1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 /* 59 * No point in aligning allocations if we need to COW to actually 60 * write to them. 61 */ 62 if (xfs_is_always_cow_inode(ip)) 63 return 0; 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_afp && 129 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && 130 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 131 lock_mode = XFS_ILOCK_EXCL; 132 xfs_ilock(ip, lock_mode); 133 return lock_mode; 134 } 135 136 /* 137 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 138 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 139 * various combinations of the locks to be obtained. 140 * 141 * The 3 locks should always be ordered so that the IO lock is obtained first, 142 * the mmap lock second and the ilock last in order to prevent deadlock. 143 * 144 * Basic locking order: 145 * 146 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 147 * 148 * mmap_lock locking order: 149 * 150 * i_rwsem -> page lock -> mmap_lock 151 * mmap_lock -> i_mmap_lock -> page_lock 152 * 153 * The difference in mmap_lock locking order mean that we cannot hold the 154 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 155 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 156 * in get_user_pages() to map the user pages into the kernel address space for 157 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 158 * page faults already hold the mmap_lock. 159 * 160 * Hence to serialise fully against both syscall and mmap based IO, we need to 161 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 162 * taken in places where we need to invalidate the page cache in a race 163 * free manner (e.g. truncate, hole punch and other extent manipulation 164 * functions). 165 */ 166 void 167 xfs_ilock( 168 xfs_inode_t *ip, 169 uint lock_flags) 170 { 171 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 172 173 /* 174 * You can't set both SHARED and EXCL for the same lock, 175 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 176 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 177 */ 178 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 179 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 180 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 181 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 182 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 183 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 184 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 185 186 if (lock_flags & XFS_IOLOCK_EXCL) { 187 down_write_nested(&VFS_I(ip)->i_rwsem, 188 XFS_IOLOCK_DEP(lock_flags)); 189 } else if (lock_flags & XFS_IOLOCK_SHARED) { 190 down_read_nested(&VFS_I(ip)->i_rwsem, 191 XFS_IOLOCK_DEP(lock_flags)); 192 } 193 194 if (lock_flags & XFS_MMAPLOCK_EXCL) 195 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 196 else if (lock_flags & XFS_MMAPLOCK_SHARED) 197 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 198 199 if (lock_flags & XFS_ILOCK_EXCL) 200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 201 else if (lock_flags & XFS_ILOCK_SHARED) 202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 203 } 204 205 /* 206 * This is just like xfs_ilock(), except that the caller 207 * is guaranteed not to sleep. It returns 1 if it gets 208 * the requested locks and 0 otherwise. If the IO lock is 209 * obtained but the inode lock cannot be, then the IO lock 210 * is dropped before returning. 211 * 212 * ip -- the inode being locked 213 * lock_flags -- this parameter indicates the inode's locks to be 214 * to be locked. See the comment for xfs_ilock() for a list 215 * of valid values. 216 */ 217 int 218 xfs_ilock_nowait( 219 xfs_inode_t *ip, 220 uint lock_flags) 221 { 222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 223 224 /* 225 * You can't set both SHARED and EXCL for the same lock, 226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 228 */ 229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!mrtryupdate(&ip->i_mmaplock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!mrtryaccess(&ip->i_mmaplock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 mrunlock_excl(&ip->i_mmaplock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 mrunlock_shared(&ip->i_mmaplock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 /* 294 * You can't set both SHARED and EXCL for the same lock, 295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 297 */ 298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 305 ASSERT(lock_flags != 0); 306 307 if (lock_flags & XFS_IOLOCK_EXCL) 308 up_write(&VFS_I(ip)->i_rwsem); 309 else if (lock_flags & XFS_IOLOCK_SHARED) 310 up_read(&VFS_I(ip)->i_rwsem); 311 312 if (lock_flags & XFS_MMAPLOCK_EXCL) 313 mrunlock_excl(&ip->i_mmaplock); 314 else if (lock_flags & XFS_MMAPLOCK_SHARED) 315 mrunlock_shared(&ip->i_mmaplock); 316 317 if (lock_flags & XFS_ILOCK_EXCL) 318 mrunlock_excl(&ip->i_lock); 319 else if (lock_flags & XFS_ILOCK_SHARED) 320 mrunlock_shared(&ip->i_lock); 321 322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 323 } 324 325 /* 326 * give up write locks. the i/o lock cannot be held nested 327 * if it is being demoted. 328 */ 329 void 330 xfs_ilock_demote( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 335 ASSERT((lock_flags & 336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 337 338 if (lock_flags & XFS_ILOCK_EXCL) 339 mrdemote(&ip->i_lock); 340 if (lock_flags & XFS_MMAPLOCK_EXCL) 341 mrdemote(&ip->i_mmaplock); 342 if (lock_flags & XFS_IOLOCK_EXCL) 343 downgrade_write(&VFS_I(ip)->i_rwsem); 344 345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 346 } 347 348 #if defined(DEBUG) || defined(XFS_WARN) 349 int 350 xfs_isilocked( 351 xfs_inode_t *ip, 352 uint lock_flags) 353 { 354 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 355 if (!(lock_flags & XFS_ILOCK_SHARED)) 356 return !!ip->i_lock.mr_writer; 357 return rwsem_is_locked(&ip->i_lock.mr_lock); 358 } 359 360 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 361 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 362 return !!ip->i_mmaplock.mr_writer; 363 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 364 } 365 366 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 367 if (!(lock_flags & XFS_IOLOCK_SHARED)) 368 return !debug_locks || 369 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 370 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 371 } 372 373 ASSERT(0); 374 return 0; 375 } 376 #endif 377 378 /* 379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 382 * errors and warnings. 383 */ 384 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 385 static bool 386 xfs_lockdep_subclass_ok( 387 int subclass) 388 { 389 return subclass < MAX_LOCKDEP_SUBCLASSES; 390 } 391 #else 392 #define xfs_lockdep_subclass_ok(subclass) (true) 393 #endif 394 395 /* 396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 397 * value. This can be called for any type of inode lock combination, including 398 * parent locking. Care must be taken to ensure we don't overrun the subclass 399 * storage fields in the class mask we build. 400 */ 401 static inline int 402 xfs_lock_inumorder(int lock_mode, int subclass) 403 { 404 int class = 0; 405 406 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 407 XFS_ILOCK_RTSUM))); 408 ASSERT(xfs_lockdep_subclass_ok(subclass)); 409 410 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 411 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 412 class += subclass << XFS_IOLOCK_SHIFT; 413 } 414 415 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 416 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 417 class += subclass << XFS_MMAPLOCK_SHIFT; 418 } 419 420 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 421 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 422 class += subclass << XFS_ILOCK_SHIFT; 423 } 424 425 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 426 } 427 428 /* 429 * The following routine will lock n inodes in exclusive mode. We assume the 430 * caller calls us with the inodes in i_ino order. 431 * 432 * We need to detect deadlock where an inode that we lock is in the AIL and we 433 * start waiting for another inode that is locked by a thread in a long running 434 * transaction (such as truncate). This can result in deadlock since the long 435 * running trans might need to wait for the inode we just locked in order to 436 * push the tail and free space in the log. 437 * 438 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 439 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 440 * lock more than one at a time, lockdep will report false positives saying we 441 * have violated locking orders. 442 */ 443 static void 444 xfs_lock_inodes( 445 struct xfs_inode **ips, 446 int inodes, 447 uint lock_mode) 448 { 449 int attempts = 0, i, j, try_lock; 450 struct xfs_log_item *lp; 451 452 /* 453 * Currently supports between 2 and 5 inodes with exclusive locking. We 454 * support an arbitrary depth of locking here, but absolute limits on 455 * inodes depend on the the type of locking and the limits placed by 456 * lockdep annotations in xfs_lock_inumorder. These are all checked by 457 * the asserts. 458 */ 459 ASSERT(ips && inodes >= 2 && inodes <= 5); 460 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 461 XFS_ILOCK_EXCL)); 462 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 463 XFS_ILOCK_SHARED))); 464 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 465 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 466 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 467 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 468 469 if (lock_mode & XFS_IOLOCK_EXCL) { 470 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 471 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 472 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 473 474 try_lock = 0; 475 i = 0; 476 again: 477 for (; i < inodes; i++) { 478 ASSERT(ips[i]); 479 480 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 481 continue; 482 483 /* 484 * If try_lock is not set yet, make sure all locked inodes are 485 * not in the AIL. If any are, set try_lock to be used later. 486 */ 487 if (!try_lock) { 488 for (j = (i - 1); j >= 0 && !try_lock; j--) { 489 lp = &ips[j]->i_itemp->ili_item; 490 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 491 try_lock++; 492 } 493 } 494 495 /* 496 * If any of the previous locks we have locked is in the AIL, 497 * we must TRY to get the second and subsequent locks. If 498 * we can't get any, we must release all we have 499 * and try again. 500 */ 501 if (!try_lock) { 502 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 503 continue; 504 } 505 506 /* try_lock means we have an inode locked that is in the AIL. */ 507 ASSERT(i != 0); 508 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 509 continue; 510 511 /* 512 * Unlock all previous guys and try again. xfs_iunlock will try 513 * to push the tail if the inode is in the AIL. 514 */ 515 attempts++; 516 for (j = i - 1; j >= 0; j--) { 517 /* 518 * Check to see if we've already unlocked this one. Not 519 * the first one going back, and the inode ptr is the 520 * same. 521 */ 522 if (j != (i - 1) && ips[j] == ips[j + 1]) 523 continue; 524 525 xfs_iunlock(ips[j], lock_mode); 526 } 527 528 if ((attempts % 5) == 0) { 529 delay(1); /* Don't just spin the CPU */ 530 } 531 i = 0; 532 try_lock = 0; 533 goto again; 534 } 535 } 536 537 /* 538 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 539 * the mmaplock or the ilock, but not more than one type at a time. If we lock 540 * more than one at a time, lockdep will report false positives saying we have 541 * violated locking orders. The iolock must be double-locked separately since 542 * we use i_rwsem for that. We now support taking one lock EXCL and the other 543 * SHARED. 544 */ 545 void 546 xfs_lock_two_inodes( 547 struct xfs_inode *ip0, 548 uint ip0_mode, 549 struct xfs_inode *ip1, 550 uint ip1_mode) 551 { 552 struct xfs_inode *temp; 553 uint mode_temp; 554 int attempts = 0; 555 struct xfs_log_item *lp; 556 557 ASSERT(hweight32(ip0_mode) == 1); 558 ASSERT(hweight32(ip1_mode) == 1); 559 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 561 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 562 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 563 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 564 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 565 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 566 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 567 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 568 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 569 570 ASSERT(ip0->i_ino != ip1->i_ino); 571 572 if (ip0->i_ino > ip1->i_ino) { 573 temp = ip0; 574 ip0 = ip1; 575 ip1 = temp; 576 mode_temp = ip0_mode; 577 ip0_mode = ip1_mode; 578 ip1_mode = mode_temp; 579 } 580 581 again: 582 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 583 584 /* 585 * If the first lock we have locked is in the AIL, we must TRY to get 586 * the second lock. If we can't get it, we must release the first one 587 * and try again. 