			ASSERT(ifp->if_broot_bytes <=
2668 			       (XFS_IFORK_SIZE(ip, whichfork) +
2669 				XFS_BROOT_SIZE_ADJ));
2670 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2671 				(xfs_bmdr_block_t *)cp,
2672 				XFS_DFORK_SIZE(dip, mp, whichfork));
2673 		}
2674 		break;
2675 
2676 	case XFS_DINODE_FMT_DEV:
2677 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2678 			ASSERT(whichfork == XFS_DATA_FORK);
2679 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2680 		}
2681 		break;
2682 
2683 	case XFS_DINODE_FMT_UUID:
2684 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2685 			ASSERT(whichfork == XFS_DATA_FORK);
2686 			memcpy(XFS_DFORK_DPTR(dip),
2687 			       &ip->i_df.if_u2.if_uuid,
2688 			       sizeof(uuid_t));
2689 		}
2690 		break;
2691 
2692 	default:
2693 		ASSERT(0);
2694 		break;
2695 	}
2696 }
2697 
2698 STATIC int
2699 xfs_iflush_cluster(
2700 	xfs_inode_t	*ip,
2701 	xfs_buf_t	*bp)
2702 {
2703 	xfs_mount_t		*mp = ip->i_mount;
2704 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
2705 	unsigned long		first_index, mask;
2706 	unsigned long		inodes_per_cluster;
2707 	int			ilist_size;
2708 	xfs_inode_t		**ilist;
2709 	xfs_inode_t		*iq;
2710 	int			nr_found;
2711 	int			clcount = 0;
2712 	int			bufwasdelwri;
2713 	int			i;
2714 
2715 	ASSERT(pag->pagi_inodeok);
2716 	ASSERT(pag->pag_ici_init);
2717 
2718 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2719 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2720 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2721 	if (!ilist)
2722 		return 0;
2723 
2724 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2725 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2726 	read_lock(&pag->pag_ici_lock);
2727 	/* really need a gang lookup range call here */
2728 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2729 					first_index, inodes_per_cluster);
2730 	if (nr_found == 0)
2731 		goto out_free;
2732 
2733 	for (i = 0; i < nr_found; i++) {
2734 		iq = ilist[i];
2735 		if (iq == ip)
2736 			continue;
2737 		/* if the inode lies outside this cluster, we're done. */
2738 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2739 			break;
2740 		/*
2741 		 * Do an un-protected check to see if the inode is dirty and
2742 		 * is a candidate for flushing.  These checks will be repeated
2743 		 * later after the appropriate locks are acquired.
2744 		 */
2745 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2746 			continue;
2747 
2748 		/*
2749 		 * Try to get locks.  If any are unavailable or it is pinned,
2750 		 * then this inode cannot be flushed and is skipped.
2751 		 */
2752 
2753 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2754 			continue;
2755 		if (!xfs_iflock_nowait(iq)) {
2756 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2757 			continue;
2758 		}
2759 		if (xfs_ipincount(iq)) {
2760 			xfs_ifunlock(iq);
2761 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2762 			continue;
2763 		}
2764 
2765 		/*
2766 		 * arriving here means that this inode can be flushed.  First
2767 		 * re-check that it's dirty before flushing.
2768 		 */
2769 		if (!xfs_inode_clean(iq)) {
2770 			int	error;
2771 			error = xfs_iflush_int(iq, bp);
2772 			if (error) {
2773 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2774 				goto cluster_corrupt_out;
2775 			}
2776 			clcount++;
2777 		} else {
2778 			xfs_ifunlock(iq);
2779 		}
2780 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2781 	}
2782 
2783 	if (clcount) {
2784 		XFS_STATS_INC(xs_icluster_flushcnt);
2785 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2786 	}
2787 
2788 out_free:
2789 	read_unlock(&pag->pag_ici_lock);
2790 	kmem_free(ilist);
2791 	return 0;
2792 
2793 
2794 cluster_corrupt_out:
2795 	/*
2796 	 * Corruption detected in the clustering loop.  Invalidate the
2797 	 * inode buffer and shut down the filesystem.
2798 	 */
2799 	read_unlock(&pag->pag_ici_lock);
2800 	/*
2801 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2802 	 * brelse can handle it with no problems.  If not, shut down the
2803 	 * filesystem before releasing the buffer.
2804 	 */
2805 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2806 	if (bufwasdelwri)
2807 		xfs_buf_relse(bp);
2808 
2809 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2810 
2811 	if (!bufwasdelwri) {
2812 		/*
2813 		 * Just like incore_relse: if we have b_iodone functions,
2814 		 * mark the buffer as an error and call them.  Otherwise
2815 		 * mark it as stale and brelse.
2816 		 */
2817 		if (XFS_BUF_IODONE_FUNC(bp)) {
2818 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2819 			XFS_BUF_UNDONE(bp);
2820 			XFS_BUF_STALE(bp);
2821 			XFS_BUF_ERROR(bp,EIO);
2822 			xfs_biodone(bp);
2823 		} else {
2824 			XFS_BUF_STALE(bp);
2825 			xfs_buf_relse(bp);
2826 		}
2827 	}
2828 
2829 	/*
2830 	 * Unlocks the flush lock
2831 	 */
2832 	xfs_iflush_abort(iq);
2833 	kmem_free(ilist);
2834 	return XFS_ERROR(EFSCORRUPTED);
2835 }
2836 
2837 /*
2838  * xfs_iflush() will write a modified inode's changes out to the
2839  * inode's on disk home.  The caller must have the inode lock held
2840  * in at least shared mode and the inode flush completion must be
2841  * active as well.  The inode lock will still be held upon return from
2842  * the call and the caller is free to unlock it.
2843  * The inode flush will be completed when the inode reaches the disk.
2844  * The flags indicate how the inode's buffer should be written out.
2845  */
2846 int
2847 xfs_iflush(
2848 	xfs_inode_t		*ip,
2849 	uint			flags)
2850 {
2851 	xfs_inode_log_item_t	*iip;
2852 	xfs_buf_t		*bp;
2853 	xfs_dinode_t		*dip;
2854 	xfs_mount_t		*mp;
2855 	int			error;
2856 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2857 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2858 
2859 	XFS_STATS_INC(xs_iflush_count);
2860 
2861 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2862 	ASSERT(!completion_done(&ip->i_flush));
2863 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2864 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2865 
2866 	iip = ip->i_itemp;
2867 	mp = ip->i_mount;
2868 
2869 	/*
2870 	 * If the inode isn't dirty, then just release the inode
2871 	 * flush lock and do nothing.
