1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/log2.h> 7 #include <linux/iversion.h> 8 9 #include "xfs.h" 10 #include "xfs_fs.h" 11 #include "xfs_shared.h" 12 #include "xfs_format.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans_resv.h" 15 #include "xfs_sb.h" 16 #include "xfs_mount.h" 17 #include "xfs_defer.h" 18 #include "xfs_inode.h" 19 #include "xfs_da_format.h" 20 #include "xfs_da_btree.h" 21 #include "xfs_dir2.h" 22 #include "xfs_attr_sf.h" 23 #include "xfs_attr.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_trans.h" 26 #include "xfs_buf_item.h" 27 #include "xfs_inode_item.h" 28 #include "xfs_ialloc.h" 29 #include "xfs_bmap.h" 30 #include "xfs_bmap_util.h" 31 #include "xfs_errortag.h" 32 #include "xfs_error.h" 33 #include "xfs_quota.h" 34 #include "xfs_filestream.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trace.h" 37 #include "xfs_icache.h" 38 #include "xfs_symlink.h" 39 #include "xfs_trans_priv.h" 40 #include "xfs_log.h" 41 #include "xfs_bmap_btree.h" 42 #include "xfs_reflink.h" 43 #include "xfs_dir2_priv.h" 44 45 kmem_zone_t *xfs_inode_zone; 46 47 /* 48 * Used in xfs_itruncate_extents(). This is the maximum number of extents 49 * freed from a file in a single transaction. 50 */ 51 #define XFS_ITRUNC_MAX_EXTENTS 2 52 53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 56 57 /* 58 * helper function to extract extent size hint from inode 59 */ 60 xfs_extlen_t 61 xfs_get_extsz_hint( 62 struct xfs_inode *ip) 63 { 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_sem locking order: 148 * 149 * i_rwsem -> page lock -> mmap_sem 150 * mmap_sem -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_sem locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_sem. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 xfs_inode_t **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 xfs_log_item_t *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = (xfs_log_item_t *)ips[j]->i_itemp; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 xfs_log_item_t *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = (xfs_log_item_t *)ip0->i_itemp; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 void 602 __xfs_iflock( 603 struct xfs_inode *ip) 604 { 605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 607 608 do { 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 610 if (xfs_isiflocked(ip)) 611 io_schedule(); 612 } while (!xfs_iflock_nowait(ip)); 613 614 finish_wait(wq, &wait.wq_entry); 615 } 616 617 STATIC uint 618 _xfs_dic2xflags( 619 uint16_t di_flags, 620 uint64_t di_flags2, 621 bool has_attr) 622 { 623 uint flags = 0; 624 625 if (di_flags & XFS_DIFLAG_ANY) { 626 if (di_flags & XFS_DIFLAG_REALTIME) 627 flags |= FS_XFLAG_REALTIME; 628 if (di_flags & XFS_DIFLAG_PREALLOC) 629 flags |= FS_XFLAG_PREALLOC; 630 if (di_flags & XFS_DIFLAG_IMMUTABLE) 631 flags |= FS_XFLAG_IMMUTABLE; 632 if (di_flags & XFS_DIFLAG_APPEND) 633 flags |= FS_XFLAG_APPEND; 634 if (di_flags & XFS_DIFLAG_SYNC) 635 flags |= FS_XFLAG_SYNC; 636 if (di_flags & XFS_DIFLAG_NOATIME) 637 flags |= FS_XFLAG_NOATIME; 638 if (di_flags & XFS_DIFLAG_NODUMP) 639 flags |= FS_XFLAG_NODUMP; 640 if (di_flags & XFS_DIFLAG_RTINHERIT) 641 flags |= FS_XFLAG_RTINHERIT; 642 if (di_flags & XFS_DIFLAG_PROJINHERIT) 643 flags |= FS_XFLAG_PROJINHERIT; 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 645 flags |= FS_XFLAG_NOSYMLINKS; 646 if (di_flags & XFS_DIFLAG_EXTSIZE) 647 flags |= FS_XFLAG_EXTSIZE; 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 649 flags |= FS_XFLAG_EXTSZINHERIT; 650 if (di_flags & XFS_DIFLAG_NODEFRAG) 651 flags |= FS_XFLAG_NODEFRAG; 652 if (di_flags & XFS_DIFLAG_FILESTREAM) 653 flags |= FS_XFLAG_FILESTREAM; 654 } 655 656 if (di_flags2 & XFS_DIFLAG2_ANY) { 657 if (di_flags2 & XFS_DIFLAG2_DAX) 658 flags |= FS_XFLAG_DAX; 659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 660 flags |= FS_XFLAG_COWEXTSIZE; 661 } 662 663 if (has_attr) 664 flags |= FS_XFLAG_HASATTR; 665 666 return flags; 667 } 668 669 uint 670 xfs_ip2xflags( 671 struct xfs_inode *ip) 672 { 673 struct xfs_icdinode *dic = &ip->i_d; 674 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 700 if (error) 701 goto out_unlock; 702 703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 704 if (error) 705 goto out_free_name; 706 707 return 0; 708 709 out_free_name: 710 if (ci_name) 711 kmem_free(ci_name->name); 712 out_unlock: 713 *ipp = NULL; 714 return error; 715 } 716 717 /* 718 * Allocate an inode on disk and return a copy of its in-core version. 719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 720 * appropriately within the inode. The uid and gid for the inode are 721 * set according to the contents of the given cred structure. 722 * 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 724 * has a free inode available, call xfs_iget() to obtain the in-core 725 * version of the allocated inode. Finally, fill in the inode and 726 * log its initial contents. In this case, ialloc_context would be 727 * set to NULL. 728 * 729 * If xfs_dialloc() does not have an available inode, it will replenish 730 * its supply by doing an allocation. Since we can only do one 731 * allocation within a transaction without deadlocks, we must commit 732 * the current transaction before returning the inode itself. 733 * In this case, therefore, we will set ialloc_context and return. 734 * The caller should then commit the current transaction, start a new 735 * transaction, and call xfs_ialloc() again to actually get the inode. 736 * 737 * To ensure that some other process does not grab the inode that 738 * was allocated during the first call to xfs_ialloc(), this routine 739 * also returns the [locked] bp pointing to the head of the freelist 740 * as ialloc_context. The caller should hold this buffer across 741 * the commit and pass it back into this routine on the second call. 742 * 743 * If we are allocating quota inodes, we do not have a parent inode 744 * to attach to or associate with (i.e. pip == NULL) because they 745 * are not linked into the directory structure - they are attached 746 * directly to the superblock - and so have no parent. 747 */ 748 static int 749 xfs_ialloc( 750 xfs_trans_t *tp, 751 xfs_inode_t *pip, 752 umode_t mode, 753 xfs_nlink_t nlink, 754 dev_t rdev, 755 prid_t prid, 756 xfs_buf_t **ialloc_context, 757 xfs_inode_t **ipp) 758 { 759 struct xfs_mount *mp = tp->t_mountp; 760 xfs_ino_t ino; 761 xfs_inode_t *ip; 762 uint flags; 763 int error; 764 struct timespec64 tv; 765 struct inode *inode; 766 767 /* 768 * Call the space management code to pick 769 * the on-disk inode to be allocated. 770 */ 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 772 ialloc_context, &ino); 773 if (error) 774 return error; 775 if (*ialloc_context || ino == NULLFSINO) { 776 *ipp = NULL; 777 return 0; 778 } 779 ASSERT(*ialloc_context == NULL); 780 781 /* 782 * Protect against obviously corrupt allocation btree records. Later 783 * xfs_iget checks will catch re-allocation of other active in-memory 784 * and on-disk inodes. If we don't catch reallocating the parent inode 785 * here we will deadlock in xfs_iget() so we have to do these checks 786 * first. 787 */ 788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 790 return -EFSCORRUPTED; 791 } 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 805 /* 806 * We always convert v1 inodes to v2 now - we only support filesystems 807 * with >= v2 inode capability, so there is no reason for ever leaving 808 * an inode in v1 format. 809 */ 810 if (ip->i_d.di_version == 1) 811 ip->i_d.di_version = 2; 812 813 inode->i_mode = mode; 814 set_nlink(inode, nlink); 815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 817 inode->i_rdev = rdev; 818 xfs_set_projid(ip, prid); 819 820 if (pip && XFS_INHERIT_GID(pip)) { 821 ip->i_d.di_gid = pip->i_d.di_gid; 822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 823 inode->i_mode |= S_ISGID; 824 } 825 826 /* 827 * If the group ID of the new file does not match the effective group 828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 829 * (and only if the irix_sgid_inherit compatibility variable is set). 830 */ 831 if ((irix_sgid_inherit) && 832 (inode->i_mode & S_ISGID) && 833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 834 inode->i_mode &= ~S_ISGID; 835 836 ip->i_d.di_size = 0; 837 ip->i_d.di_nextents = 0; 838 ASSERT(ip->i_d.di_nblocks == 0); 839 840 tv = current_time(inode); 841 inode->i_mtime = tv; 842 inode->i_atime = tv; 843 inode->i_ctime = tv; 844 845 ip->i_d.di_extsize = 0; 846 ip->i_d.di_dmevmask = 0; 847 ip->i_d.di_dmstate = 0; 848 ip->i_d.di_flags = 0; 849 850 if (ip->i_d.di_version == 3) { 851 inode_set_iversion(inode, 1); 852 ip->i_d.di_flags2 = 0; 853 ip->i_d.di_cowextsize = 0; 854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 856 } 857 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 866 ip->i_df.if_flags = 0; 867 flags |= XFS_ILOG_DEV; 868 break; 869 case S_IFREG: 870 case S_IFDIR: 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 872 uint di_flags = 0; 873 874 if (S_ISDIR(mode)) { 875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 876 di_flags |= XFS_DIFLAG_RTINHERIT; 877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 878 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 879 ip->i_d.di_extsize = pip->i_d.di_extsize; 880 } 881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 882 di_flags |= XFS_DIFLAG_PROJINHERIT; 883 } else if (S_ISREG(mode)) { 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 885 di_flags |= XFS_DIFLAG_REALTIME; 886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 887 di_flags |= XFS_DIFLAG_EXTSIZE; 888 ip->i_d.di_extsize = pip->i_d.di_extsize; 889 } 890 } 891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 892 xfs_inherit_noatime) 893 di_flags |= XFS_DIFLAG_NOATIME; 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 895 xfs_inherit_nodump) 896 di_flags |= XFS_DIFLAG_NODUMP; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 898 xfs_inherit_sync) 899 di_flags |= XFS_DIFLAG_SYNC; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 901 xfs_inherit_nosymlinks) 902 di_flags |= XFS_DIFLAG_NOSYMLINKS; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 904 xfs_inherit_nodefrag) 905 di_flags |= XFS_DIFLAG_NODEFRAG; 906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 907 di_flags |= XFS_DIFLAG_FILESTREAM; 908 909 ip->i_d.di_flags |= di_flags; 910 } 911 if (pip && 912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 913 pip->i_d.di_version == 3 && 914 ip->i_d.di_version == 3) { 915 uint64_t di_flags2 = 0; 916 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 920 } 921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 922 di_flags2 |= XFS_DIFLAG2_DAX; 923 924 ip->i_d.di_flags2 |= di_flags2; 925 } 926 /* FALLTHROUGH */ 927 case S_IFLNK: 928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 929 ip->i_df.if_flags = XFS_IFEXTENTS; 930 ip->i_df.if_bytes = 0; 931 ip->i_df.if_u1.if_root = NULL; 932 break; 933 default: 934 ASSERT(0); 935 } 936 /* 937 * Attribute fork settings for new inode. 938 */ 939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 940 ip->i_d.di_anextents = 0; 941 942 /* 943 * Log the new values stuffed into the inode. 944 */ 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 946 xfs_trans_log_inode(tp, ip, flags); 947 948 /* now that we have an i_mode we can setup the inode structure */ 949 xfs_setup_inode(ip); 950 951 *ipp = ip; 952 return 0; 953 } 954 955 /* 956 * Allocates a new inode from disk and return a pointer to the 957 * incore copy. This routine will internally commit the current 958 * transaction and allocate a new one if the Space Manager needed 959 * to do an allocation to replenish the inode free-list. 960 * 961 * This routine is designed to be called from xfs_create and 962 * xfs_create_dir. 963 * 964 */ 965 int 966 xfs_dir_ialloc( 967 xfs_trans_t **tpp, /* input: current transaction; 968 output: may be a new transaction. */ 969 xfs_inode_t *dp, /* directory within whose allocate 970 the inode. */ 971 umode_t mode, 972 xfs_nlink_t nlink, 973 dev_t rdev, 974 prid_t prid, /* project id */ 975 xfs_inode_t **ipp) /* pointer to inode; it will be 976 locked. */ 977 { 978 xfs_trans_t *tp; 979 xfs_inode_t *ip; 980 xfs_buf_t *ialloc_context = NULL; 981 int code; 982 void *dqinfo; 983 uint tflags; 984 985 tp = *tpp; 986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 987 988 /* 989 * xfs_ialloc will return a pointer to an incore inode if 990 * the Space Manager has an available inode on the free 991 * list. Otherwise, it will do an allocation and replenish 992 * the freelist. Since we can only do one allocation per 993 * transaction without deadlocks, we will need to commit the 994 * current transaction and start a new one. We will then 995 * need to call xfs_ialloc again to get the inode. 