588 */ 589 lp = &ip0->i_itemp->ili_item; 590 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 591 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 592 xfs_iunlock(ip0, ip0_mode); 593 if ((++attempts % 5) == 0) 594 delay(1); /* Don't just spin the CPU */ 595 goto again; 596 } 597 } else { 598 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 599 } 600 } 601 602 void 603 __xfs_iflock( 604 struct xfs_inode *ip) 605 { 606 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 607 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 608 609 do { 610 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 611 if (xfs_isiflocked(ip)) 612 io_schedule(); 613 } while (!xfs_iflock_nowait(ip)); 614 615 finish_wait(wq, &wait.wq_entry); 616 } 617 618 STATIC uint 619 _xfs_dic2xflags( 620 uint16_t di_flags, 621 uint64_t di_flags2, 622 bool has_attr) 623 { 624 uint flags = 0; 625 626 if (di_flags & XFS_DIFLAG_ANY) { 627 if (di_flags & XFS_DIFLAG_REALTIME) 628 flags |= FS_XFLAG_REALTIME; 629 if (di_flags & XFS_DIFLAG_PREALLOC) 630 flags |= FS_XFLAG_PREALLOC; 631 if (di_flags & XFS_DIFLAG_IMMUTABLE) 632 flags |= FS_XFLAG_IMMUTABLE; 633 if (di_flags & XFS_DIFLAG_APPEND) 634 flags |= FS_XFLAG_APPEND; 635 if (di_flags & XFS_DIFLAG_SYNC) 636 flags |= FS_XFLAG_SYNC; 637 if (di_flags & XFS_DIFLAG_NOATIME) 638 flags |= FS_XFLAG_NOATIME; 639 if (di_flags & XFS_DIFLAG_NODUMP) 640 flags |= FS_XFLAG_NODUMP; 641 if (di_flags & XFS_DIFLAG_RTINHERIT) 642 flags |= FS_XFLAG_RTINHERIT; 643 if (di_flags & XFS_DIFLAG_PROJINHERIT) 644 flags |= FS_XFLAG_PROJINHERIT; 645 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 646 flags |= FS_XFLAG_NOSYMLINKS; 647 if (di_flags & XFS_DIFLAG_EXTSIZE) 648 flags |= FS_XFLAG_EXTSIZE; 649 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 650 flags |= FS_XFLAG_EXTSZINHERIT; 651 if (di_flags & XFS_DIFLAG_NODEFRAG) 652 flags |= FS_XFLAG_NODEFRAG; 653 if (di_flags & XFS_DIFLAG_FILESTREAM) 654 flags |= FS_XFLAG_FILESTREAM; 655 } 656 657 if (di_flags2 & XFS_DIFLAG2_ANY) { 658 if (di_flags2 & XFS_DIFLAG2_DAX) 659 flags |= FS_XFLAG_DAX; 660 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 661 flags |= FS_XFLAG_COWEXTSIZE; 662 } 663 664 if (has_attr) 665 flags |= FS_XFLAG_HASATTR; 666 667 return flags; 668 } 669 670 uint 671 xfs_ip2xflags( 672 struct xfs_inode *ip) 673 { 674 struct xfs_icdinode *dic = &ip->i_d; 675 676 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 677 } 678 679 /* 680 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 681 * is allowed, otherwise it has to be an exact match. If a CI match is found, 682 * ci_name->name will point to a the actual name (caller must free) or 683 * will be set to NULL if an exact match is found. 684 */ 685 int 686 xfs_lookup( 687 xfs_inode_t *dp, 688 struct xfs_name *name, 689 xfs_inode_t **ipp, 690 struct xfs_name *ci_name) 691 { 692 xfs_ino_t inum; 693 int error; 694 695 trace_xfs_lookup(dp, name); 696 697 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 698 return -EIO; 699 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 701 if (error) 702 goto out_unlock; 703 704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 705 if (error) 706 goto out_free_name; 707 708 return 0; 709 710 out_free_name: 711 if (ci_name) 712 kmem_free(ci_name->name); 713 out_unlock: 714 *ipp = NULL; 715 return error; 716 } 717 718 /* 719 * Allocate an inode on disk and return a copy of its in-core version. 720 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 721 * appropriately within the inode. The uid and gid for the inode are 722 * set according to the contents of the given cred structure. 723 * 724 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 725 * has a free inode available, call xfs_iget() to obtain the in-core 726 * version of the allocated inode. Finally, fill in the inode and 727 * log its initial contents. In this case, ialloc_context would be 728 * set to NULL. 729 * 730 * If xfs_dialloc() does not have an available inode, it will replenish 731 * its supply by doing an allocation. Since we can only do one 732 * allocation within a transaction without deadlocks, we must commit 733 * the current transaction before returning the inode itself. 734 * In this case, therefore, we will set ialloc_context and return. 735 * The caller should then commit the current transaction, start a new 736 * transaction, and call xfs_ialloc() again to actually get the inode. 737 * 738 * To ensure that some other process does not grab the inode that 739 * was allocated during the first call to xfs_ialloc(), this routine 740 * also returns the [locked] bp pointing to the head of the freelist 741 * as ialloc_context. The caller should hold this buffer across 742 * the commit and pass it back into this routine on the second call. 743 * 744 * If we are allocating quota inodes, we do not have a parent inode 745 * to attach to or associate with (i.e. pip == NULL) because they 746 * are not linked into the directory structure - they are attached 747 * directly to the superblock - and so have no parent. 748 */ 749 static int 750 xfs_ialloc( 751 xfs_trans_t *tp, 752 xfs_inode_t *pip, 753 umode_t mode, 754 xfs_nlink_t nlink, 755 dev_t rdev, 756 prid_t prid, 757 xfs_buf_t **ialloc_context, 758 xfs_inode_t **ipp) 759 { 760 struct xfs_mount *mp = tp->t_mountp; 761 xfs_ino_t ino; 762 xfs_inode_t *ip; 763 uint flags; 764 int error; 765 struct timespec64 tv; 766 struct inode *inode; 767 768 /* 769 * Call the space management code to pick 770 * the on-disk inode to be allocated. 771 */ 772 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 773 ialloc_context, &ino); 774 if (error) 775 return error; 776 if (*ialloc_context || ino == NULLFSINO) { 777 *ipp = NULL; 778 return 0; 779 } 780 ASSERT(*ialloc_context == NULL); 781 782 /* 783 * Protect against obviously corrupt allocation btree records. Later 784 * xfs_iget checks will catch re-allocation of other active in-memory 785 * and on-disk inodes. If we don't catch reallocating the parent inode 786 * here we will deadlock in xfs_iget() so we have to do these checks 787 * first. 788 */ 789 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 790 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 791 return -EFSCORRUPTED; 792 } 793 794 /* 795 * Get the in-core inode with the lock held exclusively. 796 * This is because we're setting fields here we need 797 * to prevent others from looking at until we're done. 798 */ 799 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 800 XFS_ILOCK_EXCL, &ip); 801 if (error) 802 return error; 803 ASSERT(ip != NULL); 804 inode = VFS_I(ip); 805 inode->i_mode = mode; 806 set_nlink(inode, nlink); 807 inode->i_uid = current_fsuid(); 808 inode->i_rdev = rdev; 809 ip->i_d.di_projid = prid; 810 811 if (pip && XFS_INHERIT_GID(pip)) { 812 inode->i_gid = VFS_I(pip)->i_gid; 813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 814 inode->i_mode |= S_ISGID; 815 } else { 816 inode->i_gid = current_fsgid(); 817 } 818 819 /* 820 * If the group ID of the new file does not match the effective group 821 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 822 * (and only if the irix_sgid_inherit compatibility variable is set). 823 */ 824 if (irix_sgid_inherit && 825 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) 826 inode->i_mode &= ~S_ISGID; 827 828 ip->i_d.di_size = 0; 829 ip->i_df.if_nextents = 0; 830 ASSERT(ip->i_d.di_nblocks == 0); 831 832 tv = current_time(inode); 833 inode->i_mtime = tv; 834 inode->i_atime = tv; 835 inode->i_ctime = tv; 836 837 ip->i_d.di_extsize = 0; 838 ip->i_d.di_dmevmask = 0; 839 ip->i_d.di_dmstate = 0; 840 ip->i_d.di_flags = 0; 841 842 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 843 inode_set_iversion(inode, 1); 844 ip->i_d.di_flags2 = 0; 845 ip->i_d.di_cowextsize = 0; 846 ip->i_d.di_crtime = tv; 847 } 848 849 flags = XFS_ILOG_CORE; 850 switch (mode & S_IFMT) { 851 case S_IFIFO: 852 case S_IFCHR: 853 case S_IFBLK: 854 case S_IFSOCK: 855 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 856 ip->i_df.if_flags = 0; 857 flags |= XFS_ILOG_DEV; 858 break; 859 case S_IFREG: 860 case S_IFDIR: 861 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 862 uint di_flags = 0; 863 864 if (S_ISDIR(mode)) { 865 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 866 di_flags |= XFS_DIFLAG_RTINHERIT; 867 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 868 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 869 ip->i_d.di_extsize = pip->i_d.di_extsize; 870 } 871 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 872 di_flags |= XFS_DIFLAG_PROJINHERIT; 873 } else if (S_ISREG(mode)) { 874 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 875 di_flags |= XFS_DIFLAG_REALTIME; 876 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 877 di_flags |= XFS_DIFLAG_EXTSIZE; 878 ip->i_d.di_extsize = pip->i_d.di_extsize; 879 } 880 } 881 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 882 xfs_inherit_noatime) 883 di_flags |= XFS_DIFLAG_NOATIME; 884 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 885 xfs_inherit_nodump) 886 di_flags |= XFS_DIFLAG_NODUMP; 887 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 888 xfs_inherit_sync) 889 di_flags |= XFS_DIFLAG_SYNC; 890 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 891 xfs_inherit_nosymlinks) 892 di_flags |= XFS_DIFLAG_NOSYMLINKS; 893 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 894 xfs_inherit_nodefrag) 895 di_flags |= XFS_DIFLAG_NODEFRAG; 896 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 897 di_flags |= XFS_DIFLAG_FILESTREAM; 898 899 ip->i_d.di_flags |= di_flags; 900 } 901 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) { 902 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 903 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 904 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 905 } 906 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 907 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 908 } 909 /* FALLTHROUGH */ 910 case S_IFLNK: 911 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 912 ip->i_df.if_flags = XFS_IFEXTENTS; 913 ip->i_df.if_bytes = 0; 914 ip->i_df.if_u1.if_root = NULL; 915 break; 916 default: 917 ASSERT(0); 918 } 919 920 /* 921 * Log the new values stuffed into the inode. 922 */ 923 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 924 xfs_trans_log_inode(tp, ip, flags); 925 926 /* now that we have an i_mode we can setup the inode structure */ 927 xfs_setup_inode(ip); 928 929 *ipp = ip; 930 return 0; 931 } 932 933 /* 934 * Allocates a new inode from disk and return a pointer to the 935 * incore copy. This routine will internally commit the current 936 * transaction and allocate a new one if the Space Manager needed 937 * to do an allocation to replenish the inode free-list. 938 * 939 * This routine is designed to be called from xfs_create and 940 * xfs_create_dir. 941 * 942 */ 943 int 944 xfs_dir_ialloc( 945 xfs_trans_t **tpp, /* input: current transaction; 946 output: may be a new transaction. */ 947 xfs_inode_t *dp, /* directory within whose allocate 948 the inode. */ 949 umode_t mode, 950 xfs_nlink_t nlink, 951 dev_t rdev, 952 prid_t prid, /* project id */ 953 xfs_inode_t **ipp) /* pointer to inode; it will be 954 locked. */ 955 { 956 xfs_trans_t *tp; 957 xfs_inode_t *ip; 958 xfs_buf_t *ialloc_context = NULL; 959 int code; 960 void *dqinfo; 961 uint tflags; 962 963 tp = *tpp; 964 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 965 966 /* 967 * xfs_ialloc will return a pointer to an incore inode if 968 * the Space Manager has an available inode on the free 969 * list. Otherwise, it will do an allocation and replenish 970 * the freelist. Since we can only do one allocation per 971 * transaction without deadlocks, we will need to commit the 972 * current transaction and start a new one. We will then 973 * need to call xfs_ialloc again to get the inode. 974 * 975 * If xfs_ialloc did an allocation to replenish the freelist, 976 * it returns the bp containing the head of the freelist as 977 * ialloc_context. We will hold a lock on it across the 978 * transaction commit so that no other process can steal 979 * the inode(s) that we've just allocated. 980 */ 981 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 982 &ip); 983 984 /* 985 * Return an error if we were unable to allocate a new inode. 986 * This should only happen if we run out of space on disk or 987 * encounter a disk error. 988 */ 989 if (code) { 990 *ipp = NULL; 991 return code; 992 } 993 if (!ialloc_context && !ip) { 994 *ipp = NULL; 995 return -ENOSPC; 996 } 997 998 /* 999 * If the AGI buffer is non-NULL, then we were unable to get an 1000 * inode in one operation. We need to commit the current 1001 * transaction and call xfs_ialloc() again. It is guaranteed 1002 * to succeed the second time. 1003 */ 1004 if (ialloc_context) { 1005 /* 1006 * Normally, xfs_trans_commit releases all the locks. 1007 * We call bhold to hang on to the ialloc_context across 1008 * the commit. Holding this buffer prevents any other 1009 * processes from doing any allocations in this 1010 * allocation group. 1011 */ 1012 xfs_trans_bhold(tp, ialloc_context); 1013 1014 /* 1015 * We want the quota changes to be associated with the next 1016 * transaction, NOT this one. So, detach the dqinfo from this 1017 * and attach it to the next transaction. 1018 */ 1019 dqinfo = NULL; 1020 tflags = 0; 1021 if (tp->t_dqinfo) { 1022 dqinfo = (void *)tp->t_dqinfo; 1023 tp->t_dqinfo = NULL; 1024 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1025 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1026 } 1027 1028 code = xfs_trans_roll(&tp); 1029 1030 /* 1031 * Re-attach the quota info that we detached from prev trx. 1032 */ 1033 if (dqinfo) { 1034 tp->t_dqinfo = dqinfo; 1035 tp->t_flags |= tflags; 1036 } 1037 1038 if (code) { 1039 xfs_buf_relse(ialloc_context); 1040 *tpp = tp; 1041 *ipp = NULL; 1042 return code; 1043 } 1044 xfs_trans_bjoin(tp, ialloc_context); 1045 1046 /* 1047 * Call ialloc again. Since we've locked out all 1048 * other allocations in this allocation group, 1049 * this call should always succeed. 1050 */ 1051 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1052 &ialloc_context, &ip); 1053 1054 /* 1055 * If we get an error at this point, return to the caller 1056 * so that the current transaction can be aborted. 1057 */ 1058 if (code) { 1059 *tpp = tp; 1060 *ipp = NULL; 1061 return code; 1062 } 1063 ASSERT(!ialloc_context && ip); 1064 1065 } 1066 1067 *ipp = ip; 1068 *tpp = tp; 1069 1070 return 0; 1071 } 1072 1073 /* 1074 * Decrement the link count on an inode & log the change. If this causes the 1075 * link count to go to zero, move the inode to AGI unlinked list so that it can 1076 * be freed when the last active reference goes away via xfs_inactive(). 1077 */ 1078 static int /* error */ 1079 xfs_droplink( 1080 xfs_trans_t *tp, 1081 xfs_inode_t *ip) 1082 { 1083 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1084 1085 drop_nlink(VFS_I(ip)); 1086 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1087 1088 if (VFS_I(ip)->i_nlink) 1089 return 0; 1090 1091 return xfs_iunlink(tp, ip); 1092 } 1093 1094 /* 1095 * Increment the link count on an inode & log the change. 