2872 	 */
2873 	if (xfs_inode_clean(ip)) {
2874 		xfs_ifunlock(ip);
2875 		return 0;
2876 	}
2877 
2878 	/*
2879 	 * We can't flush the inode until it is unpinned, so wait for it if we
2880 	 * are allowed to block.  We know noone new can pin it, because we are
2881 	 * holding the inode lock shared and you need to hold it exclusively to
2882 	 * pin the inode.
2883 	 *
2884 	 * If we are not allowed to block, force the log out asynchronously so
2885 	 * that when we come back the inode will be unpinned. If other inodes
2886 	 * in the same cluster are dirty, they will probably write the inode
2887 	 * out for us if they occur after the log force completes.
2888 	 */
2889 	if (noblock && xfs_ipincount(ip)) {
2890 		xfs_iunpin_nowait(ip);
2891 		xfs_ifunlock(ip);
2892 		return EAGAIN;
2893 	}
2894 	xfs_iunpin_wait(ip);
2895 
2896 	/*
2897 	 * This may have been unpinned because the filesystem is shutting
2898 	 * down forcibly. If that's the case we must not write this inode
2899 	 * to disk, because the log record didn't make it to disk!
2900 	 */
2901 	if (XFS_FORCED_SHUTDOWN(mp)) {
2902 		ip->i_update_core = 0;
2903 		if (iip)
2904 			iip->ili_format.ilf_fields = 0;
2905 		xfs_ifunlock(ip);
2906 		return XFS_ERROR(EIO);
2907 	}
2908 
2909 	/*
2910 	 * Decide how buffer will be flushed out.  This is done before
2911 	 * the call to xfs_iflush_int because this field is zeroed by it.
2912 	 */
2913 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2914 		/*
2915 		 * Flush out the inode buffer according to the directions
2916 		 * of the caller.  In the cases where the caller has given
2917 		 * us a choice choose the non-delwri case.  This is because
2918 		 * the inode is in the AIL and we need to get it out soon.
2919 		 */
2920 		switch (flags) {
2921 		case XFS_IFLUSH_SYNC:
2922 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2923 			flags = 0;
2924 			break;
2925 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2926 		case XFS_IFLUSH_ASYNC:
2927 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2928 			flags = INT_ASYNC;
2929 			break;
2930 		case XFS_IFLUSH_DELWRI:
2931 			flags = INT_DELWRI;
2932 			break;
2933 		default:
2934 			ASSERT(0);
2935 			flags = 0;
2936 			break;
2937 		}
2938 	} else {
2939 		switch (flags) {
2940 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2941 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2942 		case XFS_IFLUSH_DELWRI:
2943 			flags = INT_DELWRI;
2944 			break;
2945 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2946 		case XFS_IFLUSH_ASYNC:
2947 			flags = INT_ASYNC;
2948 			break;
2949 		case XFS_IFLUSH_SYNC:
2950 			flags = 0;
2951 			break;
2952 		default:
2953 			ASSERT(0);
2954 			flags = 0;
2955 			break;
2956 		}
2957 	}
2958 
2959 	/*
2960 	 * Get the buffer containing the on-disk inode.
2961 	 */
2962 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2963 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2964 	if (error || !bp) {
2965 		xfs_ifunlock(ip);
2966 		return error;
2967 	}
2968 
2969 	/*
2970 	 * First flush out the inode that xfs_iflush was called with.
2971 	 */
2972 	error = xfs_iflush_int(ip, bp);
2973 	if (error)
2974 		goto corrupt_out;
2975 
2976 	/*
2977 	 * If the buffer is pinned then push on the log now so we won't
2978 	 * get stuck waiting in the write for too long.
2979 	 */
2980 	if (XFS_BUF_ISPINNED(bp))
2981 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2982 
2983 	/*
2984 	 * inode clustering:
2985 	 * see if other inodes can be gathered into this write
2986 	 */
2987 	error = xfs_iflush_cluster(ip, bp);
2988 	if (error)
2989 		goto cluster_corrupt_out;
2990 
2991 	if (flags & INT_DELWRI) {
2992 		xfs_bdwrite(mp, bp);
2993 	} else if (flags & INT_ASYNC) {
2994 		error = xfs_bawrite(mp, bp);
2995 	} else {
2996 		error = xfs_bwrite(mp, bp);
2997 	}
2998 	return error;
2999 
3000 corrupt_out:
3001 	xfs_buf_relse(bp);
3002 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3003 cluster_corrupt_out:
3004 	/*
3005 	 * Unlocks the flush lock
3006 	 */
3007 	xfs_iflush_abort(ip);
3008 	return XFS_ERROR(EFSCORRUPTED);
3009 }
3010 
3011 
3012 STATIC int
3013 xfs_iflush_int(
3014 	xfs_inode_t		*ip,
3015 	xfs_buf_t		*bp)
3016 {
3017 	xfs_inode_log_item_t	*iip;
3018 	xfs_dinode_t		*dip;
3019 	xfs_mount_t		*mp;
3020 #ifdef XFS_TRANS_DEBUG
3021 	int			first;
3022 #endif
3023 
3024 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3025 	ASSERT(!completion_done(&ip->i_flush));
3026 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3027 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3028 
3029 	iip = ip->i_itemp;
3030 	mp = ip->i_mount;
3031 
3032 
3033 	/*
3034 	 * If the inode isn't dirty, then just release the inode
3035 	 * flush lock and do nothing.
3036 	 */
3037 	if (xfs_inode_clean(ip)) {
3038 		xfs_ifunlock(ip);
3039 		return 0;
3040 	}
3041 
3042 	/* set *dip = inode's place in the buffer */
3043 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3044 
3045 	/*
3046 	 * Clear i_update_core before copying out the data.
3047 	 * This is for coordination with our timestamp updates
3048 	 * that don't hold the inode lock. They will always
3049 	 * update the timestamps BEFORE setting i_update_core,
3050 	 * so if we clear i_update_core after they set it we
3051 	 * are guaranteed to see their updates to the timestamps.
3052 	 * I believe that this depends on strongly ordered memory
3053 	 * semantics, but we have that.  We use the SYNCHRONIZE
3054 	 * macro to make sure that the compiler does not reorder
3055 	 * the i_update_core access below the data copy below.
3056 	 */
3057 	ip->i_update_core = 0;
3058 	SYNCHRONIZE();
3059 
3060 	/*
3061 	 * Make sure to get the latest atime from the Linux inode.