996 * 997 * If xfs_ialloc did an allocation to replenish the freelist, 998 * it returns the bp containing the head of the freelist as 999 * ialloc_context. We will hold a lock on it across the 1000 * transaction commit so that no other process can steal 1001 * the inode(s) that we've just allocated. 1002 */ 1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 1004 &ip); 1005 1006 /* 1007 * Return an error if we were unable to allocate a new inode. 1008 * This should only happen if we run out of space on disk or 1009 * encounter a disk error. 1010 */ 1011 if (code) { 1012 *ipp = NULL; 1013 return code; 1014 } 1015 if (!ialloc_context && !ip) { 1016 *ipp = NULL; 1017 return -ENOSPC; 1018 } 1019 1020 /* 1021 * If the AGI buffer is non-NULL, then we were unable to get an 1022 * inode in one operation. We need to commit the current 1023 * transaction and call xfs_ialloc() again. It is guaranteed 1024 * to succeed the second time. 1025 */ 1026 if (ialloc_context) { 1027 /* 1028 * Normally, xfs_trans_commit releases all the locks. 1029 * We call bhold to hang on to the ialloc_context across 1030 * the commit. Holding this buffer prevents any other 1031 * processes from doing any allocations in this 1032 * allocation group. 1033 */ 1034 xfs_trans_bhold(tp, ialloc_context); 1035 1036 /* 1037 * We want the quota changes to be associated with the next 1038 * transaction, NOT this one. So, detach the dqinfo from this 1039 * and attach it to the next transaction. 1040 */ 1041 dqinfo = NULL; 1042 tflags = 0; 1043 if (tp->t_dqinfo) { 1044 dqinfo = (void *)tp->t_dqinfo; 1045 tp->t_dqinfo = NULL; 1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1048 } 1049 1050 code = xfs_trans_roll(&tp); 1051 1052 /* 1053 * Re-attach the quota info that we detached from prev trx. 1054 */ 1055 if (dqinfo) { 1056 tp->t_dqinfo = dqinfo; 1057 tp->t_flags |= tflags; 1058 } 1059 1060 if (code) { 1061 xfs_buf_relse(ialloc_context); 1062 *tpp = tp; 1063 *ipp = NULL; 1064 return code; 1065 } 1066 xfs_trans_bjoin(tp, ialloc_context); 1067 1068 /* 1069 * Call ialloc again. Since we've locked out all 1070 * other allocations in this allocation group, 1071 * this call should always succeed. 1072 */ 1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1074 &ialloc_context, &ip); 1075 1076 /* 1077 * If we get an error at this point, return to the caller 1078 * so that the current transaction can be aborted. 1079 */ 1080 if (code) { 1081 *tpp = tp; 1082 *ipp = NULL; 1083 return code; 1084 } 1085 ASSERT(!ialloc_context && ip); 1086 1087 } 1088 1089 *ipp = ip; 1090 *tpp = tp; 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * Decrement the link count on an inode & log the change. If this causes the 1097 * link count to go to zero, move the inode to AGI unlinked list so that it can 1098 * be freed when the last active reference goes away via xfs_inactive(). 1099 */ 1100 static int /* error */ 1101 xfs_droplink( 1102 xfs_trans_t *tp, 1103 xfs_inode_t *ip) 1104 { 1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1106 1107 drop_nlink(VFS_I(ip)); 1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1109 1110 if (VFS_I(ip)->i_nlink) 1111 return 0; 1112 1113 return xfs_iunlink(tp, ip); 1114 } 1115 1116 /* 1117 * Increment the link count on an inode & log the change. 1118 */ 1119 static int 1120 xfs_bumplink( 1121 xfs_trans_t *tp, 1122 xfs_inode_t *ip) 1123 { 1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1125 1126 ASSERT(ip->i_d.di_version > 1); 1127 inc_nlink(VFS_I(ip)); 1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1129 return 0; 1130 } 1131 1132 int 1133 xfs_create( 1134 xfs_inode_t *dp, 1135 struct xfs_name *name, 1136 umode_t mode, 1137 dev_t rdev, 1138 xfs_inode_t **ipp) 1139 { 1140 int is_dir = S_ISDIR(mode); 1141 struct xfs_mount *mp = dp->i_mount; 1142 struct xfs_inode *ip = NULL; 1143 struct xfs_trans *tp = NULL; 1144 int error; 1145 bool unlock_dp_on_error = false; 1146 prid_t prid; 1147 struct xfs_dquot *udqp = NULL; 1148 struct xfs_dquot *gdqp = NULL; 1149 struct xfs_dquot *pdqp = NULL; 1150 struct xfs_trans_res *tres; 1151 uint resblks; 1152 1153 trace_xfs_create(dp, name); 1154 1155 if (XFS_FORCED_SHUTDOWN(mp)) 1156 return -EIO; 1157 1158 prid = xfs_get_initial_prid(dp); 1159 1160 /* 1161 * Make sure that we have allocated dquot(s) on disk. 1162 */ 1163 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1164 xfs_kgid_to_gid(current_fsgid()), prid, 1165 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1166 &udqp, &gdqp, &pdqp); 1167 if (error) 1168 return error; 1169 1170 if (is_dir) { 1171 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1172 tres = &M_RES(mp)->tr_mkdir; 1173 } else { 1174 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1175 tres = &M_RES(mp)->tr_create; 1176 } 1177 1178 /* 1179 * Initially assume that the file does not exist and 1180 * reserve the resources for that case. If that is not 1181 * the case we'll drop the one we have and get a more 1182 * appropriate transaction later. 1183 */ 1184 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1185 if (error == -ENOSPC) { 1186 /* flush outstanding delalloc blocks and retry */ 1187 xfs_flush_inodes(mp); 1188 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1189 } 1190 if (error) 1191 goto out_release_inode; 1192 1193 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1194 unlock_dp_on_error = true; 1195 1196 /* 1197 * Reserve disk quota and the inode. 1198 */ 1199 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1200 pdqp, resblks, 1, 0); 1201 if (error) 1202 goto out_trans_cancel; 1203 1204 /* 1205 * A newly created regular or special file just has one directory 1206 * entry pointing to them, but a directory also the "." entry 1207 * pointing to itself. 1208 */ 1209 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1210 if (error) 1211 goto out_trans_cancel; 1212 1213 /* 1214 * Now we join the directory inode to the transaction. We do not do it 1215 * earlier because xfs_dir_ialloc might commit the previous transaction 1216 * (and release all the locks). An error from here on will result in 1217 * the transaction cancel unlocking dp so don't do it explicitly in the 1218 * error path. 1219 */ 1220 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1221 unlock_dp_on_error = false; 1222 1223 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1224 resblks ? 1225 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1226 if (error) { 1227 ASSERT(error != -ENOSPC); 1228 goto out_trans_cancel; 1229 } 1230 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1231 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1232 1233 if (is_dir) { 1234 error = xfs_dir_init(tp, ip, dp); 1235 if (error) 1236 goto out_trans_cancel; 1237 1238 error = xfs_bumplink(tp, dp); 1239 if (error) 1240 goto out_trans_cancel; 1241 } 1242 1243 /* 1244 * If this is a synchronous mount, make sure that the 1245 * create transaction goes to disk before returning to 1246 * the user. 1247 */ 1248 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1249 xfs_trans_set_sync(tp); 1250 1251 /* 1252 * Attach the dquot(s) to the inodes and modify them incore. 1253 * These ids of the inode couldn't have changed since the new 1254 * inode has been locked ever since it was created. 1255 */ 1256 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1257 1258 error = xfs_trans_commit(tp); 1259 if (error) 1260 goto out_release_inode; 1261 1262 xfs_qm_dqrele(udqp); 1263 xfs_qm_dqrele(gdqp); 1264 xfs_qm_dqrele(pdqp); 1265 1266 *ipp = ip; 1267 return 0; 1268 1269 out_trans_cancel: 1270 xfs_trans_cancel(tp); 1271 out_release_inode: 1272 /* 1273 * Wait until after the current transaction is aborted to finish the 1274 * setup of the inode and release the inode. This prevents recursive 1275 * transactions and deadlocks from xfs_inactive. 1276 */ 1277 if (ip) { 1278 xfs_finish_inode_setup(ip); 1279 xfs_irele(ip); 1280 } 1281 1282 xfs_qm_dqrele(udqp); 1283 xfs_qm_dqrele(gdqp); 1284 xfs_qm_dqrele(pdqp); 1285 1286 if (unlock_dp_on_error) 1287 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1288 return error; 1289 } 1290 1291 int 1292 xfs_create_tmpfile( 1293 struct xfs_inode *dp, 1294 umode_t mode, 1295 struct xfs_inode **ipp) 1296 { 1297 struct xfs_mount *mp = dp->i_mount; 1298 struct xfs_inode *ip = NULL; 1299 struct xfs_trans *tp = NULL; 1300 int error; 1301 prid_t prid; 1302 struct xfs_dquot *udqp = NULL; 1303 struct xfs_dquot *gdqp = NULL; 1304 struct xfs_dquot *pdqp = NULL; 1305 struct xfs_trans_res *tres; 1306 uint resblks; 1307 1308 if (XFS_FORCED_SHUTDOWN(mp)) 1309 return -EIO; 1310 1311 prid = xfs_get_initial_prid(dp); 1312 1313 /* 1314 * Make sure that we have allocated dquot(s) on disk. 1315 */ 1316 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1317 xfs_kgid_to_gid(current_fsgid()), prid, 1318 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1319 &udqp, &gdqp, &pdqp); 1320 if (error) 1321 return error; 1322 1323 resblks = XFS_IALLOC_SPACE_RES(mp); 1324 tres = &M_RES(mp)->tr_create_tmpfile; 1325 1326 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1327 if (error) 1328 goto out_release_inode; 1329 1330 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1331 pdqp, resblks, 1, 0); 1332 if (error) 1333 goto out_trans_cancel; 1334 1335 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1336 if (error) 1337 goto out_trans_cancel; 1338 1339 if (mp->m_flags & XFS_MOUNT_WSYNC) 1340 xfs_trans_set_sync(tp); 1341 1342 /* 1343 * Attach the dquot(s) to the inodes and modify them incore. 1344 * These ids of the inode couldn't have changed since the new 1345 * inode has been locked ever since it was created. 1346 */ 1347 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1348 1349 error = xfs_iunlink(tp, ip); 1350 if (error) 1351 goto out_trans_cancel; 1352 1353 error = xfs_trans_commit(tp); 1354 if (error) 1355 goto out_release_inode; 1356 1357 xfs_qm_dqrele(udqp); 1358 xfs_qm_dqrele(gdqp); 1359 xfs_qm_dqrele(pdqp); 1360 1361 *ipp = ip; 1362 return 0; 1363 1364 out_trans_cancel: 1365 xfs_trans_cancel(tp); 1366 out_release_inode: 1367 /* 1368 * Wait until after the current transaction is aborted to finish the 1369 * setup of the inode and release the inode. This prevents recursive 1370 * transactions and deadlocks from xfs_inactive. 1371 */ 1372 if (ip) { 1373 xfs_finish_inode_setup(ip); 1374 xfs_irele(ip); 1375 } 1376 1377 xfs_qm_dqrele(udqp); 1378 xfs_qm_dqrele(gdqp); 1379 xfs_qm_dqrele(pdqp); 1380 1381 return error; 1382 } 1383 1384 int 1385 xfs_link( 1386 xfs_inode_t *tdp, 1387 xfs_inode_t *sip, 1388 struct xfs_name *target_name) 1389 { 1390 xfs_mount_t *mp = tdp->i_mount; 1391 xfs_trans_t *tp; 1392 int error; 1393 int resblks; 1394 1395 trace_xfs_link(tdp, target_name); 1396 1397 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1398 1399 if (XFS_FORCED_SHUTDOWN(mp)) 1400 return -EIO; 1401 1402 error = xfs_qm_dqattach(sip); 1403 if (error) 1404 goto std_return; 1405 1406 error = xfs_qm_dqattach(tdp); 1407 if (error) 1408 goto std_return; 1409 1410 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1411 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1412 if (error == -ENOSPC) { 1413 resblks = 0; 1414 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1415 } 1416 if (error) 1417 goto std_return; 1418 1419 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1420 1421 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1422 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1423 1424 /* 1425 * If we are using project inheritance, we only allow hard link 1426 * creation in our tree when the project IDs are the same; else 1427 * the tree quota mechanism could be circumvented. 1428 */ 1429 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1430 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1431 error = -EXDEV; 1432 goto error_return; 1433 } 1434 1435 if (!resblks) { 1436 error = xfs_dir_canenter(tp, tdp, target_name); 1437 if (error) 1438 goto error_return; 1439 } 1440 1441 /* 1442 * Handle initial link state of O_TMPFILE inode 1443 */ 1444 if (VFS_I(sip)->i_nlink == 0) { 1445 error = xfs_iunlink_remove(tp, sip); 1446 if (error) 1447 goto error_return; 1448 } 1449 1450 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1451 resblks); 1452 if (error) 1453 goto error_return; 1454 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1455 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1456 1457 error = xfs_bumplink(tp, sip); 1458 if (error) 1459 goto error_return; 1460 1461 /* 1462 * If this is a synchronous mount, make sure that the 1463 * link transaction goes to disk before returning to 1464 * the user. 1465 */ 1466 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1467 xfs_trans_set_sync(tp); 1468 1469 return xfs_trans_commit(tp); 1470 1471 error_return: 1472 xfs_trans_cancel(tp); 1473 std_return: 1474 return error; 1475 } 1476 1477 /* Clear the reflink flag and the cowblocks tag if possible. */ 1478 static void 1479 xfs_itruncate_clear_reflink_flags( 1480 struct xfs_inode *ip) 1481 { 1482 struct xfs_ifork *dfork; 1483 struct xfs_ifork *cfork; 1484 1485 if (!xfs_is_reflink_inode(ip)) 1486 return; 1487 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1488 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1489 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1490 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1491 if (cfork->if_bytes == 0) 1492 xfs_inode_clear_cowblocks_tag(ip); 1493 } 1494 1495 /* 1496 * Free up the underlying blocks past new_size. The new size must be smaller 1497 * than the current size. This routine can be used both for the attribute and 1498 * data fork, and does not modify the inode size, which is left to the caller. 