1096 */ 1097 static void 1098 xfs_bumplink( 1099 xfs_trans_t *tp, 1100 xfs_inode_t *ip) 1101 { 1102 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1103 1104 inc_nlink(VFS_I(ip)); 1105 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1106 } 1107 1108 int 1109 xfs_create( 1110 xfs_inode_t *dp, 1111 struct xfs_name *name, 1112 umode_t mode, 1113 dev_t rdev, 1114 xfs_inode_t **ipp) 1115 { 1116 int is_dir = S_ISDIR(mode); 1117 struct xfs_mount *mp = dp->i_mount; 1118 struct xfs_inode *ip = NULL; 1119 struct xfs_trans *tp = NULL; 1120 int error; 1121 bool unlock_dp_on_error = false; 1122 prid_t prid; 1123 struct xfs_dquot *udqp = NULL; 1124 struct xfs_dquot *gdqp = NULL; 1125 struct xfs_dquot *pdqp = NULL; 1126 struct xfs_trans_res *tres; 1127 uint resblks; 1128 1129 trace_xfs_create(dp, name); 1130 1131 if (XFS_FORCED_SHUTDOWN(mp)) 1132 return -EIO; 1133 1134 prid = xfs_get_initial_prid(dp); 1135 1136 /* 1137 * Make sure that we have allocated dquot(s) on disk. 1138 */ 1139 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1140 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1141 &udqp, &gdqp, &pdqp); 1142 if (error) 1143 return error; 1144 1145 if (is_dir) { 1146 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1147 tres = &M_RES(mp)->tr_mkdir; 1148 } else { 1149 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1150 tres = &M_RES(mp)->tr_create; 1151 } 1152 1153 /* 1154 * Initially assume that the file does not exist and 1155 * reserve the resources for that case. If that is not 1156 * the case we'll drop the one we have and get a more 1157 * appropriate transaction later. 1158 */ 1159 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1160 if (error == -ENOSPC) { 1161 /* flush outstanding delalloc blocks and retry */ 1162 xfs_flush_inodes(mp); 1163 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1164 } 1165 if (error) 1166 goto out_release_inode; 1167 1168 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1169 unlock_dp_on_error = true; 1170 1171 /* 1172 * Reserve disk quota and the inode. 1173 */ 1174 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1175 pdqp, resblks, 1, 0); 1176 if (error) 1177 goto out_trans_cancel; 1178 1179 /* 1180 * A newly created regular or special file just has one directory 1181 * entry pointing to them, but a directory also the "." entry 1182 * pointing to itself. 1183 */ 1184 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1185 if (error) 1186 goto out_trans_cancel; 1187 1188 /* 1189 * Now we join the directory inode to the transaction. We do not do it 1190 * earlier because xfs_dir_ialloc might commit the previous transaction 1191 * (and release all the locks). An error from here on will result in 1192 * the transaction cancel unlocking dp so don't do it explicitly in the 1193 * error path. 1194 */ 1195 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1196 unlock_dp_on_error = false; 1197 1198 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1199 resblks - XFS_IALLOC_SPACE_RES(mp)); 1200 if (error) { 1201 ASSERT(error != -ENOSPC); 1202 goto out_trans_cancel; 1203 } 1204 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1205 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1206 1207 if (is_dir) { 1208 error = xfs_dir_init(tp, ip, dp); 1209 if (error) 1210 goto out_trans_cancel; 1211 1212 xfs_bumplink(tp, dp); 1213 } 1214 1215 /* 1216 * If this is a synchronous mount, make sure that the 1217 * create transaction goes to disk before returning to 1218 * the user. 1219 */ 1220 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1221 xfs_trans_set_sync(tp); 1222 1223 /* 1224 * Attach the dquot(s) to the inodes and modify them incore. 1225 * These ids of the inode couldn't have changed since the new 1226 * inode has been locked ever since it was created. 1227 */ 1228 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1229 1230 error = xfs_trans_commit(tp); 1231 if (error) 1232 goto out_release_inode; 1233 1234 xfs_qm_dqrele(udqp); 1235 xfs_qm_dqrele(gdqp); 1236 xfs_qm_dqrele(pdqp); 1237 1238 *ipp = ip; 1239 return 0; 1240 1241 out_trans_cancel: 1242 xfs_trans_cancel(tp); 1243 out_release_inode: 1244 /* 1245 * Wait until after the current transaction is aborted to finish the 1246 * setup of the inode and release the inode. This prevents recursive 1247 * transactions and deadlocks from xfs_inactive. 1248 */ 1249 if (ip) { 1250 xfs_finish_inode_setup(ip); 1251 xfs_irele(ip); 1252 } 1253 1254 xfs_qm_dqrele(udqp); 1255 xfs_qm_dqrele(gdqp); 1256 xfs_qm_dqrele(pdqp); 1257 1258 if (unlock_dp_on_error) 1259 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1260 return error; 1261 } 1262 1263 int 1264 xfs_create_tmpfile( 1265 struct xfs_inode *dp, 1266 umode_t mode, 1267 struct xfs_inode **ipp) 1268 { 1269 struct xfs_mount *mp = dp->i_mount; 1270 struct xfs_inode *ip = NULL; 1271 struct xfs_trans *tp = NULL; 1272 int error; 1273 prid_t prid; 1274 struct xfs_dquot *udqp = NULL; 1275 struct xfs_dquot *gdqp = NULL; 1276 struct xfs_dquot *pdqp = NULL; 1277 struct xfs_trans_res *tres; 1278 uint resblks; 1279 1280 if (XFS_FORCED_SHUTDOWN(mp)) 1281 return -EIO; 1282 1283 prid = xfs_get_initial_prid(dp); 1284 1285 /* 1286 * Make sure that we have allocated dquot(s) on disk. 1287 */ 1288 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1289 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1290 &udqp, &gdqp, &pdqp); 1291 if (error) 1292 return error; 1293 1294 resblks = XFS_IALLOC_SPACE_RES(mp); 1295 tres = &M_RES(mp)->tr_create_tmpfile; 1296 1297 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1298 if (error) 1299 goto out_release_inode; 1300 1301 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1302 pdqp, resblks, 1, 0); 1303 if (error) 1304 goto out_trans_cancel; 1305 1306 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1307 if (error) 1308 goto out_trans_cancel; 1309 1310 if (mp->m_flags & XFS_MOUNT_WSYNC) 1311 xfs_trans_set_sync(tp); 1312 1313 /* 1314 * Attach the dquot(s) to the inodes and modify them incore. 1315 * These ids of the inode couldn't have changed since the new 1316 * inode has been locked ever since it was created. 1317 */ 1318 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1319 1320 error = xfs_iunlink(tp, ip); 1321 if (error) 1322 goto out_trans_cancel; 1323 1324 error = xfs_trans_commit(tp); 1325 if (error) 1326 goto out_release_inode; 1327 1328 xfs_qm_dqrele(udqp); 1329 xfs_qm_dqrele(gdqp); 1330 xfs_qm_dqrele(pdqp); 1331 1332 *ipp = ip; 1333 return 0; 1334 1335 out_trans_cancel: 1336 xfs_trans_cancel(tp); 1337 out_release_inode: 1338 /* 1339 * Wait until after the current transaction is aborted to finish the 1340 * setup of the inode and release the inode. This prevents recursive 1341 * transactions and deadlocks from xfs_inactive. 1342 */ 1343 if (ip) { 1344 xfs_finish_inode_setup(ip); 1345 xfs_irele(ip); 1346 } 1347 1348 xfs_qm_dqrele(udqp); 1349 xfs_qm_dqrele(gdqp); 1350 xfs_qm_dqrele(pdqp); 1351 1352 return error; 1353 } 1354 1355 int 1356 xfs_link( 1357 xfs_inode_t *tdp, 1358 xfs_inode_t *sip, 1359 struct xfs_name *target_name) 1360 { 1361 xfs_mount_t *mp = tdp->i_mount; 1362 xfs_trans_t *tp; 1363 int error; 1364 int resblks; 1365 1366 trace_xfs_link(tdp, target_name); 1367 1368 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1369 1370 if (XFS_FORCED_SHUTDOWN(mp)) 1371 return -EIO; 1372 1373 error = xfs_qm_dqattach(sip); 1374 if (error) 1375 goto std_return; 1376 1377 error = xfs_qm_dqattach(tdp); 1378 if (error) 1379 goto std_return; 1380 1381 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1382 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1383 if (error == -ENOSPC) { 1384 resblks = 0; 1385 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1386 } 1387 if (error) 1388 goto std_return; 1389 1390 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1391 1392 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1393 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1394 1395 /* 1396 * If we are using project inheritance, we only allow hard link 1397 * creation in our tree when the project IDs are the same; else 1398 * the tree quota mechanism could be circumvented. 1399 */ 1400 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1401 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1402 error = -EXDEV; 1403 goto error_return; 1404 } 1405 1406 if (!resblks) { 1407 error = xfs_dir_canenter(tp, tdp, target_name); 1408 if (error) 1409 goto error_return; 1410 } 1411 1412 /* 1413 * Handle initial link state of O_TMPFILE inode 1414 */ 1415 if (VFS_I(sip)->i_nlink == 0) { 1416 error = xfs_iunlink_remove(tp, sip); 1417 if (error) 1418 goto error_return; 1419 } 1420 1421 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1422 resblks); 1423 if (error) 1424 goto error_return; 1425 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1426 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1427 1428 xfs_bumplink(tp, sip); 1429 1430 /* 1431 * If this is a synchronous mount, make sure that the 1432 * link transaction goes to disk before returning to 1433 * the user. 1434 */ 1435 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1436 xfs_trans_set_sync(tp); 1437 1438 return xfs_trans_commit(tp); 1439 1440 error_return: 1441 xfs_trans_cancel(tp); 1442 std_return: 1443 return error; 1444 } 1445 1446 /* Clear the reflink flag and the cowblocks tag if possible. */ 1447 static void 1448 xfs_itruncate_clear_reflink_flags( 1449 struct xfs_inode *ip) 1450 { 1451 struct xfs_ifork *dfork; 1452 struct xfs_ifork *cfork; 1453 1454 if (!xfs_is_reflink_inode(ip)) 1455 return; 1456 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1457 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1458 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1459 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1460 if (cfork->if_bytes == 0) 1461 xfs_inode_clear_cowblocks_tag(ip); 1462 } 1463 1464 /* 1465 * Free up the underlying blocks past new_size. The new size must be smaller 1466 * than the current size. This routine can be used both for the attribute and 1467 * data fork, and does not modify the inode size, which is left to the caller. 1468 * 1469 * The transaction passed to this routine must have made a permanent log 1470 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1471 * given transaction and start new ones, so make sure everything involved in 1472 * the transaction is tidy before calling here. Some transaction will be 1473 * returned to the caller to be committed. The incoming transaction must 1474 * already include the inode, and both inode locks must be held exclusively. 1475 * The inode must also be "held" within the transaction. On return the inode 1476 * will be "held" within the returned transaction. This routine does NOT 1477 * require any disk space to be reserved for it within the transaction. 1478 * 1479 * If we get an error, we must return with the inode locked and linked into the 1480 * current transaction. This keeps things simple for the higher level code, 1481 * because it always knows that the inode is locked and held in the transaction 1482 * that returns to it whether errors occur or not. We don't mark the inode 1483 * dirty on error so that transactions can be easily aborted if possible. 1484 */ 1485 int 1486 xfs_itruncate_extents_flags( 1487 struct xfs_trans **tpp, 1488 struct xfs_inode *ip, 1489 int whichfork, 1490 xfs_fsize_t new_size, 1491 int flags) 1492 { 1493 struct xfs_mount *mp = ip->i_mount; 1494 struct xfs_trans *tp = *tpp; 1495 xfs_fileoff_t first_unmap_block; 1496 xfs_filblks_t unmap_len; 1497 int error = 0; 1498 1499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1500 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1501 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1502 ASSERT(new_size <= XFS_ISIZE(ip)); 1503 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1504 ASSERT(ip->i_itemp != NULL); 1505 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1506 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1507 1508 trace_xfs_itruncate_extents_start(ip, new_size); 1509 1510 flags |= xfs_bmapi_aflag(whichfork); 1511 1512 /* 1513 * Since it is possible for space to become allocated beyond 1514 * the end of the file (in a crash where the space is allocated 1515 * but the inode size is not yet updated), simply remove any 1516 * blocks which show up between the new EOF and the maximum 1517 * possible file size. 1518 * 1519 * We have to free all the blocks to the bmbt maximum offset, even if 1520 * the page cache can't scale that far. 1521 */ 1522 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1523 if (first_unmap_block >= XFS_MAX_FILEOFF) { 1524 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1525 return 0; 1526 } 1527 1528 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1529 while (unmap_len > 0) { 1530 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1531 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1532 flags, XFS_ITRUNC_MAX_EXTENTS); 1533 if (error) 1534 goto out; 1535 1536 /* 1537 * Duplicate the transaction that has the permanent 1538 * reservation and commit the old transaction. 1539 */ 1540 error = xfs_defer_finish(&tp); 1541 if (error) 1542 goto out; 1543 1544 error = xfs_trans_roll_inode(&tp, ip); 1545 if (error) 1546 goto out; 1547 } 1548 1549 if (whichfork == XFS_DATA_FORK) { 1550 /* Remove all pending CoW reservations. */ 1551 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1552 first_unmap_block, XFS_MAX_FILEOFF, true); 1553 if (error) 1554 goto out; 1555 1556 xfs_itruncate_clear_reflink_flags(ip); 1557 } 1558 1559 /* 1560 * Always re-log the inode so that our permanent transaction can keep 1561 * on rolling it forward in the log. 1562 */ 1563 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1564 1565 trace_xfs_itruncate_extents_end(ip, new_size); 1566 1567 out: 1568 *tpp = tp; 1569 return error; 1570 } 1571 1572 int 1573 xfs_release( 1574 xfs_inode_t *ip) 1575 { 1576 xfs_mount_t *mp = ip->i_mount; 1577 int error; 1578 1579 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1580 return 0; 1581 1582 /* If this is a read-only mount, don't do this (would generate I/O) */ 1583 if (mp->m_flags & XFS_MOUNT_RDONLY) 1584 return 0; 1585 1586 if (!XFS_FORCED_SHUTDOWN(mp)) { 1587 int truncated; 1588 1589 /* 1590 * If we previously truncated this file and removed old data 1591 * in the process, we want to initiate "early" writeout on 1592 * the last close. This is an attempt to combat the notorious 1593 * NULL files problem which is particularly noticeable from a 1594 * truncate down, buffered (re-)write (delalloc), followed by 1595 * a crash. What we are effectively doing here is 1596 * significantly reducing the time window where we'd otherwise 1597 * be exposed to that problem. 