3062 	 */
3063 	xfs_synchronize_atime(ip);
3064 
3065 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3066 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3067 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3068 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3069 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3070 		goto corrupt_out;
3071 	}
3072 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3073 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3074 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3075 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3076 			ip->i_ino, ip, ip->i_d.di_magic);
3077 		goto corrupt_out;
3078 	}
3079 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3080 		if (XFS_TEST_ERROR(
3081 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3082 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3083 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3084 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3085 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3086 				ip->i_ino, ip);
3087 			goto corrupt_out;
3088 		}
3089 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3090 		if (XFS_TEST_ERROR(
3091 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3092 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3093 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3094 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3095 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3096 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3097 				ip->i_ino, ip);
3098 			goto corrupt_out;
3099 		}
3100 	}
3101 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3102 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3103 				XFS_RANDOM_IFLUSH_5)) {
3104 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3105 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3106 			ip->i_ino,
3107 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3108 			ip->i_d.di_nblocks,
3109 			ip);
3110 		goto corrupt_out;
3111 	}
3112 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3113 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3114 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3115 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3116 			ip->i_ino, ip->i_d.di_forkoff, ip);
3117 		goto corrupt_out;
3118 	}
3119 	/*
3120 	 * bump the flush iteration count, used to detect flushes which
3121 	 * postdate a log record during recovery.
3122 	 */
3123 
3124 	ip->i_d.di_flushiter++;
3125 
3126 	/*
3127 	 * Copy the dirty parts of the inode into the on-disk
3128 	 * inode.  We always copy out the core of the inode,
3129 	 * because if the inode is dirty at all the core must
3130 	 * be.
3131 	 */
3132 	xfs_dinode_to_disk(dip, &ip->i_d);
3133 
3134 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3135 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3136 		ip->i_d.di_flushiter = 0;
3137 
3138 	/*
3139 	 * If this is really an old format inode and the superblock version
3140 	 * has not been updated to support only new format inodes, then
3141 	 * convert back to the old inode format.  If the superblock version
3142 	 * has been updated, then make the conversion permanent.
3143 	 */
3144 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3145 	if (ip->i_d.di_version == 1) {
3146 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3147 			/*
3148 			 * Convert it back.
3149 			 */
3150 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3151 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3152 		} else {
3153 			/*
3154 			 * The superblock version has already been bumped,
3155 			 * so just make the conversion to the new inode
3156 			 * format permanent.
3157 			 */
3158 			ip->i_d.di_version = 2;
3159 			dip->di_version = 2;
3160 			ip->i_d.di_onlink = 0;
3161 			dip->di_onlink = 0;
3162 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3163 			memset(&(dip->di_pad[0]), 0,
3164 			      sizeof(dip->di_pad));
3165 			ASSERT(ip->i_d.di_projid == 0);
3166 		}
3167 	}
3168 
3169 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3170 	if (XFS_IFORK_Q(ip))
3171 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3172 	xfs_inobp_check(mp, bp);
3173 
3174 	/*
3175 	 * We've recorded everything logged in the inode, so we'd
3176 	 * like to clear the ilf_fields bits so we don't log and
3177 	 * flush things unnecessarily.  However, we can't stop
3178 	 * logging all this information until the data we've copied
3179 	 * into the disk buffer is written to disk.  If we did we might
3180 	 * overwrite the copy of the inode in the log with all the
3181 	 * data after re-logging only part of it, and in the face of
3182 	 * a crash we wouldn't have all the data we need to recover.
3183 	 *
3184 	 * What we do is move the bits to the ili_last_fields field.
3185 	 * When logging the inode, these bits are moved back to the
3186 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3187 	 * clear ili_last_fields, since we know that the information
3188 	 * those bits represent is permanently on disk.  As long as
3189 	 * the flush completes before the inode is logged again, then
3190 	 * both ilf_fields and ili_last_fields will be cleared.
3191 	 *
3192 	 * We can play with the ilf_fields bits here, because the inode
3193 	 * lock must be held exclusively in order to set bits there
3194 	 * and the flush lock protects the ili_last_fields bits.
3195 	 * Set ili_logged so the flush done
3196 	 * routine can tell whether or not to look in the AIL.
3197 	 * Also, store the current LSN of the inode so that we can tell
3198 	 * whether the item has moved in the AIL from xfs_iflush_done().
3199 	 * In order to read the lsn we need the AIL lock, because
3200 	 * it is a 64 bit value that cannot be read atomically.
3201 	 */
3202 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3203 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3204 		iip->ili_format.ilf_fields = 0;
3205 		iip->ili_logged = 1;
3206 
3207 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3208 					&iip->ili_item.li_lsn);
3209 
3210 		/*
3211 		 * Attach the function xfs_iflush_done to the inode's
3212 		 * buffer.  This will remove the inode from the AIL
3213 		 * and unlock the inode's flush lock when the inode is
3214 		 * completely written to disk.
3215 		 */
3216 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3217 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3218 
3219 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3220 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3221 	} else {
3222 		/*
3223 		 * We're flushing an inode which is not in the AIL and has
3224 		 * not been logged but has i_update_core set.  For this
3225 		 * case we can use a B_DELWRI flush and immediately drop
3226 		 * the inode flush lock because we can avoid the whole
3227 		 * AIL state thing.  It's OK to drop the flush lock now,
3228 		 * because we've already locked the buffer and to do anything
3229 		 * you really need both.
3230 		 */
3231 		if (iip != NULL) {
3232 			ASSERT(iip->ili_logged == 0);
3233 			ASSERT(iip->ili_last_fields == 0);
3234 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3235 		}
3236 		xfs_ifunlock(ip);
3237 	}
3238 
3239 	return 0;
3240 
3241 corrupt_out:
3242 	return XFS_ERROR(EFSCORRUPTED);
3243 }
3244 
3245 
3246 
3247 #ifdef XFS_ILOCK_TRACE
3248 void
3249 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3250 {
3251 	ktrace_enter(ip->i_lock_trace,
3252 		     (void *)ip,
3253 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3254 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3255 		     (void *)ra,		/* caller of ilock */
3256 		     (void *)(unsigned long)current_cpu(),
3257 		     (void *)(unsigned long)current_pid(),
3258 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3259 }
3260 #endif
3261 
3262 /*
3263  * Return a pointer to the extent record at file index idx.