1499 * 1500 * The transaction passed to this routine must have made a permanent log 1501 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1502 * given transaction and start new ones, so make sure everything involved in 1503 * the transaction is tidy before calling here. Some transaction will be 1504 * returned to the caller to be committed. The incoming transaction must 1505 * already include the inode, and both inode locks must be held exclusively. 1506 * The inode must also be "held" within the transaction. On return the inode 1507 * will be "held" within the returned transaction. This routine does NOT 1508 * require any disk space to be reserved for it within the transaction. 1509 * 1510 * If we get an error, we must return with the inode locked and linked into the 1511 * current transaction. This keeps things simple for the higher level code, 1512 * because it always knows that the inode is locked and held in the transaction 1513 * that returns to it whether errors occur or not. We don't mark the inode 1514 * dirty on error so that transactions can be easily aborted if possible. 1515 */ 1516 int 1517 xfs_itruncate_extents_flags( 1518 struct xfs_trans **tpp, 1519 struct xfs_inode *ip, 1520 int whichfork, 1521 xfs_fsize_t new_size, 1522 int flags) 1523 { 1524 struct xfs_mount *mp = ip->i_mount; 1525 struct xfs_trans *tp = *tpp; 1526 xfs_fileoff_t first_unmap_block; 1527 xfs_fileoff_t last_block; 1528 xfs_filblks_t unmap_len; 1529 int error = 0; 1530 int done = 0; 1531 1532 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1533 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1534 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1535 ASSERT(new_size <= XFS_ISIZE(ip)); 1536 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1537 ASSERT(ip->i_itemp != NULL); 1538 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1539 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1540 1541 trace_xfs_itruncate_extents_start(ip, new_size); 1542 1543 flags |= xfs_bmapi_aflag(whichfork); 1544 1545 /* 1546 * Since it is possible for space to become allocated beyond 1547 * the end of the file (in a crash where the space is allocated 1548 * but the inode size is not yet updated), simply remove any 1549 * blocks which show up between the new EOF and the maximum 1550 * possible file size. If the first block to be removed is 1551 * beyond the maximum file size (ie it is the same as last_block), 1552 * then there is nothing to do. 1553 */ 1554 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1555 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1556 if (first_unmap_block == last_block) 1557 return 0; 1558 1559 ASSERT(first_unmap_block < last_block); 1560 unmap_len = last_block - first_unmap_block + 1; 1561 while (!done) { 1562 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1563 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, 1564 XFS_ITRUNC_MAX_EXTENTS, &done); 1565 if (error) 1566 goto out; 1567 1568 /* 1569 * Duplicate the transaction that has the permanent 1570 * reservation and commit the old transaction. 1571 */ 1572 error = xfs_defer_finish(&tp); 1573 if (error) 1574 goto out; 1575 1576 error = xfs_trans_roll_inode(&tp, ip); 1577 if (error) 1578 goto out; 1579 } 1580 1581 if (whichfork == XFS_DATA_FORK) { 1582 /* Remove all pending CoW reservations. */ 1583 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1584 first_unmap_block, last_block, true); 1585 if (error) 1586 goto out; 1587 1588 xfs_itruncate_clear_reflink_flags(ip); 1589 } 1590 1591 /* 1592 * Always re-log the inode so that our permanent transaction can keep 1593 * on rolling it forward in the log. 1594 */ 1595 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1596 1597 trace_xfs_itruncate_extents_end(ip, new_size); 1598 1599 out: 1600 *tpp = tp; 1601 return error; 1602 } 1603 1604 int 1605 xfs_release( 1606 xfs_inode_t *ip) 1607 { 1608 xfs_mount_t *mp = ip->i_mount; 1609 int error; 1610 1611 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1612 return 0; 1613 1614 /* If this is a read-only mount, don't do this (would generate I/O) */ 1615 if (mp->m_flags & XFS_MOUNT_RDONLY) 1616 return 0; 1617 1618 if (!XFS_FORCED_SHUTDOWN(mp)) { 1619 int truncated; 1620 1621 /* 1622 * If we previously truncated this file and removed old data 1623 * in the process, we want to initiate "early" writeout on 1624 * the last close. This is an attempt to combat the notorious 1625 * NULL files problem which is particularly noticeable from a 1626 * truncate down, buffered (re-)write (delalloc), followed by 1627 * a crash. What we are effectively doing here is 1628 * significantly reducing the time window where we'd otherwise 1629 * be exposed to that problem. 1630 */ 1631 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1632 if (truncated) { 1633 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1634 if (ip->i_delayed_blks > 0) { 1635 error = filemap_flush(VFS_I(ip)->i_mapping); 1636 if (error) 1637 return error; 1638 } 1639 } 1640 } 1641 1642 if (VFS_I(ip)->i_nlink == 0) 1643 return 0; 1644 1645 if (xfs_can_free_eofblocks(ip, false)) { 1646 1647 /* 1648 * Check if the inode is being opened, written and closed 1649 * frequently and we have delayed allocation blocks outstanding 1650 * (e.g. streaming writes from the NFS server), truncating the 1651 * blocks past EOF will cause fragmentation to occur. 1652 * 1653 * In this case don't do the truncation, but we have to be 1654 * careful how we detect this case. Blocks beyond EOF show up as 1655 * i_delayed_blks even when the inode is clean, so we need to 1656 * truncate them away first before checking for a dirty release. 1657 * Hence on the first dirty close we will still remove the 1658 * speculative allocation, but after that we will leave it in 1659 * place. 1660 */ 1661 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1662 return 0; 1663 /* 1664 * If we can't get the iolock just skip truncating the blocks 1665 * past EOF because we could deadlock with the mmap_sem 1666 * otherwise. We'll get another chance to drop them once the 1667 * last reference to the inode is dropped, so we'll never leak 1668 * blocks permanently. 1669 */ 1670 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1671 error = xfs_free_eofblocks(ip); 1672 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1673 if (error) 1674 return error; 1675 } 1676 1677 /* delalloc blocks after truncation means it really is dirty */ 1678 if (ip->i_delayed_blks) 1679 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1680 } 1681 return 0; 1682 } 1683 1684 /* 1685 * xfs_inactive_truncate 1686 * 1687 * Called to perform a truncate when an inode becomes unlinked. 1688 */ 1689 STATIC int 1690 xfs_inactive_truncate( 1691 struct xfs_inode *ip) 1692 { 1693 struct xfs_mount *mp = ip->i_mount; 1694 struct xfs_trans *tp; 1695 int error; 1696 1697 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1698 if (error) { 1699 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1700 return error; 1701 } 1702 xfs_ilock(ip, XFS_ILOCK_EXCL); 1703 xfs_trans_ijoin(tp, ip, 0); 1704 1705 /* 1706 * Log the inode size first to prevent stale data exposure in the event 1707 * of a system crash before the truncate completes. See the related 1708 * comment in xfs_vn_setattr_size() for details. 1709 */ 1710 ip->i_d.di_size = 0; 1711 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1712 1713 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1714 if (error) 1715 goto error_trans_cancel; 1716 1717 ASSERT(ip->i_d.di_nextents == 0); 1718 1719 error = xfs_trans_commit(tp); 1720 if (error) 1721 goto error_unlock; 1722 1723 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1724 return 0; 1725 1726 error_trans_cancel: 1727 xfs_trans_cancel(tp); 1728 error_unlock: 1729 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1730 return error; 1731 } 1732 1733 /* 1734 * xfs_inactive_ifree() 1735 * 1736 * Perform the inode free when an inode is unlinked. 1737 */ 1738 STATIC int 1739 xfs_inactive_ifree( 1740 struct xfs_inode *ip) 1741 { 1742 struct xfs_mount *mp = ip->i_mount; 1743 struct xfs_trans *tp; 1744 int error; 1745 1746 /* 1747 * We try to use a per-AG reservation for any block needed by the finobt 1748 * tree, but as the finobt feature predates the per-AG reservation 1749 * support a degraded file system might not have enough space for the 1750 * reservation at mount time. In that case try to dip into the reserved 1751 * pool and pray. 1752 * 1753 * Send a warning if the reservation does happen to fail, as the inode 1754 * now remains allocated and sits on the unlinked list until the fs is 1755 * repaired. 1756 */ 1757 if (unlikely(mp->m_finobt_nores)) { 1758 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1759 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1760 &tp); 1761 } else { 1762 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1763 } 1764 if (error) { 1765 if (error == -ENOSPC) { 1766 xfs_warn_ratelimited(mp, 1767 "Failed to remove inode(s) from unlinked list. " 1768 "Please free space, unmount and run xfs_repair."); 1769 } else { 1770 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1771 } 1772 return error; 1773 } 1774 1775 xfs_ilock(ip, XFS_ILOCK_EXCL); 1776 xfs_trans_ijoin(tp, ip, 0); 1777 1778 error = xfs_ifree(tp, ip); 1779 if (error) { 1780 /* 1781 * If we fail to free the inode, shut down. The cancel 1782 * might do that, we need to make sure. Otherwise the 1783 * inode might be lost for a long time or forever. 1784 */ 1785 if (!XFS_FORCED_SHUTDOWN(mp)) { 1786 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1787 __func__, error); 1788 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1789 } 1790 xfs_trans_cancel(tp); 1791 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1792 return error; 1793 } 1794 1795 /* 1796 * Credit the quota account(s). The inode is gone. 1797 */ 1798 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1799 1800 /* 1801 * Just ignore errors at this point. There is nothing we can do except 1802 * to try to keep going. Make sure it's not a silent error. 1803 */ 1804 error = xfs_trans_commit(tp); 1805 if (error) 1806 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1807 __func__, error); 1808 1809 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1810 return 0; 1811 } 1812 1813 /* 1814 * xfs_inactive 1815 * 1816 * This is called when the vnode reference count for the vnode 1817 * goes to zero. If the file has been unlinked, then it must 1818 * now be truncated. Also, we clear all of the read-ahead state 1819 * kept for the inode here since the file is now closed. 1820 */ 1821 void 1822 xfs_inactive( 1823 xfs_inode_t *ip) 1824 { 1825 struct xfs_mount *mp; 1826 int error; 1827 int truncate = 0; 1828 1829 /* 1830 * If the inode is already free, then there can be nothing 1831 * to clean up here. 1832 */ 1833 if (VFS_I(ip)->i_mode == 0) { 1834 ASSERT(ip->i_df.if_broot_bytes == 0); 1835 return; 1836 } 1837 1838 mp = ip->i_mount; 1839 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1840 1841 /* If this is a read-only mount, don't do this (would generate I/O) */ 1842 if (mp->m_flags & XFS_MOUNT_RDONLY) 1843 return; 1844 1845 /* Try to clean out the cow blocks if there are any. */ 1846 if (xfs_inode_has_cow_data(ip)) 1847 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1848 1849 if (VFS_I(ip)->i_nlink != 0) { 1850 /* 1851 * force is true because we are evicting an inode from the 1852 * cache. Post-eof blocks must be freed, lest we end up with 1853 * broken free space accounting. 1854 * 1855 * Note: don't bother with iolock here since lockdep complains 1856 * about acquiring it in reclaim context. We have the only 1857 * reference to the inode at this point anyways. 