1598 */ 1599 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1600 if (truncated) { 1601 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1602 if (ip->i_delayed_blks > 0) { 1603 error = filemap_flush(VFS_I(ip)->i_mapping); 1604 if (error) 1605 return error; 1606 } 1607 } 1608 } 1609 1610 if (VFS_I(ip)->i_nlink == 0) 1611 return 0; 1612 1613 if (xfs_can_free_eofblocks(ip, false)) { 1614 1615 /* 1616 * Check if the inode is being opened, written and closed 1617 * frequently and we have delayed allocation blocks outstanding 1618 * (e.g. streaming writes from the NFS server), truncating the 1619 * blocks past EOF will cause fragmentation to occur. 1620 * 1621 * In this case don't do the truncation, but we have to be 1622 * careful how we detect this case. Blocks beyond EOF show up as 1623 * i_delayed_blks even when the inode is clean, so we need to 1624 * truncate them away first before checking for a dirty release. 1625 * Hence on the first dirty close we will still remove the 1626 * speculative allocation, but after that we will leave it in 1627 * place. 1628 */ 1629 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1630 return 0; 1631 /* 1632 * If we can't get the iolock just skip truncating the blocks 1633 * past EOF because we could deadlock with the mmap_lock 1634 * otherwise. We'll get another chance to drop them once the 1635 * last reference to the inode is dropped, so we'll never leak 1636 * blocks permanently. 1637 */ 1638 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1639 error = xfs_free_eofblocks(ip); 1640 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1641 if (error) 1642 return error; 1643 } 1644 1645 /* delalloc blocks after truncation means it really is dirty */ 1646 if (ip->i_delayed_blks) 1647 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1648 } 1649 return 0; 1650 } 1651 1652 /* 1653 * xfs_inactive_truncate 1654 * 1655 * Called to perform a truncate when an inode becomes unlinked. 1656 */ 1657 STATIC int 1658 xfs_inactive_truncate( 1659 struct xfs_inode *ip) 1660 { 1661 struct xfs_mount *mp = ip->i_mount; 1662 struct xfs_trans *tp; 1663 int error; 1664 1665 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1666 if (error) { 1667 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1668 return error; 1669 } 1670 xfs_ilock(ip, XFS_ILOCK_EXCL); 1671 xfs_trans_ijoin(tp, ip, 0); 1672 1673 /* 1674 * Log the inode size first to prevent stale data exposure in the event 1675 * of a system crash before the truncate completes. See the related 1676 * comment in xfs_vn_setattr_size() for details. 1677 */ 1678 ip->i_d.di_size = 0; 1679 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1680 1681 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1682 if (error) 1683 goto error_trans_cancel; 1684 1685 ASSERT(ip->i_df.if_nextents == 0); 1686 1687 error = xfs_trans_commit(tp); 1688 if (error) 1689 goto error_unlock; 1690 1691 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1692 return 0; 1693 1694 error_trans_cancel: 1695 xfs_trans_cancel(tp); 1696 error_unlock: 1697 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1698 return error; 1699 } 1700 1701 /* 1702 * xfs_inactive_ifree() 1703 * 1704 * Perform the inode free when an inode is unlinked. 1705 */ 1706 STATIC int 1707 xfs_inactive_ifree( 1708 struct xfs_inode *ip) 1709 { 1710 struct xfs_mount *mp = ip->i_mount; 1711 struct xfs_trans *tp; 1712 int error; 1713 1714 /* 1715 * We try to use a per-AG reservation for any block needed by the finobt 1716 * tree, but as the finobt feature predates the per-AG reservation 1717 * support a degraded file system might not have enough space for the 1718 * reservation at mount time. In that case try to dip into the reserved 1719 * pool and pray. 1720 * 1721 * Send a warning if the reservation does happen to fail, as the inode 1722 * now remains allocated and sits on the unlinked list until the fs is 1723 * repaired. 1724 */ 1725 if (unlikely(mp->m_finobt_nores)) { 1726 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1727 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1728 &tp); 1729 } else { 1730 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1731 } 1732 if (error) { 1733 if (error == -ENOSPC) { 1734 xfs_warn_ratelimited(mp, 1735 "Failed to remove inode(s) from unlinked list. " 1736 "Please free space, unmount and run xfs_repair."); 1737 } else { 1738 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1739 } 1740 return error; 1741 } 1742 1743 xfs_ilock(ip, XFS_ILOCK_EXCL); 1744 xfs_trans_ijoin(tp, ip, 0); 1745 1746 error = xfs_ifree(tp, ip); 1747 if (error) { 1748 /* 1749 * If we fail to free the inode, shut down. The cancel 1750 * might do that, we need to make sure. Otherwise the 1751 * inode might be lost for a long time or forever. 1752 */ 1753 if (!XFS_FORCED_SHUTDOWN(mp)) { 1754 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1755 __func__, error); 1756 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1757 } 1758 xfs_trans_cancel(tp); 1759 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1760 return error; 1761 } 1762 1763 /* 1764 * Credit the quota account(s). The inode is gone. 1765 */ 1766 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1767 1768 /* 1769 * Just ignore errors at this point. There is nothing we can do except 1770 * to try to keep going. Make sure it's not a silent error. 1771 */ 1772 error = xfs_trans_commit(tp); 1773 if (error) 1774 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1775 __func__, error); 1776 1777 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1778 return 0; 1779 } 1780 1781 /* 1782 * xfs_inactive 1783 * 1784 * This is called when the vnode reference count for the vnode 1785 * goes to zero. If the file has been unlinked, then it must 1786 * now be truncated. Also, we clear all of the read-ahead state 1787 * kept for the inode here since the file is now closed. 1788 */ 1789 void 1790 xfs_inactive( 1791 xfs_inode_t *ip) 1792 { 1793 struct xfs_mount *mp; 1794 int error; 1795 int truncate = 0; 1796 1797 /* 1798 * If the inode is already free, then there can be nothing 1799 * to clean up here. 1800 */ 1801 if (VFS_I(ip)->i_mode == 0) { 1802 ASSERT(ip->i_df.if_broot_bytes == 0); 1803 return; 1804 } 1805 1806 mp = ip->i_mount; 1807 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1808 1809 /* If this is a read-only mount, don't do this (would generate I/O) */ 1810 if (mp->m_flags & XFS_MOUNT_RDONLY) 1811 return; 1812 1813 /* Try to clean out the cow blocks if there are any. */ 1814 if (xfs_inode_has_cow_data(ip)) 1815 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1816 1817 if (VFS_I(ip)->i_nlink != 0) { 1818 /* 1819 * force is true because we are evicting an inode from the 1820 * cache. Post-eof blocks must be freed, lest we end up with 1821 * broken free space accounting. 1822 * 1823 * Note: don't bother with iolock here since lockdep complains 1824 * about acquiring it in reclaim context. We have the only 1825 * reference to the inode at this point anyways. 1826 */ 1827 if (xfs_can_free_eofblocks(ip, true)) 1828 xfs_free_eofblocks(ip); 1829 1830 return; 1831 } 1832 1833 if (S_ISREG(VFS_I(ip)->i_mode) && 1834 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1835 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1836 truncate = 1; 1837 1838 error = xfs_qm_dqattach(ip); 1839 if (error) 1840 return; 1841 1842 if (S_ISLNK(VFS_I(ip)->i_mode)) 1843 error = xfs_inactive_symlink(ip); 1844 else if (truncate) 1845 error = xfs_inactive_truncate(ip); 1846 if (error) 1847 return; 1848 1849 /* 1850 * If there are attributes associated with the file then blow them away 1851 * now. The code calls a routine that recursively deconstructs the 1852 * attribute fork. If also blows away the in-core attribute fork. 1853 */ 1854 if (XFS_IFORK_Q(ip)) { 1855 error = xfs_attr_inactive(ip); 1856 if (error) 1857 return; 1858 } 1859 1860 ASSERT(!ip->i_afp); 1861 ASSERT(ip->i_d.di_forkoff == 0); 1862 1863 /* 1864 * Free the inode. 1865 */ 1866 error = xfs_inactive_ifree(ip); 1867 if (error) 1868 return; 1869 1870 /* 1871 * Release the dquots held by inode, if any. 1872 */ 1873 xfs_qm_dqdetach(ip); 1874 } 1875 1876 /* 1877 * In-Core Unlinked List Lookups 1878 * ============================= 1879 * 1880 * Every inode is supposed to be reachable from some other piece of metadata 1881 * with the exception of the root directory. Inodes with a connection to a 1882 * file descriptor but not linked from anywhere in the on-disk directory tree 1883 * are collectively known as unlinked inodes, though the filesystem itself 1884 * maintains links to these inodes so that on-disk metadata are consistent. 1885 * 1886 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1887 * header contains a number of buckets that point to an inode, and each inode 1888 * record has a pointer to the next inode in the hash chain. This 1889 * singly-linked list causes scaling problems in the iunlink remove function 1890 * because we must walk that list to find the inode that points to the inode 1891 * being removed from the unlinked hash bucket list. 1892 * 1893 * What if we modelled the unlinked list as a collection of records capturing 1894 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1895 * have a fast way to look up unlinked list predecessors, which avoids the 1896 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1897 * rhashtable. 1898 * 1899 * Because this is a backref cache, we ignore operational failures since the 1900 * iunlink code can fall back to the slow bucket walk. The only errors that 1901 * should bubble out are for obviously incorrect situations. 1902 * 1903 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1904 * access or have otherwise provided for concurrency control. 1905 */ 1906 1907 /* Capture a "X.next_unlinked = Y" relationship. */ 1908 struct xfs_iunlink { 1909 struct rhash_head iu_rhash_head; 1910 xfs_agino_t iu_agino; /* X */ 1911 xfs_agino_t iu_next_unlinked; /* Y */ 1912 }; 1913 1914 /* Unlinked list predecessor lookup hashtable construction */ 1915 static int 1916 xfs_iunlink_obj_cmpfn( 1917 struct rhashtable_compare_arg *arg, 1918 const void *obj) 1919 { 1920 const xfs_agino_t *key = arg->key; 1921 const struct xfs_iunlink *iu = obj; 1922 1923 if (iu->iu_next_unlinked != *key) 1924 return 1; 1925 return 0; 1926 } 1927 1928 static const struct rhashtable_params xfs_iunlink_hash_params = { 1929 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1930 .key_len = sizeof(xfs_agino_t), 1931 .key_offset = offsetof(struct xfs_iunlink, 1932 iu_next_unlinked), 1933 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1934 .automatic_shrinking = true, 1935 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1936 }; 1937 1938 /* 1939 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1940 * relation is found. 1941 */ 1942 static xfs_agino_t 1943 xfs_iunlink_lookup_backref( 1944 struct xfs_perag *pag, 1945 xfs_agino_t agino) 1946 { 1947 struct xfs_iunlink *iu; 1948 1949 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1950 xfs_iunlink_hash_params); 1951 return iu ? iu->iu_agino : NULLAGINO; 1952 } 1953 1954 /* 1955 * Take ownership of an iunlink cache entry and insert it into the hash table. 1956 * If successful, the entry will be owned by the cache; if not, it is freed. 1957 * Either way, the caller does not own @iu after this call. 1958 */ 1959 static int 1960 xfs_iunlink_insert_backref( 1961 struct xfs_perag *pag, 1962 struct xfs_iunlink *iu) 1963 { 1964 int error; 1965 1966 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1967 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1968 /* 1969 * Fail loudly if there already was an entry because that's a sign of 1970 * corruption of in-memory data. Also fail loudly if we see an error 1971 * code we didn't anticipate from the rhashtable code. Currently we 1972 * only anticipate ENOMEM. 1973 */ 1974 if (error) { 1975 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1976 kmem_free(iu); 1977 } 1978 /* 1979 * Absorb any runtime errors that aren't a result of corruption because 1980 * this is a cache and we can always fall back to bucket list scanning. 1981 */ 1982 if (error != 0 && error != -EEXIST) 1983 error = 0; 1984 return error; 1985 } 1986 1987 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1988 static int 1989 xfs_iunlink_add_backref( 1990 struct xfs_perag *pag, 1991 xfs_agino_t prev_agino, 1992 xfs_agino_t this_agino) 1993 { 1994 struct xfs_iunlink *iu; 1995 1996 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1997 return 0; 1998 1999 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 2000 iu->iu_agino = prev_agino; 2001 iu->iu_next_unlinked = this_agino; 2002 2003 return xfs_iunlink_insert_backref(pag, iu); 2004 } 2005 2006 /* 2007 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2008 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2009 * wasn't any such entry then we don't bother. 2010 */ 2011 static int 2012 xfs_iunlink_change_backref( 2013 struct xfs_perag *pag, 2014 xfs_agino_t agino, 2015 xfs_agino_t next_unlinked) 2016 { 2017 struct xfs_iunlink *iu; 2018 int error; 2019 2020 /* Look up the old entry; if there wasn't one then exit. */ 2021 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2022 xfs_iunlink_hash_params); 2023 if (!iu) 2024 return 0; 2025 2026 /* 2027 * Remove the entry. This shouldn't ever return an error, but if we 2028 * couldn't remove the old entry we don't want to add it again to the 2029 * hash table, and if the entry disappeared on us then someone's 2030 * violated the locking rules and we need to fail loudly. Either way 2031 * we cannot remove the inode because internal state is or would have 2032 * been corrupt. 