3264  */
3265 xfs_bmbt_rec_host_t *
3266 xfs_iext_get_ext(
3267 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3268 	xfs_extnum_t	idx)		/* index of target extent */
3269 {
3270 	ASSERT(idx >= 0);
3271 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3272 		return ifp->if_u1.if_ext_irec->er_extbuf;
3273 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3274 		xfs_ext_irec_t	*erp;		/* irec pointer */
3275 		int		erp_idx = 0;	/* irec index */
3276 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3277 
3278 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3279 		return &erp->er_extbuf[page_idx];
3280 	} else if (ifp->if_bytes) {
3281 		return &ifp->if_u1.if_extents[idx];
3282 	} else {
3283 		return NULL;
3284 	}
3285 }
3286 
3287 /*
3288  * Insert new item(s) into the extent records for incore inode
3289  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3290  */
3291 void
3292 xfs_iext_insert(
3293 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3294 	xfs_extnum_t	idx,		/* starting index of new items */
3295 	xfs_extnum_t	count,		/* number of inserted items */
3296 	xfs_bmbt_irec_t	*new)		/* items to insert */
3297 {
3298 	xfs_extnum_t	i;		/* extent record index */
3299 
3300 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3301 	xfs_iext_add(ifp, idx, count);
3302 	for (i = idx; i < idx + count; i++, new++)
3303 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3304 }
3305 
3306 /*
3307  * This is called when the amount of space required for incore file
3308  * extents needs to be increased. The ext_diff parameter stores the
3309  * number of new extents being added and the idx parameter contains
3310  * the extent index where the new extents will be added. If the new
3311  * extents are being appended, then we just need to (re)allocate and
3312  * initialize the space. Otherwise, if the new extents are being
3313  * inserted into the middle of the existing entries, a bit more work
3314  * is required to make room for the new extents to be inserted. The
3315  * caller is responsible for filling in the new extent entries upon
3316  * return.
3317  */
3318 void
3319 xfs_iext_add(
3320 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3321 	xfs_extnum_t	idx,		/* index to begin adding exts */
3322 	int		ext_diff)	/* number of extents to add */
3323 {
3324 	int		byte_diff;	/* new bytes being added */
3325 	int		new_size;	/* size of extents after adding */
3326 	xfs_extnum_t	nextents;	/* number of extents in file */
3327 
3328 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3329 	ASSERT((idx >= 0) && (idx <= nextents));
3330 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3331 	new_size = ifp->if_bytes + byte_diff;
3332 	/*
3333 	 * If the new number of extents (nextents + ext_diff)
3334 	 * fits inside the inode, then continue to use the inline
3335 	 * extent buffer.
3336 	 */
3337 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3338 		if (idx < nextents) {
3339 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3340 				&ifp->if_u2.if_inline_ext[idx],
3341 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3342 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3343 		}
3344 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3345 		ifp->if_real_bytes = 0;
3346 		ifp->if_lastex = nextents + ext_diff;
3347 	}
3348 	/*
3349 	 * Otherwise use a linear (direct) extent list.
3350 	 * If the extents are currently inside the inode,
3351 	 * xfs_iext_realloc_direct will switch us from
3352 	 * inline to direct extent allocation mode.
3353 	 */
3354 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3355 		xfs_iext_realloc_direct(ifp, new_size);
3356 		if (idx < nextents) {
3357 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3358 				&ifp->if_u1.if_extents[idx],
3359 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3360 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3361 		}
3362 	}
3363 	/* Indirection array */
3364 	else {
3365 		xfs_ext_irec_t	*erp;
3366 		int		erp_idx = 0;
3367 		int		page_idx = idx;
3368 
3369 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3370 		if (ifp->if_flags & XFS_IFEXTIREC) {
3371 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3372 		} else {
3373 			xfs_iext_irec_init(ifp);
3374 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3375 			erp = ifp->if_u1.if_ext_irec;
3376 		}
3377 		/* Extents fit in target extent page */
3378 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3379 			if (page_idx < erp->er_extcount) {
3380 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3381 					&erp->er_extbuf[page_idx],
3382 					(erp->er_extcount - page_idx) *
3383 					sizeof(xfs_bmbt_rec_t));
3384 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3385 			}
3386 			erp->er_extcount += ext_diff;
3387 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3388 		}
3389 		/* Insert a new extent page */
3390 		else if (erp) {
3391 			xfs_iext_add_indirect_multi(ifp,
3392 				erp_idx, page_idx, ext_diff);
3393 		}
3394 		/*
3395 		 * If extent(s) are being appended to the last page in
3396 		 * the indirection array and the new extent(s) don't fit
3397 		 * in the page, then erp is NULL and erp_idx is set to
3398 		 * the next index needed in the indirection array.
3399 		 */
3400 		else {
3401 			int	count = ext_diff;
3402 
3403 			while (count) {
3404 				erp = xfs_iext_irec_new(ifp, erp_idx);
3405 				erp->er_extcount = count;
3406 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3407 				if (count) {
3408 					erp_idx++;
3409 				}
3410 			}
3411 		}
3412 	}
3413 	ifp->if_bytes = new_size;
3414 }
3415 
3416 /*
3417  * This is called when incore extents are being added to the indirection
3418  * array and the new extents do not fit in the target extent list. The
3419  * erp_idx parameter contains the irec index for the target extent list
3420  * in the indirection array, and the idx parameter contains the extent
3421  * index within the list. The number of extents being added is stored
3422  * in the count parameter.
3423  *
3424  *    |-------|   |-------|
3425  *    |       |   |       |    idx - number of extents before idx
3426  *    |  idx  |   | count |
3427  *    |       |   |       |    count - number of extents being inserted at idx
3428  *    |-------|   |-------|
3429  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3430  *    |-------|   |-------|
3431  */
3432 void
3433 xfs_iext_add_indirect_multi(
3434 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3435 	int		erp_idx,		/* target extent irec index */
3436 	xfs_extnum_t	idx,			/* index within target list */
3437 	int		count)			/* new extents being added */
3438 {
3439 	int		byte_diff;		/* new bytes being added */
3440 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3441 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3442 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3443 	xfs_extnum_t	nex2;			/* extents after idx + count */
3444 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3445 	int		nlists;			/* number of irec's (lists) */
3446 
3447 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3448 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3449 	nex2 = erp->er_extcount - idx;
3450 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3451 
3452 	/*
3453 	 * Save second part of target extent list
3454 	 * (all extents past */
3455 	if (nex2) {
3456 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3457 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3458 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3459 		erp->er_extcount -= nex2;
3460 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3461 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3462 	}
3463 
3464 	/*
3465 	 * Add the new extents to the end of the target
3466 	 * list, then allocate new irec record(s) and
3467 	 * extent buffer(s) as needed to store the rest
3468 	 * of the new extents.