1858 */ 1859 if (xfs_can_free_eofblocks(ip, true)) 1860 xfs_free_eofblocks(ip); 1861 1862 return; 1863 } 1864 1865 if (S_ISREG(VFS_I(ip)->i_mode) && 1866 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1867 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1868 truncate = 1; 1869 1870 error = xfs_qm_dqattach(ip); 1871 if (error) 1872 return; 1873 1874 if (S_ISLNK(VFS_I(ip)->i_mode)) 1875 error = xfs_inactive_symlink(ip); 1876 else if (truncate) 1877 error = xfs_inactive_truncate(ip); 1878 if (error) 1879 return; 1880 1881 /* 1882 * If there are attributes associated with the file then blow them away 1883 * now. The code calls a routine that recursively deconstructs the 1884 * attribute fork. If also blows away the in-core attribute fork. 1885 */ 1886 if (XFS_IFORK_Q(ip)) { 1887 error = xfs_attr_inactive(ip); 1888 if (error) 1889 return; 1890 } 1891 1892 ASSERT(!ip->i_afp); 1893 ASSERT(ip->i_d.di_anextents == 0); 1894 ASSERT(ip->i_d.di_forkoff == 0); 1895 1896 /* 1897 * Free the inode. 1898 */ 1899 error = xfs_inactive_ifree(ip); 1900 if (error) 1901 return; 1902 1903 /* 1904 * Release the dquots held by inode, if any. 1905 */ 1906 xfs_qm_dqdetach(ip); 1907 } 1908 1909 /* 1910 * In-Core Unlinked List Lookups 1911 * ============================= 1912 * 1913 * Every inode is supposed to be reachable from some other piece of metadata 1914 * with the exception of the root directory. Inodes with a connection to a 1915 * file descriptor but not linked from anywhere in the on-disk directory tree 1916 * are collectively known as unlinked inodes, though the filesystem itself 1917 * maintains links to these inodes so that on-disk metadata are consistent. 1918 * 1919 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1920 * header contains a number of buckets that point to an inode, and each inode 1921 * record has a pointer to the next inode in the hash chain. This 1922 * singly-linked list causes scaling problems in the iunlink remove function 1923 * because we must walk that list to find the inode that points to the inode 1924 * being removed from the unlinked hash bucket list. 1925 * 1926 * What if we modelled the unlinked list as a collection of records capturing 1927 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1928 * have a fast way to look up unlinked list predecessors, which avoids the 1929 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1930 * rhashtable. 1931 * 1932 * Because this is a backref cache, we ignore operational failures since the 1933 * iunlink code can fall back to the slow bucket walk. The only errors that 1934 * should bubble out are for obviously incorrect situations. 1935 * 1936 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1937 * access or have otherwise provided for concurrency control. 1938 */ 1939 1940 /* Capture a "X.next_unlinked = Y" relationship. */ 1941 struct xfs_iunlink { 1942 struct rhash_head iu_rhash_head; 1943 xfs_agino_t iu_agino; /* X */ 1944 xfs_agino_t iu_next_unlinked; /* Y */ 1945 }; 1946 1947 /* Unlinked list predecessor lookup hashtable construction */ 1948 static int 1949 xfs_iunlink_obj_cmpfn( 1950 struct rhashtable_compare_arg *arg, 1951 const void *obj) 1952 { 1953 const xfs_agino_t *key = arg->key; 1954 const struct xfs_iunlink *iu = obj; 1955 1956 if (iu->iu_next_unlinked != *key) 1957 return 1; 1958 return 0; 1959 } 1960 1961 static const struct rhashtable_params xfs_iunlink_hash_params = { 1962 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1963 .key_len = sizeof(xfs_agino_t), 1964 .key_offset = offsetof(struct xfs_iunlink, 1965 iu_next_unlinked), 1966 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1967 .automatic_shrinking = true, 1968 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1969 }; 1970 1971 /* 1972 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1973 * relation is found. 1974 */ 1975 static xfs_agino_t 1976 xfs_iunlink_lookup_backref( 1977 struct xfs_perag *pag, 1978 xfs_agino_t agino) 1979 { 1980 struct xfs_iunlink *iu; 1981 1982 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1983 xfs_iunlink_hash_params); 1984 return iu ? iu->iu_agino : NULLAGINO; 1985 } 1986 1987 /* 1988 * Take ownership of an iunlink cache entry and insert it into the hash table. 1989 * If successful, the entry will be owned by the cache; if not, it is freed. 1990 * Either way, the caller does not own @iu after this call. 1991 */ 1992 static int 1993 xfs_iunlink_insert_backref( 1994 struct xfs_perag *pag, 1995 struct xfs_iunlink *iu) 1996 { 1997 int error; 1998 1999 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 2000 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2001 /* 2002 * Fail loudly if there already was an entry because that's a sign of 2003 * corruption of in-memory data. Also fail loudly if we see an error 2004 * code we didn't anticipate from the rhashtable code. Currently we 2005 * only anticipate ENOMEM. 2006 */ 2007 if (error) { 2008 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 2009 kmem_free(iu); 2010 } 2011 /* 2012 * Absorb any runtime errors that aren't a result of corruption because 2013 * this is a cache and we can always fall back to bucket list scanning. 2014 */ 2015 if (error != 0 && error != -EEXIST) 2016 error = 0; 2017 return error; 2018 } 2019 2020 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 2021 static int 2022 xfs_iunlink_add_backref( 2023 struct xfs_perag *pag, 2024 xfs_agino_t prev_agino, 2025 xfs_agino_t this_agino) 2026 { 2027 struct xfs_iunlink *iu; 2028 2029 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 2030 return 0; 2031 2032 iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS); 2033 iu->iu_agino = prev_agino; 2034 iu->iu_next_unlinked = this_agino; 2035 2036 return xfs_iunlink_insert_backref(pag, iu); 2037 } 2038 2039 /* 2040 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2041 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2042 * wasn't any such entry then we don't bother. 2043 */ 2044 static int 2045 xfs_iunlink_change_backref( 2046 struct xfs_perag *pag, 2047 xfs_agino_t agino, 2048 xfs_agino_t next_unlinked) 2049 { 2050 struct xfs_iunlink *iu; 2051 int error; 2052 2053 /* Look up the old entry; if there wasn't one then exit. */ 2054 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2055 xfs_iunlink_hash_params); 2056 if (!iu) 2057 return 0; 2058 2059 /* 2060 * Remove the entry. This shouldn't ever return an error, but if we 2061 * couldn't remove the old entry we don't want to add it again to the 2062 * hash table, and if the entry disappeared on us then someone's 2063 * violated the locking rules and we need to fail loudly. Either way 2064 * we cannot remove the inode because internal state is or would have 2065 * been corrupt. 2066 */ 2067 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2068 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2069 if (error) 2070 return error; 2071 2072 /* If there is no new next entry just free our item and return. */ 2073 if (next_unlinked == NULLAGINO) { 2074 kmem_free(iu); 2075 return 0; 2076 } 2077 2078 /* Update the entry and re-add it to the hash table. */ 2079 iu->iu_next_unlinked = next_unlinked; 2080 return xfs_iunlink_insert_backref(pag, iu); 2081 } 2082 2083 /* Set up the in-core predecessor structures. */ 2084 int 2085 xfs_iunlink_init( 2086 struct xfs_perag *pag) 2087 { 2088 return rhashtable_init(&pag->pagi_unlinked_hash, 2089 &xfs_iunlink_hash_params); 2090 } 2091 2092 /* Free the in-core predecessor structures. */ 2093 static void 2094 xfs_iunlink_free_item( 2095 void *ptr, 2096 void *arg) 2097 { 2098 struct xfs_iunlink *iu = ptr; 2099 bool *freed_anything = arg; 2100 2101 *freed_anything = true; 2102 kmem_free(iu); 2103 } 2104 2105 void 2106 xfs_iunlink_destroy( 2107 struct xfs_perag *pag) 2108 { 2109 bool freed_anything = false; 2110 2111 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2112 xfs_iunlink_free_item, &freed_anything); 2113 2114 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2115 } 2116 2117 /* 2118 * Point the AGI unlinked bucket at an inode and log the results. The caller 2119 * is responsible for validating the old value. 2120 */ 2121 STATIC int 2122 xfs_iunlink_update_bucket( 2123 struct xfs_trans *tp, 2124 xfs_agnumber_t agno, 2125 struct xfs_buf *agibp, 2126 unsigned int bucket_index, 2127 xfs_agino_t new_agino) 2128 { 2129 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 2130 xfs_agino_t old_value; 2131 int offset; 2132 2133 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2134 2135 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2136 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2137 old_value, new_agino); 2138 2139 /* 2140 * We should never find the head of the list already set to the value 2141 * passed in because either we're adding or removing ourselves from the 2142 * head of the list. 2143 */ 2144 if (old_value == new_agino) 2145 return -EFSCORRUPTED; 2146 2147 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2148 offset = offsetof(struct xfs_agi, agi_unlinked) + 2149 (sizeof(xfs_agino_t) * bucket_index); 2150 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2151 return 0; 2152 } 2153 2154 /* Set an on-disk inode's next_unlinked pointer. */ 2155 STATIC void 2156 xfs_iunlink_update_dinode( 2157 struct xfs_trans *tp, 2158 xfs_agnumber_t agno, 2159 xfs_agino_t agino, 2160 struct xfs_buf *ibp, 2161 struct xfs_dinode *dip, 2162 struct xfs_imap *imap, 2163 xfs_agino_t next_agino) 2164 { 2165 struct xfs_mount *mp = tp->t_mountp; 2166 int offset; 2167 2168 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2169 2170 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2171 be32_to_cpu(dip->di_next_unlinked), next_agino); 2172 2173 dip->di_next_unlinked = cpu_to_be32(next_agino); 2174 offset = imap->im_boffset + 2175 offsetof(struct xfs_dinode, di_next_unlinked); 2176 2177 /* need to recalc the inode CRC if appropriate */ 2178 xfs_dinode_calc_crc(mp, dip); 2179 xfs_trans_inode_buf(tp, ibp); 2180 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2181 xfs_inobp_check(mp, ibp); 2182 } 2183 2184 /* Set an in-core inode's unlinked pointer and return the old value. */ 2185 STATIC int 2186 xfs_iunlink_update_inode( 2187 struct xfs_trans *tp, 2188 struct xfs_inode *ip, 2189 xfs_agnumber_t agno, 2190 xfs_agino_t next_agino, 2191 xfs_agino_t *old_next_agino) 2192 { 2193 struct xfs_mount *mp = tp->t_mountp; 2194 struct xfs_dinode *dip; 2195 struct xfs_buf *ibp; 2196 xfs_agino_t old_value; 2197 int error; 2198 2199 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2200 2201 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); 2202 if (error) 2203 return error; 2204 2205 /* Make sure the old pointer isn't garbage. */ 2206 old_value = be32_to_cpu(dip->di_next_unlinked); 2207 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2208 error = -EFSCORRUPTED; 2209 goto out; 2210 } 2211 2212 /* 2213 * Since we're updating a linked list, we should never find that the 2214 * current pointer is the same as the new value, unless we're 2215 * terminating the list. 2216 */ 2217 *old_next_agino = old_value; 2218 if (old_value == next_agino) { 2219 if (next_agino != NULLAGINO) 2220 error = -EFSCORRUPTED; 2221 goto out; 2222 } 2223 2224 /* Ok, update the new pointer. */ 2225 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2226 ibp, dip, &ip->i_imap, next_agino); 2227 return 0; 2228 out: 2229 xfs_trans_brelse(tp, ibp); 2230 return error; 2231 } 2232 2233 /* 2234 * This is called when the inode's link count has gone to 0 or we are creating 2235 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2236 * 2237 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2238 * list when the inode is freed. 2239 */ 2240 STATIC int 2241 xfs_iunlink( 2242 struct xfs_trans *tp, 2243 struct xfs_inode *ip) 2244 { 2245 struct xfs_mount *mp = tp->t_mountp; 2246 struct xfs_agi *agi; 2247 struct xfs_buf *agibp; 2248 xfs_agino_t next_agino; 2249 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2250 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2251 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2252 int error; 2253 2254 ASSERT(VFS_I(ip)->i_nlink == 0); 2255 ASSERT(VFS_I(ip)->i_mode != 0); 2256 trace_xfs_iunlink(ip); 2257 2258 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2259 error = xfs_read_agi(mp, tp, agno, &agibp); 2260 if (error) 2261 return error; 2262 agi = XFS_BUF_TO_AGI(agibp); 2263 2264 /* 2265 * Get the index into the agi hash table for the list this inode will 2266 * go on. Make sure the pointer isn't garbage and that this inode 2267 * isn't already on the list. 2268 */ 2269 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2270 if (next_agino == agino || 2271 !xfs_verify_agino_or_null(mp, agno, next_agino)) 2272 return -EFSCORRUPTED; 2273 2274 if (next_agino != NULLAGINO) { 2275 struct xfs_perag *pag; 2276 xfs_agino_t old_agino; 2277 2278 /* 2279 * There is already another inode in the bucket, so point this 2280 * inode to the current head of the list. 2281 */ 2282 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2283 &old_agino); 2284 if (error) 2285 return error; 2286 ASSERT(old_agino == NULLAGINO); 2287 2288 /* 2289 * agino has been unlinked, add a backref from the next inode 2290 * back to agino. 