2033 */ 2034 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2035 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2036 if (error) 2037 return error; 2038 2039 /* If there is no new next entry just free our item and return. */ 2040 if (next_unlinked == NULLAGINO) { 2041 kmem_free(iu); 2042 return 0; 2043 } 2044 2045 /* Update the entry and re-add it to the hash table. */ 2046 iu->iu_next_unlinked = next_unlinked; 2047 return xfs_iunlink_insert_backref(pag, iu); 2048 } 2049 2050 /* Set up the in-core predecessor structures. */ 2051 int 2052 xfs_iunlink_init( 2053 struct xfs_perag *pag) 2054 { 2055 return rhashtable_init(&pag->pagi_unlinked_hash, 2056 &xfs_iunlink_hash_params); 2057 } 2058 2059 /* Free the in-core predecessor structures. */ 2060 static void 2061 xfs_iunlink_free_item( 2062 void *ptr, 2063 void *arg) 2064 { 2065 struct xfs_iunlink *iu = ptr; 2066 bool *freed_anything = arg; 2067 2068 *freed_anything = true; 2069 kmem_free(iu); 2070 } 2071 2072 void 2073 xfs_iunlink_destroy( 2074 struct xfs_perag *pag) 2075 { 2076 bool freed_anything = false; 2077 2078 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2079 xfs_iunlink_free_item, &freed_anything); 2080 2081 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2082 } 2083 2084 /* 2085 * Point the AGI unlinked bucket at an inode and log the results. The caller 2086 * is responsible for validating the old value. 2087 */ 2088 STATIC int 2089 xfs_iunlink_update_bucket( 2090 struct xfs_trans *tp, 2091 xfs_agnumber_t agno, 2092 struct xfs_buf *agibp, 2093 unsigned int bucket_index, 2094 xfs_agino_t new_agino) 2095 { 2096 struct xfs_agi *agi = agibp->b_addr; 2097 xfs_agino_t old_value; 2098 int offset; 2099 2100 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2101 2102 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2103 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2104 old_value, new_agino); 2105 2106 /* 2107 * We should never find the head of the list already set to the value 2108 * passed in because either we're adding or removing ourselves from the 2109 * head of the list. 2110 */ 2111 if (old_value == new_agino) { 2112 xfs_buf_mark_corrupt(agibp); 2113 return -EFSCORRUPTED; 2114 } 2115 2116 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2117 offset = offsetof(struct xfs_agi, agi_unlinked) + 2118 (sizeof(xfs_agino_t) * bucket_index); 2119 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2120 return 0; 2121 } 2122 2123 /* Set an on-disk inode's next_unlinked pointer. */ 2124 STATIC void 2125 xfs_iunlink_update_dinode( 2126 struct xfs_trans *tp, 2127 xfs_agnumber_t agno, 2128 xfs_agino_t agino, 2129 struct xfs_buf *ibp, 2130 struct xfs_dinode *dip, 2131 struct xfs_imap *imap, 2132 xfs_agino_t next_agino) 2133 { 2134 struct xfs_mount *mp = tp->t_mountp; 2135 int offset; 2136 2137 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2138 2139 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2140 be32_to_cpu(dip->di_next_unlinked), next_agino); 2141 2142 dip->di_next_unlinked = cpu_to_be32(next_agino); 2143 offset = imap->im_boffset + 2144 offsetof(struct xfs_dinode, di_next_unlinked); 2145 2146 /* need to recalc the inode CRC if appropriate */ 2147 xfs_dinode_calc_crc(mp, dip); 2148 xfs_trans_inode_buf(tp, ibp); 2149 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2150 xfs_inobp_check(mp, ibp); 2151 } 2152 2153 /* Set an in-core inode's unlinked pointer and return the old value. */ 2154 STATIC int 2155 xfs_iunlink_update_inode( 2156 struct xfs_trans *tp, 2157 struct xfs_inode *ip, 2158 xfs_agnumber_t agno, 2159 xfs_agino_t next_agino, 2160 xfs_agino_t *old_next_agino) 2161 { 2162 struct xfs_mount *mp = tp->t_mountp; 2163 struct xfs_dinode *dip; 2164 struct xfs_buf *ibp; 2165 xfs_agino_t old_value; 2166 int error; 2167 2168 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2169 2170 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0); 2171 if (error) 2172 return error; 2173 2174 /* Make sure the old pointer isn't garbage. */ 2175 old_value = be32_to_cpu(dip->di_next_unlinked); 2176 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2177 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2178 sizeof(*dip), __this_address); 2179 error = -EFSCORRUPTED; 2180 goto out; 2181 } 2182 2183 /* 2184 * Since we're updating a linked list, we should never find that the 2185 * current pointer is the same as the new value, unless we're 2186 * terminating the list. 2187 */ 2188 *old_next_agino = old_value; 2189 if (old_value == next_agino) { 2190 if (next_agino != NULLAGINO) { 2191 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2192 dip, sizeof(*dip), __this_address); 2193 error = -EFSCORRUPTED; 2194 } 2195 goto out; 2196 } 2197 2198 /* Ok, update the new pointer. */ 2199 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2200 ibp, dip, &ip->i_imap, next_agino); 2201 return 0; 2202 out: 2203 xfs_trans_brelse(tp, ibp); 2204 return error; 2205 } 2206 2207 /* 2208 * This is called when the inode's link count has gone to 0 or we are creating 2209 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2210 * 2211 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2212 * list when the inode is freed. 2213 */ 2214 STATIC int 2215 xfs_iunlink( 2216 struct xfs_trans *tp, 2217 struct xfs_inode *ip) 2218 { 2219 struct xfs_mount *mp = tp->t_mountp; 2220 struct xfs_agi *agi; 2221 struct xfs_buf *agibp; 2222 xfs_agino_t next_agino; 2223 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2224 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2225 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2226 int error; 2227 2228 ASSERT(VFS_I(ip)->i_nlink == 0); 2229 ASSERT(VFS_I(ip)->i_mode != 0); 2230 trace_xfs_iunlink(ip); 2231 2232 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2233 error = xfs_read_agi(mp, tp, agno, &agibp); 2234 if (error) 2235 return error; 2236 agi = agibp->b_addr; 2237 2238 /* 2239 * Get the index into the agi hash table for the list this inode will 2240 * go on. Make sure the pointer isn't garbage and that this inode 2241 * isn't already on the list. 2242 */ 2243 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2244 if (next_agino == agino || 2245 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2246 xfs_buf_mark_corrupt(agibp); 2247 return -EFSCORRUPTED; 2248 } 2249 2250 if (next_agino != NULLAGINO) { 2251 struct xfs_perag *pag; 2252 xfs_agino_t old_agino; 2253 2254 /* 2255 * There is already another inode in the bucket, so point this 2256 * inode to the current head of the list. 2257 */ 2258 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2259 &old_agino); 2260 if (error) 2261 return error; 2262 ASSERT(old_agino == NULLAGINO); 2263 2264 /* 2265 * agino has been unlinked, add a backref from the next inode 2266 * back to agino. 2267 */ 2268 pag = xfs_perag_get(mp, agno); 2269 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2270 xfs_perag_put(pag); 2271 if (error) 2272 return error; 2273 } 2274 2275 /* Point the head of the list to point to this inode. */ 2276 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2277 } 2278 2279 /* Return the imap, dinode pointer, and buffer for an inode. */ 2280 STATIC int 2281 xfs_iunlink_map_ino( 2282 struct xfs_trans *tp, 2283 xfs_agnumber_t agno, 2284 xfs_agino_t agino, 2285 struct xfs_imap *imap, 2286 struct xfs_dinode **dipp, 2287 struct xfs_buf **bpp) 2288 { 2289 struct xfs_mount *mp = tp->t_mountp; 2290 int error; 2291 2292 imap->im_blkno = 0; 2293 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2294 if (error) { 2295 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2296 __func__, error); 2297 return error; 2298 } 2299 2300 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0); 2301 if (error) { 2302 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2303 __func__, error); 2304 return error; 2305 } 2306 2307 return 0; 2308 } 2309 2310 /* 2311 * Walk the unlinked chain from @head_agino until we find the inode that 2312 * points to @target_agino. Return the inode number, map, dinode pointer, 2313 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2314 * 2315 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2316 * @agino, @imap, @dipp, and @bpp are all output parameters. 2317 * 2318 * Do not call this function if @target_agino is the head of the list. 2319 */ 2320 STATIC int 2321 xfs_iunlink_map_prev( 2322 struct xfs_trans *tp, 2323 xfs_agnumber_t agno, 2324 xfs_agino_t head_agino, 2325 xfs_agino_t target_agino, 2326 xfs_agino_t *agino, 2327 struct xfs_imap *imap, 2328 struct xfs_dinode **dipp, 2329 struct xfs_buf **bpp, 2330 struct xfs_perag *pag) 2331 { 2332 struct xfs_mount *mp = tp->t_mountp; 2333 xfs_agino_t next_agino; 2334 int error; 2335 2336 ASSERT(head_agino != target_agino); 2337 *bpp = NULL; 2338 2339 /* See if our backref cache can find it faster. */ 2340 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2341 if (*agino != NULLAGINO) { 2342 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2343 if (error) 2344 return error; 2345 2346 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2347 return 0; 2348 2349 /* 2350 * If we get here the cache contents were corrupt, so drop the 2351 * buffer and fall back to walking the bucket list. 2352 */ 2353 xfs_trans_brelse(tp, *bpp); 2354 *bpp = NULL; 2355 WARN_ON_ONCE(1); 2356 } 2357 2358 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2359 2360 /* Otherwise, walk the entire bucket until we find it. */ 2361 next_agino = head_agino; 2362 while (next_agino != target_agino) { 2363 xfs_agino_t unlinked_agino; 2364 2365 if (*bpp) 2366 xfs_trans_brelse(tp, *bpp); 2367 2368 *agino = next_agino; 2369 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2370 bpp); 2371 if (error) 2372 return error; 2373 2374 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2375 /* 2376 * Make sure this pointer is valid and isn't an obvious 2377 * infinite loop. 2378 */ 2379 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2380 next_agino == unlinked_agino) { 2381 XFS_CORRUPTION_ERROR(__func__, 2382 XFS_ERRLEVEL_LOW, mp, 2383 *dipp, sizeof(**dipp)); 2384 error = -EFSCORRUPTED; 2385 return error; 2386 } 2387 next_agino = unlinked_agino; 2388 } 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * Pull the on-disk inode from the AGI unlinked list. 2395 */ 2396 STATIC int 2397 xfs_iunlink_remove( 2398 struct xfs_trans *tp, 2399 struct xfs_inode *ip) 2400 { 2401 struct xfs_mount *mp = tp->t_mountp; 2402 struct xfs_agi *agi; 2403 struct xfs_buf *agibp; 2404 struct xfs_buf *last_ibp; 2405 struct xfs_dinode *last_dip = NULL; 2406 struct xfs_perag *pag = NULL; 2407 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2408 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2409 xfs_agino_t next_agino; 2410 xfs_agino_t head_agino; 2411 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2412 int error; 2413 2414 trace_xfs_iunlink_remove(ip); 2415 2416 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2417 error = xfs_read_agi(mp, tp, agno, &agibp); 2418 if (error) 2419 return error; 2420 agi = agibp->b_addr; 2421 2422 /* 2423 * Get the index into the agi hash table for the list this inode will 2424 * go on. Make sure the head pointer isn't garbage. 2425 */ 2426 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2427 if (!xfs_verify_agino(mp, agno, head_agino)) { 2428 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2429 agi, sizeof(*agi)); 2430 return -EFSCORRUPTED; 2431 } 2432 2433 /* 2434 * Set our inode's next_unlinked pointer to NULL and then return 2435 * the old pointer value so that we can update whatever was previous 2436 * to us in the list to point to whatever was next in the list. 2437 */ 2438 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2439 if (error) 2440 return error; 2441 2442 /* 2443 * If there was a backref pointing from the next inode back to this 2444 * one, remove it because we've removed this inode from the list. 2445 * 2446 * Later, if this inode was in the middle of the list we'll update 2447 * this inode's backref to point from the next inode. 2448 */ 2449 if (next_agino != NULLAGINO) { 2450 pag = xfs_perag_get(mp, agno); 2451 error = xfs_iunlink_change_backref(pag, next_agino, 2452 NULLAGINO); 2453 if (error) 2454 goto out; 2455 } 2456 2457 if (head_agino == agino) { 2458 /* Point the head of the list to the next unlinked inode. */ 2459 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2460 next_agino); 2461 if (error) 2462 goto out; 2463 } else { 2464 struct xfs_imap imap; 2465 xfs_agino_t prev_agino; 2466 2467 if (!pag) 2468 pag = xfs_perag_get(mp, agno); 2469 2470 /* We need to search the list for the inode being freed. */ 2471 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2472 &prev_agino, &imap, &last_dip, &last_ibp, 2473 pag); 2474 if (error) 2475 goto out; 2476 2477 /* Point the previous inode on the list to the next inode. */ 2478 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2479 last_dip, &imap, next_agino); 2480 2481 /* 2482 * Now we deal with the backref for this inode. If this inode 2483 * pointed at a real inode, change the backref that pointed to 2484 * us to point to our old next. If this inode was the end of 2485 * the list, delete the backref that pointed to us. Note that 2486 * change_backref takes care of deleting the backref if 2487 * next_agino is NULLAGINO. 2488 */ 2489 error = xfs_iunlink_change_backref(pag, agino, next_agino); 2490 if (error) 2491 goto out; 2492 } 2493 2494 out: 2495 if (pag) 2496 xfs_perag_put(pag); 2497 return error; 2498 } 2499 2500 /* 2501 * Look up the inode number specified and mark it stale if it is found. If it is 2502 * dirty, return the inode so it can be attached to the cluster buffer so it can 2503 * be processed appropriately when the cluster free transaction completes. 2504 */ 2505 static struct xfs_inode * 2506 xfs_ifree_get_one_inode( 2507 struct xfs_perag *pag, 2508 struct xfs_inode *free_ip, 2509 xfs_ino_t inum) 2510 { 2511 struct xfs_mount *mp = pag->pag_mount; 2512 struct xfs_inode *ip; 2513 2514 retry: 2515 rcu_read_lock(); 2516 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2517 2518 /* Inode not in memory, nothing to do */ 2519 if (!ip) 2520 goto out_rcu_unlock; 2521 2522 /* 2523 * because this is an RCU protected lookup, we could find a recently 2524 * freed or even reallocated inode during the lookup. We need to check 2525 * under the i_flags_lock for a valid inode here. Skip it if it is not 2526 * valid, the wrong inode or stale. 