3469 	 */
3470 	ext_cnt = count;
3471 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3472 	if (ext_diff) {
3473 		erp->er_extcount += ext_diff;
3474 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3475 		ext_cnt -= ext_diff;
3476 	}
3477 	while (ext_cnt) {
3478 		erp_idx++;
3479 		erp = xfs_iext_irec_new(ifp, erp_idx);
3480 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3481 		erp->er_extcount = ext_diff;
3482 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3483 		ext_cnt -= ext_diff;
3484 	}
3485 
3486 	/* Add nex2 extents back to indirection array */
3487 	if (nex2) {
3488 		xfs_extnum_t	ext_avail;
3489 		int		i;
3490 
3491 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3492 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3493 		i = 0;
3494 		/*
3495 		 * If nex2 extents fit in the current page, append
3496 		 * nex2_ep after the new extents.
3497 		 */
3498 		if (nex2 <= ext_avail) {
3499 			i = erp->er_extcount;
3500 		}
3501 		/*
3502 		 * Otherwise, check if space is available in the
3503 		 * next page.
3504 		 */
3505 		else if ((erp_idx < nlists - 1) &&
3506 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3507 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3508 			erp_idx++;
3509 			erp++;
3510 			/* Create a hole for nex2 extents */
3511 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3512 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3513 		}
3514 		/*
3515 		 * Final choice, create a new extent page for
3516 		 * nex2 extents.
3517 		 */
3518 		else {
3519 			erp_idx++;
3520 			erp = xfs_iext_irec_new(ifp, erp_idx);
3521 		}
3522 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3523 		kmem_free(nex2_ep);
3524 		erp->er_extcount += nex2;
3525 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3526 	}
3527 }
3528 
3529 /*
3530  * This is called when the amount of space required for incore file
3531  * extents needs to be decreased. The ext_diff parameter stores the
3532  * number of extents to be removed and the idx parameter contains
3533  * the extent index where the extents will be removed from.
3534  *
3535  * If the amount of space needed has decreased below the linear
3536  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3537  * extent array.  Otherwise, use kmem_realloc() to adjust the
3538  * size to what is needed.
3539  */
3540 void
3541 xfs_iext_remove(
3542 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3543 	xfs_extnum_t	idx,		/* index to begin removing exts */
3544 	int		ext_diff)	/* number of extents to remove */
3545 {
3546 	xfs_extnum_t	nextents;	/* number of extents in file */
3547 	int		new_size;	/* size of extents after removal */
3548 
3549 	ASSERT(ext_diff > 0);
3550 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3551 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3552 
3553 	if (new_size == 0) {
3554 		xfs_iext_destroy(ifp);
3555 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3556 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3557 	} else if (ifp->if_real_bytes) {
3558 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3559 	} else {
3560 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3561 	}
3562 	ifp->if_bytes = new_size;
3563 }
3564 
3565 /*
3566  * This removes ext_diff extents from the inline buffer, beginning
3567  * at extent index idx.
3568  */
3569 void
3570 xfs_iext_remove_inline(
3571 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3572 	xfs_extnum_t	idx,		/* index to begin removing exts */
3573 	int		ext_diff)	/* number of extents to remove */
3574 {
3575 	int		nextents;	/* number of extents in file */
3576 
3577 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3578 	ASSERT(idx < XFS_INLINE_EXTS);
3579 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3580 	ASSERT(((nextents - ext_diff) > 0) &&
3581 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3582 
3583 	if (idx + ext_diff < nextents) {
3584 		memmove(&ifp->if_u2.if_inline_ext[idx],
3585 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3586 			(nextents - (idx + ext_diff)) *
3587 			 sizeof(xfs_bmbt_rec_t));
3588 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3589 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3590 	} else {
3591 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3592 			ext_diff * sizeof(xfs_bmbt_rec_t));
3593 	}
3594 }
3595 
3596 /*
3597  * This removes ext_diff extents from a linear (direct) extent list,
3598  * beginning at extent index idx. If the extents are being removed
3599  * from the end of the list (ie. truncate) then we just need to re-
3600  * allocate the list to remove the extra space. Otherwise, if the
3601  * extents are being removed from the middle of the existing extent
3602  * entries, then we first need to move the extent records beginning
3603  * at idx + ext_diff up in the list to overwrite the records being
3604  * removed, then remove the extra space via kmem_realloc.
3605  */
3606 void
3607 xfs_iext_remove_direct(
3608 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3609 	xfs_extnum_t	idx,		/* index to begin removing exts */
3610 	int		ext_diff)	/* number of extents to remove */
3611 {
3612 	xfs_extnum_t	nextents;	/* number of extents in file */
3613 	int		new_size;	/* size of extents after removal */
3614 
3615 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3616 	new_size = ifp->if_bytes -
3617 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3618 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3619 
3620 	if (new_size == 0) {
3621 		xfs_iext_destroy(ifp);
3622 		return;
3623 	}
3624 	/* Move extents up in the list (if needed) */
3625 	if (idx + ext_diff < nextents) {
3626 		memmove(&ifp->if_u1.if_extents[idx],
3627 			&ifp->if_u1.if_extents[idx + ext_diff],
3628 			(nextents - (idx + ext_diff)) *
3629 			 sizeof(xfs_bmbt_rec_t));
3630 	}
3631 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3632 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3633 	/*
3634 	 * Reallocate the direct extent list. If the extents
3635 	 * will fit inside the inode then xfs_iext_realloc_direct
3636 	 * will switch from direct to inline extent allocation
3637 	 * mode for us.
3638 	 */
3639 	xfs_iext_realloc_direct(ifp, new_size);
3640 	ifp->if_bytes = new_size;
3641 }
3642 
3643 /*
3644  * This is called when incore extents are being removed from the
3645  * indirection array and the extents being removed span multiple extent
3646  * buffers. The idx parameter contains the file extent index where we
3647  * want to begin removing extents, and the count parameter contains
3648  * how many extents need to be removed.
3649  *
3650  *    |-------|   |-------|
3651  *    | nex1  |   |       |    nex1 - number of extents before idx
3652  *    |-------|   | count |
3653  *    |       |   |       |    count - number of extents being removed at idx
3654  *    | count |   |-------|
3655  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3656  *    |-------|   |-------|
3657  */
3658 void
3659 xfs_iext_remove_indirect(
3660 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3661 	xfs_extnum_t	idx,		/* index to begin removing extents */
3662 	int		count)		/* number of extents to remove */
3663 {
3664 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3665 	int		erp_idx = 0;	/* indirection array index */
3666 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3667 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3668 	xfs_extnum_t	nex1;		/* number of extents before idx */
3669 	xfs_extnum_t	nex2;		/* extents after idx + count */
3670 	int		nlists;		/* entries in indirection array */
3671 	int		page_idx = idx;	/* index in target extent list */
3672 
3673 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3674 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3675 	ASSERT(erp != NULL);
3676 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3677 	nex1 = page_idx;
3678 	ext_cnt = count;
3679 	while (ext_cnt) {
3680 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3681 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3682 		/*
3683 		 * Check for deletion of entire list;
3684 		 * xfs_iext_irec_remove() updates extent offsets.