2291 */ 2292 pag = xfs_perag_get(mp, agno); 2293 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2294 xfs_perag_put(pag); 2295 if (error) 2296 return error; 2297 } 2298 2299 /* Point the head of the list to point to this inode. */ 2300 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2301 } 2302 2303 /* Return the imap, dinode pointer, and buffer for an inode. */ 2304 STATIC int 2305 xfs_iunlink_map_ino( 2306 struct xfs_trans *tp, 2307 xfs_agnumber_t agno, 2308 xfs_agino_t agino, 2309 struct xfs_imap *imap, 2310 struct xfs_dinode **dipp, 2311 struct xfs_buf **bpp) 2312 { 2313 struct xfs_mount *mp = tp->t_mountp; 2314 int error; 2315 2316 imap->im_blkno = 0; 2317 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2318 if (error) { 2319 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2320 __func__, error); 2321 return error; 2322 } 2323 2324 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); 2325 if (error) { 2326 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2327 __func__, error); 2328 return error; 2329 } 2330 2331 return 0; 2332 } 2333 2334 /* 2335 * Walk the unlinked chain from @head_agino until we find the inode that 2336 * points to @target_agino. Return the inode number, map, dinode pointer, 2337 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2338 * 2339 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2340 * @agino, @imap, @dipp, and @bpp are all output parameters. 2341 * 2342 * Do not call this function if @target_agino is the head of the list. 2343 */ 2344 STATIC int 2345 xfs_iunlink_map_prev( 2346 struct xfs_trans *tp, 2347 xfs_agnumber_t agno, 2348 xfs_agino_t head_agino, 2349 xfs_agino_t target_agino, 2350 xfs_agino_t *agino, 2351 struct xfs_imap *imap, 2352 struct xfs_dinode **dipp, 2353 struct xfs_buf **bpp, 2354 struct xfs_perag *pag) 2355 { 2356 struct xfs_mount *mp = tp->t_mountp; 2357 xfs_agino_t next_agino; 2358 int error; 2359 2360 ASSERT(head_agino != target_agino); 2361 *bpp = NULL; 2362 2363 /* See if our backref cache can find it faster. */ 2364 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2365 if (*agino != NULLAGINO) { 2366 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2367 if (error) 2368 return error; 2369 2370 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2371 return 0; 2372 2373 /* 2374 * If we get here the cache contents were corrupt, so drop the 2375 * buffer and fall back to walking the bucket list. 2376 */ 2377 xfs_trans_brelse(tp, *bpp); 2378 *bpp = NULL; 2379 WARN_ON_ONCE(1); 2380 } 2381 2382 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2383 2384 /* Otherwise, walk the entire bucket until we find it. */ 2385 next_agino = head_agino; 2386 while (next_agino != target_agino) { 2387 xfs_agino_t unlinked_agino; 2388 2389 if (*bpp) 2390 xfs_trans_brelse(tp, *bpp); 2391 2392 *agino = next_agino; 2393 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2394 bpp); 2395 if (error) 2396 return error; 2397 2398 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2399 /* 2400 * Make sure this pointer is valid and isn't an obvious 2401 * infinite loop. 2402 */ 2403 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2404 next_agino == unlinked_agino) { 2405 XFS_CORRUPTION_ERROR(__func__, 2406 XFS_ERRLEVEL_LOW, mp, 2407 *dipp, sizeof(**dipp)); 2408 error = -EFSCORRUPTED; 2409 return error; 2410 } 2411 next_agino = unlinked_agino; 2412 } 2413 2414 return 0; 2415 } 2416 2417 /* 2418 * Pull the on-disk inode from the AGI unlinked list. 2419 */ 2420 STATIC int 2421 xfs_iunlink_remove( 2422 struct xfs_trans *tp, 2423 struct xfs_inode *ip) 2424 { 2425 struct xfs_mount *mp = tp->t_mountp; 2426 struct xfs_agi *agi; 2427 struct xfs_buf *agibp; 2428 struct xfs_buf *last_ibp; 2429 struct xfs_dinode *last_dip = NULL; 2430 struct xfs_perag *pag = NULL; 2431 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2432 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2433 xfs_agino_t next_agino; 2434 xfs_agino_t head_agino; 2435 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2436 int error; 2437 2438 trace_xfs_iunlink_remove(ip); 2439 2440 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2441 error = xfs_read_agi(mp, tp, agno, &agibp); 2442 if (error) 2443 return error; 2444 agi = XFS_BUF_TO_AGI(agibp); 2445 2446 /* 2447 * Get the index into the agi hash table for the list this inode will 2448 * go on. Make sure the head pointer isn't garbage. 2449 */ 2450 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2451 if (!xfs_verify_agino(mp, agno, head_agino)) { 2452 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2453 agi, sizeof(*agi)); 2454 return -EFSCORRUPTED; 2455 } 2456 2457 /* 2458 * Set our inode's next_unlinked pointer to NULL and then return 2459 * the old pointer value so that we can update whatever was previous 2460 * to us in the list to point to whatever was next in the list. 2461 */ 2462 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2463 if (error) 2464 return error; 2465 2466 /* 2467 * If there was a backref pointing from the next inode back to this 2468 * one, remove it because we've removed this inode from the list. 2469 * 2470 * Later, if this inode was in the middle of the list we'll update 2471 * this inode's backref to point from the next inode. 2472 */ 2473 if (next_agino != NULLAGINO) { 2474 pag = xfs_perag_get(mp, agno); 2475 error = xfs_iunlink_change_backref(pag, next_agino, 2476 NULLAGINO); 2477 if (error) 2478 goto out; 2479 } 2480 2481 if (head_agino == agino) { 2482 /* Point the head of the list to the next unlinked inode. */ 2483 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2484 next_agino); 2485 if (error) 2486 goto out; 2487 } else { 2488 struct xfs_imap imap; 2489 xfs_agino_t prev_agino; 2490 2491 if (!pag) 2492 pag = xfs_perag_get(mp, agno); 2493 2494 /* We need to search the list for the inode being freed. */ 2495 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2496 &prev_agino, &imap, &last_dip, &last_ibp, 2497 pag); 2498 if (error) 2499 goto out; 2500 2501 /* Point the previous inode on the list to the next inode. */ 2502 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2503 last_dip, &imap, next_agino); 2504 2505 /* 2506 * Now we deal with the backref for this inode. If this inode 2507 * pointed at a real inode, change the backref that pointed to 2508 * us to point to our old next. If this inode was the end of 2509 * the list, delete the backref that pointed to us. Note that 2510 * change_backref takes care of deleting the backref if 2511 * next_agino is NULLAGINO. 2512 */ 2513 error = xfs_iunlink_change_backref(pag, agino, next_agino); 2514 if (error) 2515 goto out; 2516 } 2517 2518 out: 2519 if (pag) 2520 xfs_perag_put(pag); 2521 return error; 2522 } 2523 2524 /* 2525 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2526 * inodes that are in memory - they all must be marked stale and attached to 2527 * the cluster buffer. 2528 */ 2529 STATIC int 2530 xfs_ifree_cluster( 2531 xfs_inode_t *free_ip, 2532 xfs_trans_t *tp, 2533 struct xfs_icluster *xic) 2534 { 2535 xfs_mount_t *mp = free_ip->i_mount; 2536 int nbufs; 2537 int i, j; 2538 int ioffset; 2539 xfs_daddr_t blkno; 2540 xfs_buf_t *bp; 2541 xfs_inode_t *ip; 2542 xfs_inode_log_item_t *iip; 2543 struct xfs_log_item *lip; 2544 struct xfs_perag *pag; 2545 xfs_ino_t inum; 2546 2547 inum = xic->first_ino; 2548 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2549 nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster; 2550 2551 for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) { 2552 /* 2553 * The allocation bitmap tells us which inodes of the chunk were 2554 * physically allocated. Skip the cluster if an inode falls into 2555 * a sparse region. 2556 */ 2557 ioffset = inum - xic->first_ino; 2558 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2559 ASSERT(ioffset % mp->m_inodes_per_cluster == 0); 2560 continue; 2561 } 2562 2563 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2564 XFS_INO_TO_AGBNO(mp, inum)); 2565 2566 /* 2567 * We obtain and lock the backing buffer first in the process 2568 * here, as we have to ensure that any dirty inode that we 2569 * can't get the flush lock on is attached to the buffer. 2570 * If we scan the in-memory inodes first, then buffer IO can 2571 * complete before we get a lock on it, and hence we may fail 2572 * to mark all the active inodes on the buffer stale. 2573 */ 2574 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2575 mp->m_bsize * mp->m_blocks_per_cluster, 2576 XBF_UNMAPPED); 2577 2578 if (!bp) 2579 return -ENOMEM; 2580 2581 /* 2582 * This buffer may not have been correctly initialised as we 2583 * didn't read it from disk. That's not important because we are 2584 * only using to mark the buffer as stale in the log, and to 2585 * attach stale cached inodes on it. That means it will never be 2586 * dispatched for IO. If it is, we want to know about it, and we 2587 * want it to fail. We can acheive this by adding a write 2588 * verifier to the buffer. 2589 */ 2590 bp->b_ops = &xfs_inode_buf_ops; 2591 2592 /* 2593 * Walk the inodes already attached to the buffer and mark them 2594 * stale. These will all have the flush locks held, so an 2595 * in-memory inode walk can't lock them. By marking them all 2596 * stale first, we will not attempt to lock them in the loop 2597 * below as the XFS_ISTALE flag will be set. 2598 */ 2599 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2600 if (lip->li_type == XFS_LI_INODE) { 2601 iip = (xfs_inode_log_item_t *)lip; 2602 ASSERT(iip->ili_logged == 1); 2603 lip->li_cb = xfs_istale_done; 2604 xfs_trans_ail_copy_lsn(mp->m_ail, 2605 &iip->ili_flush_lsn, 2606 &iip->ili_item.li_lsn); 2607 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2608 } 2609 } 2610 2611 2612 /* 2613 * For each inode in memory attempt to add it to the inode 2614 * buffer and set it up for being staled on buffer IO 2615 * completion. This is safe as we've locked out tail pushing 2616 * and flushing by locking the buffer. 2617 * 2618 * We have already marked every inode that was part of a 2619 * transaction stale above, which means there is no point in 2620 * even trying to lock them. 2621 */ 2622 for (i = 0; i < mp->m_inodes_per_cluster; i++) { 2623 retry: 2624 rcu_read_lock(); 2625 ip = radix_tree_lookup(&pag->pag_ici_root, 2626 XFS_INO_TO_AGINO(mp, (inum + i))); 2627 2628 /* Inode not in memory, nothing to do */ 2629 if (!ip) { 2630 rcu_read_unlock(); 2631 continue; 2632 } 2633 2634 /* 2635 * because this is an RCU protected lookup, we could 2636 * find a recently freed or even reallocated inode 2637 * during the lookup. We need to check under the 2638 * i_flags_lock for a valid inode here. Skip it if it 2639 * is not valid, the wrong inode or stale. 2640 */ 2641 spin_lock(&ip->i_flags_lock); 2642 if (ip->i_ino != inum + i || 2643 __xfs_iflags_test(ip, XFS_ISTALE)) { 2644 spin_unlock(&ip->i_flags_lock); 2645 rcu_read_unlock(); 2646 continue; 2647 } 2648 spin_unlock(&ip->i_flags_lock); 2649 2650 /* 2651 * Don't try to lock/unlock the current inode, but we 2652 * _cannot_ skip the other inodes that we did not find 2653 * in the list attached to the buffer and are not 2654 * already marked stale. If we can't lock it, back off 2655 * and retry. 2656 */ 2657 if (ip != free_ip) { 2658 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2659 rcu_read_unlock(); 2660 delay(1); 2661 goto retry; 2662 } 2663 2664 /* 2665 * Check the inode number again in case we're 2666 * racing with freeing in xfs_reclaim_inode(). 2667 * See the comments in that function for more 2668 * information as to why the initial check is 2669 * not sufficient. 2670 */ 2671 if (ip->i_ino != inum + i) { 2672 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2673 rcu_read_unlock(); 2674 continue; 2675 } 2676 } 2677 rcu_read_unlock(); 2678 2679 xfs_iflock(ip); 2680 xfs_iflags_set(ip, XFS_ISTALE); 2681 2682 /* 2683 * we don't need to attach clean inodes or those only 2684 * with unlogged changes (which we throw away, anyway). 2685 */ 2686 iip = ip->i_itemp; 2687 if (!iip || xfs_inode_clean(ip)) { 2688 ASSERT(ip != free_ip); 2689 xfs_ifunlock(ip); 2690 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2691 continue; 2692 } 2693 2694 iip->ili_last_fields = iip->ili_fields; 2695 iip->ili_fields = 0; 2696 iip->ili_fsync_fields = 0; 2697 iip->ili_logged = 1; 2698 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2699 &iip->ili_item.li_lsn); 2700 2701 xfs_buf_attach_iodone(bp, xfs_istale_done, 2702 &iip->ili_item); 2703 2704 if (ip != free_ip) 2705 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2706 } 2707 2708 xfs_trans_stale_inode_buf(tp, bp); 2709 xfs_trans_binval(tp, bp); 2710 } 2711 2712 xfs_perag_put(pag); 2713 return 0; 2714 } 2715 2716 /* 2717 * Free any local-format buffers sitting around before we reset to 2718 * extents format. 