2527 */ 2528 spin_lock(&ip->i_flags_lock); 2529 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) { 2530 spin_unlock(&ip->i_flags_lock); 2531 goto out_rcu_unlock; 2532 } 2533 spin_unlock(&ip->i_flags_lock); 2534 2535 /* 2536 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2537 * other inodes that we did not find in the list attached to the buffer 2538 * and are not already marked stale. If we can't lock it, back off and 2539 * retry. 2540 */ 2541 if (ip != free_ip) { 2542 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2543 rcu_read_unlock(); 2544 delay(1); 2545 goto retry; 2546 } 2547 2548 /* 2549 * Check the inode number again in case we're racing with 2550 * freeing in xfs_reclaim_inode(). See the comments in that 2551 * function for more information as to why the initial check is 2552 * not sufficient. 2553 */ 2554 if (ip->i_ino != inum) { 2555 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2556 goto out_rcu_unlock; 2557 } 2558 } 2559 rcu_read_unlock(); 2560 2561 xfs_iflock(ip); 2562 xfs_iflags_set(ip, XFS_ISTALE); 2563 2564 /* 2565 * We don't need to attach clean inodes or those only with unlogged 2566 * changes (which we throw away, anyway). 2567 */ 2568 if (!ip->i_itemp || xfs_inode_clean(ip)) { 2569 ASSERT(ip != free_ip); 2570 xfs_ifunlock(ip); 2571 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2572 goto out_no_inode; 2573 } 2574 return ip; 2575 2576 out_rcu_unlock: 2577 rcu_read_unlock(); 2578 out_no_inode: 2579 return NULL; 2580 } 2581 2582 /* 2583 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2584 * inodes that are in memory - they all must be marked stale and attached to 2585 * the cluster buffer. 2586 */ 2587 STATIC int 2588 xfs_ifree_cluster( 2589 xfs_inode_t *free_ip, 2590 xfs_trans_t *tp, 2591 struct xfs_icluster *xic) 2592 { 2593 xfs_mount_t *mp = free_ip->i_mount; 2594 int nbufs; 2595 int i, j; 2596 int ioffset; 2597 xfs_daddr_t blkno; 2598 xfs_buf_t *bp; 2599 xfs_inode_t *ip; 2600 struct xfs_inode_log_item *iip; 2601 struct xfs_log_item *lip; 2602 struct xfs_perag *pag; 2603 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2604 xfs_ino_t inum; 2605 int error; 2606 2607 inum = xic->first_ino; 2608 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2609 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2610 2611 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2612 /* 2613 * The allocation bitmap tells us which inodes of the chunk were 2614 * physically allocated. Skip the cluster if an inode falls into 2615 * a sparse region. 2616 */ 2617 ioffset = inum - xic->first_ino; 2618 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2619 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2620 continue; 2621 } 2622 2623 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2624 XFS_INO_TO_AGBNO(mp, inum)); 2625 2626 /* 2627 * We obtain and lock the backing buffer first in the process 2628 * here, as we have to ensure that any dirty inode that we 2629 * can't get the flush lock on is attached to the buffer. 2630 * If we scan the in-memory inodes first, then buffer IO can 2631 * complete before we get a lock on it, and hence we may fail 2632 * to mark all the active inodes on the buffer stale. 2633 */ 2634 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2635 mp->m_bsize * igeo->blocks_per_cluster, 2636 XBF_UNMAPPED, &bp); 2637 if (error) { 2638 xfs_perag_put(pag); 2639 return error; 2640 } 2641 2642 /* 2643 * This buffer may not have been correctly initialised as we 2644 * didn't read it from disk. That's not important because we are 2645 * only using to mark the buffer as stale in the log, and to 2646 * attach stale cached inodes on it. That means it will never be 2647 * dispatched for IO. If it is, we want to know about it, and we 2648 * want it to fail. We can acheive this by adding a write 2649 * verifier to the buffer. 2650 */ 2651 bp->b_ops = &xfs_inode_buf_ops; 2652 2653 /* 2654 * Walk the inodes already attached to the buffer and mark them 2655 * stale. These will all have the flush locks held, so an 2656 * in-memory inode walk can't lock them. By marking them all 2657 * stale first, we will not attempt to lock them in the loop 2658 * below as the XFS_ISTALE flag will be set. 2659 */ 2660 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2661 if (lip->li_type == XFS_LI_INODE) { 2662 iip = (struct xfs_inode_log_item *)lip; 2663 ASSERT(iip->ili_logged == 1); 2664 lip->li_cb = xfs_istale_done; 2665 xfs_trans_ail_copy_lsn(mp->m_ail, 2666 &iip->ili_flush_lsn, 2667 &iip->ili_item.li_lsn); 2668 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2669 } 2670 } 2671 2672 2673 /* 2674 * For each inode in memory attempt to add it to the inode 2675 * buffer and set it up for being staled on buffer IO 2676 * completion. This is safe as we've locked out tail pushing 2677 * and flushing by locking the buffer. 2678 * 2679 * We have already marked every inode that was part of a 2680 * transaction stale above, which means there is no point in 2681 * even trying to lock them. 2682 */ 2683 for (i = 0; i < igeo->inodes_per_cluster; i++) { 2684 ip = xfs_ifree_get_one_inode(pag, free_ip, inum + i); 2685 if (!ip) 2686 continue; 2687 2688 iip = ip->i_itemp; 2689 iip->ili_last_fields = iip->ili_fields; 2690 iip->ili_fields = 0; 2691 iip->ili_fsync_fields = 0; 2692 iip->ili_logged = 1; 2693 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2694 &iip->ili_item.li_lsn); 2695 2696 xfs_buf_attach_iodone(bp, xfs_istale_done, 2697 &iip->ili_item); 2698 2699 if (ip != free_ip) 2700 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2701 } 2702 2703 xfs_trans_stale_inode_buf(tp, bp); 2704 xfs_trans_binval(tp, bp); 2705 } 2706 2707 xfs_perag_put(pag); 2708 return 0; 2709 } 2710 2711 /* 2712 * This is called to return an inode to the inode free list. 2713 * The inode should already be truncated to 0 length and have 2714 * no pages associated with it. This routine also assumes that 2715 * the inode is already a part of the transaction. 2716 * 2717 * The on-disk copy of the inode will have been added to the list 2718 * of unlinked inodes in the AGI. We need to remove the inode from 2719 * that list atomically with respect to freeing it here. 2720 */ 2721 int 2722 xfs_ifree( 2723 struct xfs_trans *tp, 2724 struct xfs_inode *ip) 2725 { 2726 int error; 2727 struct xfs_icluster xic = { 0 }; 2728 2729 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2730 ASSERT(VFS_I(ip)->i_nlink == 0); 2731 ASSERT(ip->i_df.if_nextents == 0); 2732 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2733 ASSERT(ip->i_d.di_nblocks == 0); 2734 2735 /* 2736 * Pull the on-disk inode from the AGI unlinked list. 2737 */ 2738 error = xfs_iunlink_remove(tp, ip); 2739 if (error) 2740 return error; 2741 2742 error = xfs_difree(tp, ip->i_ino, &xic); 2743 if (error) 2744 return error; 2745 2746 /* 2747 * Free any local-format data sitting around before we reset the 2748 * data fork to extents format. Note that the attr fork data has 2749 * already been freed by xfs_attr_inactive. 2750 */ 2751 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2752 kmem_free(ip->i_df.if_u1.if_data); 2753 ip->i_df.if_u1.if_data = NULL; 2754 ip->i_df.if_bytes = 0; 2755 } 2756 2757 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2758 ip->i_d.di_flags = 0; 2759 ip->i_d.di_flags2 = 0; 2760 ip->i_d.di_dmevmask = 0; 2761 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2762 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2763 2764 /* Don't attempt to replay owner changes for a deleted inode */ 2765 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2766 2767 /* 2768 * Bump the generation count so no one will be confused 2769 * by reincarnations of this inode. 2770 */ 2771 VFS_I(ip)->i_generation++; 2772 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2773 2774 if (xic.deleted) 2775 error = xfs_ifree_cluster(ip, tp, &xic); 2776 2777 return error; 2778 } 2779 2780 /* 2781 * This is called to unpin an inode. The caller must have the inode locked 2782 * in at least shared mode so that the buffer cannot be subsequently pinned 2783 * once someone is waiting for it to be unpinned. 2784 */ 2785 static void 2786 xfs_iunpin( 2787 struct xfs_inode *ip) 2788 { 2789 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2790 2791 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2792 2793 /* Give the log a push to start the unpinning I/O */ 2794 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2795 2796 } 2797 2798 static void 2799 __xfs_iunpin_wait( 2800 struct xfs_inode *ip) 2801 { 2802 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2803 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2804 2805 xfs_iunpin(ip); 2806 2807 do { 2808 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2809 if (xfs_ipincount(ip)) 2810 io_schedule(); 2811 } while (xfs_ipincount(ip)); 2812 finish_wait(wq, &wait.wq_entry); 2813 } 2814 2815 void 2816 xfs_iunpin_wait( 2817 struct xfs_inode *ip) 2818 { 2819 if (xfs_ipincount(ip)) 2820 __xfs_iunpin_wait(ip); 2821 } 2822 2823 /* 2824 * Removing an inode from the namespace involves removing the directory entry 2825 * and dropping the link count on the inode. Removing the directory entry can 2826 * result in locking an AGF (directory blocks were freed) and removing a link 2827 * count can result in placing the inode on an unlinked list which results in 2828 * locking an AGI. 2829 * 2830 * The big problem here is that we have an ordering constraint on AGF and AGI 2831 * locking - inode allocation locks the AGI, then can allocate a new extent for 2832 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2833 * removes the inode from the unlinked list, requiring that we lock the AGI 2834 * first, and then freeing the inode can result in an inode chunk being freed 2835 * and hence freeing disk space requiring that we lock an AGF. 2836 * 2837 * Hence the ordering that is imposed by other parts of the code is AGI before 2838 * AGF. This means we cannot remove the directory entry before we drop the inode 2839 * reference count and put it on the unlinked list as this results in a lock 2840 * order of AGF then AGI, and this can deadlock against inode allocation and 2841 * freeing. Therefore we must drop the link counts before we remove the 2842 * directory entry. 2843 * 2844 * This is still safe from a transactional point of view - it is not until we 2845 * get to xfs_defer_finish() that we have the possibility of multiple 2846 * transactions in this operation. Hence as long as we remove the directory 2847 * entry and drop the link count in the first transaction of the remove 2848 * operation, there are no transactional constraints on the ordering here. 2849 */ 2850 int 2851 xfs_remove( 2852 xfs_inode_t *dp, 2853 struct xfs_name *name, 2854 xfs_inode_t *ip) 2855 { 2856 xfs_mount_t *mp = dp->i_mount; 2857 xfs_trans_t *tp = NULL; 2858 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2859 int error = 0; 2860 uint resblks; 2861 2862 trace_xfs_remove(dp, name); 2863 2864 if (XFS_FORCED_SHUTDOWN(mp)) 2865 return -EIO; 2866 2867 error = xfs_qm_dqattach(dp); 2868 if (error) 2869 goto std_return; 2870 2871 error = xfs_qm_dqattach(ip); 2872 if (error) 2873 goto std_return; 2874 2875 /* 2876 * We try to get the real space reservation first, 2877 * allowing for directory btree deletion(s) implying 2878 * possible bmap insert(s). If we can't get the space 2879 * reservation then we use 0 instead, and avoid the bmap 2880 * btree insert(s) in the directory code by, if the bmap 2881 * insert tries to happen, instead trimming the LAST 2882 * block from the directory. 2883 */ 2884 resblks = XFS_REMOVE_SPACE_RES(mp); 2885 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2886 if (error == -ENOSPC) { 2887 resblks = 0; 2888 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2889 &tp); 2890 } 2891 if (error) { 2892 ASSERT(error != -ENOSPC); 2893 goto std_return; 2894 } 2895 2896 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2897 2898 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2899 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2900 2901 /* 2902 * If we're removing a directory perform some additional validation. 2903 */ 2904 if (is_dir) { 2905 ASSERT(VFS_I(ip)->i_nlink >= 2); 2906 if (VFS_I(ip)->i_nlink != 2) { 2907 error = -ENOTEMPTY; 2908 goto out_trans_cancel; 2909 } 2910 if (!xfs_dir_isempty(ip)) { 2911 error = -ENOTEMPTY; 2912 goto out_trans_cancel; 2913 } 2914 2915 /* Drop the link from ip's "..". */ 2916 error = xfs_droplink(tp, dp); 2917 if (error) 2918 goto out_trans_cancel; 2919 2920 /* Drop the "." link from ip to self. */ 2921 error = xfs_droplink(tp, ip); 2922 if (error) 2923 goto out_trans_cancel; 2924 } else { 2925 /* 2926 * When removing a non-directory we need to log the parent 2927 * inode here. For a directory this is done implicitly 2928 * by the xfs_droplink call for the ".." entry. 2929 */ 2930 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2931 } 2932 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2933 2934 /* Drop the link from dp to ip. */ 2935 error = xfs_droplink(tp, ip); 2936 if (error) 2937 goto out_trans_cancel; 2938 2939 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2940 if (error) { 2941 ASSERT(error != -ENOENT); 2942 goto out_trans_cancel; 2943 } 2944 2945 /* 2946 * If this is a synchronous mount, make sure that the 2947 * remove transaction goes to disk before returning to 2948 * the user. 2949 */ 2950 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2951 xfs_trans_set_sync(tp); 2952 2953 error = xfs_trans_commit(tp); 2954 if (error) 2955 goto std_return; 2956 2957 if (is_dir && xfs_inode_is_filestream(ip)) 2958 xfs_filestream_deassociate(ip); 2959 2960 return 0; 2961 2962 out_trans_cancel: 2963 xfs_trans_cancel(tp); 2964 std_return: 2965 return error; 2966 } 2967 2968 /* 2969 * Enter all inodes for a rename transaction into a sorted array. 