3685 		 */
3686 		if (ext_diff == erp->er_extcount) {
3687 			xfs_iext_irec_remove(ifp, erp_idx);
3688 			ext_cnt -= ext_diff;
3689 			nex1 = 0;
3690 			if (ext_cnt) {
3691 				ASSERT(erp_idx < ifp->if_real_bytes /
3692 					XFS_IEXT_BUFSZ);
3693 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3694 				nex1 = 0;
3695 				continue;
3696 			} else {
3697 				break;
3698 			}
3699 		}
3700 		/* Move extents up (if needed) */
3701 		if (nex2) {
3702 			memmove(&erp->er_extbuf[nex1],
3703 				&erp->er_extbuf[nex1 + ext_diff],
3704 				nex2 * sizeof(xfs_bmbt_rec_t));
3705 		}
3706 		/* Zero out rest of page */
3707 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3708 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3709 		/* Update remaining counters */
3710 		erp->er_extcount -= ext_diff;
3711 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3712 		ext_cnt -= ext_diff;
3713 		nex1 = 0;
3714 		erp_idx++;
3715 		erp++;
3716 	}
3717 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3718 	xfs_iext_irec_compact(ifp);
3719 }
3720 
3721 /*
3722  * Create, destroy, or resize a linear (direct) block of extents.
3723  */
3724 void
3725 xfs_iext_realloc_direct(
3726 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3727 	int		new_size)	/* new size of extents */
3728 {
3729 	int		rnew_size;	/* real new size of extents */
3730 
3731 	rnew_size = new_size;
3732 
3733 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3734 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3735 		 (new_size != ifp->if_real_bytes)));
3736 
3737 	/* Free extent records */
3738 	if (new_size == 0) {
3739 		xfs_iext_destroy(ifp);
3740 	}
3741 	/* Resize direct extent list and zero any new bytes */
3742 	else if (ifp->if_real_bytes) {
3743 		/* Check if extents will fit inside the inode */
3744 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3745 			xfs_iext_direct_to_inline(ifp, new_size /
3746 				(uint)sizeof(xfs_bmbt_rec_t));
3747 			ifp->if_bytes = new_size;
3748 			return;
3749 		}
3750 		if (!is_power_of_2(new_size)){
3751 			rnew_size = roundup_pow_of_two(new_size);
3752 		}
3753 		if (rnew_size != ifp->if_real_bytes) {
3754 			ifp->if_u1.if_extents =
3755 				kmem_realloc(ifp->if_u1.if_extents,
3756 						rnew_size,
3757 						ifp->if_real_bytes, KM_NOFS);
3758 		}
3759 		if (rnew_size > ifp->if_real_bytes) {
3760 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3761 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3762 				rnew_size - ifp->if_real_bytes);
3763 		}
3764 	}
3765 	/*
3766 	 * Switch from the inline extent buffer to a direct
3767 	 * extent list. Be sure to include the inline extent
3768 	 * bytes in new_size.
3769 	 */
3770 	else {
3771 		new_size += ifp->if_bytes;
3772 		if (!is_power_of_2(new_size)) {
3773 			rnew_size = roundup_pow_of_two(new_size);
3774 		}
3775 		xfs_iext_inline_to_direct(ifp, rnew_size);
3776 	}
3777 	ifp->if_real_bytes = rnew_size;
3778 	ifp->if_bytes = new_size;
3779 }
3780 
3781 /*
3782  * Switch from linear (direct) extent records to inline buffer.
3783  */
3784 void
3785 xfs_iext_direct_to_inline(
3786 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3787 	xfs_extnum_t	nextents)	/* number of extents in file */
3788 {
3789 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3790 	ASSERT(nextents <= XFS_INLINE_EXTS);
3791 	/*
3792 	 * The inline buffer was zeroed when we switched
3793 	 * from inline to direct extent allocation mode,
3794 	 * so we don't need to clear it here.
3795 	 */
3796 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3797 		nextents * sizeof(xfs_bmbt_rec_t));
3798 	kmem_free(ifp->if_u1.if_extents);
3799 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3800 	ifp->if_real_bytes = 0;
3801 }
3802 
3803 /*
3804  * Switch from inline buffer to linear (direct) extent records.
3805  * new_size should already be rounded up to the next power of 2
3806  * by the caller (when appropriate), so use new_size as it is.
3807  * However, since new_size may be rounded up, we can't update
3808  * if_bytes here. It is the caller's responsibility to update
3809  * if_bytes upon return.
3810  */
3811 void
3812 xfs_iext_inline_to_direct(
3813 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3814 	int		new_size)	/* number of extents in file */
3815 {
3816 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3817 	memset(ifp->if_u1.if_extents, 0, new_size);
3818 	if (ifp->if_bytes) {
3819 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3820 			ifp->if_bytes);
3821 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3822 			sizeof(xfs_bmbt_rec_t));
3823 	}
3824 	ifp->if_real_bytes = new_size;
3825 }
3826 
3827 /*
3828  * Resize an extent indirection array to new_size bytes.
3829  */
3830 void
3831 xfs_iext_realloc_indirect(
3832 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3833 	int		new_size)	/* new indirection array size */
3834 {
3835 	int		nlists;		/* number of irec's (ex lists) */
3836 	int		size;		/* current indirection array size */
3837 
3838 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3839 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3840 	size = nlists * sizeof(xfs_ext_irec_t);
3841 	ASSERT(ifp->if_real_bytes);
3842 	ASSERT((new_size >= 0) && (new_size != size));
3843 	if (new_size == 0) {
3844 		xfs_iext_destroy(ifp);
3845 	} else {
3846 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3847 			kmem_realloc(ifp->if_u1.if_ext_irec,
3848 				new_size, size, KM_NOFS);
3849 	}
3850 }
3851 
3852 /*
3853  * Switch from indirection array to linear (direct) extent allocations.
3854  */
3855 void
3856 xfs_iext_indirect_to_direct(
3857 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3858 {
3859 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3860 	xfs_extnum_t	nextents;	/* number of extents in file */
3861 	int		size;		/* size of file extents */
3862 
3863 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3864 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3865 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3866 	size = nextents * sizeof(xfs_bmbt_rec_t);
3867 
3868 	xfs_iext_irec_compact_pages(ifp);
3869 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3870 
3871 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3872 	kmem_free(ifp->if_u1.if_ext_irec);
3873 	ifp->if_flags &= ~XFS_IFEXTIREC;
3874 	ifp->if_u1.if_extents = ep;
3875 	ifp->if_bytes = size;
3876 	if (nextents < XFS_LINEAR_EXTS) {
3877 		xfs_iext_realloc_direct(ifp, size);
3878 	}
3879 }
3880 
3881 /*
3882  * Free incore file extents.