2719 */ 2720 static inline void 2721 xfs_ifree_local_data( 2722 struct xfs_inode *ip, 2723 int whichfork) 2724 { 2725 struct xfs_ifork *ifp; 2726 2727 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2728 return; 2729 2730 ifp = XFS_IFORK_PTR(ip, whichfork); 2731 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2732 } 2733 2734 /* 2735 * This is called to return an inode to the inode free list. 2736 * The inode should already be truncated to 0 length and have 2737 * no pages associated with it. This routine also assumes that 2738 * the inode is already a part of the transaction. 2739 * 2740 * The on-disk copy of the inode will have been added to the list 2741 * of unlinked inodes in the AGI. We need to remove the inode from 2742 * that list atomically with respect to freeing it here. 2743 */ 2744 int 2745 xfs_ifree( 2746 struct xfs_trans *tp, 2747 struct xfs_inode *ip) 2748 { 2749 int error; 2750 struct xfs_icluster xic = { 0 }; 2751 2752 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2753 ASSERT(VFS_I(ip)->i_nlink == 0); 2754 ASSERT(ip->i_d.di_nextents == 0); 2755 ASSERT(ip->i_d.di_anextents == 0); 2756 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2757 ASSERT(ip->i_d.di_nblocks == 0); 2758 2759 /* 2760 * Pull the on-disk inode from the AGI unlinked list. 2761 */ 2762 error = xfs_iunlink_remove(tp, ip); 2763 if (error) 2764 return error; 2765 2766 error = xfs_difree(tp, ip->i_ino, &xic); 2767 if (error) 2768 return error; 2769 2770 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2771 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2772 2773 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2774 ip->i_d.di_flags = 0; 2775 ip->i_d.di_flags2 = 0; 2776 ip->i_d.di_dmevmask = 0; 2777 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2778 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2779 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2780 2781 /* Don't attempt to replay owner changes for a deleted inode */ 2782 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2783 2784 /* 2785 * Bump the generation count so no one will be confused 2786 * by reincarnations of this inode. 2787 */ 2788 VFS_I(ip)->i_generation++; 2789 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2790 2791 if (xic.deleted) 2792 error = xfs_ifree_cluster(ip, tp, &xic); 2793 2794 return error; 2795 } 2796 2797 /* 2798 * This is called to unpin an inode. The caller must have the inode locked 2799 * in at least shared mode so that the buffer cannot be subsequently pinned 2800 * once someone is waiting for it to be unpinned. 2801 */ 2802 static void 2803 xfs_iunpin( 2804 struct xfs_inode *ip) 2805 { 2806 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2807 2808 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2809 2810 /* Give the log a push to start the unpinning I/O */ 2811 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2812 2813 } 2814 2815 static void 2816 __xfs_iunpin_wait( 2817 struct xfs_inode *ip) 2818 { 2819 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2820 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2821 2822 xfs_iunpin(ip); 2823 2824 do { 2825 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2826 if (xfs_ipincount(ip)) 2827 io_schedule(); 2828 } while (xfs_ipincount(ip)); 2829 finish_wait(wq, &wait.wq_entry); 2830 } 2831 2832 void 2833 xfs_iunpin_wait( 2834 struct xfs_inode *ip) 2835 { 2836 if (xfs_ipincount(ip)) 2837 __xfs_iunpin_wait(ip); 2838 } 2839 2840 /* 2841 * Removing an inode from the namespace involves removing the directory entry 2842 * and dropping the link count on the inode. Removing the directory entry can 2843 * result in locking an AGF (directory blocks were freed) and removing a link 2844 * count can result in placing the inode on an unlinked list which results in 2845 * locking an AGI. 2846 * 2847 * The big problem here is that we have an ordering constraint on AGF and AGI 2848 * locking - inode allocation locks the AGI, then can allocate a new extent for 2849 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2850 * removes the inode from the unlinked list, requiring that we lock the AGI 2851 * first, and then freeing the inode can result in an inode chunk being freed 2852 * and hence freeing disk space requiring that we lock an AGF. 2853 * 2854 * Hence the ordering that is imposed by other parts of the code is AGI before 2855 * AGF. This means we cannot remove the directory entry before we drop the inode 2856 * reference count and put it on the unlinked list as this results in a lock 2857 * order of AGF then AGI, and this can deadlock against inode allocation and 2858 * freeing. Therefore we must drop the link counts before we remove the 2859 * directory entry. 2860 * 2861 * This is still safe from a transactional point of view - it is not until we 2862 * get to xfs_defer_finish() that we have the possibility of multiple 2863 * transactions in this operation. Hence as long as we remove the directory 2864 * entry and drop the link count in the first transaction of the remove 2865 * operation, there are no transactional constraints on the ordering here. 2866 */ 2867 int 2868 xfs_remove( 2869 xfs_inode_t *dp, 2870 struct xfs_name *name, 2871 xfs_inode_t *ip) 2872 { 2873 xfs_mount_t *mp = dp->i_mount; 2874 xfs_trans_t *tp = NULL; 2875 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2876 int error = 0; 2877 uint resblks; 2878 2879 trace_xfs_remove(dp, name); 2880 2881 if (XFS_FORCED_SHUTDOWN(mp)) 2882 return -EIO; 2883 2884 error = xfs_qm_dqattach(dp); 2885 if (error) 2886 goto std_return; 2887 2888 error = xfs_qm_dqattach(ip); 2889 if (error) 2890 goto std_return; 2891 2892 /* 2893 * We try to get the real space reservation first, 2894 * allowing for directory btree deletion(s) implying 2895 * possible bmap insert(s). If we can't get the space 2896 * reservation then we use 0 instead, and avoid the bmap 2897 * btree insert(s) in the directory code by, if the bmap 2898 * insert tries to happen, instead trimming the LAST 2899 * block from the directory. 2900 */ 2901 resblks = XFS_REMOVE_SPACE_RES(mp); 2902 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2903 if (error == -ENOSPC) { 2904 resblks = 0; 2905 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2906 &tp); 2907 } 2908 if (error) { 2909 ASSERT(error != -ENOSPC); 2910 goto std_return; 2911 } 2912 2913 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2914 2915 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2916 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2917 2918 /* 2919 * If we're removing a directory perform some additional validation. 2920 */ 2921 if (is_dir) { 2922 ASSERT(VFS_I(ip)->i_nlink >= 2); 2923 if (VFS_I(ip)->i_nlink != 2) { 2924 error = -ENOTEMPTY; 2925 goto out_trans_cancel; 2926 } 2927 if (!xfs_dir_isempty(ip)) { 2928 error = -ENOTEMPTY; 2929 goto out_trans_cancel; 2930 } 2931 2932 /* Drop the link from ip's "..". */ 2933 error = xfs_droplink(tp, dp); 2934 if (error) 2935 goto out_trans_cancel; 2936 2937 /* Drop the "." link from ip to self. */ 2938 error = xfs_droplink(tp, ip); 2939 if (error) 2940 goto out_trans_cancel; 2941 } else { 2942 /* 2943 * When removing a non-directory we need to log the parent 2944 * inode here. For a directory this is done implicitly 2945 * by the xfs_droplink call for the ".." entry. 2946 */ 2947 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2948 } 2949 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2950 2951 /* Drop the link from dp to ip. */ 2952 error = xfs_droplink(tp, ip); 2953 if (error) 2954 goto out_trans_cancel; 2955 2956 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2957 if (error) { 2958 ASSERT(error != -ENOENT); 2959 goto out_trans_cancel; 2960 } 2961 2962 /* 2963 * If this is a synchronous mount, make sure that the 2964 * remove transaction goes to disk before returning to 2965 * the user. 2966 */ 2967 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2968 xfs_trans_set_sync(tp); 2969 2970 error = xfs_trans_commit(tp); 2971 if (error) 2972 goto std_return; 2973 2974 if (is_dir && xfs_inode_is_filestream(ip)) 2975 xfs_filestream_deassociate(ip); 2976 2977 return 0; 2978 2979 out_trans_cancel: 2980 xfs_trans_cancel(tp); 2981 std_return: 2982 return error; 2983 } 2984 2985 /* 2986 * Enter all inodes for a rename transaction into a sorted array. 2987 */ 2988 #define __XFS_SORT_INODES 5 2989 STATIC void 2990 xfs_sort_for_rename( 2991 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2992 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2993 struct xfs_inode *ip1, /* in: inode of old entry */ 2994 struct xfs_inode *ip2, /* in: inode of new entry */ 2995 struct xfs_inode *wip, /* in: whiteout inode */ 2996 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2997 int *num_inodes) /* in/out: inodes in array */ 2998 { 2999 int i, j; 3000 3001 ASSERT(*num_inodes == __XFS_SORT_INODES); 3002 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 3003 3004 /* 3005 * i_tab contains a list of pointers to inodes. We initialize 3006 * the table here & we'll sort it. We will then use it to 3007 * order the acquisition of the inode locks. 3008 * 3009 * Note that the table may contain duplicates. e.g., dp1 == dp2. 3010 */ 3011 i = 0; 3012 i_tab[i++] = dp1; 3013 i_tab[i++] = dp2; 3014 i_tab[i++] = ip1; 3015 if (ip2) 3016 i_tab[i++] = ip2; 3017 if (wip) 3018 i_tab[i++] = wip; 3019 *num_inodes = i; 3020 3021 /* 3022 * Sort the elements via bubble sort. (Remember, there are at 3023 * most 5 elements to sort, so this is adequate.) 3024 */ 3025 for (i = 0; i < *num_inodes; i++) { 3026 for (j = 1; j < *num_inodes; j++) { 3027 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 3028 struct xfs_inode *temp = i_tab[j]; 3029 i_tab[j] = i_tab[j-1]; 3030 i_tab[j-1] = temp; 3031 } 3032 } 3033 } 3034 } 3035 3036 static int 3037 xfs_finish_rename( 3038 struct xfs_trans *tp) 3039 { 3040 /* 3041 * If this is a synchronous mount, make sure that the rename transaction 3042 * goes to disk before returning to the user. 3043 */ 3044 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 3045 xfs_trans_set_sync(tp); 3046 3047 return xfs_trans_commit(tp); 3048 } 3049 3050 /* 3051 * xfs_cross_rename() 3052 * 3053 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3054 */ 3055 STATIC int 3056 xfs_cross_rename( 3057 struct xfs_trans *tp, 3058 struct xfs_inode *dp1, 3059 struct xfs_name *name1, 3060 struct xfs_inode *ip1, 3061 struct xfs_inode *dp2, 3062 struct xfs_name *name2, 3063 struct xfs_inode *ip2, 3064 int spaceres) 3065 { 3066 int error = 0; 3067 int ip1_flags = 0; 3068 int ip2_flags = 0; 3069 int dp2_flags = 0; 3070 3071 /* Swap inode number for dirent in first parent */ 3072 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3073 if (error) 3074 goto out_trans_abort; 3075 3076 /* Swap inode number for dirent in second parent */ 3077 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3078 if (error) 3079 goto out_trans_abort; 3080 3081 /* 3082 * If we're renaming one or more directories across different parents, 3083 * update the respective ".." entries (and link counts) to match the new 3084 * parents. 