2970 */ 2971 #define __XFS_SORT_INODES 5 2972 STATIC void 2973 xfs_sort_for_rename( 2974 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2975 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2976 struct xfs_inode *ip1, /* in: inode of old entry */ 2977 struct xfs_inode *ip2, /* in: inode of new entry */ 2978 struct xfs_inode *wip, /* in: whiteout inode */ 2979 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2980 int *num_inodes) /* in/out: inodes in array */ 2981 { 2982 int i, j; 2983 2984 ASSERT(*num_inodes == __XFS_SORT_INODES); 2985 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2986 2987 /* 2988 * i_tab contains a list of pointers to inodes. We initialize 2989 * the table here & we'll sort it. We will then use it to 2990 * order the acquisition of the inode locks. 2991 * 2992 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2993 */ 2994 i = 0; 2995 i_tab[i++] = dp1; 2996 i_tab[i++] = dp2; 2997 i_tab[i++] = ip1; 2998 if (ip2) 2999 i_tab[i++] = ip2; 3000 if (wip) 3001 i_tab[i++] = wip; 3002 *num_inodes = i; 3003 3004 /* 3005 * Sort the elements via bubble sort. (Remember, there are at 3006 * most 5 elements to sort, so this is adequate.) 3007 */ 3008 for (i = 0; i < *num_inodes; i++) { 3009 for (j = 1; j < *num_inodes; j++) { 3010 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 3011 struct xfs_inode *temp = i_tab[j]; 3012 i_tab[j] = i_tab[j-1]; 3013 i_tab[j-1] = temp; 3014 } 3015 } 3016 } 3017 } 3018 3019 static int 3020 xfs_finish_rename( 3021 struct xfs_trans *tp) 3022 { 3023 /* 3024 * If this is a synchronous mount, make sure that the rename transaction 3025 * goes to disk before returning to the user. 3026 */ 3027 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 3028 xfs_trans_set_sync(tp); 3029 3030 return xfs_trans_commit(tp); 3031 } 3032 3033 /* 3034 * xfs_cross_rename() 3035 * 3036 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3037 */ 3038 STATIC int 3039 xfs_cross_rename( 3040 struct xfs_trans *tp, 3041 struct xfs_inode *dp1, 3042 struct xfs_name *name1, 3043 struct xfs_inode *ip1, 3044 struct xfs_inode *dp2, 3045 struct xfs_name *name2, 3046 struct xfs_inode *ip2, 3047 int spaceres) 3048 { 3049 int error = 0; 3050 int ip1_flags = 0; 3051 int ip2_flags = 0; 3052 int dp2_flags = 0; 3053 3054 /* Swap inode number for dirent in first parent */ 3055 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3056 if (error) 3057 goto out_trans_abort; 3058 3059 /* Swap inode number for dirent in second parent */ 3060 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3061 if (error) 3062 goto out_trans_abort; 3063 3064 /* 3065 * If we're renaming one or more directories across different parents, 3066 * update the respective ".." entries (and link counts) to match the new 3067 * parents. 3068 */ 3069 if (dp1 != dp2) { 3070 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3071 3072 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3073 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3074 dp1->i_ino, spaceres); 3075 if (error) 3076 goto out_trans_abort; 3077 3078 /* transfer ip2 ".." reference to dp1 */ 3079 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3080 error = xfs_droplink(tp, dp2); 3081 if (error) 3082 goto out_trans_abort; 3083 xfs_bumplink(tp, dp1); 3084 } 3085 3086 /* 3087 * Although ip1 isn't changed here, userspace needs 3088 * to be warned about the change, so that applications 3089 * relying on it (like backup ones), will properly 3090 * notify the change 3091 */ 3092 ip1_flags |= XFS_ICHGTIME_CHG; 3093 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3094 } 3095 3096 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3097 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3098 dp2->i_ino, spaceres); 3099 if (error) 3100 goto out_trans_abort; 3101 3102 /* transfer ip1 ".." reference to dp2 */ 3103 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3104 error = xfs_droplink(tp, dp1); 3105 if (error) 3106 goto out_trans_abort; 3107 xfs_bumplink(tp, dp2); 3108 } 3109 3110 /* 3111 * Although ip2 isn't changed here, userspace needs 3112 * to be warned about the change, so that applications 3113 * relying on it (like backup ones), will properly 3114 * notify the change 3115 */ 3116 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3117 ip2_flags |= XFS_ICHGTIME_CHG; 3118 } 3119 } 3120 3121 if (ip1_flags) { 3122 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3123 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3124 } 3125 if (ip2_flags) { 3126 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3127 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3128 } 3129 if (dp2_flags) { 3130 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3131 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3132 } 3133 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3134 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3135 return xfs_finish_rename(tp); 3136 3137 out_trans_abort: 3138 xfs_trans_cancel(tp); 3139 return error; 3140 } 3141 3142 /* 3143 * xfs_rename_alloc_whiteout() 3144 * 3145 * Return a referenced, unlinked, unlocked inode that that can be used as a 3146 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3147 * crash between allocating the inode and linking it into the rename transaction 3148 * recovery will free the inode and we won't leak it. 3149 */ 3150 static int 3151 xfs_rename_alloc_whiteout( 3152 struct xfs_inode *dp, 3153 struct xfs_inode **wip) 3154 { 3155 struct xfs_inode *tmpfile; 3156 int error; 3157 3158 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3159 if (error) 3160 return error; 3161 3162 /* 3163 * Prepare the tmpfile inode as if it were created through the VFS. 3164 * Complete the inode setup and flag it as linkable. nlink is already 3165 * zero, so we can skip the drop_nlink. 3166 */ 3167 xfs_setup_iops(tmpfile); 3168 xfs_finish_inode_setup(tmpfile); 3169 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3170 3171 *wip = tmpfile; 3172 return 0; 3173 } 3174 3175 /* 3176 * xfs_rename 3177 */ 3178 int 3179 xfs_rename( 3180 struct xfs_inode *src_dp, 3181 struct xfs_name *src_name, 3182 struct xfs_inode *src_ip, 3183 struct xfs_inode *target_dp, 3184 struct xfs_name *target_name, 3185 struct xfs_inode *target_ip, 3186 unsigned int flags) 3187 { 3188 struct xfs_mount *mp = src_dp->i_mount; 3189 struct xfs_trans *tp; 3190 struct xfs_inode *wip = NULL; /* whiteout inode */ 3191 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3192 struct xfs_buf *agibp; 3193 int num_inodes = __XFS_SORT_INODES; 3194 bool new_parent = (src_dp != target_dp); 3195 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3196 int spaceres; 3197 int error; 3198 3199 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3200 3201 if ((flags & RENAME_EXCHANGE) && !target_ip) 3202 return -EINVAL; 3203 3204 /* 3205 * If we are doing a whiteout operation, allocate the whiteout inode 3206 * we will be placing at the target and ensure the type is set 3207 * appropriately. 3208 */ 3209 if (flags & RENAME_WHITEOUT) { 3210 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3211 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3212 if (error) 3213 return error; 3214 3215 /* setup target dirent info as whiteout */ 3216 src_name->type = XFS_DIR3_FT_CHRDEV; 3217 } 3218 3219 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3220 inodes, &num_inodes); 3221 3222 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3223 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3224 if (error == -ENOSPC) { 3225 spaceres = 0; 3226 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3227 &tp); 3228 } 3229 if (error) 3230 goto out_release_wip; 3231 3232 /* 3233 * Attach the dquots to the inodes 3234 */ 3235 error = xfs_qm_vop_rename_dqattach(inodes); 3236 if (error) 3237 goto out_trans_cancel; 3238 3239 /* 3240 * Lock all the participating inodes. Depending upon whether 3241 * the target_name exists in the target directory, and 3242 * whether the target directory is the same as the source 3243 * directory, we can lock from 2 to 4 inodes. 3244 */ 3245 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3246 3247 /* 3248 * Join all the inodes to the transaction. From this point on, 3249 * we can rely on either trans_commit or trans_cancel to unlock 3250 * them. 3251 */ 3252 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3253 if (new_parent) 3254 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3255 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3256 if (target_ip) 3257 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3258 if (wip) 3259 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3260 3261 /* 3262 * If we are using project inheritance, we only allow renames 3263 * into our tree when the project IDs are the same; else the 3264 * tree quota mechanism would be circumvented. 3265 */ 3266 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3267 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3268 error = -EXDEV; 3269 goto out_trans_cancel; 3270 } 3271 3272 /* RENAME_EXCHANGE is unique from here on. */ 3273 if (flags & RENAME_EXCHANGE) 3274 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3275 target_dp, target_name, target_ip, 3276 spaceres); 3277 3278 /* 3279 * Check for expected errors before we dirty the transaction 3280 * so we can return an error without a transaction abort. 3281 */ 3282 if (target_ip == NULL) { 3283 /* 3284 * If there's no space reservation, check the entry will 3285 * fit before actually inserting it. 3286 */ 3287 if (!spaceres) { 3288 error = xfs_dir_canenter(tp, target_dp, target_name); 3289 if (error) 3290 goto out_trans_cancel; 3291 } 3292 } else { 3293 /* 3294 * If target exists and it's a directory, check that whether 3295 * it can be destroyed. 3296 */ 3297 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3298 (!xfs_dir_isempty(target_ip) || 3299 (VFS_I(target_ip)->i_nlink > 2))) { 3300 error = -EEXIST; 3301 goto out_trans_cancel; 3302 } 3303 } 3304 3305 /* 3306 * Directory entry creation below may acquire the AGF. Remove 3307 * the whiteout from the unlinked list first to preserve correct 3308 * AGI/AGF locking order. This dirties the transaction so failures 3309 * after this point will abort and log recovery will clean up the 3310 * mess. 3311 * 3312 * For whiteouts, we need to bump the link count on the whiteout 3313 * inode. After this point, we have a real link, clear the tmpfile 3314 * state flag from the inode so it doesn't accidentally get misused 3315 * in future. 3316 */ 3317 if (wip) { 3318 ASSERT(VFS_I(wip)->i_nlink == 0); 3319 error = xfs_iunlink_remove(tp, wip); 3320 if (error) 3321 goto out_trans_cancel; 3322 3323 xfs_bumplink(tp, wip); 3324 VFS_I(wip)->i_state &= ~I_LINKABLE; 3325 } 3326 3327 /* 3328 * Set up the target. 3329 */ 3330 if (target_ip == NULL) { 3331 /* 3332 * If target does not exist and the rename crosses 3333 * directories, adjust the target directory link count 3334 * to account for the ".." reference from the new entry. 3335 */ 3336 error = xfs_dir_createname(tp, target_dp, target_name, 3337 src_ip->i_ino, spaceres); 3338 if (error) 3339 goto out_trans_cancel; 3340 3341 xfs_trans_ichgtime(tp, target_dp, 3342 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3343 3344 if (new_parent && src_is_directory) { 3345 xfs_bumplink(tp, target_dp); 3346 } 3347 } else { /* target_ip != NULL */ 3348 /* 3349 * Link the source inode under the target name. 3350 * If the source inode is a directory and we are moving 3351 * it across directories, its ".." entry will be 3352 * inconsistent until we replace that down below. 3353 * 3354 * In case there is already an entry with the same 3355 * name at the destination directory, remove it first. 3356 */ 3357 3358 /* 3359 * Check whether the replace operation will need to allocate 3360 * blocks. This happens when the shortform directory lacks 3361 * space and we have to convert it to a block format directory. 3362 * When more blocks are necessary, we must lock the AGI first 3363 * to preserve locking order (AGI -> AGF). 3364 */ 3365 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) { 3366 error = xfs_read_agi(mp, tp, 3367 XFS_INO_TO_AGNO(mp, target_ip->i_ino), 3368 &agibp); 3369 if (error) 3370 goto out_trans_cancel; 3371 } 3372 3373 error = xfs_dir_replace(tp, target_dp, target_name, 3374 src_ip->i_ino, spaceres); 3375 if (error) 3376 goto out_trans_cancel; 3377 3378 xfs_trans_ichgtime(tp, target_dp, 3379 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3380 3381 /* 3382 * Decrement the link count on the target since the target 3383 * dir no longer points to it. 3384 */ 3385 error = xfs_droplink(tp, target_ip); 3386 if (error) 3387 goto out_trans_cancel; 3388 3389 if (src_is_directory) { 3390 /* 3391 * Drop the link from the old "." entry. 3392 */ 3393 error = xfs_droplink(tp, target_ip); 3394 if (error) 3395 goto out_trans_cancel; 3396 } 3397 } /* target_ip != NULL */ 3398 3399 /* 3400 * Remove the source. 3401 */ 3402 if (new_parent && src_is_directory) { 3403 /* 3404 * Rewrite the ".." entry to point to the new 3405 * directory. 3406 */ 3407 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3408 target_dp->i_ino, spaceres); 3409 ASSERT(error != -EEXIST); 3410 if (error) 3411 goto out_trans_cancel; 3412 } 3413 3414 /* 3415 * We always want to hit the ctime on the source inode. 3416 * 3417 * This isn't strictly required by the standards since the source 3418 * inode isn't really being changed, but old unix file systems did 3419 * it and some incremental backup programs won't work without it. 3420 */ 3421 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3422 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3423 3424 /* 3425 * Adjust the link count on src_dp. This is necessary when 3426 * renaming a directory, either within one parent when 3427 * the target existed, or across two parent directories. 3428 */ 3429 if (src_is_directory && (new_parent || target_ip != NULL)) { 3430 3431 /* 3432 * Decrement link count on src_directory since the 3433 * entry that's moved no longer points to it. 3434 */ 3435 error = xfs_droplink(tp, src_dp); 3436 if (error) 3437 goto out_trans_cancel; 3438 } 3439 3440 /* 3441 * For whiteouts, we only need to update the source dirent with the 3442 * inode number of the whiteout inode rather than removing it 3443 * altogether. 