3883  */
3884 void
3885 xfs_iext_destroy(
3886 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3887 {
3888 	if (ifp->if_flags & XFS_IFEXTIREC) {
3889 		int	erp_idx;
3890 		int	nlists;
3891 
3892 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3893 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3894 			xfs_iext_irec_remove(ifp, erp_idx);
3895 		}
3896 		ifp->if_flags &= ~XFS_IFEXTIREC;
3897 	} else if (ifp->if_real_bytes) {
3898 		kmem_free(ifp->if_u1.if_extents);
3899 	} else if (ifp->if_bytes) {
3900 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3901 			sizeof(xfs_bmbt_rec_t));
3902 	}
3903 	ifp->if_u1.if_extents = NULL;
3904 	ifp->if_real_bytes = 0;
3905 	ifp->if_bytes = 0;
3906 }
3907 
3908 /*
3909  * Return a pointer to the extent record for file system block bno.
3910  */
3911 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3912 xfs_iext_bno_to_ext(
3913 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3914 	xfs_fileoff_t	bno,		/* block number to search for */
3915 	xfs_extnum_t	*idxp)		/* index of target extent */
3916 {
3917 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3918 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3919 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3920 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3921 	int		high;		/* upper boundary in search */
3922 	xfs_extnum_t	idx = 0;	/* index of target extent */
3923 	int		low;		/* lower boundary in search */
3924 	xfs_extnum_t	nextents;	/* number of file extents */
3925 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3926 
3927 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3928 	if (nextents == 0) {
3929 		*idxp = 0;
3930 		return NULL;
3931 	}
3932 	low = 0;
3933 	if (ifp->if_flags & XFS_IFEXTIREC) {
3934 		/* Find target extent list */
3935 		int	erp_idx = 0;
3936 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3937 		base = erp->er_extbuf;
3938 		high = erp->er_extcount - 1;
3939 	} else {
3940 		base = ifp->if_u1.if_extents;
3941 		high = nextents - 1;
3942 	}
3943 	/* Binary search extent records */
3944 	while (low <= high) {
3945 		idx = (low + high) >> 1;
3946 		ep = base + idx;
3947 		startoff = xfs_bmbt_get_startoff(ep);
3948 		blockcount = xfs_bmbt_get_blockcount(ep);
3949 		if (bno < startoff) {
3950 			high = idx - 1;
3951 		} else if (bno >= startoff + blockcount) {
3952 			low = idx + 1;
3953 		} else {
3954 			/* Convert back to file-based extent index */
3955 			if (ifp->if_flags & XFS_IFEXTIREC) {
3956 				idx += erp->er_extoff;
3957 			}
3958 			*idxp = idx;
3959 			return ep;
3960 		}
3961 	}
3962 	/* Convert back to file-based extent index */
3963 	if (ifp->if_flags & XFS_IFEXTIREC) {
3964 		idx += erp->er_extoff;
3965 	}
3966 	if (bno >= startoff + blockcount) {
3967 		if (++idx == nextents) {
3968 			ep = NULL;
3969 		} else {
3970 			ep = xfs_iext_get_ext(ifp, idx);
3971 		}
3972 	}
3973 	*idxp = idx;
3974 	return ep;
3975 }
3976 
3977 /*
3978  * Return a pointer to the indirection array entry containing the
3979  * extent record for filesystem block bno. Store the index of the
3980  * target irec in *erp_idxp.
3981  */
3982 xfs_ext_irec_t *			/* pointer to found extent record */
3983 xfs_iext_bno_to_irec(
3984 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3985 	xfs_fileoff_t	bno,		/* block number to search for */
3986 	int		*erp_idxp)	/* irec index of target ext list */
3987 {
3988 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3989 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3990 	int		erp_idx;	/* indirection array index */
3991 	int		nlists;		/* number of extent irec's (lists) */
3992 	int		high;		/* binary search upper limit */
3993 	int		low;		/* binary search lower limit */
3994 
3995 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3996 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3997 	erp_idx = 0;
3998 	low = 0;
3999 	high = nlists - 1;
4000 	while (low <= high) {
4001 		erp_idx = (low + high) >> 1;
4002 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4003 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4004 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4005 			high = erp_idx - 1;
4006 		} else if (erp_next && bno >=
4007 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4008 			low = erp_idx + 1;
4009 		} else {
4010 			break;
4011 		}
4012 	}
4013 	*erp_idxp = erp_idx;
4014 	return erp;
4015 }
4016 
4017 /*
4018  * Return a pointer to the indirection array entry containing the
4019  * extent record at file extent index *idxp. Store the index of the
4020  * target irec in *erp_idxp and store the page index of the target
4021  * extent record in *idxp.
4022  */
4023 xfs_ext_irec_t *
4024 xfs_iext_idx_to_irec(
4025 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4026 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4027 	int		*erp_idxp,	/* pointer to target irec */
4028 	int		realloc)	/* new bytes were just added */
4029 {
4030 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4031 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4032 	int		erp_idx;	/* indirection array index */
4033 	int		nlists;		/* number of irec's (ex lists) */
4034 	int		high;		/* binary search upper limit */
4035 	int		low;		/* binary search lower limit */
4036 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4037 
4038 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4039 	ASSERT(page_idx >= 0 && page_idx <=
4040 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4041 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4042 	erp_idx = 0;
4043 	low = 0;
4044 	high = nlists - 1;
4045 
4046 	/* Binary search extent irec's */
4047 	while (low <= high) {
4048 		erp_idx = (low + high) >> 1;
4049 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4050 		prev = erp_idx > 0 ? erp - 1 : NULL;
4051 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4052 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4053 			high = erp_idx - 1;
4054 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4055 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4056 			    !realloc)) {
4057 			low = erp_idx + 1;
4058 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4059 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4060 			ASSERT(realloc);
4061 			page_idx = 0;
4062 			erp_idx++;
4063 			erp = erp_idx < nlists ? erp + 1 : NULL;
4064 			break;
4065 		} else {
4066 			page_idx -= erp->er_extoff;
4067 			break;
4068 		}
4069 	}
4070 	*idxp = page_idx;
4071 	*erp_idxp = erp_idx;
4072 	return(erp);
4073 }
4074 
4075 /*
4076  * Allocate and initialize an indirection array once the space needed
4077  * for incore extents increases above XFS_IEXT_BUFSZ.