3085 */ 3086 if (dp1 != dp2) { 3087 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3088 3089 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3090 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3091 dp1->i_ino, spaceres); 3092 if (error) 3093 goto out_trans_abort; 3094 3095 /* transfer ip2 ".." reference to dp1 */ 3096 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3097 error = xfs_droplink(tp, dp2); 3098 if (error) 3099 goto out_trans_abort; 3100 error = xfs_bumplink(tp, dp1); 3101 if (error) 3102 goto out_trans_abort; 3103 } 3104 3105 /* 3106 * Although ip1 isn't changed here, userspace needs 3107 * to be warned about the change, so that applications 3108 * relying on it (like backup ones), will properly 3109 * notify the change 3110 */ 3111 ip1_flags |= XFS_ICHGTIME_CHG; 3112 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3113 } 3114 3115 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3116 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3117 dp2->i_ino, spaceres); 3118 if (error) 3119 goto out_trans_abort; 3120 3121 /* transfer ip1 ".." reference to dp2 */ 3122 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3123 error = xfs_droplink(tp, dp1); 3124 if (error) 3125 goto out_trans_abort; 3126 error = xfs_bumplink(tp, dp2); 3127 if (error) 3128 goto out_trans_abort; 3129 } 3130 3131 /* 3132 * Although ip2 isn't changed here, userspace needs 3133 * to be warned about the change, so that applications 3134 * relying on it (like backup ones), will properly 3135 * notify the change 3136 */ 3137 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3138 ip2_flags |= XFS_ICHGTIME_CHG; 3139 } 3140 } 3141 3142 if (ip1_flags) { 3143 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3144 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3145 } 3146 if (ip2_flags) { 3147 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3148 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3149 } 3150 if (dp2_flags) { 3151 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3152 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3153 } 3154 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3155 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3156 return xfs_finish_rename(tp); 3157 3158 out_trans_abort: 3159 xfs_trans_cancel(tp); 3160 return error; 3161 } 3162 3163 /* 3164 * xfs_rename_alloc_whiteout() 3165 * 3166 * Return a referenced, unlinked, unlocked inode that that can be used as a 3167 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3168 * crash between allocating the inode and linking it into the rename transaction 3169 * recovery will free the inode and we won't leak it. 3170 */ 3171 static int 3172 xfs_rename_alloc_whiteout( 3173 struct xfs_inode *dp, 3174 struct xfs_inode **wip) 3175 { 3176 struct xfs_inode *tmpfile; 3177 int error; 3178 3179 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3180 if (error) 3181 return error; 3182 3183 /* 3184 * Prepare the tmpfile inode as if it were created through the VFS. 3185 * Complete the inode setup and flag it as linkable. nlink is already 3186 * zero, so we can skip the drop_nlink. 3187 */ 3188 xfs_setup_iops(tmpfile); 3189 xfs_finish_inode_setup(tmpfile); 3190 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3191 3192 *wip = tmpfile; 3193 return 0; 3194 } 3195 3196 /* 3197 * xfs_rename 3198 */ 3199 int 3200 xfs_rename( 3201 struct xfs_inode *src_dp, 3202 struct xfs_name *src_name, 3203 struct xfs_inode *src_ip, 3204 struct xfs_inode *target_dp, 3205 struct xfs_name *target_name, 3206 struct xfs_inode *target_ip, 3207 unsigned int flags) 3208 { 3209 struct xfs_mount *mp = src_dp->i_mount; 3210 struct xfs_trans *tp; 3211 struct xfs_inode *wip = NULL; /* whiteout inode */ 3212 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3213 int num_inodes = __XFS_SORT_INODES; 3214 bool new_parent = (src_dp != target_dp); 3215 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3216 int spaceres; 3217 int error; 3218 3219 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3220 3221 if ((flags & RENAME_EXCHANGE) && !target_ip) 3222 return -EINVAL; 3223 3224 /* 3225 * If we are doing a whiteout operation, allocate the whiteout inode 3226 * we will be placing at the target and ensure the type is set 3227 * appropriately. 3228 */ 3229 if (flags & RENAME_WHITEOUT) { 3230 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3231 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3232 if (error) 3233 return error; 3234 3235 /* setup target dirent info as whiteout */ 3236 src_name->type = XFS_DIR3_FT_CHRDEV; 3237 } 3238 3239 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3240 inodes, &num_inodes); 3241 3242 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3243 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3244 if (error == -ENOSPC) { 3245 spaceres = 0; 3246 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3247 &tp); 3248 } 3249 if (error) 3250 goto out_release_wip; 3251 3252 /* 3253 * Attach the dquots to the inodes 3254 */ 3255 error = xfs_qm_vop_rename_dqattach(inodes); 3256 if (error) 3257 goto out_trans_cancel; 3258 3259 /* 3260 * Lock all the participating inodes. Depending upon whether 3261 * the target_name exists in the target directory, and 3262 * whether the target directory is the same as the source 3263 * directory, we can lock from 2 to 4 inodes. 3264 */ 3265 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3266 3267 /* 3268 * Join all the inodes to the transaction. From this point on, 3269 * we can rely on either trans_commit or trans_cancel to unlock 3270 * them. 3271 */ 3272 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3273 if (new_parent) 3274 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3275 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3276 if (target_ip) 3277 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3278 if (wip) 3279 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3280 3281 /* 3282 * If we are using project inheritance, we only allow renames 3283 * into our tree when the project IDs are the same; else the 3284 * tree quota mechanism would be circumvented. 3285 */ 3286 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3287 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 3288 error = -EXDEV; 3289 goto out_trans_cancel; 3290 } 3291 3292 /* RENAME_EXCHANGE is unique from here on. */ 3293 if (flags & RENAME_EXCHANGE) 3294 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3295 target_dp, target_name, target_ip, 3296 spaceres); 3297 3298 /* 3299 * Set up the target. 3300 */ 3301 if (target_ip == NULL) { 3302 /* 3303 * If there's no space reservation, check the entry will 3304 * fit before actually inserting it. 3305 */ 3306 if (!spaceres) { 3307 error = xfs_dir_canenter(tp, target_dp, target_name); 3308 if (error) 3309 goto out_trans_cancel; 3310 } 3311 /* 3312 * If target does not exist and the rename crosses 3313 * directories, adjust the target directory link count 3314 * to account for the ".." reference from the new entry. 3315 */ 3316 error = xfs_dir_createname(tp, target_dp, target_name, 3317 src_ip->i_ino, spaceres); 3318 if (error) 3319 goto out_trans_cancel; 3320 3321 xfs_trans_ichgtime(tp, target_dp, 3322 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3323 3324 if (new_parent && src_is_directory) { 3325 error = xfs_bumplink(tp, target_dp); 3326 if (error) 3327 goto out_trans_cancel; 3328 } 3329 } else { /* target_ip != NULL */ 3330 /* 3331 * If target exists and it's a directory, check that both 3332 * target and source are directories and that target can be 3333 * destroyed, or that neither is a directory. 3334 */ 3335 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3336 /* 3337 * Make sure target dir is empty. 3338 */ 3339 if (!(xfs_dir_isempty(target_ip)) || 3340 (VFS_I(target_ip)->i_nlink > 2)) { 3341 error = -EEXIST; 3342 goto out_trans_cancel; 3343 } 3344 } 3345 3346 /* 3347 * Link the source inode under the target name. 3348 * If the source inode is a directory and we are moving 3349 * it across directories, its ".." entry will be 3350 * inconsistent until we replace that down below. 3351 * 3352 * In case there is already an entry with the same 3353 * name at the destination directory, remove it first. 3354 */ 3355 error = xfs_dir_replace(tp, target_dp, target_name, 3356 src_ip->i_ino, spaceres); 3357 if (error) 3358 goto out_trans_cancel; 3359 3360 xfs_trans_ichgtime(tp, target_dp, 3361 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3362 3363 /* 3364 * Decrement the link count on the target since the target 3365 * dir no longer points to it. 3366 */ 3367 error = xfs_droplink(tp, target_ip); 3368 if (error) 3369 goto out_trans_cancel; 3370 3371 if (src_is_directory) { 3372 /* 3373 * Drop the link from the old "." entry. 3374 */ 3375 error = xfs_droplink(tp, target_ip); 3376 if (error) 3377 goto out_trans_cancel; 3378 } 3379 } /* target_ip != NULL */ 3380 3381 /* 3382 * Remove the source. 3383 */ 3384 if (new_parent && src_is_directory) { 3385 /* 3386 * Rewrite the ".." entry to point to the new 3387 * directory. 3388 */ 3389 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3390 target_dp->i_ino, spaceres); 3391 ASSERT(error != -EEXIST); 3392 if (error) 3393 goto out_trans_cancel; 3394 } 3395 3396 /* 3397 * We always want to hit the ctime on the source inode. 3398 * 3399 * This isn't strictly required by the standards since the source 3400 * inode isn't really being changed, but old unix file systems did 3401 * it and some incremental backup programs won't work without it. 3402 */ 3403 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3404 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3405 3406 /* 3407 * Adjust the link count on src_dp. This is necessary when 3408 * renaming a directory, either within one parent when 3409 * the target existed, or across two parent directories. 3410 */ 3411 if (src_is_directory && (new_parent || target_ip != NULL)) { 3412 3413 /* 3414 * Decrement link count on src_directory since the 3415 * entry that's moved no longer points to it. 3416 */ 3417 error = xfs_droplink(tp, src_dp); 3418 if (error) 3419 goto out_trans_cancel; 3420 } 3421 3422 /* 3423 * For whiteouts, we only need to update the source dirent with the 3424 * inode number of the whiteout inode rather than removing it 3425 * altogether. 3426 */ 3427 if (wip) { 3428 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3429 spaceres); 3430 } else 3431 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3432 spaceres); 3433 if (error) 3434 goto out_trans_cancel; 3435 3436 /* 3437 * For whiteouts, we need to bump the link count on the whiteout inode. 3438 * This means that failures all the way up to this point leave the inode 3439 * on the unlinked list and so cleanup is a simple matter of dropping 3440 * the remaining reference to it. If we fail here after bumping the link 3441 * count, we're shutting down the filesystem so we'll never see the 3442 * intermediate state on disk. 3443 */ 3444 if (wip) { 3445 ASSERT(VFS_I(wip)->i_nlink == 0); 3446 error = xfs_bumplink(tp, wip); 3447 if (error) 3448 goto out_trans_cancel; 3449 error = xfs_iunlink_remove(tp, wip); 3450 if (error) 3451 goto out_trans_cancel; 3452 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3453 3454 /* 3455 * Now we have a real link, clear the "I'm a tmpfile" state 3456 * flag from the inode so it doesn't accidentally get misused in 3457 * future. 3458 */ 3459 VFS_I(wip)->i_state &= ~I_LINKABLE; 3460 } 3461 3462 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3463 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3464 if (new_parent) 3465 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3466 3467 error = xfs_finish_rename(tp); 3468 if (wip) 3469 xfs_irele(wip); 3470 return error; 3471 3472 out_trans_cancel: 3473 xfs_trans_cancel(tp); 3474 out_release_wip: 3475 if (wip) 3476 xfs_irele(wip); 3477 return error; 3478 } 3479 3480 STATIC int 3481 xfs_iflush_cluster( 3482 struct xfs_inode *ip, 3483 struct xfs_buf *bp) 3484 { 3485 struct xfs_mount *mp = ip->i_mount; 3486 struct xfs_perag *pag; 3487 unsigned long first_index, mask; 3488 unsigned long inodes_per_cluster; 3489 int cilist_size; 3490 struct xfs_inode **cilist; 3491 struct xfs_inode *cip; 3492 int nr_found; 3493 int clcount = 0; 3494 int i; 3495 3496 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3497 3498 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3499 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3500 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3501 if (!cilist) 3502 goto out_put; 3503 3504 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3505 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3506 rcu_read_lock(); 3507 /* really need a gang lookup range call here */ 3508 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3509 first_index, inodes_per_cluster); 3510 if (nr_found == 0) 3511 goto out_free; 3512 3513 for (i = 0; i < nr_found; i++) { 3514 cip = cilist[i]; 3515 if (cip == ip) 3516 continue; 3517 3518 /* 3519 * because this is an RCU protected lookup, we could find a 3520 * recently freed or even reallocated inode during the lookup. 3521 * We need to check under the i_flags_lock for a valid inode 3522 * here. Skip it if it is not valid or the wrong inode. 3523 */ 3524 spin_lock(&cip->i_flags_lock); 3525 if (!cip->i_ino || 3526 __xfs_iflags_test(cip, XFS_ISTALE)) { 3527 spin_unlock(&cip->i_flags_lock); 3528 continue; 3529 } 3530 3531 /* 3532 * Once we fall off the end of the cluster, no point checking 3533 * any more inodes in the list because they will also all be 3534 * outside the cluster. 3535 */ 3536 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3537 spin_unlock(&cip->i_flags_lock); 3538 break; 3539 } 3540 spin_unlock(&cip->i_flags_lock); 3541 3542 /* 3543 * Do an un-protected check to see if the inode is dirty and 3544 * is a candidate for flushing. These checks will be repeated 3545 * later after the appropriate locks are acquired. 3546 */ 3547 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3548 continue; 3549 3550 /* 3551 * Try to get locks. If any are unavailable or it is pinned, 3552 * then this inode cannot be flushed and is skipped. 