3444 */ 3445 if (wip) { 3446 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3447 spaceres); 3448 } else 3449 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3450 spaceres); 3451 if (error) 3452 goto out_trans_cancel; 3453 3454 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3455 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3456 if (new_parent) 3457 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3458 3459 error = xfs_finish_rename(tp); 3460 if (wip) 3461 xfs_irele(wip); 3462 return error; 3463 3464 out_trans_cancel: 3465 xfs_trans_cancel(tp); 3466 out_release_wip: 3467 if (wip) 3468 xfs_irele(wip); 3469 return error; 3470 } 3471 3472 STATIC int 3473 xfs_iflush_cluster( 3474 struct xfs_inode *ip, 3475 struct xfs_buf *bp) 3476 { 3477 struct xfs_mount *mp = ip->i_mount; 3478 struct xfs_perag *pag; 3479 unsigned long first_index, mask; 3480 int cilist_size; 3481 struct xfs_inode **cilist; 3482 struct xfs_inode *cip; 3483 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3484 int error = 0; 3485 int nr_found; 3486 int clcount = 0; 3487 int i; 3488 3489 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3490 3491 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *); 3492 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3493 if (!cilist) 3494 goto out_put; 3495 3496 mask = ~(igeo->inodes_per_cluster - 1); 3497 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3498 rcu_read_lock(); 3499 /* really need a gang lookup range call here */ 3500 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3501 first_index, igeo->inodes_per_cluster); 3502 if (nr_found == 0) 3503 goto out_free; 3504 3505 for (i = 0; i < nr_found; i++) { 3506 cip = cilist[i]; 3507 if (cip == ip) 3508 continue; 3509 3510 /* 3511 * because this is an RCU protected lookup, we could find a 3512 * recently freed or even reallocated inode during the lookup. 3513 * We need to check under the i_flags_lock for a valid inode 3514 * here. Skip it if it is not valid or the wrong inode. 3515 */ 3516 spin_lock(&cip->i_flags_lock); 3517 if (!cip->i_ino || 3518 __xfs_iflags_test(cip, XFS_ISTALE)) { 3519 spin_unlock(&cip->i_flags_lock); 3520 continue; 3521 } 3522 3523 /* 3524 * Once we fall off the end of the cluster, no point checking 3525 * any more inodes in the list because they will also all be 3526 * outside the cluster. 3527 */ 3528 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3529 spin_unlock(&cip->i_flags_lock); 3530 break; 3531 } 3532 spin_unlock(&cip->i_flags_lock); 3533 3534 /* 3535 * Do an un-protected check to see if the inode is dirty and 3536 * is a candidate for flushing. These checks will be repeated 3537 * later after the appropriate locks are acquired. 3538 */ 3539 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3540 continue; 3541 3542 /* 3543 * Try to get locks. If any are unavailable or it is pinned, 3544 * then this inode cannot be flushed and is skipped. 3545 */ 3546 3547 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3548 continue; 3549 if (!xfs_iflock_nowait(cip)) { 3550 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3551 continue; 3552 } 3553 if (xfs_ipincount(cip)) { 3554 xfs_ifunlock(cip); 3555 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3556 continue; 3557 } 3558 3559 3560 /* 3561 * Check the inode number again, just to be certain we are not 3562 * racing with freeing in xfs_reclaim_inode(). See the comments 3563 * in that function for more information as to why the initial 3564 * check is not sufficient. 3565 */ 3566 if (!cip->i_ino) { 3567 xfs_ifunlock(cip); 3568 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3569 continue; 3570 } 3571 3572 /* 3573 * arriving here means that this inode can be flushed. First 3574 * re-check that it's dirty before flushing. 3575 */ 3576 if (!xfs_inode_clean(cip)) { 3577 error = xfs_iflush_int(cip, bp); 3578 if (error) { 3579 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3580 goto out_free; 3581 } 3582 clcount++; 3583 } else { 3584 xfs_ifunlock(cip); 3585 } 3586 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3587 } 3588 3589 if (clcount) { 3590 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3591 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3592 } 3593 3594 out_free: 3595 rcu_read_unlock(); 3596 kmem_free(cilist); 3597 out_put: 3598 xfs_perag_put(pag); 3599 return error; 3600 } 3601 3602 /* 3603 * Flush dirty inode metadata into the backing buffer. 3604 * 3605 * The caller must have the inode lock and the inode flush lock held. The 3606 * inode lock will still be held upon return to the caller, and the inode 3607 * flush lock will be released after the inode has reached the disk. 3608 * 3609 * The caller must write out the buffer returned in *bpp and release it. 3610 */ 3611 int 3612 xfs_iflush( 3613 struct xfs_inode *ip, 3614 struct xfs_buf **bpp) 3615 { 3616 struct xfs_mount *mp = ip->i_mount; 3617 struct xfs_buf *bp = NULL; 3618 struct xfs_dinode *dip; 3619 int error; 3620 3621 XFS_STATS_INC(mp, xs_iflush_count); 3622 3623 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3624 ASSERT(xfs_isiflocked(ip)); 3625 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3626 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3627 3628 *bpp = NULL; 3629 3630 xfs_iunpin_wait(ip); 3631 3632 /* 3633 * For stale inodes we cannot rely on the backing buffer remaining 3634 * stale in cache for the remaining life of the stale inode and so 3635 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3636 * inodes below. We have to check this after ensuring the inode is 3637 * unpinned so that it is safe to reclaim the stale inode after the 3638 * flush call. 3639 */ 3640 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3641 xfs_ifunlock(ip); 3642 return 0; 3643 } 3644 3645 /* 3646 * Get the buffer containing the on-disk inode. We are doing a try-lock 3647 * operation here, so we may get an EAGAIN error. In that case, return 3648 * leaving the inode dirty. 3649 * 3650 * If we get any other error, we effectively have a corruption situation 3651 * and we cannot flush the inode. Abort the flush and shut down. 3652 */ 3653 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK); 3654 if (error == -EAGAIN) { 3655 xfs_ifunlock(ip); 3656 return error; 3657 } 3658 if (error) 3659 goto abort; 3660 3661 /* 3662 * If the buffer is pinned then push on the log now so we won't 3663 * get stuck waiting in the write for too long. 3664 */ 3665 if (xfs_buf_ispinned(bp)) 3666 xfs_log_force(mp, 0); 3667 3668 /* 3669 * Flush the provided inode then attempt to gather others from the 3670 * cluster into the write. 3671 * 3672 * Note: Once we attempt to flush an inode, we must run buffer 3673 * completion callbacks on any failure. If this fails, simulate an I/O 3674 * failure on the buffer and shut down. 3675 */ 3676 error = xfs_iflush_int(ip, bp); 3677 if (!error) 3678 error = xfs_iflush_cluster(ip, bp); 3679 if (error) { 3680 bp->b_flags |= XBF_ASYNC; 3681 xfs_buf_ioend_fail(bp); 3682 goto shutdown; 3683 } 3684 3685 *bpp = bp; 3686 return 0; 3687 3688 abort: 3689 xfs_iflush_abort(ip); 3690 shutdown: 3691 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3692 return error; 3693 } 3694 3695 STATIC int 3696 xfs_iflush_int( 3697 struct xfs_inode *ip, 3698 struct xfs_buf *bp) 3699 { 3700 struct xfs_inode_log_item *iip = ip->i_itemp; 3701 struct xfs_dinode *dip; 3702 struct xfs_mount *mp = ip->i_mount; 3703 int error; 3704 3705 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3706 ASSERT(xfs_isiflocked(ip)); 3707 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3708 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3709 ASSERT(iip != NULL && iip->ili_fields != 0); 3710 3711 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3712 3713 /* 3714 * We don't flush the inode if any of the following checks fail, but we 3715 * do still update the log item and attach to the backing buffer as if 3716 * the flush happened. This is a formality to facilitate predictable 3717 * error handling as the caller will shutdown and fail the buffer. 3718 */ 3719 error = -EFSCORRUPTED; 3720 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3721 mp, XFS_ERRTAG_IFLUSH_1)) { 3722 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3723 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3724 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3725 goto flush_out; 3726 } 3727 if (S_ISREG(VFS_I(ip)->i_mode)) { 3728 if (XFS_TEST_ERROR( 3729 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3730 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3731 mp, XFS_ERRTAG_IFLUSH_3)) { 3732 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3733 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3734 __func__, ip->i_ino, ip); 3735 goto flush_out; 3736 } 3737 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3738 if (XFS_TEST_ERROR( 3739 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3740 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3741 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3742 mp, XFS_ERRTAG_IFLUSH_4)) { 3743 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3744 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3745 __func__, ip->i_ino, ip); 3746 goto flush_out; 3747 } 3748 } 3749 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3750 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3751 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3752 "%s: detected corrupt incore inode %Lu, " 3753 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3754 __func__, ip->i_ino, 3755 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3756 ip->i_d.di_nblocks, ip); 3757 goto flush_out; 3758 } 3759 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3760 mp, XFS_ERRTAG_IFLUSH_6)) { 3761 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3762 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3763 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3764 goto flush_out; 3765 } 3766 3767 /* 3768 * Inode item log recovery for v2 inodes are dependent on the 3769 * di_flushiter count for correct sequencing. We bump the flush 3770 * iteration count so we can detect flushes which postdate a log record 3771 * during recovery. This is redundant as we now log every change and 3772 * hence this can't happen but we need to still do it to ensure 3773 * backwards compatibility with old kernels that predate logging all 3774 * inode changes. 3775 */ 3776 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3777 ip->i_d.di_flushiter++; 3778 3779 /* 3780 * If there are inline format data / attr forks attached to this inode, 3781 * make sure they are not corrupt. 3782 */ 3783 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3784 xfs_ifork_verify_local_data(ip)) 3785 goto flush_out; 3786 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3787 xfs_ifork_verify_local_attr(ip)) 3788 goto flush_out; 3789 3790 /* 3791 * Copy the dirty parts of the inode into the on-disk inode. We always 3792 * copy out the core of the inode, because if the inode is dirty at all 3793 * the core must be. 3794 */ 3795 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3796 3797 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3798 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3799 ip->i_d.di_flushiter = 0; 3800 3801 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3802 if (XFS_IFORK_Q(ip)) 3803 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3804 xfs_inobp_check(mp, bp); 3805 3806 /* 3807 * We've recorded everything logged in the inode, so we'd like to clear 3808 * the ili_fields bits so we don't log and flush things unnecessarily. 3809 * However, we can't stop logging all this information until the data 3810 * we've copied into the disk buffer is written to disk. If we did we 3811 * might overwrite the copy of the inode in the log with all the data 3812 * after re-logging only part of it, and in the face of a crash we 3813 * wouldn't have all the data we need to recover. 3814 * 3815 * What we do is move the bits to the ili_last_fields field. When 3816 * logging the inode, these bits are moved back to the ili_fields field. 3817 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3818 * know that the information those bits represent is permanently on 3819 * disk. As long as the flush completes before the inode is logged 3820 * again, then both ili_fields and ili_last_fields will be cleared. 3821 * 3822 * We can play with the ili_fields bits here, because the inode lock 3823 * must be held exclusively in order to set bits there and the flush 3824 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3825 * done routine can tell whether or not to look in the AIL. Also, store 3826 * the current LSN of the inode so that we can tell whether the item has 3827 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3828 * need the AIL lock, because it is a 64 bit value that cannot be read 3829 * atomically. 3830 */ 3831 error = 0; 3832 flush_out: 3833 iip->ili_last_fields = iip->ili_fields; 3834 iip->ili_fields = 0; 3835 iip->ili_fsync_fields = 0; 3836 iip->ili_logged = 1; 3837 3838 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3839 &iip->ili_item.li_lsn); 3840 3841 /* 3842 * Attach the inode item callback to the buffer whether the flush 3843 * succeeded or not. If not, the caller will shut down and fail I/O 3844 * completion on the buffer to remove the inode from the AIL and release 3845 * the flush lock. 3846 */ 3847 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3848 3849 /* generate the checksum. */ 3850 xfs_dinode_calc_crc(mp, dip); 3851 3852 ASSERT(!list_empty(&bp->b_li_list)); 3853 ASSERT(bp->b_iodone != NULL); 3854 return error; 3855 } 3856 3857 /* Release an inode. */ 3858 void 3859 xfs_irele( 3860 struct xfs_inode *ip) 3861 { 3862 trace_xfs_irele(ip, _RET_IP_); 3863 iput(VFS_I(ip)); 3864 } 3865 3866 /* 3867 * Ensure all commited transactions touching the inode are written to the log. 3868 */ 3869 int 3870 xfs_log_force_inode( 3871 struct xfs_inode *ip) 3872 { 3873 xfs_lsn_t lsn = 0; 3874 3875 xfs_ilock(ip, XFS_ILOCK_SHARED); 3876 if (xfs_ipincount(ip)) 3877 lsn = ip->i_itemp->ili_last_lsn; 3878 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3879 3880 if (!lsn) 3881 return 0; 3882 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3883 } 3884