4078  */
4079 void
4080 xfs_iext_irec_init(
4081 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4082 {
4083 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4084 	xfs_extnum_t	nextents;	/* number of extents in file */
4085 
4086 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4087 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4088 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4089 
4090 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4091 
4092 	if (nextents == 0) {
4093 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4094 	} else if (!ifp->if_real_bytes) {
4095 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4096 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4097 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4098 	}
4099 	erp->er_extbuf = ifp->if_u1.if_extents;
4100 	erp->er_extcount = nextents;
4101 	erp->er_extoff = 0;
4102 
4103 	ifp->if_flags |= XFS_IFEXTIREC;
4104 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4105 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4106 	ifp->if_u1.if_ext_irec = erp;
4107 
4108 	return;
4109 }
4110 
4111 /*
4112  * Allocate and initialize a new entry in the indirection array.
4113  */
4114 xfs_ext_irec_t *
4115 xfs_iext_irec_new(
4116 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4117 	int		erp_idx)	/* index for new irec */
4118 {
4119 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4120 	int		i;		/* loop counter */
4121 	int		nlists;		/* number of irec's (ex lists) */
4122 
4123 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4124 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4125 
4126 	/* Resize indirection array */
4127 	xfs_iext_realloc_indirect(ifp, ++nlists *
4128 				  sizeof(xfs_ext_irec_t));
4129 	/*
4130 	 * Move records down in the array so the
4131 	 * new page can use erp_idx.
4132 	 */
4133 	erp = ifp->if_u1.if_ext_irec;
4134 	for (i = nlists - 1; i > erp_idx; i--) {
4135 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4136 	}
4137 	ASSERT(i == erp_idx);
4138 
4139 	/* Initialize new extent record */
4140 	erp = ifp->if_u1.if_ext_irec;
4141 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4142 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4143 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4144 	erp[erp_idx].er_extcount = 0;
4145 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4146 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4147 	return (&erp[erp_idx]);
4148 }
4149 
4150 /*
4151  * Remove a record from the indirection array.
4152  */
4153 void
4154 xfs_iext_irec_remove(
4155 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4156 	int		erp_idx)	/* irec index to remove */
4157 {
4158 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4159 	int		i;		/* loop counter */
4160 	int		nlists;		/* number of irec's (ex lists) */
4161 
4162 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4163 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4164 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4165 	if (erp->er_extbuf) {
4166 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4167 			-erp->er_extcount);
4168 		kmem_free(erp->er_extbuf);
4169 	}
4170 	/* Compact extent records */
4171 	erp = ifp->if_u1.if_ext_irec;
4172 	for (i = erp_idx; i < nlists - 1; i++) {
4173 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4174 	}
4175 	/*
4176 	 * Manually free the last extent record from the indirection
4177 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4178 	 * of zero would result in a call to xfs_iext_destroy() which
4179 	 * would in turn call this function again, creating a nasty
4180 	 * infinite loop.
4181 	 */
4182 	if (--nlists) {
4183 		xfs_iext_realloc_indirect(ifp,
4184 			nlists * sizeof(xfs_ext_irec_t));
4185 	} else {
4186 		kmem_free(ifp->if_u1.if_ext_irec);
4187 	}
4188 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4189 }
4190 
4191 /*
4192  * This is called to clean up large amounts of unused memory allocated
4193  * by the indirection array.  Before compacting anything though, verify
4194  * that the indirection array is still needed and switch back to the
4195  * linear extent list (or even the inline buffer) if possible.  The
4196  * compaction policy is as follows:
4197  *
4198  *    Full Compaction: Extents fit into a single page (or inline buffer)
4199  * Partial Compaction: Extents occupy less than 50% of allocated space
4200  *      No Compaction: Extents occupy at least 50% of allocated space
4201  */
4202 void
4203 xfs_iext_irec_compact(
4204 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4205 {
4206 	xfs_extnum_t	nextents;	/* number of extents in file */
4207 	int		nlists;		/* number of irec's (ex lists) */
4208 
4209 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4210 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4211 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4212 
4213 	if (nextents == 0) {
4214 		xfs_iext_destroy(ifp);
4215 	} else if (nextents <= XFS_INLINE_EXTS) {
4216 		xfs_iext_indirect_to_direct(ifp);
4217 		xfs_iext_direct_to_inline(ifp, nextents);
4218 	} else if (nextents <= XFS_LINEAR_EXTS) {
4219 		xfs_iext_indirect_to_direct(ifp);
4220 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4221 		xfs_iext_irec_compact_pages(ifp);
4222 	}
4223 }
4224 
4225 /*
4226  * Combine extents from neighboring extent pages.
4227  */
4228 void
4229 xfs_iext_irec_compact_pages(
4230 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4231 {
4232 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4233 	int		erp_idx = 0;	/* indirection array index */
4234 	int		nlists;		/* number of irec's (ex lists) */
4235 
4236 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4237 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4238 	while (erp_idx < nlists - 1) {
4239 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4240 		erp_next = erp + 1;
4241 		if (erp_next->er_extcount <=
4242 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4243 			memcpy(&erp->er_extbuf[erp->er_extcount],
4244 				erp_next->er_extbuf, erp_next->er_extcount *
4245 				sizeof(xfs_bmbt_rec_t));
4246 			erp->er_extcount += erp_next->er_extcount;
4247 			/*
4248 			 * Free page before removing extent record
4249 			 * so er_extoffs don't get modified in
4250 			 * xfs_iext_irec_remove.
4251 			 */
4252 			kmem_free(erp_next->er_extbuf);
4253 			erp_next->er_extbuf = NULL;
4254 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4255 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4256 		} else {
4257 			erp_idx++;
4258 		}
4259 	}
4260 }
4261 
4262 /*
4263  * This is called to update the er_extoff field in the indirection
4264  * array when extents have been added or removed from one of the
4265  * extent lists. erp_idx contains the irec index to begin updating
4266  * at and ext_diff contains the number of extents that were added
4267  * or removed.
4268  */
4269 void
4270 xfs_iext_irec_update_extoffs(
4271 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4272 	int		erp_idx,	/* irec index to update */
4273 	int		ext_diff)	/* number of new extents */
4274 {
4275 	int		i;		/* loop counter */
4276 	int		nlists;		/* number of irec's (ex lists */
4277 
4278 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4279 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4280 	for (i = erp_idx; i < nlists; i++) {
4281 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4282 	}
4283 }
4284