3553 */ 3554 3555 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3556 continue; 3557 if (!xfs_iflock_nowait(cip)) { 3558 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3559 continue; 3560 } 3561 if (xfs_ipincount(cip)) { 3562 xfs_ifunlock(cip); 3563 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3564 continue; 3565 } 3566 3567 3568 /* 3569 * Check the inode number again, just to be certain we are not 3570 * racing with freeing in xfs_reclaim_inode(). See the comments 3571 * in that function for more information as to why the initial 3572 * check is not sufficient. 3573 */ 3574 if (!cip->i_ino) { 3575 xfs_ifunlock(cip); 3576 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3577 continue; 3578 } 3579 3580 /* 3581 * arriving here means that this inode can be flushed. First 3582 * re-check that it's dirty before flushing. 3583 */ 3584 if (!xfs_inode_clean(cip)) { 3585 int error; 3586 error = xfs_iflush_int(cip, bp); 3587 if (error) { 3588 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3589 goto cluster_corrupt_out; 3590 } 3591 clcount++; 3592 } else { 3593 xfs_ifunlock(cip); 3594 } 3595 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3596 } 3597 3598 if (clcount) { 3599 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3600 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3601 } 3602 3603 out_free: 3604 rcu_read_unlock(); 3605 kmem_free(cilist); 3606 out_put: 3607 xfs_perag_put(pag); 3608 return 0; 3609 3610 3611 cluster_corrupt_out: 3612 /* 3613 * Corruption detected in the clustering loop. Invalidate the 3614 * inode buffer and shut down the filesystem. 3615 */ 3616 rcu_read_unlock(); 3617 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3618 3619 /* 3620 * We'll always have an inode attached to the buffer for completion 3621 * process by the time we are called from xfs_iflush(). Hence we have 3622 * always need to do IO completion processing to abort the inodes 3623 * attached to the buffer. handle them just like the shutdown case in 3624 * xfs_buf_submit(). 3625 */ 3626 ASSERT(bp->b_iodone); 3627 bp->b_flags &= ~XBF_DONE; 3628 xfs_buf_stale(bp); 3629 xfs_buf_ioerror(bp, -EIO); 3630 xfs_buf_ioend(bp); 3631 3632 /* abort the corrupt inode, as it was not attached to the buffer */ 3633 xfs_iflush_abort(cip, false); 3634 kmem_free(cilist); 3635 xfs_perag_put(pag); 3636 return -EFSCORRUPTED; 3637 } 3638 3639 /* 3640 * Flush dirty inode metadata into the backing buffer. 3641 * 3642 * The caller must have the inode lock and the inode flush lock held. The 3643 * inode lock will still be held upon return to the caller, and the inode 3644 * flush lock will be released after the inode has reached the disk. 3645 * 3646 * The caller must write out the buffer returned in *bpp and release it. 3647 */ 3648 int 3649 xfs_iflush( 3650 struct xfs_inode *ip, 3651 struct xfs_buf **bpp) 3652 { 3653 struct xfs_mount *mp = ip->i_mount; 3654 struct xfs_buf *bp = NULL; 3655 struct xfs_dinode *dip; 3656 int error; 3657 3658 XFS_STATS_INC(mp, xs_iflush_count); 3659 3660 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3661 ASSERT(xfs_isiflocked(ip)); 3662 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3663 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3664 3665 *bpp = NULL; 3666 3667 xfs_iunpin_wait(ip); 3668 3669 /* 3670 * For stale inodes we cannot rely on the backing buffer remaining 3671 * stale in cache for the remaining life of the stale inode and so 3672 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3673 * inodes below. We have to check this after ensuring the inode is 3674 * unpinned so that it is safe to reclaim the stale inode after the 3675 * flush call. 3676 */ 3677 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3678 xfs_ifunlock(ip); 3679 return 0; 3680 } 3681 3682 /* 3683 * This may have been unpinned because the filesystem is shutting 3684 * down forcibly. If that's the case we must not write this inode 3685 * to disk, because the log record didn't make it to disk. 3686 * 3687 * We also have to remove the log item from the AIL in this case, 3688 * as we wait for an empty AIL as part of the unmount process. 3689 */ 3690 if (XFS_FORCED_SHUTDOWN(mp)) { 3691 error = -EIO; 3692 goto abort_out; 3693 } 3694 3695 /* 3696 * Get the buffer containing the on-disk inode. We are doing a try-lock 3697 * operation here, so we may get an EAGAIN error. In that case, we 3698 * simply want to return with the inode still dirty. 3699 * 3700 * If we get any other error, we effectively have a corruption situation 3701 * and we cannot flush the inode, so we treat it the same as failing 3702 * xfs_iflush_int(). 3703 */ 3704 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3705 0); 3706 if (error == -EAGAIN) { 3707 xfs_ifunlock(ip); 3708 return error; 3709 } 3710 if (error) 3711 goto corrupt_out; 3712 3713 /* 3714 * First flush out the inode that xfs_iflush was called with. 3715 */ 3716 error = xfs_iflush_int(ip, bp); 3717 if (error) 3718 goto corrupt_out; 3719 3720 /* 3721 * If the buffer is pinned then push on the log now so we won't 3722 * get stuck waiting in the write for too long. 3723 */ 3724 if (xfs_buf_ispinned(bp)) 3725 xfs_log_force(mp, 0); 3726 3727 /* 3728 * inode clustering: try to gather other inodes into this write 3729 * 3730 * Note: Any error during clustering will result in the filesystem 3731 * being shut down and completion callbacks run on the cluster buffer. 3732 * As we have already flushed and attached this inode to the buffer, 3733 * it has already been aborted and released by xfs_iflush_cluster() and 3734 * so we have no further error handling to do here. 3735 */ 3736 error = xfs_iflush_cluster(ip, bp); 3737 if (error) 3738 return error; 3739 3740 *bpp = bp; 3741 return 0; 3742 3743 corrupt_out: 3744 if (bp) 3745 xfs_buf_relse(bp); 3746 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3747 abort_out: 3748 /* abort the corrupt inode, as it was not attached to the buffer */ 3749 xfs_iflush_abort(ip, false); 3750 return error; 3751 } 3752 3753 /* 3754 * If there are inline format data / attr forks attached to this inode, 3755 * make sure they're not corrupt. 3756 */ 3757 bool 3758 xfs_inode_verify_forks( 3759 struct xfs_inode *ip) 3760 { 3761 struct xfs_ifork *ifp; 3762 xfs_failaddr_t fa; 3763 3764 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3765 if (fa) { 3766 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3767 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3768 ifp->if_u1.if_data, ifp->if_bytes, fa); 3769 return false; 3770 } 3771 3772 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3773 if (fa) { 3774 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3775 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3776 ifp ? ifp->if_u1.if_data : NULL, 3777 ifp ? ifp->if_bytes : 0, fa); 3778 return false; 3779 } 3780 return true; 3781 } 3782 3783 STATIC int 3784 xfs_iflush_int( 3785 struct xfs_inode *ip, 3786 struct xfs_buf *bp) 3787 { 3788 struct xfs_inode_log_item *iip = ip->i_itemp; 3789 struct xfs_dinode *dip; 3790 struct xfs_mount *mp = ip->i_mount; 3791 3792 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3793 ASSERT(xfs_isiflocked(ip)); 3794 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3795 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3796 ASSERT(iip != NULL && iip->ili_fields != 0); 3797 ASSERT(ip->i_d.di_version > 1); 3798 3799 /* set *dip = inode's place in the buffer */ 3800 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3801 3802 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3803 mp, XFS_ERRTAG_IFLUSH_1)) { 3804 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3805 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3806 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3807 goto corrupt_out; 3808 } 3809 if (S_ISREG(VFS_I(ip)->i_mode)) { 3810 if (XFS_TEST_ERROR( 3811 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3812 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3813 mp, XFS_ERRTAG_IFLUSH_3)) { 3814 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3815 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3816 __func__, ip->i_ino, ip); 3817 goto corrupt_out; 3818 } 3819 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3820 if (XFS_TEST_ERROR( 3821 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3822 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3823 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3824 mp, XFS_ERRTAG_IFLUSH_4)) { 3825 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3826 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3827 __func__, ip->i_ino, ip); 3828 goto corrupt_out; 3829 } 3830 } 3831 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3832 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3833 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3834 "%s: detected corrupt incore inode %Lu, " 3835 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3836 __func__, ip->i_ino, 3837 ip->i_d.di_nextents + ip->i_d.di_anextents, 3838 ip->i_d.di_nblocks, ip); 3839 goto corrupt_out; 3840 } 3841 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3842 mp, XFS_ERRTAG_IFLUSH_6)) { 3843 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3844 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3845 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3846 goto corrupt_out; 3847 } 3848 3849 /* 3850 * Inode item log recovery for v2 inodes are dependent on the 3851 * di_flushiter count for correct sequencing. We bump the flush 3852 * iteration count so we can detect flushes which postdate a log record 3853 * during recovery. This is redundant as we now log every change and 3854 * hence this can't happen but we need to still do it to ensure 3855 * backwards compatibility with old kernels that predate logging all 3856 * inode changes. 3857 */ 3858 if (ip->i_d.di_version < 3) 3859 ip->i_d.di_flushiter++; 3860 3861 /* Check the inline fork data before we write out. */ 3862 if (!xfs_inode_verify_forks(ip)) 3863 goto corrupt_out; 3864 3865 /* 3866 * Copy the dirty parts of the inode into the on-disk inode. We always 3867 * copy out the core of the inode, because if the inode is dirty at all 3868 * the core must be. 3869 */ 3870 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3871 3872 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3873 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3874 ip->i_d.di_flushiter = 0; 3875 3876 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3877 if (XFS_IFORK_Q(ip)) 3878 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3879 xfs_inobp_check(mp, bp); 3880 3881 /* 3882 * We've recorded everything logged in the inode, so we'd like to clear 3883 * the ili_fields bits so we don't log and flush things unnecessarily. 3884 * However, we can't stop logging all this information until the data 3885 * we've copied into the disk buffer is written to disk. If we did we 3886 * might overwrite the copy of the inode in the log with all the data 3887 * after re-logging only part of it, and in the face of a crash we 3888 * wouldn't have all the data we need to recover. 3889 * 3890 * What we do is move the bits to the ili_last_fields field. When 3891 * logging the inode, these bits are moved back to the ili_fields field. 3892 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3893 * know that the information those bits represent is permanently on 3894 * disk. As long as the flush completes before the inode is logged 3895 * again, then both ili_fields and ili_last_fields will be cleared. 3896 * 3897 * We can play with the ili_fields bits here, because the inode lock 3898 * must be held exclusively in order to set bits there and the flush 3899 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3900 * done routine can tell whether or not to look in the AIL. Also, store 3901 * the current LSN of the inode so that we can tell whether the item has 3902 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3903 * need the AIL lock, because it is a 64 bit value that cannot be read 3904 * atomically. 3905 */ 3906 iip->ili_last_fields = iip->ili_fields; 3907 iip->ili_fields = 0; 3908 iip->ili_fsync_fields = 0; 3909 iip->ili_logged = 1; 3910 3911 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3912 &iip->ili_item.li_lsn); 3913 3914 /* 3915 * Attach the function xfs_iflush_done to the inode's 3916 * buffer. This will remove the inode from the AIL 3917 * and unlock the inode's flush lock when the inode is 3918 * completely written to disk. 3919 */ 3920 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3921 3922 /* generate the checksum. */ 3923 xfs_dinode_calc_crc(mp, dip); 3924 3925 ASSERT(!list_empty(&bp->b_li_list)); 3926 ASSERT(bp->b_iodone != NULL); 3927 return 0; 3928 3929 corrupt_out: 3930 return -EFSCORRUPTED; 3931 } 3932 3933 /* Release an inode. */ 3934 void 3935 xfs_irele( 3936 struct xfs_inode *ip) 3937 { 3938 trace_xfs_irele(ip, _RET_IP_); 3939 iput(VFS_I(ip)); 3940 } 3941